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ABSTRACT

Constructibility in Impredicative Set Theory
by
Ileslie H. Tharp

~Submitted to the Department of Mathematics on May 7,
1965 in partial fulfillment of the requirements for
-the degree of Doctor of Philosophy.

In the first chapter of the paper a semantical
characterization of the sets M( A ) is given, and
several elementary results about the impredicative
extension (VBI) of the von Neumann-Bernays-Godel
set theory are established, :

In the second chapter the consistency of VBRI
and the axlom of constructibility is demonstrated by
constructing an inner model % . This innsr model is
defined by considering classes which are well-orderings
and hence may be longer than all ordinals,

In the last chapter 1t is shown that the inner
model M is a model for a sst theory (VBC) with a
strong axliom of constructibility,.It is then proven
that the consistency of VBC (and hence that of VRI)
is equivalent to that of a set theory ZF: which
is a natural extension of ZF. Applying the Cohen
constructions to ZF« shows (constructively) that if
VBI 18 consistent then VBI and the negation of choice
are consistent; the desired independence results for
the continuum hynothesis and the axiom of econstruct=
ibility are obtained by the same method.

Thesis Supervisor: Hilary Putnam
Title: Professor of the Philosophy of Science
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INTRODUCTION

We are concerned in this paper with questions of the
consistency and independence of the axiom of choice, the
general continuum hypothesls, and the éxiom of eonstruc-
tibility for the set theory (which we call VBI) which
results by adding an impredicative comprehension schema
to the Von Neumann-Bernays-Godel set theory (VB). This set
theory, which has received little attention in the
literature, is set forth in the appendix of Kelly's Genersl
Tégolbg s but was préviously discussed by Hao Wang (who
ealled it NQ) in Wang [1] . YMostowski [1] implicitly
.raveals some interesting facts aboét VBI In his study of
the truth definition of Zermelo-Fraenkel set theory in VB,
It 1s our thesis that beneath the surface, VBI possesses
certain natural structures and that Godel's notion of
constructibility and Cohen's methods can also be applied

fruitfully in this new context,

In the first of the three chapters of this paper a
number of results are established, some of an introductory
nature and others needed as a basis for later work; to
some sxtsht Wwe have restated known results in a convenlent
form, and some of the other observations are probably new,
In particular, a2 method of characterizing the M(A) (see
pps 12) which was suggested by Hilary Putnam has been found
useful for summarizing known constructions and suggesting

new appllcations,
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In the second chapter we give a constructive proof of
the relative consistency of VBI and the axiom of construc-
tibility by constrﬁcting a sultable inner model X . In
order to define 72, 1t is necessary to consider a certain

"outer model” which in a sense goss beyond VBI.

In Mendelson [ 1], pr. 206, it is‘conjectured that
the Godel onsistency proof cannot be carried out for VBI,
After the present proof was established, the author leasrned
that Dr, Robert Solovay had previously obtained a proof
of_consistency. However, his proof was not published, and

the present author has not seen his methods of proof.

| In the last chapter a strengthening of the consistency
result is gotten by showing that the inner model P
satisfies a strong axiom of cdnstructibility which implies
that there 1s (essentially) a well-ordering of all classes,
Cn the basis of this stronger set theory, the outer model
may be shown to be a model for a certain modification of
Zermelo-Fraenkel set theory. The Cohen constructions may
be applied to this latter set theory, and in this indirect
manner the desired indspehdsnce results for VBI may be

inferred,




CHAPTER I
PRELIMINARY RESULTS
1. The axiom of constructibility in VB,

Our notation for the von Neumann-Bernays-Godel set
theory (VB) is similar to that used in Mendelson {11 and
Godel [23 , The predicate calculus with identity is taken
as the basic language, and the notion of set G?n&x)éf
‘(ESY)(XZY) and the two-sorted variables are introduced by
‘definition, The axioms are extensionality, pairing, sum
set, power set, infinity, replacement, foundation, and
comprehension, Specifically, we take the following forms
of the axioms: |
1. AxBxt is (X)(Y) [(u)(ue Xe:z?uEY)“”}X"”Y]

2., AxpPalir 1is (x) (y)(az (u) fuezedbu= xVu=yJ ,
3. AxSum is (x)(3y)(u) {ueysp(Iv)[uevavexi]
(v = (x)). A
1;,. AxPower is (x)(gy)(u)fue veyuex] (y= & (x)).
5. AxInf is (3 x) {x+ gA() [uex=3(3y) [ygx,mug{_y]]]
6; Aﬁhpis(FHx [Fnc(F) = (3y)(v) Lvey &
(Z3u)[<u,v> € FAuex 137 (yx F'x).
7. AxFound 1s (X) [X#=d=>(Fuw)(ueXAunx= d¢g)] .,
8. AxComp is the schema
(K)o« (Rp)(FA)(w) [ueASSP(u,Xye o . ,Xp)]
where ¢ has the free variables shown and all bound

variables of ¢ are set variables,

As 1s well known (see Godel {2] , pp. 8) the compre-




hension sghama can be replaced by a- finite list of axioms,

A strong cholce principle for VB and VBI is UC (univérsal
choice)rz (3 F) [Fne(P)N(x) [x =4 = F(x)exT] .

This principle, which 1s easlly seen to be equivalent to

the st_@temant that the universe has a well-ordering, 1is not
taken as an axiom, since we are Interested in its consistency,
In the set theory ZF, UC caﬁnot be .statec"t, and a weaker
statement CH 28 (x)(3 £)(u) [ucxAu#¢g = f(u) £ u] v, which

iz equivalent to the as§srtion that each set has a well-

ordering,is appropriate,

We shall proceead Informally in much of what fo'!ilows,
and many of the common notions will not be explicitly defined
except where confusion might arise, See Mendelson [1] for
eny omitted definitions,. However, for convenience, some of

the most heavily used notions are listed below,

Definition 1.1

a. Tréns(x)% {(u) quX = uxX] .
b, Ord(x) 28 Trans(x) A {(u) [usx = Trans(u)]
On # {x/0rd(x)} ; 1if Ord(x) let x'Z xUx) ;
Suc(x) & Oord(x)A(Fy) [x=73y'] ; |
Lim(x) £ 0rd(x)A ~ Sue(x)A x = £ | |
F’ino(x) 2 ord(x) A mI,im(x)/\(u) fuegx = ~Lim(u)3 ;
w % {x|{Fino(x)} .
Co Rel(R) £ REVXV; we will often write uRv for <{u,v)&eR
d. If Rel(R) let (R! £ J(R)t) {R(R); that is |R] 1is the

field of R or the union of the domain and range of R,
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e, If Rel(R)let RIAZ RN (AXA); let RPA 2RN(AXV).

f. If Rel(R) let WF(R) 2 (A)[ (ASRINA# £)=>
(Fu)(ug AA(v)~(vRuAveAa))].,

g, F:Xx=Y ¥ F is a 1:1 functi.on; X = D(F) and Y= ﬁ'(F);
X=Y % (3F) [F:x>Y], |

he F:Ra8 Z Rel(R)AReL(S)AF: RI= ISIA (u)(v)
| tuva—:bF(u)SF(v)] ; R~S8 2 (37F) {F:RzS] o

i. Let B 28 {¢x,v>| XEy} s let I8 f{x,yp]x=7y}.

It is well known that for any set x, if Rel(x) and WF(x) |
and Xk Bxt where Ext 1s (u)(v) [(i)(ze uEDzEV) ) _u::-ir} ,
thcn there is 8 transitive set t such that x = E)t. Namely,
ona defines g(a) == £ where a is the lsast elomenﬁ of %X},
and g(v) = {g(u)f{<u,v> ¢ x} for other vejx/., It is
easlly varifiad that gix =~ E|t where t is g."gx§. The

preceding construction suggests the following useful lemma:
Lemma 1,2

a, If Trans(t) and fix = E|t, then f(v)= {f(u)l<u,vy £x}
C for all VEIX] s
b. If Trans(t ) and Trans(t_) and f:t. A= ¢, then £ = It
1 2 1 2 1
and tl.-:: t.. (We shall often write tlﬁ ta for

2 .
E;tl zE}ta, etc,, when dealing with the relation E.)

Proof:

a, If yef(v) then y = f(u) and <u,v) £ x sinece f is an

isomorphism, Conversély, if <u,v> ¢ x then £(u) e £(v),
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- so f(v) = {f(u)}_ <u,v>eEx}r.
bs By Part (a), f(v) = {f(u)j uevy., Since any (non-
empty) transitivs set contains ﬁ; (@) = #. Take an
E=least v in ty such that f(v)z£ v, Then ugv=>f(u) = u

by minimality of v, so f(v) = {ujugvy =

AxFound of course guarantees & -least elements, and in
g_sneralkthis proof 1s 1illustrative of the use of well~founded

classes., Related to AxFound is the useful notion of rank.

Definition 1,3

Let R(o) = ¢; R(+1) = P(R(c’());
R(A)x‘gml R(E ) 1f Lim (X). Then if x el JR( ), let O(x)
(ths rank of x) be /;«LO(DCE R{ct+1)] .

It is easily seen that each R(« ) is transitive,
(< B = R( () F_R(ﬁ), and X =8 == R(o()cﬁ(@

Furthermore, it is esasy to verify that AxFound is equiValent,

on the basls of the other axlioms, to the sentence (JR(dol) = V.
Hence ’O(x) 1s defined for each set x, and gives a natural

partial ordering of the universe with the property that
xey = PRI ply).

The constructible sets, which we shall be concerned
with throughout this paper, may be viewed as arising from

sort of a "constructive! analog of the preceding construction,

#0f eourse in the absence of AxFound a2 different definition
of ordinal must be used. ,




Definition 1.l

s, Fodo(sa,b) (a is first order definabls over b)
Z a= {ujue bAEIbE P(u, Cis o 0 vy cn))
where ¢ has n + 1 free variables, the symbols £ and

=, and where the constants ¢_, , . . , ¢ are in b.
n
b. Let M(0) = 4, M(x+ 1) = {u|Fodo(u,M(o())},
and M( X)) :-_F{mj M(g ) for Lim(l)., TLet L=UM(K),

and for x gL, let §(x)= MX[xeM(X+1)]

As before, a number of elegant relationships hold.
Each M( o) 1s transitive, o< B = M(x) &M(ﬁ )s
A== M) aM(B), xeye L = §(x)< §(y), and
SM(e())== o{, Also On <L, and in Tact §(ol)= of .

The "constructibility" of L is made somewhat clearsr
by the obéervation that there is a definable well-ordering
of L, We mention specifically the following approach,

slnce it will be of use later,

Temma 1.5

Let variables x% range over M(¢{). Then if act I,

] * *

a can be defined by an expression X% (lel“l)

L4 * £ s

(Q xdm) W(XO‘, x“" o e s 4 xo‘"‘; where °(=8(a)’ «x
nn 1 n 1

Xn £ « and the propositional matrizx 7 contains no constants,

Proof:

By definition a= Q“(lej"‘) o o (ij;()

;{?(KD‘! x;, ¢ o+ o 3 Kjo‘, cl, o ¢ o 01);.Wh8r'3 A = 5(&).'
I -




Each cpnétant‘ci; by induction hypothesis, has the desired
representation., Transform ¢ as follows: Replace ty=t,
by (™) [x%e t1¢&=>x™ e t,] for any terms t; and t,. Then
eohsider the remaihing Qtoms beée, ctv, and v£ ¢ where

v is a variable and b and ¢ are conatants, represented,
respectively, by f";’(xg) and 27 4 (x¥) where g = &(b)
and Y= &(¢), and A and ¥  are less than <« ., Resplace
bee by (3x*) [(3%) [v%ex®" e w(3¥)IA 329

[xP = xA 8(x"11, vee by (3 xY) [v=x'A 6(x"],
and ¢ €v by (J x7*) [(y") [y{a x{“@:i} ey 1A
x¥+’£'v]‘. This trgnsformation clearly ylelds an expression

of the desired form, which also defines the set a.

Corollary 1,6

a. L can be well-ordered by assigning to each a &l a least
finite sequence <«{, v, dl, ¢+ o o 5 &y Where §Hla)= K,
p is the Godel mummber of a formula of the approprlate
form, and ®1s o o o 5 o, are the bounds of the variables.,

b, For o>, ﬁ:‘- :52., because, by a well known result,

Flol )= 5 where F(ol) ls the set of all finite

sequences of ordinals less than o ,

Our chief goal in this section is to prove that there
is a senteﬁcs & which characterizes the M( A ) in the sense |
~that if WF(x) then xfFo <> (FA) [Lin( M)Az = EIM(A)] .

We have repeatedly used semantical notions in the foregoing,
and- in faet Fédo and M were defined in these terms. 1In the

next section it willl be necessary to consider & more gensaral




truth definition (sge Mostowskl [1] , vp. 114), which can -
easlly be modifisd to define semantical concepts for §3§§
in VB. However, it will be convenient for the proof of the
above theorem to 1dentify Fodo with thg concise formal
expression given below, Since this expression coincides
in VB with the semantical definition, we henceforth make
this identification,

Definition 1,7(i, 3, k¥, m and n range over integers,)

ae b2 (Piri— 1)

b. E(b;j)ﬁé{fif:3+2-> bATL(0) e £(1)}F

co I(0,§)F {fif: + 2 — bAL(0) = £(1)) .

a. .'Pcrm(rl, n,or) £ (v, ]
Ah:j o J/\(X)Exer \-?(:’Y)[(Y°h-7<)/\5f£r 111
(rl results by applying the permutation h to r2).

e, Exist(r ,r ) £ (FN(Fv) [l‘-‘ < b I+ 1

A=) xer 1 &2 x = bA(T u)( xU{{j,u)} € r, )13
(rl is the existential projection of rz).

P Sub(rl, u, 1"2) = (33)(3@) h’z ;bJ + 1
AR [xEr € (x5~ DAXU (I} ¢ r) 1]

(rl results by substituting u in ra).

Definition 1.8

Fodo(a,b) 22 (3 g)( n)[ Fne(g) and (g)=n+ 1
and g(0) = E(b, J) |
and g(1) ==1I(b,J) }
and for i } 1

some j = 0.




either g(i) = g(3) U glk) some j,k < 1, where for
some m

or g(1) =g(3) - glk) . g(j) =b" and glk) < b"

or g(i) = bj some >j >0

or Perm (g(i),h,g(k)) , '
some k<1, some h,

or Exist (g(i),g(k))

‘ and some u
or Sub (8(1),u,g(k))

and gln) < b and 8= (V| {L0,v>}¢ g(n)}:ﬁJ(g(n))] .

pefinition 1,9

Closed (t)2E Trans (t) and t %= ¢ and if
xet, yEt and Jew
(1) {x,y)¢ t
(1i) xuy e t
(111) x = y¢ ¢ | _
(1v) R (x) et (Rd(x)= (v (Fu(F2)[{u,v>s zAz & x31 ).
(v) x4 £t
(vi) E(x,j) € t
(vil) I(x,jJ) ¢ ¢

(viii) 'y exd 1 = any permutation of y is in t.
I+ 1

J+1

(ix) v =x = the existentlal projection of y is in t,

(x) Yy <X A U Egx =pthe substitution of u in y 1s in t.

We remark that if Trans (%) and t == g then 4 ¢ t;
~hence clauses (1) and (i1) imply that <t and that if
f:j— b and bet, then PEt, : |




Lemma 1,10

For Lim( A ) sach M(A ) 1is clossd, and L is closed,
Proof: - Straightforward

Many results in set theory depend on somes form of the
concept of the absoluteness or invariaﬁcé of formulas. In

particular, Godel 2] pp. 42 formally defines absoluteness

and bases much of the proof on this notion. For our purposes

the concept of invariance is convenient: TIet ¢ have n free

variables and the symbols & and == , Then ¢ is invariant
with respect to a definable collsction of sets C if VB b
(x)(a)) o o« (8 ) I[xECAaex A . . . A a_£x =

[q)’_(&l’ o 4 v,.aﬂ){::E]x}::?(al, R an)}] .

This, of course, 1s a metamathematical definition, and
wlthin VB we may show certaln ¢ to be invariant with res?ect
to certain C. Especlally important is the fact (which is
easy to verify} that many formulas are invariant with

respect to all transitive sets, for example, Ord(u), Lim(u),

Sue(u), Fino(u), Fné(u), etc,
Lemma l.11
If Closed(t) then

Ao Fodo is invariant with respect to %,

1. e, a,b €t = [Fodo(a,b) € tk Fodo(a,b)] .
b, Fodo{a,b)Abet =y act

- Proof:

a., Since t 1s closed, it is easy to see that there are




enough obj
can be res

Fodo(a,b).

ects In t so that the quantifiers in Fodo
tricted to t without changing the truth of

b, If b€+t and Fodo(a,b) and g is the finite function

in Def, 1,

and indead

Definition 1,1

8 then g(0) ==E(b,J) € t, g(1) = I(b,j) &%,

sach g(1) is in t. FHence agb,

2

Let Close
conjunction of
respectively,

FPor example, C

be the rormal sentence consisting of the
the ten clauses Cl’ Cos o v o s C10 stating,
that the objects menticned in Def, 1.9 exist,

715 (P)(F2)(u) [ues e u=xVu=y],

Cé 1s (x)(y)(Fz)(u) [uez <DuexVuey],

and Cs'is (x)(

u) LFino(u) = (Fy)(2) [zey &>

Fac(z) AL (z) =uAR(z) & x ]]

and similarly

Lemma 1,13

Let t be
=2 t¥ Close,

Proof:

(&=) F

for the other clauses,

transitive and nonempty. Then Closed(t)

irst, if t#rcl, then t is glosed under {x,y} ,

and if tf 6‘2 then t is closed under xUy, as is easy to

verify directly. Hence as remarked before, (b &t and xXgt

Af:j—>» xz=p T EL for any jew. It is easy to verify that

the other clauses yiéld the desired closure, For example,

regarding 05,

if t=(2z)[ zey&2:j~> b] for j,band y in %




“ 1] =

then y :-:;bj; | howevsr without the above observations we

could only conclude that y < bde

(=% ) 1s straightforward,

Definition 1,1l

Cond(£) £ Fro(f)A(Fu) [ora(AD(£) = u A
FO)=FgA(v)[vieu =3 F(v!)= { z/Fon(z,f(v))}_}/\
(v) [ Lim(v)Aveu =2 £(v) =§L5{rf(z)]] .

Lerma 1,15

| If Closed(t) and f& t then [ tk Cond(f) ¢=
(Jy)(r=ur¥)].

Proof:

( =% ) The only problem 1s the condition
£ p+1) ={z§Fodo(z,f(,S))}. | |
Suppose tik(z) Zz;f( P-f'l)é::.?l?odo(z,f(? 7.
Then by Lemma 1.11, if tf Fo'do(a,b)‘ for a,bet, then
Fodé(a,b), SO wWe have'f(‘s-ﬁ—l) E{z??edo(g,f(@ ))Y « Also
by Lemma 1.11, if Fodo(z,f(p)) then z e t, and by the
absoluteness of Fodo 1t follows that tk Fodo(z,f(g)).
Therefora {z}Fodo(z,f(P ))}E?:f( £+1), so F( f+1) =
{z!Fod‘d(z,f(;B))} end, finally, f=Mpy¥y where ’Y:::ﬁ(f)-“

(&= ) This can be checked as above by using Lemma 1,11.

| Daf‘inition 1.16

Let o= be the sentence




Ext A Close A(x) (3 £) [Cond(£) A (3 u) (x¢ £(u))]

(o) IMit & M( X + 3)]

Proof

a, MPO=0eM(1l) =M(3).

be MM(A+1) = (MF BIU((LB,M(BIY}) so if
MPEEM( £+3), clearly M (£ + 1) e M p+L),

ce If Lim(A) and M f'ﬁ E\M(§3+3) for 8< A,
then MI”F%;EM(,‘A) for ?Ch.
Let x = @ (I £*) [ Fac(£*) A Gond(e) Avt e 27
(where‘ all quantifiers are restricted to M( A )).
Clearly;Fodb(x,M(/\ )) and x::FL{J}‘Mi‘[& = MPMx , by
Lemma 1.15, Hence MPA EM( A+ 1) & M(a+3).

Theorem 1,18

WF(x)AxEs & (FA)[Ln(A)Ax 2 BIM( A )11,

Prdof

(<= ) M(X) for Lim( %) is transitive, closed, and

since Ml‘)e £EM(2) for all §< 2 s Satisfies (x)(3 )
[ Cond(f)A(Fu) (xe £(u))] .
Hence EIM( ) )F ¢-. |

(= ) WP(x)AxkEBxt => x = Eit for.some transitive
tk Close, so t 1s closed, Also tk (x)(3 f)

[ Cond(£)A (H n) {xef(u)})] » By Lemma 1,15, each such f
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is an MFY for some Y » Hence if xet then xEM(p) for
some @ , and M( 8 ) e t and M( )<= t. Therefore t is the
unicn of these M(g ) and t == M( A) where A is the least
upper bound of.thesep » and A  is clearly a2 limit ordinal

~because xe t =p{x}et.

Corollaryvl,la

- holds in L, that is, VBFT, where the quantifiers

of ¢~ range over L. This follows by the method of the first

half of 1,18,

This method of analyzing the constructible sets seems
to us to glve conceptual proofs of the Godel theorem and
related resiuilts. ©Notice, for example, the proof of Godel's

main lemma, namely, s e L Aa < Mlwy) = ae Mlw ):

. Y+1
Suppose a ¢M( A) for some 1imit ordinal A >wys Then

M(A)=6", and we dsfine N as the closurs of H(wo()U(a}
under the Skolem functions of ¢ 1in M( XA )., Then N =~ M( B)

and M( B )=¢] for some Bo If f:N=MN(G) then clearly
f"M(wd) is transitive, PP Mlw,) = IMMW,), and since |

- f(a)=1"a (see Lemma 1.2), fla)=aeM(pgleMlw ),

ol4]

To summarize the Godel proof for VB; we hgve shown
VB[ L has a well-ordering] , so VB&V = L} UC. By the
above lemma, VB&V== L}-GCH (where GCE 2 ( OUI(P(w« W,
since V‘B&V“"‘L)—[é’(M(m«)) < M( w )} It is easy
to check that VB VE. wber*e the classes of the inner ‘model

are those X such that X & LA (u) JLue L = Xnuell.

al)
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By Corollary 1.19, VB ’17_;:_1,7 80 finally} the two
constructions VBFVB&V= 1 and VB&V== L}-UGAGCH conclude
the relative consistency proof. - This proof can be ’easily
modified for ZF, since it can be shown constructively that

for each axiom Ai of ZF, ZFl-Ifi.

It is also clear that if there are well-founded models
for ZF, then there ars minimal models (sse Cohen . [1) ).
For if Xk ZF, then by the Godel proof x has a submodel y
such that yEZF,c' 30 Y = EIM(X) for some X .
Ir Y __-—__-/J.F[M(%)l:: ZF) (hence ¥ 1s countable), then clearly
o e}
M( YO) 1s minimal in the sense that any well-founded model

of ZF contains a submodel isomorphic to M( Yo)°

Another useful anplication (ses Cohen [3] , pp. 110)
1s the proof that for each n ZFk (Jo) (X =W A M(ds)}:-ZFn)
where ZF‘n 1s the conjunction of the first n axioms of ZF,
Ry the Gédel proof, one can show within ZF that (ZFn/\o-)
holds in I, that is, zm-rz-ﬁ";?\—o'-'). Taking the prenex of
the formula (ZFn/\q-) one can explicitly define the Skolem
"functlionals® of (ZFnAO"), over L, By closing (g} under
these functionals one obtains a countable set x such that
E!xt:(ZFnAO‘), and hence ‘(Ho()(_'a-‘—‘-'w/\M-(d)t: ZFn). An
immediate consequence is that if ZF is consistent, it is
not finitely axiomatizable, since‘ for each n, ZF} (ZF'n is

consistent),

We note finally that an analog of Theorem 1,18 does

not hold for the sets R(«&) which are also a natural category
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of models for set theory. This 1s because for any X >w,
RlxX ) (3 x)Lim(x), and hence there 1s a countable set s
which is elementarily equivalent to R(X); but s eannot be
isomorphic to ean R(Y) because if R(¥) is countable, then
Y< w, and R(Y )k~ (dx)Lim(x).

é. The impredicative extension of VB,

ILet VBI be the system obtained from VB by replacing
AxComp by the impredicativé comprehension schema -

(Xl) . .. {Xn)(EA)(u) [u €A<==)<P(u,xl,

+ o e 3 Xn)] (ImComp)
where P may have bound class variables, This system was

first considered in tﬁe literatures by Hao Wang in Wang [1] .

Clearly VBI has no more expressive power ﬁhan VB, but
it is much stronger because within VBRI a truth definition
for ZF can be given and so the consistancy of ZF (and hence
that of VB) is provablo in VBI., Of course the truth definition
- for ZF can‘also be stated in VB, so necessarily some of the
basic properties of the truth definition cannot be estab-
lished 1In VB, This state of affairs 1s examined in detail
- 1in Mostowski 1] to which we now refer the reader., We also
point out that our study of constructibillity in VBI wiil
rely largeiy on this truth definition which can easily be
extended to arbitrary rslations R. By formula we shall
always mean a formula with the_predioates € and = , to be
interpfeted in the obvious way. It is not nécegsary to

repeat the definition of satisfaction in detail, but we
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indicate the method used,

A "finite sequence of classes" need not exist in the

usual sense, but the notion can be reinterpreted,

Definition 2,1

a. If Fin(ec)(i.e., (1) [1ew Atzec] ) then SC(X,c)
(X 1s a sequence of classes over c) |
) [xeXzp xtc—2 V] . That is, a_?equance of classes
over ¢ is a class of sequences over c.
b. FSC(X) (X is a finite sequence of classes)
(31) [1ewA sc(x,1)]
.c. If SC(X 1) let Xj (the j-th term of X) for 0 < j<1
be {ul(3f) [ {j,uye fFATEX]}.

In brief, we may define satlisfaction of a formula
(or its Godel number p) in R by: R <:?(f(o . s £(3))
(where £ J=>IR] and @ has h] free varlables) if and only 1if
(3X)(An+1) [sC(X,n + DAP(X,p) AL £X,] where P(x,p)
‘ sajrs,_ roughly, that the structure of the finite sequence
of clasgses cprresponds to the structure of ths fqrfnula
cﬁded into p. P contains no bound class variables, so
there is only one bound class variable in the satisfaction

predicate. Truth and validity may then be defined,

In VBI one can show that if RIB? and PVY, then
RiEy. One can also prove the general sentence that all
axioms of ZPF ére true in V, and thus thé'sentence that all

theorems of ZF are true in V. Since thers are sentences




of ZF which are demonstrably false in V, the consistency
of ZF is provable in VBI, Within VB one can prove
®@(0)A(n) [O(n) = @n + 1)] where @(n) says, roughly,
that all formulas of ZPF with a proof of length less than
n are valid in‘V, but, of courss, one cannot prove
(n)@(n) in VB, By adding to VB the induction schema
B0 A() [@(n) = Bn+1)]=> (n) Bln) for alle ,
one obtains a system VB + Ind which is Intermediate in
strength betwesn VB and VBI., In VBI (as Opposed to VB)
the comprehension axioms give a set x such that

(n) [nex <=y ~En)] for impredicative g , so the induction
schema” is provable in VBI,.

Below several general observations are sketched

econcerning the relationship of VBI to other set theories.

Lemma 2,2

VBIF (A ) [T =0 A M(e )= 2F]

Proof

From the Godel proof, ZF}-ZF, 7,
Since Vi 2ZF, VETZF, & so LEIZF,d .

| One could define the Skolem functions fore in L
(which,of course, are proper classes), or one could use the
following method of Tarski- Vaught [1} for defining
elementary submadels.' For anyvset X, XL, let

g(x) =(ul(IF )T [ u= Mv [LEP(V,(0), . . . , £(k)]
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Af:k—> xA\Y has k+ 1 free variables]} .

Clearly xcg(x) =L, Let h(0)= {#}, h(i+1) = g(h(1))
and d=\Jh(1). It is easy to see that for any

81y « » .+ ,235€4, de(al, o 0 oe aj) if and only if
LeEy(ey, « o o, ay), and that d is countable., Sinece
LEG, dF6- and d = M({) for some countable o . Thus
M(X )= ZF.

From the above it follows that M(o+/)= VB, since in
general if t is a transitive model of ZF, then (u}Podo(u,t)y
is a transitive model of VB. If UC is added to VBI, then 7
one ean infer at once that thers is an R(«) such that
R ),"—'—'ZF: Choose a well-ordering of V and modify the
vreceding construction by defining
g(x) = {u](FIP)(3r) [u==/uv [vEP,e0), . . ., £(x))]
Af:k—>xAJPhas k+1 fres variables]}, and
h(0)={F}, h(2i+1) = g(h(21)) and h(2142)= R()
where o(i-:/ts):h(ai-l-l) S R(@)]. Clearly U h(i) = R()
where dzj:{{di}) y» and R(K )l=7ZF. (It is possible to
di.sf:emse with UC, for example by using the construction
of Montague-Vaﬁght [1] .) One cannot, however, show within
VBI that there is a B such that R(P )JEE VB because one could
imnediately conclude that R()B )= VBI.

It 1s now obvious that therset theory VB4Ind is much
weaker than VBI, since if M(ol41)F VB then -
M(A+1)F VBHInd. This fact would hold for any transi-

tive model t, since the finite ordinals are absolute with
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respect to t, and so if tF @(O)/\(n)[@(n):; O(n+ 1)]
then tk (n) ®(n), by induction on n.

In order to give modsls for ZF or VB it is natural
to introduce the notion of inaccessible ordinal. Call &
reguler (Reg(&)) if (BI(F)[B<AAL: P> o 4(£"B)<X],
In(et) £ Reg(k )A(T A ) [Lim( M) A x = w, ],
This particular definition is sometimes called weakly
inaccessible; see Montague-Vaught [1] for a general

discussion of different definitions of inaccessibility.

Let ZF‘ be the set theory formed by adding the axiom

" (Fe)In() to ZF. If one were to add CH and GCH to ZFF

it could be shown that R(( -+ 1)k VBI where ¢ :—-/uO(In(D().
However, there 1s a more interesting model which can be

shown to exist in ZF‘ without any additional axioms, namely,

let Q:@(M(w,_))f)}'{(wbﬂ)‘ (recall that W,=t). That 1s,

the "classes" are those subsets of M(() which are construc-
tible, and the "sets" are just the members of M( L), Using
the_Godel lemma, it is clear that & }= AxPower, and the only
problematical axloms are AxRep and ImComp., AxRep holds

because if x €M({ ), then x & M( p) for some @<t , There-

fore ¥ < B and if fix—> M(¢ ), then f"x € M(Y) for some

¥< ( since In(i ), Thus if f is a constructible function

f'x €M(L ), For ImComp, let A == {xi_xe M(¢ )A?(x,'}fi, . s J'En)}‘
‘where quantificatlions are restricted to 6’(M(w‘))ﬂM( W

£+1)'
Clearly,,Fodo(A,M(wl_’_l)) so A is constructible, and -

AEM(w,), so by the Godel lemma §(A)< (O That is

41




- 20 -

to say, AE FPM(w,))NM(w,,,) and & = ImComp. It is -#lso

L+
obvious from previous considerations that Q= VBI&V=L,
go this gives a non-constructive proof of the consistency

of VBI&V=L.

As regards constructive relative consisteney proofs,
it is elear that Von Neumann's proof of the consistenecy of
AxFound by using the inner model ‘N(X)% X< UR(X ) may be

carried out with no change in the imprediéative set theory.

The situation, however, is quite different for the
Godel vproof. 'Specifically, one needs to define a collec-
tion of subclasses X of L such that they are closed under
comprehension, that is, (3 A)(Q) [ﬁei(s?a?(ﬁ,f{'l, .« o0y &)]
for arbitrary . The "sets" would be just the members of |
L, and the classes X would have %0 have the property that
uel. =» (XNu)e L. This property would alsoc be sufficient
to establish AxRep, which is the only non-trivial axiom
besides ImComp. This follows because if Fnc(F) then
Fne(F) and if x el then F'x =M( k) for some & by AxRep.
Let f=FN(xxM(x)). Then f"x=F"x and (xXM(a)) €L,

so the property would give f &L and hence F'"x € L.

In the proof for VB, one simply defined
L(x) £ x = LA(u) luelL=unxelL] . Without using the
finite axiomitizability of VB, it 1s easily seen that
m holds. Namely, it will suffiece to show that if
A= {ﬁlzﬁ(ﬁ,i’l,. . e ‘fn)} for predicative P, then

ANM(RX)EL for all ok, But AAM( )= ’:?“c??(x",k‘l, .o o Xp)
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and by a repeated aprlication of AxRep (as in Cohen [3] ,

n) ,
where Y has only bounded quantlifiers, and cl, e o s 9 C €1,
: ‘ n

pp. 106) one gets ANM(oK ) =X W(x%c,, & o« « 5 C

Thus ANM(A ) € L,

»’This'method, however, does not appear to work for

the inn'er model proof for VBI, The natural model

&= Q(M(%))ﬂM( wi—tvl) suggests that the construction of
L be in some sense extended. Intultively we may think of
Cn as w,, the first inaccessible. Although there are no
ordinals longer than w;, one can ronsider classes which are
well-orderings, and these, intultively, might be of length
ﬂ for each P( w£+l. This 1is reminiscent of the fact th&t
each countable ordlnal can be represented by a relation on
the integers, Indeed there will be other analogies between
the present project of constructing classes which are

essentially M( 8) for P>u‘, and certain methods of
hierarchy thsory,



CHAPTER II

THE AXIOM OF CONSTRUCTIBILITY IN VBI
1, Complete classes.

In order to define the inner model it will be necessary

to define’ what might be e¢alled an outer model. That is,

we shall define certain objects called structures; for the

structures a membership relation and an equlvalence relation
may then be defined,vand the resulting construction will

glve a "model" for a certain natural extension of ZF,

We remark that unless otherwise noted the theorems
and lemmas are statements provable in VBI, and schemata

are, a8 usual, infinite collections of individual statements,

Well-founded classes with various additional propertiss
are used throughout, and it is convenient to abbreviate
(u) [uRx = vRy] by xcy. Then clearly Rk Ext if and only if
. R i

x%y}\y %x =P X =Y.

Definition 1.1

Comp(R) 28 WF(R)AREExt (R is complete).

Comp(R) 1s the analog of transitivity for classes
which may be too long to be isomorphic to transitive
classes. Clearly a set x ls complete if and only if 1t is

isomorphic td'a transitive set,
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Definition 1,2

if Comp(R), call A transitive in R 1f

AcIRIA(w)(x) [xe ANuURx =y ue Al .

Theorem 1.3

If Comp(R) and A and B are transitive in R, and
F:RJA 2 RIB then F== I|A (and A == B),

Proof:

Consider an R- least element a of A such that F(a) ¢ a.
If uRa then u & A by the transitivity of 4, and F(u)== u
by the minimality of a, and F(u)RF(a), so a C_-;%F(a).
Conversely, if xRF(a), then x& B, by the transitivity of B,
so x == F(u), and uRa since F is an isomorphism. DBut then
F(u) == u==x, so xRa and F(a) < a. ' Since REExt, a =F(a),

which is a contradiction.

Corollary 1.L

a, If Comp(R) then R has only the trivial automorphism
since IRi is transitive in R.

b, Comp(R)AComp(S)AF:R=2 SA G:R2a S = F=(G because
G'e F:R= R and G«F = I} IRI by part (a).

Definition 1.5

Suppose Comp(R) and Comp(S),

a, F:R<8 2 (AA)[ASISIAA is transitive in S
CAF:ir= SiA] . |
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b, R£s £ (3F) [F:R=5],
Lemma 106

Suppose R, S, and T are complete.
a, FiR £R<&>F=1 [R]. |
b, FiR£ S AG:S &£ T=yp GeF:R=T,
c. F:R& SAG:S£ R=% F:R=3S,

Proof:

(a) is immediate from Theorem 1,3. As for (b), if
F:R=» S}]A and G:S =~ TIB then 1t is easy to check that
(G= P)"IR] 1is transitive in T, and hence GeF:R & T,

Part (¢) follows from parts (a) and (b).
Lemma 1.7

If R and S arse well-—orderiﬁgs then R = S or S £ R,
Proof:

It is easy to see that if R is a well-ordering then
'Comp(R); ‘also, A is transitive in R if an only if A == (R]
or A is a segment of the form R, = {ujuRa) for some a.

By Corollary l.l4 there can be at most one isomorphism
mapping a segment R, onto a segment Sb' v
Let ¢={x|(IF)(Fa)yHv)]| FiR, R S,AxE Fly .

Thus G 1s the union of the partial isomorphism, and it

1s clear that either (G ) =IR| or RI(G ).-::-lS), or else G
could be extended by adding «r,s) whers r and s are‘,

‘respectively, the least elements of (R| and [S] not covered
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by G + Hence eith.er. G:R £ S or G_lgsé R.

We remark that an impredicative comprehension axiom
is used here, and appears to be essential. Thus the
preceding lemma is an example of a natural and intuitively

true se‘ntence- which (apparently) cannot be proven in VB,

 Definition 1.8 -

If Comp(R); let W(R) 2 [x|x¢ IR ARWOrd(x)}
Lemma 1.9

W(R) 1s transitive in R,

Proof:

W(R) is transitive in R just in case whenever Ri Ord(y)
and xRy then Riﬁérd(x). Ord(y) 2 Trans(y)A ‘
(v)(vey =» Trans(v)), so if Rk Ord(y) and xRy then RE Trans(x).
If uRx then uRy (because R Trans(y)) so Rk Trans(u). Hence
RE= [Trans(x) A (u)(ve x =» Trans(u))] and x & W(R).

Temma 1.10

RiW(R) 1s a well-ordering.
Proof:

RIW(R) is well-founded and so if x € W(R) then ~ xRx,
For x,y,z e W(R), if xRy and yRz then xRz because RE Trans(z).
Hence we have only to show comparability, namely, if

x,y e W(R) then xRy or yRx or x=7y, Let x, be a least
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member x of W(R) such that there is a y in W(R) and x#7y
and ~xRy and ~yRx, and for X;let y, be a least such y.
If uRx, then u €W(R) by Lemma 1.9 so uRy, or u=y, or
YoRu, by the minimality of x,. Clearly uRy, and hence

0 =7Joe

Xo %‘ Jo « Similarly y, % X5y and so X

Lemma 1.11

If Comp(R) and Ri Fino(r) then there are finitely

many ué€|R] such that uRr,
Proof:

We may assume w+i < W(R), because otherwise W(R)<£ w
and the statement is trivial, If f: w+I « W(R) then
r=7(i) for some 1€w , becauss othaf’wise elther r=7(w)
or f(w)Rr; but RE Lim(f(w)) which would contradict
RE Pino(r). Since r=f(i) it is clear that {f uRr then

u=Ff(j) for some j< i, so the lemma is proved,

Definition 1.12

If Comp(R) and xe€lR]l, define Cl(x,R) (the closure
of x in R) by:
v ECL(x,R)&Z (3 F)(IAn) [ SC(Fn+ 1) AF,= (x}
AL)0£1<n = F, ;= (u| (Fy)(uRyAve F) Y
AF1)(0<1i Z£nAveF;)].

Lemma 1,13

a. Cl{x,R) is transitive in R.
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b, If A is transitive in R and x¢ A then Cl(x,R) = A,
.Proof:

a., If v eCl(x,R) and zRv, then there is an F and an n
such that SC(F,n 4+ 1) and v EFi for some 0 £ i # n,
If 1 < n then z&F1+ 1 &nd z £ C1(x,R); if 1 = n then

extend F to G , where G ne 1 = {ui(3 y)[wWRy Ay e F 1} .

Clearly z¢ Gp 41 and so z & C1(x,R),

be Suppose A is transitive in R and x&£ 4, If v € C1l(x,R),
then there 1s a finite sequence of classes F such that
VE Fn' _Fo = {x} <A, If Fy & A then Fy 41
{ui(d y)(wRyAy e F;)} S A because A is transitive,
Hence Cl(x,R) &z A,

Definition 1,1l

Norm(R) 5 WF(R)ARE ¢ (R is normal).,

Trivially Norm(R) implies Comn(R)., The normal classes
are just the "long" M(& ) needed to define the inner model,
and the normal sets are just the sets 1somorphic to M(4 )

for Lim( A )o

‘Definition 1,15

'ﬁ 1s a structure if R = <{R,x> where Norm(R) and

x&(Rl,

The structures will be the points of the outer model

mentioned earlier, In the remainder of this sectlion we
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define a membership relation % and an equivalence relation

= Dbetween structures; the lemmas, however, use only the

fact that R is complete,

Definition 1,16

{BRy,x» » <8,y> & (3 z) [ C1(x,R) = C1(z,3) Azsy] .

Definition 1,17

R=3 £ (%) [?7R< T 81,

Lemma 1,18

<R,x>» = <S38,y> if and only if C1(x,R) «: C1(y,S). ~
Proof:

If F:01(x,R) & Cl(y,S) and <T,t> % (R,x} then
suppose G :Cl(t,T) =z Cl(r,R) A rRx,
Clearly PFeog :Cl(t,’f.‘) # C1(F(r),S) and F(r)Sy, and so
<T,t) 7 <S,y> « Thus <R,x» = <S,y>. Conversely,
suprose <(R,x, = <S,y» . It is immediate from the defi-
nition of C1l(x,R) that v £C1(x,R) <>
[v= xV(3 2)(zRx Ave C1(z,R))] . It is also clear that
<Ryr?% {R,x» 1if and only 1f rRx, so if rRx then
(3 s) [sSyACl(r,R) = Cl(s?S)] o Similarly if sSy then
(3 r) [rRxAC1(s,S) = Cl(r,R)]} .
Let g={u/ (I F)(Ir)(Fs) [TRxAsSyA
F:C1(r,R) == Cl(s, S)Aus Fl} , and let H—- ¢ U {(x,y}}
It 1is easy to see that H:Cl(x, R) e Cl(y,S).
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Lemms 1,19

3>
ct
o
]

fa
oy
-8
%
.

If R= § ana §9
Proof;

Let ﬁ:(‘&,x) ’ 3 = <8,y> and T = <T,z7 . By the
preceding lsmma, if R =§ then C1(x,R) = C1(y,S). So if
84T, then (I t) [01(y,5) = C1(,T)A tT2] and
Cl(x,R) et Cl(t,‘T) for the same t, and hence ﬁ“??ﬁ’.

| Theorem 1,20 (Schema)

oA A ' s
If Re= € ana @ (3) then F(R), where @ 1is any
formula: involving only quantification over structures and

the relations i and = ,
Proof:

This is immediate from the fact that if R &F B then
for any ﬁ, ﬁ*fﬁ &= ﬁﬂg§ (by definition of = ) and
R0 = §7ﬁ (by Lerma 1.19),

2. Analysis of normal classes

It will be shown in this section thatrany normal class
is bullt up from its "ordinals" in a manner similar to an
M(A). Hence a normal class R will be essentially determined
by W(R). The normal classes will be comparable under £ ,

and each normal class will have a natural Well-ordsring.

| The predicate Fodo was originally defined for sets.
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However in VBI the definition can be extended to arbitrary
classes, Fodo(A,B,R), "A is first order definable over B
with respect to R", 28 Rel(R)AB<IRIA(I ¢)(I n)[sC(G,n+1)
NG, =R(B,J)AG = I(B,))A. . .Ac, = B!

Aa= {v|{0,v)>} €G,} , where R(B,j) 2 |
{rif:5+2 —2? BAL(O)RF(1) . That is, I(B,j), BJ, and

the wvarious opnerations, such as union and permutation, can
be extended to classes in the obvious way, and to define
Fodo(A,B,R), Definition 1.8 of Chavter I is modified by

using a finite sequence of classes G, It is clear that

Fodo(a,b) < Fodo(a,b,B), so the notation is consistent.

Lemma 2.1

Fodo(A,B,R) if and only if there is a formula
?(u,xtl, @ & o 9 Xn) &nd bl, « o o ,bn EB SuCh that
Az{u,(R,B)F ?(ll’bl’ « o » ,bn)}n

Proof:

This is immediate because if Fodo(A,B,R) then to the
sequence of classes G thgre corresponds awfermula < such
that A =fu](R]B)l=P(u,b7, « + « , by)}. Conversely, for
any formula ¢, put it in prenex normal form Y, and then
thec-la’sgA::{u[(RlB)FW(u,bl, . e .y bn)} can be defined

by an appronriate sesquence G.

Definition 2.2

Suppnose R is normal,
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a. If aeRlI let as == {ujuRa} , |
b, If Rk Fino(d) let d# = cardinal(dx).
c. Let Pj be that unique element of R} such that
RF [(u)ﬁ(uaro)z\rl.-:.(ro} o

. Aram {ro,rl}A‘ 4 * . A rj = {PO’ * @ * ’» rj - 1}}.
d. If Rl h:rj.o:. rj let

BT ={LIIRE <rir ve b},
e. If B#{,f:rj—é bl 1let ft={ <1, m> RF[ry,ud e rl},
fo ITRE x@b’)  let xI={f'IRE rex} .

(Although this notation is ambiguous, it will be clear

- from context which R is meant,)

The preceding definitions are made with a view to coding
the "finite functions" and "sets of finite functions" of R
into genuine finite functions and classes of finite functions,
In cormection with the definitions we noint out several
facts: If a% == b then a =r b because Rk Ext; if Rk Fino(d)
then Rl d =r, 'there j ==d#; If RE= h:fjm vy then
B":J = §3 Af RE fir,=+b  then £1:j—rb¥; if Rl x b
then xI & (b%)J, Other facts needed for the basic Temma 2.l

are listed below,
Temma 2,3

Suppose R is normal. _
a. If RE xsbrj then x| = (b-:e)je‘
b, IfRE[xcy g:,,,brj} then x! < yl.
c., If R,‘—'_-‘{z _'—=xuy/\‘x gbrjj\y Q.brj] then z§ =xfuyl.

d. Similarly for 2z =x - y,
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°. If REx=E(b,ry) then xi= R(b%,J),

f. If RkEx wl(b,:j) then x}zl(p%,j), |

g. If RF Perm(x,h,y) then Perm(xl,h",yl).

h. If RE Exist(x,y) then Exist(x!,y;)?

i. 1If RF Sub(x,u,y) then Sub(x!,u,y}).

j. 1If RE [a = R.E(x)Ax &b then a — ﬁef(xl).

Proof:
These proofs are straightforward verifications,

Temma 2.,

Suppose R is normal. If Rk Fodo(a,b) then Fodo(as,b#,R);
if Fodo(A,b%,R) for some A, then there is an a< |R{ such
that a% = A and R Fodo(a,b).

Proof:

Suppose REFodo(a,b). Then there is a gziRi such

that R Fne(g) and REg(r ) == E(b,rj) and Rp g(r,) = I(b,rj)
and, + . . , and REglr)) S b’ and REas ﬂqf(g(rn)),

- There 1is a finite_ sequence of classes G such that

Go-::g(l"o)lg Gl.“:g(l’l)lg * e e 9 ang(rn)l. B'y Lemma 2.3
we have ax = ﬁd(Gn),' and Fodo(as,b%,R), since the

sequence of classes G satisfles the required condition.

| Conversely, if Fodo(A,bs#,R) then there is a finite

sequence Go::..-_- R(b#,5), G, =TI(bs, )y & o & s Gn Q—(b%:-)l

1
and A == b’{é(Gn). Since R k= ¢~ there are sets x

i)

0 xl, o'o',xn
and a such that Rk:xor:: E(b,r
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- -
thl.-.-—zl(b,rj), s+ 4y RRx E D ! and{leav-::: ﬁj(xn).
Also there is g g‘such that Rln;g-::. _{(ro,xo> s o o ’(rnxn),} R
Thus R= Fodo(a,b). By Lemma 2.3 x, 1= Gi’ g0

s = {4 (xy1) = RJ(G) = A,

~ Lemma 2,5

If Norm(R) and Ri= [Cond(f)ACond(g)] then f and g

"agree on their common domein":

RE(u)(v)(w) [f(w)== uAg(w) =v=>ue=v] .

Proof:

Let w be the least member of W(R) such that f(w) = g(w).
w cannot be r, because f(ro) = ry == g(ry), If RE Lim(w)
then Rk f(w)= {uj(Fz)[zewAr(z)= u]} so if
RE £(2) == g(z) for z such that zRw, then Rf (W) == gl(w),
Tf there is a z such that»R!::w::: zy {z},; then
Ri=(u) [u ef(w) &= Fodo(u,f(z)}] so agaln Ri=f(w) = g(‘w)
because Ri=f(z) = g(z), |

Definition 2.6

If Norm(R); let M(w,R) == {x}(3 f) [ RE=Cond(f) |
Axef(w)]} for weW(R),

It is easy to check that for each wé W(R) there
is an fe|Rl and RE={Cond(f)A(F u)( <w,uy & )71 ;
Vfrurthermore, from the preceding lemma, M(w,R)== f{w)*
for any suchf. It 1is also clear that JR| is the union
of all M(w,R).
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Lemma 2,7

a, M(w,R) is transitive in R for all we W(R).
b, If wlRwZ then M(wl,R)c_'-‘-:.- M(wa,R).

Proof:

a. 1t 1is clear that M(ro,R) = ¢ and M(r,R) == {ro‘j « Also
if R Lim(w) then M(w,R)s%‘LM(z,R). Thus if‘there
is a w such that M(w,R) is not transitive in R, then
the least such w, call it w,, must be a successor,
RE [Wl::’ zU{z}] for a certain z £W(R), |
If x &M(w,R) then Rk Fodo(x,f(z)) and Rkx & f£(z), If
vRx then vRf(z), and since M(z,R) is transitive in R, |
RE(u) {u €V ¢y u ef(z)Auev] . FHence Rp Fodo(v,f(z))
~ and V¥ M(w‘,‘R), so M(w,R) is transitive in R, _
b. By the preceding proof, 1f RE [w== 32U {2}] , then
M(z,R) & M(w,R). Hence it follows by induction that
wqRw, implies M(wl,R) QM(wz,R).

Theorem 2,8

If Norm(R) and Norm(S) and W(R) = W(S) then R £ S,
Proof:

Suppose F:W(R) « W(S), We will extend F to a function
G:R = S, by showing_; that there exist isomorphisms |
GW:M(W?R)::QM(F(W)?S). It.Will suffice to show that if
G,:M(z,R) @ M(F(z),S) then, if RE=fr==zU {z}] and
Rk[s =F(2)U {F(2)}] (2nd hence s== F(r)), there is an
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isomorphism G.:M(r,R) = M(s,S). If xEM(r,R) then

RE Fodb(x,f(z)) and hence Fodo(x:,M(z,R),R) by Lemma 2.l,
Since G,:M(z,R) az M(F(z),8) clearly Fodo(¥Y,M(F(z),S),S)
where Y=0G,"x%., FHence by Lemma 2.l there is a yelsl such
that y*=Y. Let G,(x) be that unique y. Clearly G, is
the desired ilsomorphism M(r,R) = M(s,S).

Corollary 2.9

a, If Norm(R) and Norm(S) then R< S or S £R.
b. If W(R)= W(S) then R= S,

c. If W(R)={zlz eW(S)AzSy} then R= S|M(y,S).
Proof:

(a) and (b) are immediate from Lemma 1.7 and Lemma 1l.6.

(¢) follows from the proof of 2.8,

Lemma 2,10

If W is a well-ordering then {£](3 j)[r:5— Iwl]}
has a well-ordering which we call FS(W).

Proof:

Tet m(f)= the maximum of {f(1)} in Jw].
Let <f,g>€FS(W) 2 [m(f) < mlg)]
v n(f)=ng)A B£)< Hlg)]
VI n(f)=nlg)A D ()= DA (3 1) ( <£( (1),g(1)> € W
A (k) (k<1 = £(k)=g(k)))]. It is easy to check that
FS(W) is a well-ordering.
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Theorem 2,11

Every normal class has a well-ordering.
Proof:

For every x£|Rl define its order: J(x)=w if
x € M(z,R) - M(w,R) where RE z=wv(w} . If J¥x)=w
then RE Fodo(x,f(w)) so Fodo(x#,M(w,R),R). Thus there are
formlas ¢ such that x% ={ul(RIM(w,R))F P (u,e1, . . ,ck)}. '
Just as in the case of the M( ) (ses TLemma 1.5, Chapter I)
one may introduce bounded variables x%? for Aarbitrary z EW(R)
which are understood to range over M(z,R). Then a completely
analogous argument shows that there coerSpoﬁds to each x
finite sequences {WsTp W5 o b »W, > where w= 9(x),
p 1s the Godel number of a formula defining x#% and
Wis o o « W, are the quantifier bounds,
Let %: IR|— {£](F ) (f:j—W(R))} where ¥ (x) is the
least £ in the well-ordering FS(R | W(R)) which corrssponds
to x, Then we define a well-ordering of |R| by x~§ y if
and only if (%(x), %(y)> ¢ FS(RIW(R)). We point out that
this well-ordering has the further property that if F:R=S,
then [x ﬁ 7 <=>F(x) § P(y)].

Definition 2,12

Tet [(2,9) 25 (38)(3a)(I 1) [R=<m,ad
AT =<(R,p)> A a<pbv].
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Theorem 2,13

™ 1is well-defined with respect to = - types, and

has the properties

a. () ~T"(R,3)

. @) [X= T VIRV I (E,5]

co. DD RDHAMED =1 (X,2)]

d. (Schema) For any formula ’{T(f sy e e e s i-n) where ‘77’
is well defined with reSpect o = k- types,
XD o B [EBRTIRE, . . . » %)
= @HTTEX, « . ., X)AD([(T,8)
= ~ TR, o o0, 2]

Proof:

a, If X = <R,a> = éiR;b> for some R; then
01(3,3) 7= C1(b,R) and a == Db, |

b. Suppose X = <X »X 7 and Y = <Y¥,y7 .+ Then by
comparabllity we may assume X £ Y and /}2 = {Y,z> ., Then
‘according as y == 2z, y<Yz, or z{Yy it follows that
X_—Y F’(Yi\) or | XY).

Ce In the definltion of f"', if for some R

Ay

X = {R,a> and 'y =-=“'<R,b) and‘a<Rb, then for any
other normal class S, if )4 =.<3,cp and ¥ = <S,d > ,
then ¢ <qd, by the properties of the well-order;ngs <R
and <S (see Theorem 2.11), T’gereforg givep f, Y and 2
there .i.s an R such that X = <R,a> ’ ?E <R,b7> and

7 = = <R,c?” and a <Rb and b<Rc. Hende a<Rc' and P(’}E,Jf).
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d. For the given f‘-nmuﬂ:a’ﬂ", suppose ’{T(ﬁ,)?l, . . ‘. , fn),
where R = <R,a> . Let b be the least (relative to <R)
_u such that TT('<R,u:v,i1, . ,‘i;), and let
) ==;(R;b> . Thep clearly 77V§,§i, e e e, in) and
M8 = ~TEx, ..., X ) because 1r [1(%,3)
then thgre 1s an element ce/Rl such that e (Rb and
% = <R,c‘> .

It is clear that [’ 1is essentially a Wwell-ordering
of the ( = - types of) structures, For any formula 77
which 1s well-defined with respect to = - types, it will
be conéeniant to let Wf*(fo’,fl’ o« o e gfn)
ETTRRy o oo XA OTER) = ~TTE,X, . . LX),
By the preceding theorem 'TT/“ 1s well-defined with respect

to = =~ types and has the propsrties:

Ba T?;M(S{\O’ s sy %n)::} m?o’ s e o 3?)

n
V A V e b ) o~ o A A A
b, (3R) ’I‘?‘(R,xl, eee s X )=2 (:aa)’{“j“/u_ R,Xps o v 0y X))
A A A . A A A —
Cae W/(.\ (R,Xl, s s e Xn)/\ TT/&(S,XI, . .‘ . ,Xn)~—$ R = Se

Theorem 2,1}

Norm(R) = (3 8)(Norm(S)A A § < R)

(That is, every normal class can be properly extended.)
Proof':

Intuitively the normal classes are M( 4 ) for Lim( A)
and the method of extending M( A) to M( 4+« ) can be

modified and anplied to normal classes, We define a predicate




Extend(X,Y) which holds for a given X = <A1,w1> and a
certaln Y = <A2,w2‘) , where Ai is a relation such that
all elements of )Alj are of the form < 1,x) for i less

than some fixed k, and W, is a well-ordering of !All::

1
Given any <A1,w1> of the described form, let j be the
least k such that <i,x> ¢ lAli = 1<k. Let C be the
class of all finite sequences {j,p,al, c e s an) such
that (1) p 1s the Godel number of a Pormuls g with
| n 4+ 1 free variables,
(11) There is no aeiAli such that
AI#-' (u) {ﬁf.agﬁ:ﬁ@(u,al, « e e én)]
(11i) There is no Aybyy o 0 vy, bm7 preceding
<p,al, ¢ o o g an> (in the natural well-
ordering induced by Wl) such that |
A [ (wb, oo b )& Plusa, L, a )]
whers p codes < and q codes §U N
Define 5A2}*-'-': JA{JUC and
A =AU {¢x,y) |xs 18, 1Ay S‘C/\Alkq’ (x)}
(whers y= {p,al, e v ey an> determines the formula
C;”(u,al, ooy an)). !Azl can be given the obvious
well-ordering, Under these conditions we say
Extend( (Al,w:L) ’ {AZ,W2>).
Glven a normal class R code it intc?
Ry = { Ko,x>, <0,7>) | <X, y>€R}. Let Qo::, <RO.
Then let 8 = [y (36)(An) [50(G,n + 1)Ae, = <B_,W 7
A(1)(1<n ::}Extend(Gi,Gi +1)) _ |
N (3 B)(F W) (G, == <B,W> AyeB)]}.
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By the method of_axtension 1t is straightforward to check

that S is normal,

3., The inner model 7'( .

For the universe of the inner model X, we shall

single out certain subclasses of I whiech are in a ngtural

sense projections of structures on I,

Definlition 3,1

| PR T4 | A

a., Proj(R) = {x|[<L,x>7%R7¥,
be K(A) & (IR)[ A =rroj(R)] .

It is clear that <L,x>» is a structure for each

x ¢l and that x == Proj( <L,x» )., Therefore xtL =P ¥ (x),

and the "sets" of 9¢ are exactly the members of L. We

shall often use ¥ and X to denote sets and classes of N .

In order to prove the relativized axioms it will

suffice to show
x & LAM(L) = XA AgL (for EXRep) and

‘}(( fi}@(i’fl, s e 9 -X.n)} ) (fOI' ImC’omp).

Thsorem 3 2

If x €L and % (A) then x\Age L,

Proof:
It will suffice to show that if %(’(A) then M(&X )/VAE L

for every oL . Suppose A == Proj(’ﬁ) >and R = <R,ay . By
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comparability we may assume (I f)(f:M(o+w) £ R)
(otherwise R £ M(ol+w) and AEL)., Let m=f(M(X)),

and let g=f M M(L), It is obvious that mi 1s transitive
in R. Let relR|l be such that REFr=mNa. Let N be the
closure of mtU{r} under the Skolem funeétions of ¢” in R.
Since m is a set, N is a set and R|NF ¢~. Hence there is
an h, h:R|N = E’IM(P) for some 8 ., Conslder heg:M({ ) —>
M(B). It is clear thab (heg)"M(ol) is transitive, and
that (hog) MM(X )=IM(). We claim that hir)=ANM(K),
and that ANM(R)e M(ﬁ Yo If xeANM(A) then g(x)Rr and |
g(x) éN so hig(x)) e B(r) and ANM(& ) & h(r). Conversely,

if xeh(r), then h™'(x)Rr so h '(x)Rm and n(x)Ra, so

g"(h""(x)):::x EANM( K ). Therefore h(r):-‘A/\H(oﬂ).

Definition 3.3

2. Let T be a fixed structure such that

G) [ ﬁ"?f & (I x)(T=<L,x> )] (by the proof of
Theorem 2.1l there is such an L = (L , 42 where L
.13 a shortest proper extension of L).

be Let variables ﬁ,g,f, etec., range over structures ﬁ

sueh that (U) [ TR =071 ].
Lemma g.g

(8) [H (1)=> @R)(a=Proj(R))],

Proof:

Suppose A-..—:Proj('}?). We may assume L+£-._R because

otherwise R < I and R is already an R, Ifr P:LY<4R, let =
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be such that Rk a == F(£)/} r where R = <{R,r> . Clearly
‘6’7 {R,a) =3 ﬁ"?f so <R,a”> 1s an R, and also
Proj{ <R,a>» ) =='Proj(’§)=== A,

By the dafihition of projection 1t is clear that
R=75 =2 ProJ(R) = Proj(8)., We have singled out the
structures R because, as 1s easy to check, they have the

further propsrties that

H=5 ¢ Proj(K) = ProJ(¥) ana K75 & proj(¥) € Proj(¥).

More generally, schema 3,6 holds.

Definition 3,5

Let $, ¥, and & from now on be formulas with

variables Xi’ and predicate letters ¢ and = .

Let ’f ,'g , and 37 be defined by the replacements:
3 treplace X, by X,.
$ sreplace Xi by lﬁ' ; € by %7 and == by = ,
f treplace Xi by 3{’1, € by 7 and == by = ,

Lemma 3.6(Schema)

For any & , (il) o 2 e (En)(fl) . e ’.(i—n
[Proj(X)) =% AL o LA Proj(X ) = X_ = ( X, ..., X))
SFRE, ..., T NT . |

n

Proof:

This is a straightforward Induction using Lemma 3.4

since X, 7%y, ¢ Xy and X, = X’iji-—._: X,
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Definition 3,7

a. Let ImComp(@ ) be the sentence

X)) «v s EHEN@[ReieFE®E, ..., %] .
v , 1 _ n
b. Let Aus(_ "‘g)) be the sentence

L XD@®EHOTE e

(%) . .
A A A A A A
?(U’Xl, . * L4 9 xn)AUl’?RJ [ ]

Lermma 3. 8( Schezﬁa )

For any ¢ there is a ¥ such that Aus( Y ) implies
ImComp.(@ )e

Proof:

- The formula E can be expressed by a formubla @’ 7
stnee (3D TTE <= @R [TTEOAD) B2X=> 41)] . Then
Aus( P ) gives (3 g)(ﬁ}[ﬁ’7§ {::?Q\J(?J,fl, . . . in)Aﬁﬁf]
Where‘Proj(‘fi) r—‘i‘(i. By Lemma 3.6; Proj(S) =% and
ImComp(§ ) follows, | |

It follows from the preceding that the relativized
comprehension axioms will be provable in VBI if the
sentences Aus( Y ) (which, of courss, comprise the
Aussonderung schema for the outer model) are provable 1in
VBI, This demonstration, whi_ch uses gi Skglem construction,

wlll occupy the remainder of this section.

Definition 3,9

Let G be the sentence which results from g by
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b

replacing € by 7 and == by == and variables X, by X

Theorem 3,10

& (that 1s, VBI} & ).
Proof:

The clause Ext becomes

(X) (%) I(ﬁ)(%’gi#’-—‘—‘?ﬁ? T) =y X=¥] and is trivially true.
Consider the other components of o"‘ for example, "
X)(Y)(E'i Z)(U)[U";z U%'XVUE&Y] For any glven

X = {X,x7 and ¥ = <.Y,y> we mey assume there is an

F F:X <Y, by the comparability of normal classes, Let 2z
be that member of |Y} such that Yk=2={F(x),y} « Then
clearly (0) [T 7 <Y,2) ¢> T=XVO=7Y1 and ¢v,z> is
the desired %. This same method may be used to establish

the other c¢lauses,

-
It will be necessary to define for formulas ¢ certain

Skolem functionals., Supvose § is a sentence (in prenex
nomal form) of the form (X)(3 Y) "‘! X,2). Then let

F (X,Y) """@/u(y,;c) where @(Y %) &5 § (X,¥). By Lemma 2.13;
%(X,YI)A%(X,YZ):::.) Yl?ﬁ"- > 80 OfF 1is essentially a
‘function of the variable %. Glearly to each existential
variable ?i corresponds a Skolem functional %5_ defined in

terms of the functicnals Cﬁ?‘k for k<1i, which is (essentially)

a8 function of the orecedlﬂg universal variables,

- Por formulas c;> with free variables the usual definition
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of Skolem funetions may be modified so as to give the
necessary funections ‘for forming elementary submodels,

The following method seems to be applicable to all situations
which arise, and it makes possible a clear inductive proof
that for arguments in the submodel, a formula holds in the
submodel if and only if 1t holds in the original model.

(This property is also clear for situations‘ such as Lemma
3.13 where individual formulas are dealt with and the
"models" are too large to be models in the usual sense.)
Given a formula '59(111, . e . ,,un) with n=0 free variables,
put it in prenéx normal form using only the quantifier I
(hence (v) becomes ~ (5 v)~ ), To each subformula of the
form (=3 Vz') G(ul, e o . ,un,v s e o e 3V

1 -1
responds a function fi(ul’ L W S ’vi-l) which

,vi) there cor-

equals: the least v, such that 8(111, o o e ,un,vl, . e . ,vi)

i

holds in the original model, if auch a v ‘exiSts, otherwisé

1
it 1z some chosen constant. Thus to each bound variasble

vi there corresponds a function fi

the n free variables plus i-1 other variables. It is clear

which is a function of

that this method may be extended to define Skolem functionals

Py

of formulas §(%O’ e o« 50 ).
n

o~
Conaider Aus( ¥ ) for a given ‘Q_’('ﬁ . e ,'ﬁ\n).

o’
Selsct 'ﬁ, ’é.l’ o o . ,%’n. In order to prove that there is
- e ~ .‘ ’
an § such that (V) [§25 & W@TE, . . . B)ATIR],

1t is convenlent to define the Skolem hull ¢ of R with

A S~ A
respect to 1) and Byy » « ¢ 3Bp.
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Definltion 3,11(Schema)

(%) & (3 6)(Fm) [SC(G,m + 1) and for igm
[ (3 u)(Gi-"‘T’. <R,uy)

or Giﬁ Bl’ ¢ s+ s+ 4 Or Gis‘; Bn

or Cﬁ?(Gil, « o o 3 Gik,Gi)l for some 11, « o 1k<1
where Off 1s.a Skolem

N A -
functional of AY (U) or &~

and ¢ =X 1.
m

Definition 3.12(Schema)

-é. Let <™ be the sentencs resulting by restricting the
~ quantifiers of & to -, |
b, ILet ’\_.}_:‘*(ﬁ) be the formula resulting from ‘Q) (7) by
restrictiﬁg the quantifiers to 7,

Lemma 3.13(Schema)

8 e Gﬂ”
| b, If M{T) then |
- YD) = YHE) ana ~PH) = ~ YD)

Proof:

This follows immediately from the faet that P 1is

"elosed" under the necessary Skolem functionals.

It ’J‘%‘(E), then each derlvation, or sequence of classes

G, such that 'Gﬁﬁ'fmay be codsd into an integer p such

that p describes how the last term 1s derived from the
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structures gl’ C e %n using j structures

<Ru 75 00 vy <’R7uj> + If code names for

v <R,u1} s o+ e (R,uj)are supplied then & complete
description of G is given up to the = - type of 1ts terms,
becausa the Skolem functionals are well-defined with respect

to == - types and give essentlally unique values,

Definition 3,li(Schema)

Code(i,x)g"}a}(?)‘f\xw (F’.S(ul); e e o, ‘g(uj)>
where p is the Godel number of a ssquence of classes G
yielding '33, and (R?u1> s o o s ,(R,uj> are the structures
used in the derivatlon G, as described above, (See Theorem

2,11 for the definition of § .)

Remark: a., A fixed well-orderihg of the sequences

<P, B(ul)’ s o o § (uj)> may be def.’med
in the obvious way.
X P ' P -t
b, If Code(X,x) and Code(?,x) then X= Y because,
as noted before, the terms of G are determined

by x up to = - type,

Definition 3,15(Schema)

Map (X, %) & MEX)Ax= my [(3T)T= FAcoae(d,y)] .

 Lemma 3, 16(Schema)

Map()?,x)/\ Map("f,y) = [x= y@i-“:..—'—‘?}
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Proof:

A
Ir ¥ = Y then x== y by the definition of Map.

Conversely, 1if x == y then there are fl and ?’1 such that
A A A
Az—xl and Code(Xl,x) and ¥ = ?l and Code(?l,x). By

~~

. -~ P
Part (b) of the above remark, Yla‘"«.. Xl so X=1Y,

From the preceding it is clear that Map is essentially

a 1:1 function onto its range,

Definition 3,17(Schema)

Let H £ {<x,y>1| (A ?()(3?)(Map(f;x)/\Map(ﬁ',y)/\i”lf)} .

Lemma 3.18(Schema)

For any formule ¢ ,

=LY R, L., SRR, L L, 2]
where & is the restriction of % to W,

Proof:

This schema follows immediately from Lemma 3,16 and
Definition 3.17.

Lemma 3,19(Schema)

H is normal,
Proof:

HF o~ by Lemma 3.18, and it will thus suffice to show
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that H is we11‘4foupded. Let A= iHl. Take any a €A and any X
such thet Mep(¥,a). TLet D ={xlxelx|A |

(4 v) [Map(<X,x> ,b)Abe All}. Let d_ be an X- least element
of D, Then Map( {X,dé) s8,) for a certain a, and ag £ A,

We claim that 8y 1s an H~ least element of A, If a Ha |

“17 %0
and alé A, then consider any ¥ such that Map(Y,a )e Since

a,Ha,, Y 7<X,d_» and so there is a dl such that ¥ = '{X,dl}

and ledo, which contradicts the minimality of do.

Several elementary observations will be essential for
the proof of the main thqorem. First Fl.R H where
-F‘l(u)_z v &= Map( <R,ud ,v): It is clear that Fl is a
1:1 function; also ths range of Fl is'trgnsitive because
if F’l(u) = v and xHv, then by definition, there is an )e
such that Map(X,x) and X 7 <R,u> so that X = <R,y>
for some ¥y, and x is in the range of Fl' The second point
ls that if for some u <H,t>= < R,u’> then Map(<H,t> ,%t):
If <H,t>== <R,u)> then there is an isomorphism
FZ:Cl(u,R) e Cl(t,H). FZ—_;- Flr Cl(u,R) because Cl(u,R)
is transitive fn R, Since F,(u)=t, t=F, (u) and
Map( £ R,u> ,t), so also Map( <H,t> ,t), Finally, oﬁserve
that 1f Map( <R,u) ,t) then <R,ud =2 <H,t> |
FiiR=H so Cl(u,R) ~01(F 1{w),H), but if Map( <R,ud ,t)
then F (u) ==t so <R,u> <H,t7”,

Theorem 3,20 (S chema )

(38)(B)[B48 @@(6,’1?1, e BOATR ]
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Proof:‘

Let S be a proper extension drf‘ H and let G:H < S,
Let H, be the image of H in S (that is, Hl*:-g' SI(c"ul)).
There is a point xesl suc}fl that R = £{8,x> , and for
each f‘pmula P, = point"}y? ;ugh# that (u) [uSyé::}Hlt:ré(u)] .
Let Map(ﬁi,bi) for isl, e s o 3 n, and let Cis o « o 5 €

n

be the images of b .« o bn in lHll' under G, Then let

1’ _
z¢{S| be such that (u)[uSz(:f,?HlP ﬂy{u,el, o s e cn)]

and let s¢f8) be such that Sk=s = xAz,

We claim then that S == ¢S,s> 1is the desired structure,
A TS A A A,‘ . B

If U7%S then U+ {S,x> and so UyR., Also UM <S,z >

: ~ _ v
so there is a ue¢ !Hlé such that U== <{S,u’ and
Hl?}k’(u,ci,'. « o cn). Let tejH| be that slement such
that G(t)==u. Then H}= Wik, o 0 .y, bn) and by Lemma
3.18, ’ng’(’?‘,ﬁl, e« e« ., B) where’Map("i‘\,t). By Lemma 3,13
A A A - —“ n o~ A A A
y(T,Bl, o« o ey Bn). Finally T = U, because U™ R and
T =<{H,t 7 and so Map(ﬁ,t).

. R ’
- Conversely, if_y(ﬁ,gl, o o o 'ﬁn)/\ﬁ"‘zﬁ then it 1is
straightforward to verify that 't’I\"[/S\.




CHAPTER III
INDEPENDENCE RESULTS FOR VBI
1. The strong axiom of constructibility.

In the preceding chapter it was shown that N was
an inner model for VBI plus the usual axiom of construc-

tibility which states that each set is constructible,

However in VBI one can consider a stronger statement which

asserts that each class 1s constructible:

(M) (3R) [a=rroj(R)] .

Let VBC be the set theory formed by adding
() (AR) [ A==Proj(R)] to VBI. Within VBC 1t can be
shown that a very strong choice principle holds; namely,
there is a definable lineagr- ordering A of all classes

which is essentlally a Well-ordoring.

Definition 1.1

~ Let O(X,Y) be the sentence
(FR) [Xe=Proj(B) A (§)(Y = rPro3(8) = ™ (8,3))]

Thacremll.2

VBCH |
[X)~ A L) A (X) (D) (A X,V X=YVAY,X))A
(X)) (2) (A DNA DY, Z) = AlX,2))]

and for eaghv@y(Y)Xl, e o e Xn),

VECR (X)) L ) [@D YrE, L., )
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=30 [Y @, 00, A @AGDD
"‘c’f(zyxl, s s s 3 Xn))]}

Proofi

These properties of /A follow at once from the

corresponding propsrties of [ 7,

The two main points of this section are first to
show that within VBI the inner model ‘% 1is a model for VBC,
and then to examine the outer model constructed within
VBC(see Theorem 3,7) which will suggest a means for
obtaining independence results for VBI. In order to
establish the firsf point the essential fact needed 1is
that every constructible class is constructed by =a

constructible class,
Lemma 1.3

(A) [X(8) =2 (F1)(B £) (A== Proj(<T,t> JANI(T))]

Proof:

We may assume A== Proj(\ﬁ)__whera R = <R,a7 ., Consider
the structure <L¥, { > mentioned in section 3 of Chepter 1II,
We may assume that there is a function F, F:L*lé R becauss
otherwise R % L and the theorem would follow. By the
definition of £, F(& )* is the isomorphic image of L in R,

that 1s, E|L 22 R]F(.F )%, TLet X be the closure of
F({ )*U{a} under the Skolem functions ofiu‘ in R,

Thus R{X is normal and Proj( {RiX,a) )==A, It is also
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clear that RIX can be coded into a relation T & L:
First,v one can let members of F({ )& be represented by
finite sequences of ordinals, and members of the 'Skolem
closure of F(f )*U{a} cen be mapped into finite
sequences in a manner analogous to thes definition of the

normal class H from the Skolem hull % ,

However, the fact that T is normal and T € L doas ‘

not by 1tself give M (T). It is necessary to show that T

1s itself the projection of a structure {By,b> . This

follows in a stréightforWard manner from the following facts:

(1) The natural function G which maps L into finite

sequences of ordinals 1s constructible, and (11) the

natura;l. Wwell-ordering W of finito gequences <p,fl, o o 3 fm>
where PE€w and the fi are finite sequences of ordinals is
constructible since ¢ 1is a model of VBI, Also (111) the
well-ordering of R is definable over R in the sense that

there is a sentence P(x,y) such that X<Ry if and only irf

‘R#‘:})(x,y). Thus (iv) the Skolem functions of g are

defineble over R in the sense that for each Skolem function

F, there 1s a sentence such that F (x .« o x -
1 g, et AL P En ) =Y

| 1
if and only if R }sei(xl, « + s X ,¥). Clearly R can be

i ,
extended to a structure S such that S has poihts representing

the Ilmages of the function & and the well-ordering W, and
the Skolem functions Fi' Fence T!, the isomorphic image of

T in R, can be defined by a sentence Y(u) such that u €T

Af and only if S kW (u). Finally, S may bs extended to a
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structure B, and VY represented by a point b, so that

Proj( {(B,b» ) =T,

Theorem 1,l.

VBI b (A)(3R) [ A = Proj(R)]

Proof:

From Lemma 3.3, for every constructible A there is g
constructible R such that A=< Proj(<R,a>)., It is clear
that 1f R 1s well-founded then R must be well-founded in 9;
also if Rl 6" then Rl ¢~ in ™ because R 1is constructible
‘and hence only consfructible classes are needed in the
truth definition. Finally, observe that
A= {x[{L,x> 7% <R,a>} is true In A becauss if
{L,x)’?{ﬁ,a} then there is a function f:C1(x,L) 4z C1(m,R).
RIC1(#,R) 1s well-founded in ¢ and %/ 1is a model for VEI,
so there is a constructible function g:Elt 42 R{C1(s,R)

for some transitive t, But then t == Cl(x,L) and f == e

In VBI 1t was'posgible to show that the outer model
satisfied Aussonderung., In VBC one has the ordering A
and it is possible to show that the outer model satisfie‘s
the replacemsnt schema, TIn order to do this we shall need

the following lemma.,

Lemma 1.5

If Z is a well-ordering with no largest elemsnt then

there 1s a normal class R such that RIW(R) &= Z.
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Proof:

Let Z be a shortest well-ordering such that it has no
largest element and thers is no R such that RIW(R) 4= 2
Then either Z has a largest limit element or not. In the
Tirst case, if z is bthe largest 1imit element then
Zlz¥# == R|W(R) for some R',‘ and since R can be extended,.
clearly Z = = 3)W(S) for some S, If 7 haé no largest limit
element then one can construct the desired R by’essentially
taking the union of the normal classes for segments of Z,
That ié, if z is a 1limit elemenﬁ of Z, then let RZ
= {efl,fz‘;»l(aa)(am [F:RIW(R) 7 2Z]z%

)
/\fam}?og(xz))]} ., If == URz then R is normal and
R{W(R) == Z,

Definition 1.6

For each formula ';\]‘)(Xl;Xz; P , Xn".z) let Rep(?Y))
be the sentence:
(R)(X Yoo L@ [E7R = (3 F)
(Y (A B)A (S) (P(a,0) = B=611
=@ @ [ B8 3R AR AYE, )]

Theorem 1,7

VBC |- Rep (%) for each 4 .

Proof:

)

, and

s e o

, o A M
Consider a given R = <{R,r> and Xl',
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A
suppose that Y satisfies the hypothesis of being a
"function" on R, For each & such that aRr let Ba be the
£\ -least structures such that 'Q( <R,a?> ,Ba), Define
a well-ordering W of pairs <a,b> such that aRr and
b € Ba by {(al,b1> s <a2,b2>> E W
i b .

P la < a1V [a;=e,Ab < bl

R Be

1

This well-ordering 1s the well-ordering of a normal class U
by the preceding lemma, and U is longer than each Ba,
Hence 1f W(A,B) and AYR then B = <U,u> for a certain

u &§U§ )

Using an inductive procsdure as in Cohen [3]- pp. 106,
one can by this method get bounds on all of the quantifiers
of ’@ ; that is, 1if 277R then @ (K,%)@I?W(X,g) where
TT is formed from @ by restricting each quantifier Q
to‘range over structures of the form {Ti,x> for a Vcertain
Ti‘ If S is a normal class longer than R,U, and the Ti’
then there is a polnt selS| such that § = <S,s> 1is the

A A
desired "range" of Y onR.

2+ Outer models and Cohen models

It is clear that the outer models which have arisen
satisfy (in the obvious sense) the axioms of certain set

theories related to ZF,

De finitign 2,1

. _Lat ZF~ be the set theory formed byié{ﬁ:ft-:;iﬁ'g “the power




set axiom from ZF,
b. Let ZF:# be the set theory formed by adding to ZF
the formal sentences
(1) (Fl)In(K)
(11) o
(111) (x)(§ (x)< MAIn(xK) => (3 y)
(Wlueyeue x)).

In condltion (1) the predicate In(o) can be taken
as Reg(c )A(B)[ <t = (Y)( @< P <ol)] which
avolds reference to the function (actually a definable
, predicaté in ZF) f: g —awp; notice further tha:t without
the full power set axiom, it cannot be shown that the cardi-
nals do not form a sest, so in general the function mentioned
above 1s not defined on all ordinals. Condition (ii)
states that every set Is constructible, and (i1ii) stipulates
that every sst constructed by an ordinal less than the

first insccessible has a power set, The set of axioms as

stated 1s highly redundant, but this is of no conecern for

the nresent purroses,. Despite the lack o‘f syntactical
elegance ZF¥% has = natural model, If W, 1is the first
Inaccessible then just as M(w,) may be considered as the
intended model of ZF, I( Wy ) 1s the intended model of ZFx,
As stated in the lemma below, the consistency of VBI is
ajuivalant to that of ZF#, which 1s related to the original
motivatién of considering within VBI classes which are intui-~

| tively isomorphic to M(g)for p < Wiy Obviously if the full
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power set axiom were added to ZF# then the resulting system
would be ZF‘&V ==T1, within which the consistency of VBEI

is provable,

Lemma 2,

SRS

. .

It can be shown constructively that VBI is consistent

if and only if ZF% is consistent,
Proof:

If VBI is consistent then the inner model ‘M. yields
the consistency of VBC, Within VBC the outer model clearly
satisfies ZF%, the only problematical axloms being the replace-
ment schema, Conversely within ZFi there is an inner model
for VBI, nemely, ﬂ)(x)ggx:ﬁéfﬂ(bo&). The comprehension
axioms of VBI hold in 9} since the Aussonderung schema
(which is implied by the replacement schema) holds in ZFx,
and the axiom of replacement holds in %) because in ZF:

all sets are constructible and «w, 1s lnaccessible.

In order to apply the Cohen construction to ZM: and
thus obtaln the desired independence results for VBI, it

is convanienﬁ to consider another modification of ZF,.

Definition 2,3

a, Let Mod be the sentence
()3 [Lim(el ) A ok > AFne(f)A J(£) = okl
A£(0)= 0A(R) [p<ot = (W (nef( g+1l)é=pusr(p))]

A [Tim( A)A A< +1 :f;f(/\)::l__‘,{f(ﬁ)}/\
| | ke
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AN (g) lxef(k)A\g = f(x)AFne(g) = g'x e £(A)]]
b. Let ZF¥ be the set theory formed by adding Mod to

Zr .

The reason for considering ZF¥ 1s that the axiom
Mod guarantees the existence of an inner model for VBRI
since 1t says that R(a) exists for a 1limit ordinal® and
that replacement holds in the inner model QA (x)EEx < R(A).
A condition stating that there is an inaccessible F a‘nd.
that R(P) exists would not by itself guarantes that
u‘(x)gx,gﬁ(p) is an inner model for VBI since GCH
-and CH are needed to show that replacement holds in (!,
and we are here concerned with Cohen models within which
GCH and CH may not hold. Tt is not aifficult to verify
thet ZF# is equivalent to ZFT & 6

Definition 2.
Lgt Zl, &>, and X3be the formal statements:

le There 1s a non-constructible set of integers

_ ACHAGCH,
Mo _
23: 67(1,._)) has no well-ordering,

Lemma 2.5

For 1=1,2, and 3, if ZF'& 3, 1s consistent, then
VBI& Xy 1s consistent,
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Proof:

The inner model AU immediately yields the consistency
of VBI& Zi because 1its universe 18 of the form R(& ) and »

hence includes all sets of integers,
Lemma 2.6

If 77 —EIM(o{) is a countable model of ZF: then the
Cohen constructions yleld countable transitive models ,

of zp"'&gi. a
Proof:

The only new point involved is 'to show that Mod holds
in 775.' Let ( be the Tirst inaccessible in 777, It is
convenient to prove first the sublemma bthat if p<L(and
hence F‘*ﬂe F, ) and Fg = F and Fg is a function, then
Fg “Ff EF, (whieh irmnediatgly shows that ¢ 1s also
inaccessible in /7, ): In 77, for each (< ?, let
hy (P)= MY[PIpFg (F )= F, A ¥<(] if such a ¥
exists and h ,(P) == O otherwise, Since ¢ 1is inaccessible
in 777, the range of each h 5 1is bounded by some H < { .
If g(?) is the least upper bound of {& iol<f3} then g(F YL L W
Clearly in 71 1 if Fg (FD( ) == u for any F ¢ FP ~ then
u="F, for some y < gl fS) and sov,FN5 "Fg £ Fy . Returningl
to the main lemma, it can be shown by induection, using
the sgblemm_a; that for each P < { there is g function fP

in F, satlsfying the recursion condition in Mod, Hence

‘there is a function f defined on (¢ + 1 satisfying the
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recurslon conditivn, that 1is, f(d) is R(c() in 7"{

for each o < ¢ty and £{¢ ) &F, . It 1s clear conversely
that P, & (¢ ), by the definition of the funétion F, But

‘then by the sublemma, x e £(( JAg & f(c )/\Fne(g)
=>g"xe £ () =0 Mod holds in 71

Theorem 2.7

It can be shown constructively that the consisteney of

VBI implies the congisténcy of VBI& Zi for 1= 1,2, and 3,
Proof:

The thaorem follows from the obzervation that the
same method mentioned In Cohen 1 3] pp. 110 can also be
used here, bgcau‘sg for each n, zm—fggg [&7= WAN(X )= ZFn%]
where zzan-zé 1s the conjunction of the First n axioms of ZFs,
sinece the same Skolf??{ submodel argument may bé aprlied.,
- Thus the Cohen construction may be carried out plece-wise,

inferring 77 [ ZF; &31 by considering an 7¢7 such that

7H{ 2P & for a sulteble n effectively calculable from p.




BIBLIOGRAPHY

Cohen, P, J.
1. A minimal model for set theory,
Bull. Amer. Math. Soe., Vol. 69 (1963), pp. 537.

2. The indépendenea of the econtinuum hypothesis,
Proe. N. A. S., Vol. 50 (1963), pp. 11i3.

3. The independence of the continuum hypeﬁhésis 11,
Proc. R._,’A. So, VOl. 51 (196&.), PDoe 105. :

. Consistency proof for the gensraiized continuum=-
hypothesis, Proec. ¥, A. S., Vol. 25 (1939), pp. 220.

2., The Consistency of ths Conti

nuum Hypothesis,
{Princeton, 1940) , oL

Kelly, J. L. : . o |
1, Gemeral Topology (Princeton; Van Nostrand, 1955).

‘Mendelson, E..
1. .Introduetion to Mathematical Logic (Princeton:
Van Nostrand, 196l;).

Montague, R., and Vaught, R. L. B
1. Natural models of set theorles, Fund. Math,,
Vol. L7 (1959), pp. 219.

Mostowskl, A, o B
1. Somé impfedicative definltions in the axiomatie
set theory, Fund. Math. Vol. 37, (1950), pp. 111,

Tarskil, A., and Vaught, R., L.
1., Arithmetical extensions of relational systems,
Comp. Math., Vol. 18 (1959), pp. 81.

Wang, Hao
1. On Zermelo's and Von Neumann's axioms for set
thaGI'y, Proc. N: A’ So, Volo 35 (19}4—9)’ pp‘ 150'




BIOGRAPHICAL NOTE

Leslie H, Tharp was graduated from Rhame High School,
Rhame, North Dakota, in June 1958, He rsceived a National
Merit scholarship and sntered the Massachusetts Institute
of Technology in the fall of 1958, He received the Bachelor
of Science degree from M, I. T. in June 1962.

In the fall of 1962 he Qnrolled in the Departmenﬁ
of Mathematics at M. I. T, He was an honorary Woodrow
Wilson Foundation Fellew; and held a National Science
Foundation Fellowship during his three yeérs of graduate
studye.




