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ABSTRACT

A theory of parallelism along p-surfaces in a
Riemannian manifold M is developed. The theory exploits
the dual nature of a geodesic as

1. an autoparallel curve

and 2, as a critical point in the calculus of variations
problem for minimizing the length of curves
connecting a pair of points in M .,

A speclalized definition of a p-plane field along an
embedding f: NP - M is given, The differential, dr,

is a p-plane field., The second fundamental form and

mean curvature vector field of a p-plane field are de-
fined. A p-plane field is defined to be parallel when

its mean curvature vector field is zero. It is shown

that the condition for parallelism is equivalent to the
vanishing of a certain p-form on a certain principal

bundle associated with each p-plane field. The differential
p-plane field, df , of a minimal surface is parallel., The
sense in which the theory generalizes the case p=1 is
discussed.

The Main Theorem, proved only in the real analytic
case, using the Cartan-Kahler Theorem, states conditions
for the existence and uniqueness of a parallel p-plane
field along an embedding, in terms of initial data.
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CHAPTER I
INTRODUCTION

§1., Statement of the problem considered in this thesis.

1.1. Geodesics arise in the study of Riemannian Geometry
in two ways. On the one hand, the concept of parallel
translation of vectors is defined in any affinely con-
nected manifold. In a Riemannian manifold there is a
unique connection with zero torsion on the bundle of
frames; this connection 1s called the Riemannian connection
(see Milnor [6] or Singer [8]). A geodesic is then de-
fined as a curve whose tangent vector field is its own
parallel translate with respect to the Riemannian con-

nection., The geodesics are said to be the autoparallel

curves.

1.2. On the other hand, the length of a piecewise
smooth curve in a Riemannian manifold is defined using
the metric. A basic problem (again, see Milnor [6] or
Singer [8]) is to find the curves of minimal length
connecting a pair of points in the manifold. The
problem is attacked using the Calculus of Variations.
A length function is defined on the space of piecewise
smooth curves with the same end points, One computes
the first variation of a one parameter family of such
curves and finds that the geodesics, as defined in

§l.l, are the critical points of the length function.
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In fact, geodesics were classically defined by this
condition.
Thus the curves which are autoparallel are the

critical points of the length function.

1.3 The problem considered in 1.2 can bve form-

ulated in higher dimensions also. Let p < m . The
p—diménsional volume of a compact p dimensional sub-
manifold of an m dimensional Riemannian manifold is
defined using the metric, (see Eisenhart [1]). The

problem of finding a p-ﬁimensional submanifold of

minimal volume which bounds a fixed, closed, p-1 dimensional
submanifold again leads to a problem in the Calculus of
Variations. The critical points of the volume function

are called minimal surfaces. They are the surfaceg of

mean curvature zero. (again see Eisenhart [1]).

1.4 Keeping in mind what has been said in §1.1, .2
and .3, the problem considered in thig thesis can now
be stated:

TO FORMULATE A DEFINITION OF A RIEMANNIAN p-
CONNECTION AND/OR AN ASSOCIATED CONCEPT OF PARALLELISM
ATONG p-SURFACES, FOR WHICH, THE p-DIMENSIONAL MINIMAL
SURFACES ARE THE AUTO-PARALLEL SURFACES.

We attempt to get at a p-connection through parallel-
ism., We must try to find out what kind of geometric

objects we can expect to define parallel fields of.
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At first glance vectors, p-planes, p-frames or m-frames all
appear as equally likely candidates, considering only

the one dimensional situation,

1.5. However, there are more signposts. The follow-
ing are basic statements in Riemannian Geometry. See
Milnor [6].
THEOREM A,

Let- v: (a,b) » M be a smoothly embedded curve
in the Riemannian manifold M . Let c¢ € (a,b) and
x € MY(C),"i{x][ = 1 . Then there is a unique parallel

unit vector field X along vy such that
X(y(e)) = x

THEOREM B,

Iet n € M, a Riemannian manifold. Let x ¢ Mh .
Then there is a unique geodesic byz U - M defined on
some (not uniquely determined) neighborhood U of the

origin in Rl such that

It

Y(0)

v(0)

n

X

fi

In each of these theorems information is given on ¢ .

p-1 = O dimensional submanifold and extended along a
p=1 dimensional manifold. The existence and uniqueness
theorem of Ordinary Differential Egquations is used de-

cisively in their proofs; that is, the existence and
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uniqueness theorem of O0,D.E. as expressed in the theory
of differential ideals by the Frobenius Theorem. We are
concerned with p-dimensional manifolds, wherein general
p> 1. If, by analogy to the above we are willing, in
our theory, to allow information to be given initially
along a p-1 dimensgional submanifold in order to determine.
a unique parallel field extending the initial data, then
we should take note of thelCartan—Kahler Theorem. See
Jomnson [2]. This theorem expresses, in the language

of differential ideals, the Cauchy-KowaXwski Theorem on
the existence and uniqueness of the solutions of real
analytic partial differential equations. It states the
existence and uniqueness of a p-dimensional integral
manifold extending a p-1 dimensional integral submanifold

(and perhaps satisfying some additional constraints).

1.6, If we let the one dimensional case, the requirement

for minimal surfaces and the Cartan-Kahler Theorem guide
us, 1t turns out that there is exactly one geometric ob-
ject along aﬁ embedded p-dimensional surface for which we
can define parallelism. This object, defined, say, along
the isometric embedding f: NP - o s 1s somewhat more
speclalized than a p-plane field. Roughly, it is a
vector bundle isometry, covering f , of the tangent
bundle T(N) into the tangent bundle T(M). (See §2.2

for details). We will still call this object a p plane
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field. Notice that the differential d4df , 1is such an

object.

The conditién of parallelism of a p-plane field is
defined by the venishing of a certain vector field along
the embedding, which in the case of the p-plane field
df is Just the mean curvature vector field (see $4 for
details).

It is then immediate that the differential df of

a minimal gurface is parallel. That is, we may say that

minimal surfaces are autoparallel.

In the one dimensional case, it is evident that
the arc-length parametrized geodesics (which are auto-
parallei in the usual sense) an autoparallel in our sense
(because they are one-dimensional minimal surfaces).
Conversely if an arc-length parametrized curve hag parallel
differential, it is not hard to show that it is a geodesic.
Thus for one dimension, autoparallel means the same thing
in elther sense,

I have not yet proved an analog of Theorem B (§1.5)
which should say something like: given the right initial
data along a (p-1) dimensional surface, there exists (at
least in the real analytic case) a unique p-dimensional
minimal surface containing the (p-1) dimensional surface

and extending the data given along it.

1.7 The MAIN THEOREM proved here (see Chapter III) is
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the natural extension of Theorem A ($1.4). It roughly
states that there is a unique paraliel p-plane field along
an embedding that extends +#1l. a p-plane field given
along a (p-1) dimensional
submanifold (see §2.3 for
definition)
and #2. a (p-1) plane field given
everywhere along the em-
bedding (see $2.2 for
definition)
Notice that for p = 1 , #2 of the main theorem is vacuous
and #1 is a statement at a point. The main theorem for
the one dimensional case, compared to Theorem A, shows
what part of the concept of parallel (in the usual sense)
we have been able to generalize. If the metric on M is
pulled back via Y then v: (a,b) - M becomes an isometric
embedding. Then the vector field along Y , whose
existence is asserted by Theorem A,is the image of the
unit tangent vector field which is a positive multiple
of -3% (not in general a constant multiple) under the
l-plane field whose existence 1s assertéd in the main

theoren.

1.8. The main theorem is proved only in the real
analytic case., It will be of interest to know what

differential equations arise from this geometry, for they
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will determine the possibility of carrying out the
) . :
same program in the C case.
The proof of the main theorem depends heavily on
the fact that the condition for parallelism can be
stated in terms of the vanishing of a p-form (see ).

This may eventually lead us to a statement of what a

p-connection is.

It is also of interest to agk if it is possible
to define a p-connection or parallelism along p-surfaces
in an affiﬁély connected manifold; we note that the
torsion zero property of the Riemannian connection was

not used.

82, Definitions, Notation and General Remarks.
2.1, The concepts that we will now discuss are presented

in detail in Singer [8] and Sternberg [9]. Nomizu - [7] is

much briefer. We will use the abbreviation R. M. for
Riemannian manifold and dim for dimension. CY means
real analytic,

Let X" denote a R.M. of dimm . We will assume
that all manifolds are of class C” or C , which we
will call smooth. When a choice of either ¢° or C%
must be made it will be explicitly indicated. We will

agree that

il

T(X)
s(x)

tangent bundle

unit sphere bundle
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F(X) = bundle of frames

4°(X) = bundle of p-planes

- Unless otherwise stated M" is a fixed smooth R.M. of
dimm and f: N° - M® is a fixed isometric embedding of

a fixed smooth R.M. of dim p into M .,

2.2, In standard terminology a g-plane field along

the embedding f 1is a 1ift of the submanifold ¥ into
the Grassmammanifold &%(M) . For our purposes this
definition will be inadequate. Let 0 <L q<Dp .

Definition: A g-plane field along f is a pair (D%,q%)

consisting of a g-dim smooth vector subbundle D% or

T(N) , and a smooth vector bundle mapping G% : D% = (M)
which carries D%(n) , the fibre of DY over n €N
isometrically into the fibre over f(n) .

This can be restated by saying that the diagram

, q o
p? & _sm(u)
T T
v _ v
N — > M
q . =1y 2 pd ~1 '
commutes and G=| _5 : 7 (n) = Di(n) - 7 (f(n))

(n)
preserves the inner product. Gq(n) will denote the
element of &P(M) given by G%(n) = ¢%(0%(n)) . The
differemtial df 1is an example of a p-plane field along

f L



-13-

2.3, Let i: NP™% - ¥ Dbe an isometric embedding of
smooth R.M, We will generally refer to (Np'l,i) as
an initial manifold. Denote by 5i(T(NY)) the vector
pundle over WP T optained by pulling back T(NF)

via 1 . Let hy: si(T()) - T(N®) be the natural

vector bundle isometry which makes the diagram

s1(T(P)) ——j—l—i———> (1)

iﬂ' i’lr
At S SRPY) &

commute.
et £ and i be as above,.

=

Definition: A p-plane field aldng fol 1s & vector

bundle mapping G°: si(T(WP)) - T(M) which carries the
fibre over n € Np"l isometrically into the fibre over

foi(n) . That is, the dlagram

51 (T(P)) EN (M)

i’rr l’n‘
NP"l .._____.f_Q.j:._.__> M

commuites and Gp] 1, T ) - W*l(foi(n))

™ " (n)
preserves the inner product.

= n (P
We will generally refer to GF: 51(T()) - T(M) as
initial conditions along foli . The reasons for the use

of the terms initial manifold and initial conditions will
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become apparent when the reader sees the role they play

in the theory.

0., Let G = (T(@),6) be a p-plane field along f .
Let (0P°1,6P"1) be a (p-1) plane field along f.
Let GP: si(T(¥P)) - T(M) be a p-plane field along
fol .
Then 6i(Dp'l) c si(T(NP)) is a vector bundle over

1 optained by pulling back DP™1 via 1 .

NP~
We need the following

Definitiont (Dpfl,Gp'l) and G° are compatable if

P = ¢® Lon, |
’51(Dp”l) g1 (oP 1)

Definition: G extends G° if @GP = Goh,

Definition: G extends (DP71,GP7Y) ir of 4= P
' D
2.5. et (0%,69) be a g-plane field along f .
Let F(D%,G%) = {(n,eq,...e )| n ¢ W, eqs...e, 1S

an orthonormsal frame of Mf(n)’ el,...eq is an orthonqrmal

frame of G3(n)}

Proposition: F(D%,6%) is a principal 0(q) x O(m-q)

pbundle over N with projection W(n,el,..em) -n .,

The proof is similar to a proof in Singer [8] Chapter
VII, page 3. We must only add that in this case we use
g orthonormal vector fields spanning D% in a nelghborhood

of n € N, thelr images under ¢4, and (m-q) more
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orthonormal vector fieldswhich locally fill out the
orthogonal complement to GE(DY) in T(M) along f .
Following Singer [8] Chapter VIT page 15, let B,
denote the bundle over N whoge fibre over n € N 1isg
the fibre of F(M) over f(n) . The group and fibre of
both F(M) and B, 1is O(m) . Let us make the ident-

ification

0{q) x O(m-q) E(\ (g [O(m-q}) “ O(m)

Denote by j: F(D%,6%) - By » the inclusion map., Let

rg denote right translation by g .

Proposition: (F(p%,69),3) is a submanifold of B, and

1
with respect to the above identification of groups we

have

J o re = Ty O J for each g € 0(q)x0(m-q)

The proof ié a direct verification which we omit.

e (0%,¢%) = (7(@P),ar) then F(T@P),ar) is just
the bundle of adapted frames of the embedding £ . This
leads us to the
Definition: F(Dq,Gq) is called the bundle of adapted

frames of the g-plane field (D%,¢Y%) along r .

§3. Remarks on Vector Bundle-Valued Forms and the Cartan-

Kahler Theoren,

3,1. As was indicated in (1.6) and (1.8), we will be
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concerned with vector valﬁed forms and their integral
manifolds. Inwthis section we will review some of the
standard material from the theory of differential ideals.
At the same time, we will put a basic theorem (the
Cartan-Kahler Theorem) in the exact context in which
we will iater need it, Detalls and proofs can be found
in the following references:
Vector-valued and Vector bundle-valued forms.
Koszul [4]
Cartan-Kahler Theorem Johnson [2],
Kuranishi [5]

Kahler [3]

The format that I shall follow most closely, however, 1is
given in Hano-Kobayashi [10]. This unfortunately is not

generally available.

3.2. Let M Dbe an m-dim smooth manifold., Let A*M
be the riﬁg of smooth differential forms on M .

Definition: A subgset I of N*M dis called a differential

ideal if 1. it is an ideal in A*M (with respect to

wedge multiplication)

2, it is homogenebus, (whenever it contains
a form that is the sum of forms of several
degrees then 1t contains each of the summ-
ands).

3. it is closed under the action of the-

differential operator d, dI < I .
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We note that given any subset J < A*M , the ideal
generated by J and dJ 1is a differential ideal. We
call this ideal the differential ideal generated by J .

Definition: A submanifold (N,f) of M is an integral

manifold of the differential ideal I (respectively the

subset J) if and only if &f(I) = O (respectively
5£(J) = 0).

It is easy to see that (N,f) is an integral manifold
of J 1if and only if it is an integral manifold of the
differential ideal generated by J .

Definition: If n € M and EP(n) < M, is a p-plane,

then E°(n) is an integral plane of I (or J) if

w] for each w € I (or w € J).

= 0
EP (n)
3.3. Let V Dbe a k-dim vector space over R .

Definition: A p-form w with values in V 1is a function

which assigns to each n € M a skew symmetric multi-
linear map of M x..x M/ (p-times) into V. Ve say
that w . is smooth, if, whenever we choose a basis

Vl"'vk of 'V and erte
k
" - i \
o ) Z W ( v
i=1

the real valued p-forms, wl,..wk are smooth. This
definition is independent of the choice of basis. Let
I(w) be the differential ideal generated by J = {wl,..wk}.

I(w) is independent of the choice of basis, as it is
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easy to see. We say that I(w) is the differential

ideal associated with w .

Definition: (N,f) is an integral submanifold of w if

sf(w) = 0 €V, EP(n) < M, is an integral p-plane of

wo if wIEp(n)( )= 0 €V

Clearly, (N,f) is an integral submanifold of w
if and only if (N,f) 1is an integral submanifold of
I{(w) . The same remark is true for EP (n)

Thus we see that the integral manifolds of a
vector valued form are found by finding the integral

manifolds of 1ts assoclated differential ideal.

3.4, Let V(M) be a k-dim smooth vector bundle over
M.

Definition: A p-form w od M with values in V(M)

)

is a function which assigns to each n € M a skew
symmetric multilinear map of Mnx..xMh (p-times) into
the fibre of V(M) over n . We define smoothness of

w as follows. Choose k independent smooth vector

fields X,,..X,  which span V(M) over a neighborhood
of n , and write
k
v i
ol V=Y O ) x
i=1

Then ® is smooth in the neighborhood of n if the

real valued p-forms wi,..wi are smooth there. The
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definition does not depend on the choice of vector
fields. Let I{w) De the differential ideal generated
by J = {wl,..wk} . I(w) is independent of the choice

of vector fields. We call I(w) the differential ideal

agssoclated with w . Proceed as in (3.3) for the
definitions of integral manifold of w and integral

plane of w ; draw the same conclusions.

3.5. et I ©be a differential ideal on M . For
each Ep(n)_ e M) (nem), we obtain from 1 a space
of linear functionals on Mn , as follows. IlLet
ViseVg span Ep(n) . Iet r°€¢ I , where the degree
of T° is s <p+ 1. For each increasing sequence

of s-1 '1ntegers 1<1,2£1, < - L1 L p the

map

. v
v oo TV, N VN -0 Ve N V)
1 1o el

is a linear functional on M, .

The space gpanned by the linear functionals obtained
by

1. varying the increasing sequences of s-1 1integers
and 2. varying °  over all forms in I of degree £ p+l

is called the polar space of EP(n) and written

J(EP(n),I) . It is easily seen to Dbe independent of the

choice of Vy,..v, . We define £(EP(n)) = dim J(EP(n),I)
and tr(Ep(n)) = max {t(Er(n)lEr(n) c EP(n)} for each

r= 0,1,..p~-1".
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Observe that if E°(n) is integral, we must have

5(8%(n)) < mep

3.6. Suppose that ® 1is a p-form on M with values
in a vector space V . Let us now make an observation
which we will use later on. Let Ep"l(n) be any (p-1)

plane at n € M ; let ViseeV be any basis of

p-1
Ep"l(n) . We wish to compute t(Ep"l(n)) = dim (J(Ep'l(n),
I{w)) . Since I(w) is given by forms of degree at
Jeast p , +the polar space of EP(n) is exactly the

span of the linear functlonals

i
Voo 0T (ViAVSAL. Vp_lh‘f)

where w- are the real valued p-forms obtained from w ,
by choosing a basis of V as in (3.3) . Hence t(Ep"l(n))

ig the rank of the linear map of tha V given by

v oo ow(vyA.. vp_lAv)

In just the same way we see that if w is a p-form
with values in the vector bundle V(M) , then t(Ep'l(n)) =
dim (J(Ep'l(n),l(w)) is the rank of the linear map: M@ -

fibre of V(M) over n given by
v - w(le.. vp_lh'v)

1 .2 )

3.7. Definition: A family {f ,f ,... of smooth

functions defined in a neighborhood of n € M 1is called
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regular of dimension r at n 1if

1. f£7(n) = 0 for each 1=1,2,3...
2. There is a coordinate system yl,..ym defined in

a neighborhood U of n such that the set of

- 2 . - . .
common zeroes of {Il,f ye..} in U coincides

r+1

with the set of common zeroces of y ,..ym .

3. The subspace of (Mh)* spanned by the dfi,

i"‘_‘l,g;'oo haS l"ank m—I‘ L)

It is evident that the common zeroes would then form a
submanifold of dim r passing through n . Let I be a
differential ideal on M.

Definition: An integral point N, € M 1is said to be

regular if the system of functions in I 1is regular of
degree r at ng and if there éxists a neighborhood U
of ng such that t(EO(n)) is constant for each
integral point Eo(n) =n in U .
For p 2 13 ‘

aﬂ integral plane Ep(no) is sald to be regular
if Ep(no) contains a regular Ep'l(no) and if
£(EP(n)) is constant for all integral p-planes EP(n)
in some neighborhood of Ep(no) . |

Definition: An integral point ng € M is sald to be

ordinary if the system of functions in I 1is regular of
dimension r at Ny »

For p > 1, an integral plane .Ep(no) is said
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to be ordinary if Ep(no) contains at least one Ep”l(no)

which is regular,

3.8, Let ug assume for the rest of 83 that we are
dealing with real analytic forms, ideals, etc.

It can be shown that if E%(n) is regular and
8%(n) c B°(n) then t(8%(n)) = t,(E°(n)) .

One showg that the set of regular p-plane and the
set of ordinary p-planes are each open in the set of
integral planes in bp(M) . But more importantly, using
a natural description of ihe integral p-planes as the
zeroes of a certain family of functions on .,&p(M) ,
one shows that at a regular or ordinary plane Ep(n) 5
this family of functions 1s regular of a particular

dimension and hénce determines the germ of a submanifold

of ¥P(1) throuen EP(n) .
The Cartan-Kehler Theorem makes use of this informa-

tion (together with the Cauchy-Kowalewski Theorem) to find

S S e e R e S

p-dimensional integral manifolds through an ordinary
p-plane. There are several ways of prescribing data to
obtain a unique integral manifold; the theorem that wé
now quote leads to the formulation we need later on.
Theorem (Cartan-Kahler). Let I be a differential ideal
on M" . Suppose there are no functions belonging to I ,
et EP(n) be an ordinary integral p-plane of I at n ,

containing the regular integral (p-1) plane Ep'l(n) .
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Suppose ta_l(Ep(n)) = m-p .
Let (VP71,35) be a p-1 dim. integral menifold with
-1, op-1 -1
ngy € vP, J(no) = n, dJ(VﬁO ) = EP7*(n) .
Then there exists a unlque p-dim integral manifold
(Vp,k) with ny

e VP, k(ny) = n_,dk(vﬁ ) = E°(n) which
furthermore "extends" }(fol,j) in a ne%ghborhood of ng .
(Here, "extends" means ﬁhat there is a neighborhood U

of n, in vP1 ang a natural embedding 1: U - vP

which makes the diagram

(Ung) —3—> (4,n)

Lo

(vP,n;)

commute,

3.9. We now adapnt the Cartan-Kahler Theorem to our

specilfic need.

Theorem: Let V(M) be an (m-p) dim vector bundle over
M™ . Let w be a p-form with values in V(M) . Let

Ep_l(n) M, and Vq,..V be any basis of Ep—l(n} :

p-1
Suppose the linear map T: M - fibre of V(M) over =n

given by
v oo (Vi ATVSA - Vo1 A V)
ig surjective, Then given any (p-1) dim integral manifold

("1,3) with n, € V7L, (ng)=n, az(vEh) = B2 (n),
O

there exlists a unigue integral



Y

manifold (VP,k) with n, € vP , k(n;) = n which

"extends" (Vp-l,j) in a neighborhood of ng .
Proof: Take T = I(w) . By (3.6) t(EP71(n)) = rank

= m-p . The continuity of the determinent function
then tells us that t(E) is constant for (p-1) planes
E near Ep'l(n) , because the rank of T = t(Ep'l(n))v
is maximal, There is a unique integral p-plane BP
containing gP-1 , in fact, BP = ker T . Thus E° is
ordinary, because we have shown that Ep'l(n) is regular.
By the remark at the beginning of (3.8) tp_l(Ep) = t(Ep"l(n)) =
m-p . The theorem now follows directly from the Cartan-
Kahler Theorem (3.8). Observe that the choice of

vl,..v is immaterial.

p-1

CHAPTER IT

Parallelism for p-Surfaces

§4, The second fundamental form of a p-plane field and

the definition of parallelisnm.

b1, Let G be a p-plane field along f: N° - M" .
Let o (respectively, Qrs) denote the matrix-valued
(respectively, real-valued) one forms of the Riemannian
connection on F{(M) . Let the same symbols denéte the
pull-back of these forms to By . Let T = 8jo and

gms = 8jp,, denote the further pull-back of these
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forms to F(T(N),¢) = F(G) , the bundle of adapted
frames of G .

Let b € F(G) . Then b induces a natural ident-
ification of the fibre through b with O(p) x O(m-p);
j(b) induces a natural identification of the fibre
through J(b) with O{(m) . Restricted to the fibres
through b and Jj(b), the mapping J corresponds under

these natural ildentifications to the map:

0(p) x 0(u-p) - ( o) | o )c o(m)
o 0(m-p)
We also have that vertical subspace of (F(G))b , which
we denote by V(F(G)B) is naturally identified with
o(p) x o(m-p) , the Lie Algebra of O0(p) x O(m-p) ;
while the vertical subspace of (Bl)j(b) , which we
denote V((Bl)j(b>) is naturally identified with o(m) ,

the Lie Algebra of 0O(m) . Restricted to the vertical

. subspaces at b and Jj(b), the mapping 4 corresponds

under these natural ldentifications to the map:

"aj": o(p) x of(m-p) - ( oép) go?mfp))c o(m)

Denote by a: o(m) - o{m) the projection

bats) — ()

where A is(p x

o)

) skew symmetric and B is (m-p) x (m-p)
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skew symmetric.
Then the matrix valued l-form @ - & o= (1-0)o
is always zero on the vertical subspace of (F(G))b .

Equivalently, the real valued l-forms , ptl<r<m,

Prs
1< s<£p, are zero on the vertical subspace of

4,2, We now define real valued l-forms @B B = 1,...D
on F(G) as follows. Let b ¢ F(G) and suppose b =

(n,el,..em) then
(“’a)b(X) = < G drX, eg>

(recall that w: F(G) -~ N 1is the projection map. )
It is easy to see that the forms EB are smooth: choose
coordinates on F(G) and compute as in Singer [8]
Chapter IV p. 29. One also can check that the {EB} are

an independent set of 1-forms and that they vanish on the

vertical.

4,3, By‘@.l)we see that the l-forms ars

1< s <p are linesar combinations of the 'EB . We define

where the brsB are smooth functions on F(G)
Let us agree that 4; denotes orthogonal complement.

For each b € F(G) define a linear map
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s(0): [a(n)]™ = Hom(N,N )  (r(b)=n)

- g - N , .
as follows. If b = (n,el,..ep,e l,,.em) we have

p

G(n) = span (el,..ep) and G(n)‘ = spam(ep+l,..em).

Let S(b)er be the element of Hom(Nn,Nn) whose matrix
with respect to G7(ey),..GT(e,) iz (bup(0)) .
Because the connection form o 1g Ad-equivarient, the
linear map S(b) 1is independent of the choice of b ¢ W"l(n).
Thus, for each n & N wé have a linear map Sn: G(n) =~

Hom (N, ) -

-

Definition: . The linear map S s called the second

n

fundamental form of the p-plane field G along f (at n).

Suppose we take G = df then it follows that 5,
as defined here iz the same as the second fundamental
form of the embedding f as definéd for instance in
Singer [8] Chapter VII p. 10 .

Pl

W i, Definition: Let G Dbe a p-plane field along T .

The vector field g along f , which is dual (with
respect to the inner product) to the linear functional

-
trace o 8 (on G(n) ) is called the mean curvature

vector Tield of G .

. 4
The definition implies that g(n) € G(n) .
If G=4f , g 4is of course, the mean curvature

Fal

vector of the embedding I .



4.5, Definition: A p-plane field along f 1s

parallel if and only if its mean curvature vector field is
identically zero. The definition says that the p-plane
field - is parallel if and only if the trace cof 1ts

second fundamental form is zero.

§5. Parallelism as expressed by the vanishing of a

p-form on F(G) .

5.1, let G be a p-plane field along £ . We shall
define smooth one forms &l,,.wp on F(G) with values

in ROP, et ro4ye+¥, e & stendard orthonormal vasis

- . ‘e .
of R™P equipped with its usual inner product. Let

]

b & F(G) and X € F(G)b R we define
)5 = (o )u(0) 4o ioptian

We can always wedge together 1l-forms with values in a

vector space V over R with real values l-forms, Dy

using the multi-linearity of the map
Rx R .. xR (k times) - V
given by
(Tl:rz-.'.;l"k,'\i) STyt Tp e Tt v

Tn thig sense define the p-form p on F(G) with values

. m- )
in ROP by
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D
=) WA AT A AT A - ATy
=1 |

Let e denote the differential ideal generated by u .
(see £3.2) .

Lemma: The mean curvature vector at n , g(n), is zero,
if and only if there is an integral p-plane of & com-
plementary to the vertlcal at some point b such that
m(b) = n .

Proof: Suppose D € F(G) with 7(b) = n . Suppose
there exisfs a p-plane P complementary to the vertical
at F(G), end P 1is an integral plane of . We show

that g(n) =.0 .

v = (n,e.,..e ) say . Choose X, € P such that

m
deXi = ei
P
Then 0 = p(Xqa .. AX ) = Z 1 (X)) =
=)

m . m B
=) < Z 1o (Xo)s T > Ty = ) () < g (Xg) sty >)rg
t=p+l O t=p+1 Q

m
=) () TpaXe))rg
t=p+l C

S0 O = §;$t@(xa) for t = p+l,...m .
o

By the choice of the X,
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o X - ) Dogp (D) (X)) = Dygq(P)
B

Hence t = p+tl,...m .

= ), Praal’
a

Thus the linear functional trace O Sn is identically

zero on G(n) . Therefore g(n) = 0 . To demonstrate
the converse, pick any » with 7(b) =n , say b=
(n,el,..em) . Choose any X, o= 1...p such that
Gdr¥, = e, ©¢=1...p . Let P = span (xl,..xp) .

Now read the COﬁpUtBulOﬁ given above in the reverse order.

QQE'D.

THEOREM. The following three statements are edquilvalent.

[

., G is parallel

2. TF(G) is an integral manifold of e®

L

. FPor each n € i , there is elghborhood U
and a local cross section c: U = F(G) which

ig an integral submenifold of <& .

€3}

K3 k)

Proof: ‘2. 1mplies 3. 1s obvious

3. implies 1. by the lemma
We claim that 1. implies 2. By the construction in the
second part of the proof of the lemma we see that at every
point b € F(G) , all the p-planes complementary to the
vertical are integral planes of the form p . These
plenes are an open dense subset of all the p-planes, hence

u  1s identically zero on- F(G) . Therefore the differential
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4.

ideal it generioes,!l , is identically zero on F(G) . Q.E.D.
§6. The autoparallel p-surfaces.

6.1. THEOREM: If (NP,f) 4is a p-dimensional minimal
surface in M , then d4f, the tangent p-plane field
along f 1s parallel.
Proof: This theorem is immedlate from our definition of
parallel as the vanisghing of the mean curvature vector
field. Q.E.D.

Generalizing in the sense of (1.1), the minimal surfaces
are autoparallel.

For every p-plane field G along an embedding
£: NP - M, the imege of G defines a p-plane field
in the Crassmenn sense; a 1ift of NP into 3P(M). It
is conceivable that there afe embeddings f: WP oo

for which the (Grassmann) p-plane field 1s the image of a

p-plene field G(#df) along f (in our sense) and that

G is parallel along £ .

6.2. Let us compare (1.1) with (é.l, when p=1) .

Let v Dbe an arc length parametrized geodesic. Then
vy is autoparallel in the sense of (1.1). But v 1s also
a one dimensional minimal surface hence y 1s autoparallel
in the sense of (6.1).

Now let v Dbe an arc length parametrized curve, which
as an isometric embedding is a one dimensional minimal

surface., Bv definition it is autoparallel in the sense of
Yy
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(6.1). We show that it is autoparallel in the senée of
(1.1).

Assume vy 1s defined on a neighborhood U of the
origin in RY . F(dY) is the bundle of adapted frames
of the embedding Y . Recall that Bl is the full
0{(m) %bundle over U and that Jj: F(dY) - B, 1is the
inclusion map.

From the definition of yu (5.1),for p=1, u=y
Now V¥, is esentially 5j(1-d)p where o was defined
in (4.1). We are assuming p=0 on F(dY) or that
(F(ay),3) 1is ean integral manifold of the form (1-0)o
on By . Let b= (O,?(o),el(o),..em(o)) € F(dv). Let
Y be the unique horizontal 1ift of vy into F(dy)
through b with respect to the connection adE( on
F(av) . ¥ has the form V(t) = (t,¥(t),e,(t)s.ne, (%))
(recall Y is parametrized by arc length.). Y is the
unique integral submanifold of ada on F(dy) passing
through ‘b . Thus 307 ig an integral submanifold of
Go¢ on B, passing through () = Db . Since (F(av),3)
is an integral manifold of (1-a)p on B, so is jovy .
Thus joV is an integral manifold of (1-a)¢ and
| oy on Bl ;  that is 307 is an integral manifold
of ¢ on Bl passing through b . Hence it must be

the unique horizontal 1ift of Y into Bl with re-

spect to the Riemannian connection and
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jO?(‘b) = (t:?(t):ez(t); . -em(t))

Thus Y is a geodesic and autoparallel in the sense
of (§1.1). Q.E.D.

If we drop the assumption about arc length para-

metrization, I don't believe that we can prove this
result. This may be tied up with the difficulty in

extending Theorem B (§1.5) (see (%1.7)).

CHAPTER III

THE. MAIN THEOREM
§7. Statement of the Main Theorem and Remarks.

T.1. If we work only in the real analytic case, we
may prove a generalization of Theorem A (81.5). That
is, we are concerned with the problem of finding & par-
allel . p-plane field along an embedding f: UL Yl
which extends.initial conditions along an initial

manifold (see ($2.3)). It turns out that there are

always ﬁaﬁy p-plane fields with these properties. It

is only when we introduce the additional reguirement

that the p-plane field be known a priori in (p-1)
dimensions at every point, that we can begin to ask

for a unique parallel p-plane field along f . ©Since
this condition is wvacuous for the case p=1, the problem
igs a generalization of the classical problem of finding

a parallel l-plane Tield along a curve, which extends the
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choice of a l-plane at some point on the curve. (see

also (§1.7)).

7.2. MAIN THEOREM: ILet f: N° - M® be a ¥

isometric embedding of R.M. Let n_ € ¥°  ana U,

o]
a neighborhood of n

O .
Let (Dp"l,Gp"l) be a (p-1) plane field along f
defined on U
n
Let 1: 0% o 1 be an initial manifold with

. . -1 -1
1(nl) = n, and dl(Nﬁl ) = DP (no) .

Let CP: 51 (T(¥P)) - T(M) be initial conditions
along fol which are compatable with (Dp"l,Gp"l) .
Then there i1s a p-plane field G along f defined

in a neighborhood U, of ng (Un < U, ) which sat-

o] o o]
isfiles the following three conditions.
1. G extends (Dp—l,Gp_l)
2, G extends G°

3. G is parallel

Furtherﬁore G is uniquely determined by these three
conditions except for the choice of the neighborhood
ﬁ£ (that is, G 1is uniquely determined as the germ

o
of a p-plane field along f ) .

7.3. A remark on the method of proof. The a priori
knowledge of (Dp'l,Gp'l) enables us to set up a

family of bundles and mappings by which, the condition
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for parallelism (expressed by the differential ideal‘l )
can be carried over to a unit sphere bundle over N .
Here we will use the initial conditions to determine a
unique integral manifold - hence a unique parallel p-
plane field along L .

The existence and uniqueness are proved using the
Cartaﬁ~Kahler Thecrem; thus the first result 1s local.
In $9 we will show that under somewhat stronger hy-

potheses it 1is possiblé to obtain a global solution.
§8, Proof of the Main Theorem.

8.1, For the proof we will take WP = U,
o)
As a Tirst step, we will obtain the following

basic commutative diagram:
72 (pP-1,cP 1y 2 p(pPL,eP7h) s B, < P(1)

b Pk

&2 (pP~1, Pty as s (P71, 6P Lo s

b ok

N <identity N <1dent1tg N

BASIC DIAGRAM

For future reference the mappings will be:



(nyeqsnnne,G) =25 (n,eq,...e ) —0> (n,e ... e )
I |7 .
(n,ep,G) A o> (n,ep) > (n,ep)
iPl lP lpo
1d > n < id > n

We have already
of adapted frames of

and its inclusion J

8.2, We also obta

sphere bundle S(DP~

obtained F@P™L,¢P™1),  the bundle
the (p-1) plane field (DP~L,aP~1)
into B, . (see (2.5))

in from (Dp"l,Gp'l) a it (m-p)

l,Gp"l) over N where

' ke
S(Dp"l,Gp"l) = {(n,v)] v 1is a unit vector in Gp'l(n),n € N}

Remark: S(DP~T,qP"1
principal O{m-p+1)
is the set of orthon
We denote by P the
5(
P(
8.3. We obtain S

it is the bundle ove

) is an associated bundle of the

bundle over N whose fibre over n
p-1,

ormal (m-p+l) frames of G ~(n) .

projection

pP-1 ¢P-1y Ly
n,v) = n .

in the same way as B that is,

1 1’
r N whose fibre over n 1is the

fibre of S(M) over f(n), which is in turn the unit

sphere in Mf(n) .

Sl - N , We denote

We denote by P, the projection

by 1 the inclusion of S = s(DP71,aP™1)
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into Sl . Note: where it is clear, we will often drop
the (OP1,eP 1), e.g. s(@PL,6Pl) = 5.
Obviously Pooi = P .

Let m.: B1 - Sl be given by

T (n,el,..em) - (n,e_)

p

Remark: B. 1s a principal O(m-1) bundle over S, ,

1 1
with projection T .
8.4 Let 7w _(b) = (n,ep) . Then b induces a

natural identification of the fibre of Bl through D

(as a bundle over N) with 0{(m) (considered here as
the orthogonal matrices). See for example, Singer [8]

Chapter IV. This induces an identification of the

fibre of S, through vo(b) with

1

Otn) /O(m~l)

where Q(m—l) is glven as the group of matrices in

0(m) of the form:

, * o) *
o 1 o] & 1rovw p
k * e} *

column p
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The vertical subspace of (Bl)b = V((Bl)b) (as a bundle
over N) is then naturally identified with o(m) , the

? skew symmetric matrices. This induces an identification
of the vertical subspace of (Sl)w (b) (as a bundle over
N) with ?

o(m) /

o{m-1)

where o(m-1) is the subalgebra of skew symmetric

matrices of the form:

A o) C
o} o] o |¢&row p
SR B
column p

where A 1is (p-1) x (p-1) skew symmetric and B is

(m-p) x (m-p) skew symmetric.

Restricted to the vertical subspaces at b and
vo(b) , the mapping dm_ corresponds, under these

natural identifications to the projection
il ", - /
ar " o(m) O(m)/o(m~1)

But the exact sequence:

1 1

°©—> o(m), - 0
( /o(m—l)

dm

o - o{m-1) - o{m)
a
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splits naturally, where o carries the equivalence clags

of
.A F C o) ¥ 0
~FT o) E into -FT o] E
<t BT B o | -ET | o

Thus we can identify v((sl)w (b)) with the image of o ,
o
which by abuse of notation we will consider as a subspace

.of V(Bl)b . We then know that dv_  maps this subspace

igomorphically onto V(Sl)T (b) The vertical of (BV)b
(as a bundle over Sl) is just of{m-1) .

We carry this one step further: Use b to ldentify
. " . L .
the image of o with e, , the (m-1)

to e < M, ,  Thus we use
P £(n) .

plane crthogonal

b to ldentify V(Sl)wo(b)=(ﬂ,ep)

de . .
with e . A computation, using the equivarlance of the

P
identifications: V(Bl)b' = o(m), b' € Wo"l (n,e_) shows

p
that the identification V(Sl)wo(b) > e is inde~

pendent of. b .

8.5. Now we define

by T: (n,e eu) - (n,e

We have rooj = lom .
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-1 _»-
Remark: F(DP™+,aP l) is a principal O(p-1) x O(m-p)
bundle over S(Dp'l,Gp—l) with projection T .

Let us continue (see (2.5)) the identification

0(p-1) =z O(m-p+1) g(o(p"l) l o ) .

0 lo(m-p+l)

Thue the vertical subspace of Fb , as a bundle over

N , ig identified with

ofp-1) | o
o [o(m-p+l)
8.6 Remark: Using the identifications in (8.4) and

if (8.5) together with the relation m_0J = ior , we have,
for w(b) = (n,ep) the following three facts,

1. V(Sw(b)) is identified with the matrices of the form

ol ol o) o(p-1) | o
© OT b € o ’o(m—p+l)
-1 o
where E lies in the p“h row and -ET lies in the
pth column., Again by abuse of language we will con-

sider these matrices as a subspace of V(Fb) (as a
bundle over N ). dy maps this subspace isomorphically

onto v(sw(b>) .

2, The mapping Jj: F - B, restricted to the fibre

through b (over S ) corresponds to the map:
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0(p-1) x O(m-p) - [ &pzL) z o
O
0 o '?O(m,;p)

This says that the vertical subspace of Fb (as a

bundle over S) is identified with

o(p-1) | o o
o o o
) o |o(m-p)

(WY}

V(Sw(bg) is identified with the orthogonal complement
J

to span (Gp"l(n),ep) and this identification does

not depend on Db € W—l(n,eo) .
8.7. Consider the set Fe = Fg(Dp"l,GP'l) = {(n,ej,..ew,G’)}

(n,el,..e ) € F(Dp'l,Gp“l) , G' maps N_ into span
m n
: \/ 3 + 1 — p"l
(el,..ep) < Mf(n) isometrically and G !Dp_l(n) = GF 7}

Tt is easy to obtain a manifold structure for F2 . In

fact if b = (n{el,..em,e’) € e , let x € N De the

unigue element such that G'(x) = e, - Let X be the

e

unigque unit vector field on N, defined in a neighborhood U

of n and normal to Dp"l(nﬁ for:n'eU with X(n) = x .

Then a neighborhood of b 1s defined to be the set of
elements in F°  6f the form (n‘,el‘;..em',G") where
n' €U and G"X(a')) = ep‘ . Ve can now impose a C"
structure on the neighborhood by requiring its natural

identification with an open subset of F to be a
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diffeomorphismn.
Remark: F2 is an 0(1) principal bundle over F with
projection p: (m,el,..em,G*) - (n,el,..em) .

-1 _ L

0 (n,el,..em) is the pair of points (n,el,..em,G*)
and (n,el,..em,G”) where @' and G" are the isometries

that extend GPTL: Dp"l(n) - span  (e,,..e ) and which

p-1

send Nn into span (el,..ep) . p is a local diffeomorphism.
8.8. Similarly consider the set §° = s°(D°7H,cP™H) =
{(n,v,e)] (n,v) € 8, G' extends @P"L and maps N, -

span (Gp—l(n),v) c Mf(n) isometrically} . A manifold

structure on 82 ig obtained in the same manner as that
for F2 . |
Remark: S° is an 0(1) principal bundle over S with
projection x: (n,v,G') - (n,v) . |

n“l(n,v) ig the pair of points (n,v,G') and
(n,v,G") where G' and G" are the two ilsometries that
extend GP7L: Dp"l(n) - Gp~l(n) and send N = into span
(Gp"l(n},v)} . u is a local diffeomorphism.

2 2

8.9. Let my: BT o~ 8 by Wl(n,el,..em,G‘) - (n,ep,G')
ol
P,: 85 - N by P, (n,v,G') = n
Remark: F° is an O(p-1) x O(m-p) principal bundle over
82 with projection 7, . We have % 07Ty =T O p ,
Pl = P o p and
p o ra = r6 o o if

g €0(p-1) x O(m-p) .
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8.10. We now conclude the series of ldentifications
given in (8.4), (8.5) and (8.6).

Remark: By means of the local diffeomorphisms p and

. . . 2 Ny 2 .
w we may identifly Fb with Fg(b) and Swl(b) with

o - . _.l
S'n-op(b) - uOTTl(b) . We define (d(PlOTrl)) (0) to be

the vertical part of ng over N . (denoted V(ng))

and identify 1t with V(Fp(b)) =

o(p-1) | o

o o{m-p+1)

We define (dP;)"(0) to be the yertical part of ?
()

(denoted V(s®_ (p))) and identify it with
1

V(Spop(p)) = (spam (P7H(n)sep))

Then dr maps the subspace of V(Feb) consisting of the

matrices
ol ol o
) o) I
o —ET o]
. . th =L . . .
(where E 1lies in the p row and -E- lies in the

' pth column, ) isomorphically onto V(SdW (b)) . We note
1

. 2 e a
that the vertical subspace of F b (as a bundle over De)

is



o{p-1) ] o | o
@] o] (@]
o o to(m-p)
8.11. On each of the six manifolds S°, S, S., F°, F

l’
and Bl s, there is a natural ¢Y¥ diffeomorphism of
period two which we will call the antipodal map (b

on T° o (n,el,..en_l,e ,e G) -

p’ Tp+l’ T Cm?

(ngel,toep_l}_epjep+lj"emJG) A

QL is similarly defined on F and B

20 (n,v,&) » (n,-v,G)

- l ’
On S
U is similarly defined on S and 8, .

The antipodal maps commute with the mappings in the basgic

diagram. We note that on B1,a1= r‘f where the matrix of

. 'y . . /
. X L = 3 cs =
T, (TiJ) is given by T35 = © .1f 1#3, my=1,
K] / — b '
i T = =1
VAl S oD )
8.12 - We have now concluded the construction of the

basic diagram and its important properties.

The second step in the proof proceeds as follows.
If G 1s a p-plane fileld along f which extends gP-1
there is & manifold R = R(Gp'l,G) which is a submanifold
both of F° and F(G) . From the properties of the basgic
diagram we can construct on F2 a differential ideal %’
generated . by a vector-valued p-form ) . We can then

show that R 1is an integral submanifold of %’ if and
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only 1f R 1s an integral submanifold of ‘x » the ideal
for parallelism given in (5.1). The third step of the
proof will then be to construct such a manifold R which
is an integral manifold of %’.

8,13, | On F2 s, define 1l-forms Al""xp with values

in R™P ag follows. ILet rp+1,..rm be a standard ortho-

normal basis of R P (recall (5.1)). The {@ij]i>j} are

the one forms of the Riemannian connection on F(M) and

B. (recall (4.1)) . Tet b € F° eand X € F°

1
Define }\_.L by

-b -

<xi]b(x),rj> = 6(jop)@ji(X) for i=1...p, J=p+l,..m .

One gees that the forms A, &are o ., On Fe, define

i
2

real valued l-forms w .wp as follows., ILet Db € F

1, LR
. 2 .
and x ¢ (F )b say b = (n,el,..em,G) . Define u, Dby

wi{b(x) = < Gd(Plowl)x,ei> , i=1,...p .

Lo - i
One seeg that the forms w; are c? .
e o . - . . m-p
On F define the p form A with values in R

by

k]

)‘., ==
i

8, 3. 5. . H
wll\ PR N U“’1~1A ”1“ LJl+lA A }Up

2

1

P~

Let 9’ denote the differential ideal generated by ) .

Femark: Since 8@y = %y i< and 800y =-1g

and &ﬂ.wi = w, i<p and 60;uop = -

L p
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we have &§@) = -) , Therefore the antipodal map U on

F2 carries integrgl p-planes of ) into the same,

8.1k, Suppose that a p-plane field G extends
-1 -1 -
@OPL, Pty . met R = r(EP ) - {(nseq,..e )] (nse5.0e. ) € F

and span (el,..ep) = G(n)} .

Remark: R 1s a principal O(p-1) x 0(1) x O(m-p) bundle
over N . By inclusion it is a submanifold of F and

there is a natural 1ift L: R - Fe given by

} L: (n’el’..em) -y (n,el;a-em)G’an>

On the other hand, there is a natural inclusion

k: R » F(G) , the bundle of adapted frames of G .

i

Since 5kwi

, 5Lmi i=1,..p
and Sﬁwi

It

6Lki » 1t follows
that 6Eu = LA .. Recalling that u generates cﬂ and
A generates 9’ s

(R,L) is an integral manifold of 9’ if and only if

(R,X) 1is an integral manifold of e} .
It Tollows from the theorem of (5.1).that G 1s a parallel
p-plane field along £ if and only if (R(Gp”l,G),L) is
an integral manifold of SV.

The third step in the proof is to construct such an
integral manifold (R,L) . We will show that, on a certain
. R 2 R .
submanifold of F~ , ) induces a vector bundle-valued

form on 82 . Using the Cartan-Kahler Theorem, we will
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- . . . 2
obtain an integral manifold of this form on S8 . The

integral manifold will represent a parallel p-plane field

G along f . We will then use it be construct an integral

manifold (R,L).

8.15. Select orthonormal vector fields Zl"'zp-l
spanning pP-+ in some neighborhood Un ' of ng -
_ ' o)
Censider the set
-1 -1
E(2Z) = E(Z l,..Jp l,Dp LGP = {(n,el,..em,G){

‘ 2
(nyeq5..6,,0) € 72, e = P7H(2,(n)) 1-1,..p-1)

Remerk: E(Z) is a principal O(m- pundle over &°

(or rather, that part of s that lies over U, ).
: . O
The inclusion map

k: B(Z) - F°

commutes with right translation. On the fibre through

b e E(2) , the napping corresponds to the mapping

oleep) - ( ﬁﬁn

under the natural identifications of fibres with the
group. A corresponding statement holds for the Lie
' Algebras; that is, the vertical subspace of E(Z)b is

AR 2
carried into V(& k(b)) by

"dx": o(m-p) - ( i )
KL m-~p
o |o(m-p)
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8.16. Lemma: The form ) restricted to E(Z) is a
horizontal equivariant O(m-p) form. That is, it vanishes
on a p-vector, one of whose vectors lies in V(E(Z)b) (as
“)

a bundle over S and if o € O(m-p) we have:

sr ) = 07Ty

: mn- . .
where O{m-p) acts on R P a5 isometries.

Proof: The first statement follows from

_xi] = 0 i=l...p ,
v(B(2),)

while the second statement follows from the invariance of

the W, and the Ad-equivariance of the xi on E(Z). @.E.D.

o o , s . W .
Because of the remark in 8.15 there is a C p-farm

xz induced on 82 (again, on that part over Un ") with

. . " - 2
values In the associated vector bundie C(Z) over &

(with standard fibre R P) . See Koszul [4]. This p-
form 1s obtained as follows.

Let

q: E(z) x R*P 5 ¢(z2)

be the natural map of

(principal bundle) x (filre) - associated bundle

et e € S° and X.,..X_ €8

l’li p s

that Wlok(b) = g , and choose ﬁi,..Xp € E(Z)b so that

. Choose b € E(Z) so
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) is given by

d(myok)X, = X; . Then Ay (X A ...AXp

V(K AL AX ) = q(b,x(ﬁc‘l;\..a'fp))

P
The lemma shows that the choices of b, Ni,..ﬁg do not
effect the definition of lz .
8.17. Let 2, be one of the two c¢? unit vector
fields defined in some neighborhood U_ " < U, ' con-

n
o
taining n_ and such that Zp(n)-L Dp"i(n) for

"o
n € Uno .
Since the initial condition &P are compatable
with (DP74,6P"1) we have a 1lifting
g: NPt »,SE
given by
g(n) = (0,6 (ny |y )7z, (n)), Po(ny ]y )7h)
’ iln D ’ il
n n
(recall that hi is the natural vector bundle isometry
given in (2.3)).
p-1 p-1
Let us denote by P the (p-1) plane dg(Nn ) .
1
Since g 1is a 1ift, ar(2®71) = ai(P~h)
1

By hypothesis ai(vP™1) = pPt(n ) .
nl O
Thus dwl(Pp_l) = Dp_l(no) .

Choose X X in PP71 such that dvl(Xi) = Zi(n)

17" Tp-1
i=1.,.p-1 . We wish to apply the Cartan-Kahler Theorem

(3.9) to PP~L  for the p-form 1}, on s° with values
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in the vector bundle C(Z) .

Main Lemms: The linear map:

(Sd)g(nl) - fibre of C(Z) over g(nl)

given by

T: X - LZ(XlA .. th_lA X) is surjective.

The unique integral plane PP which contains PPTY  ig

complementary to the vertical of (Se)g(nl) .

Proof: We show that T is surjective., Let us restrict

our attention to those X = X_ € (Sg) for which

D g(ny)
dPlxp = zp(no) . Now choose Db € E(Z) with Wlok(b) = g(nl)

(x, the inclusion map, E(Z) - Fg) . Also choose
Xl?"xp“l’xp € E(Z)b where d('rrlok)Xi = X; . Then

’\z(xl" .. AXp_ll\ Xp) = q(b,x(Xll\ ""Xp_l" Xp))

Since b acts as an isomorphism of R P onto the fibre

of C, through g(nl) 5 hz(XlA 'f"Xp—lﬁ Xp) varies over

all the fibre as X varies over vectors in (82) that
D g(n)

o~

project to Zp(no) under P, 1if and only if ME LA "A‘Xp-lAXp)

varies over all R™P  ag §£ varies over vectors in

E(Z), which project to Zp(no> under Q(Plowlok) . By

the choice of the X. we have
_ = p-1

Xonon G NED) = ) (X)) o+ o (F,)
)
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Thus it is sufficient to show that xp(ﬁ?) varies over

~s

21l R™P ag Xp varies over vectors in E(Z)b which
project to Zp(no) under d(Plorlok) . Since E(zZ) is

2 bundle over S° , 70k is onto and so is d(vlok) .

Hence d(viok) maps . E(Z)b onto V(S2 ) . This

g(n;)
says (see (8.10)) that dk(E(Z)b) contains vectors which

projeét to o under d(Plovl) and have the form

T

o |-E

when the entries of the (pth) vow vector E (equivalently
the (pth) coltmn vector —ET) vary over all of R P,

From the definition (see (8.13)) we observe that xp of -
such vectors varies over all of RP By adding each of

these vectors to a fixed ﬁ% where d(plovlok)(iﬁ) = Zp(no),
we obtain a family of vectorswhich project to Zp(no) and
are senf by xp onto R™P . This concludes the proof
that T is surjective,

Note: The use of (8.10) in the above proof explains,
in part, why we labored to develop the series of ildentifica-~
tions in (8.4), (8.5), (8.6), and (8.10).

As in the proof of the Theorem (3.9); we see that
PP = ker T is the unique (ordinary) integral p-plane at
(Sg)g(nl)
that PP is complementary to the vertical. If not

which contains Pp'l . It remains to show

choose Xp € PP and vertical and Xps..X, 1 as before.



~

Now chooge Xl,..f

i=1l...p . Then

S I W4 X
M 1 p-1""p PP
This says that in the matrix representation of dk(ﬁ?)

(above), E = -ET = o . Hence d(vlok)(ﬁé) = o . Therefore

Xp = 0 , which shows Pp cannot intersect the vertical.
6.E.D.
8.18. We conclude from the Cartan-Kahler Theorem

(3.9) that there exists a unique integral manifold (of Ay)
of p-dimensions, say (V®,g) which "extends" (Np—l,g) in

a neighborhood of n and whose tangent plane is carried

1

by dg into a complement to the vertical at (Sg)g(n )
1

. ' -1
Suppose n, € VP with glny) = g(no) (nOENp )

Then dPl{dg(Vp ) is one to one and this must be true-

on some nelghborhood of n, e vP ., Thus we can define a
cross sectlon L mapping some neighborhood ﬁn o Un’ " of
nO_E i into'bse, characterized uniquely by %he twg
properties
. dl oi=g on NP1 n i"l(ﬁ )
B

2. (ffn L) is en integral menifold of 1
o

Z L]
Of course (ﬁ£ L) defines on ﬁ£ a p-plane field
o

o
along T which extends (Dp-l,Gp”l) and the initial

conditions. By the way we have constructed we will
Y .

Z
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see that (ﬁﬁ , L) defines a parallel p-plane field.
o
8.19. Let E'(Z) Dbe defined by

E'(zZ) = {(n,el,..em,G)[(n,el..em,G) € E(z) and

Wlok(n,el,..em,(}) =i«(n) , n € 'ffno}

That is &'(Z) is the subspace of E(Z) which is carried

onto i(UnO) by 7,0k .

Remark: B'(2z) is an O(m-p) bundle over ﬁ£ with

o
: . R - 2
s s 1 . . y (7 & W
projection P,om ok . The inclusion k'E'(z)' E'(Z) - F

corresponds on the fibre to the map O(m-p) - I x O(m-p) ©

O(p-l) x O(m-p)’ and hence dK!E'(Z), : V(E'(Z))b - V(ng(b)>
o]

corresponds to

o(mp) ~[° ] °
o io(mwp}

Remark:  6(k[gi(z)) A= o . In fact if PP is com-

plementary to the vertical, d(vrlok)}?p = d(ioPloTrlok)Pp

is an integral plane of A\ and such PP are open and

Z
dense in all p-planes in E’(z)b . Hence (E'(Z),k) is
an integral manifold of‘sr, the differential ideal gen-
erated by I .

o

8.20. Tet o € O(p-1) x I < O(p-1) x O(m—p) . A short

computation shows that on F2 »  Arg carries integral



planes of )\ which are complementary to the vertical
(over N) into the same. WNow right translate the set
x(E'(Z)) Dby the elements of O(p) x T in F° , and
thus generate a principal O(p-1) x O(m-p) bundle over

ﬁ£ ; call it E"(Z) . Thus (E"(Z), inclusion) ig an
o

integral manifold of A and hence of 8/.

8,21.v Suppose we use the other unit normal vector
field —Zp to generate a submanifold (Np"l,g*) from the
initial conditions. We then obtain (ﬁ£ ,A*) as an
integral manifold of 1, . If Q is the (a)un'tipoda.l map then
g* =Qog . The commutativity of the antipodal maps
(8.11), the remark in (8.13) that &sQ) = -\ , and the .
uniqueness property of integral menifolds extending (p-1)
dim integral manifolds, together show that f.* :—*O;OL .
Hence (ffno,l.) and ('ffno,ﬁ) define the same p-plane

field G . We also see that:
Qok(E (2)) = x(B'(2)*) and Qok(E"(2)) = k(E" (2)*)

Hence E"(Z) and E"(Z)* are the two disconnected pieces

of R(Gp"l,G) (see (8.14)) and G is a parallel p-plane

field along f defined on the neighborhood ﬁ; (by (8.20)).
o

- 3.22. The last step in the proof is to show that G
is unique in the sense prescribed in the statement of the

theorem. To do thils it is only necessary to show that &

Z

is independent of the choice of Zl"' p-1 °
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Let Yl"‘Yp~l be another choice of vector filelds
spanning 1 on U, ' . We obtain E(Y) and My
o e}

on S7 . We want to show that for given initial conditions
Ly and ), determine the same integral manifold (and
hence, same p-plane field). ¥What we will show is that if
PP is an integral p-plane of A, at (Se)S s com-
plementary to the vertical, then PP ig alsq an integral
p-plane of KY .

Let 0: E(Z) -~ E(Y) Dbe the diffeomorphism

-1, -1
Q(H,Gp l(,zl(n)):"Gp (Zp_l(ﬁ)y'V:e "'em’G>

p+1’

= (0,67 MY (0),. . PTHY,_ (0)),vae s e 0)

Let b be in the fibre of E(Z) over s , thus
a(b) is in thé fibre of E(Y) over s . Let o € O(p-1) x I

be such that

(r,0%) () = (xon)(b)

Let PP, be a p-plane at E(Z),, such that d(vlok)PpZ = PP,

Z &

By assumption:
D ,
0 = 2y (P?) = a(b,2(#P,))

Thus x(PPZ) = 0, that is k(dkaZ) =0 ,
By the observation in (8.20) it follows that d(rgok)PpZ is
an integral p-plane of A at (rﬂok)(b) = (koq)(b) .

oD . ] . gy
If d(rﬁoK)P ; 1s in the image of d&(m(Y}Q(b))
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then (k-lorook)Pp is an integral p-plane of 1\ at

Z
ao(p) . So:

~1 ' . N
a(f(p), »(d(k orgok}PpZ))= o = AY(Q(WlOKok orgok)PpZ)
or
- Py - VPP ) = 3. (PP
o = )Y(d(vlorcok)P Z) )Y(d(WlOK)P Z) 'Y\P ) .
However, d(rgok)sz is in general not in the image
of dK(E(Y)Q(b)) . But as we shall now show, each vector

s . {s) . oo " e . :
v in d(rﬁok)P , differs from 2 vector in dk(E(Y)Q(b))
which has the same projection under dwl and which differs

from v Dby a vector in

o(p-1) | o o

O o] o

) o Jo(m-p)

In such a case we could write
d(rgok)PpZ = gpan (ul,..up) where
ug = Vg bWy, Vg € dk(E(Y)Q(b)) , Wy a matrix as sbove.
Then we would have
V(AR (V) A N AE T (7)) = A (V4 AvernsA V)
. l p l e300 p
;:h((ul—wl)a creselh (up—wp))

= >\u(1114u2[\.,...1\up) + K
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where K 1s the sum of terms of the form:
L (some p-vector with some entry LF alone)

Hence K = o ., But x(ulbuuhup) = o also since

(d(rﬁok))Pp7 is an integral p-plane.

We must therefore demonstrate that given v € d(rgok)PpZ
there 1s a vector in dk(E(Y)Q(b)) ; With the same
projection as v , which differs from v by a vector
given by a matrix of the above type.

Let w € sz where d(r_ok) w=v .

1

Let Y: R™ - E(Z) so that Y(o) =w

kov(t) = v(t)

= (0(8), 677 (2, (0(8))), . GP 7z, 1 (a(2))), v (8) ey, (). ey (£),6(8))
rgokoy(t)

= (n(t),UGp"l(Z,(n(t)))".OGp'l(Zp_i(n(t)),v(t),ep+l(t),..em(t),G(t))
while kopnov(t)

- (n(t);ep“l(Yl<n<t))),".Gp‘l(Yp_l(n(t))),v(t),ep+l(t),..em(t),e(t>)

We note that the projections are equal:

T, 07 _okoY(t) = lekoQoY(t)_= (n(t),v(t),a(t))
and rgokoY(o) = kofboy(o) .

* .
Since (r okoY)(o) and (kcfoY)(o) have the same pro-
Jection under dvl > they differ by an element of the

L 2 - s .
vertical of (P )kog(b) (over 8°) ., That is, they differ
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by an element of

o{p-1) | o | o
o ot o

o(m-p)

But v = (rgo%oY)(o) and (koéov)(o) € dk(E(Y)Q(b))
| Q.E.D.

§9, Corollaries of the Main Theorem.

9.1, corollery 1. Ir ai(iPha)) is sufficiently

close to Dp"l(no) the conclusion of the theorem still

holds,

Proof: This is Just a rephrasing of the fact that the

regular integral planes form an open set.
&g ]

9.2, In the direction of making a more global state-

ment than  1s given in the main theorem we have:

Corollary 2. Suppose that the relation di(¥P™h ) =
1
pP"*(n ) holds not just at the one pair of points

n, and i(ny) = n, but at every pair of points

(n,i(n)) where n € NP7l | Then there iz a unique
parallel p-plane field G along f , defined in a
neighborhood of i(Np'l) which extends (Dp'l,Gp"l) and

the initial conditions,.

Proof: Patch together local solutions by means of the

vnicqueness part of the main theorem.
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Remark: If the distribution DP™1 ig involutive (in
the sense that its asgssociated ideal generated by one forms
in A'M is already a differential ideal), then the |
integral manifolds of Dp'l, obtailned by the Frobenius

Theorem, satisfy the hypotheses of Corollary 2.
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