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ABSTRACT

We consider here the manner in which rigid fluid ro-
tation is established frcem a prescribed initial state of
motion. The fluid, viscous and incompressible, wholly
fills a uniformly rotating container.

Following the general theory developed by Greenspan
(1965), a solution to the linear problem is sought in the
form of a superposition of all the natural oscillatery
modes of the inviscid problem, each of which is corrected
for the effects of viscosity. A few additional aspects of
the linear theory are presented for containers of arbitezary
shape, and the analysis is then applied to spheroilds and
éylinders. For these configurations it is possible to de-
termine explicitly the inviscid eigenmodes. Numerical -al-
culations iilustrate the effect of viscosity and geometry
on these modes.

The modal analysis is also used to determine the re-

sponse of the fluid when the container is oscillated at a
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fixed frequ3ncy, or when an oscillatory body force ig ap-
plied. The modal amplitudes satisfy an infinite system

of linear algebraic equations with constant coefficients
which, for some geometrias of practical importance (in—
ciuding spheroids) can be rendered finite. Forced oscil-
lation at a resonant frequency is alsc dealt with by this
general method. This leads to a simple formula for the re-
sonant modal amplitude. Calculations of the induced re-
sponse in rotating spheroids have been made for a few fun-
damental modes,

As a final application of the general theory, the
0(1) inviscid solution is found for a precessing, fluid-
filled rotating spheroid. It is shown that this is the
only such sclution possible within the framework of the
above theory.

Since the general theory is not entirely applicable
to containars with vertical sidewalls, a separate boundary
layer analysis is made on the nonaxisymmetric geostrophic
modes in a cylinder. Mass efflux from the sidewall boundary
layers 1s found to be an order of magnitude larger than
that predicted by the Ekman layer theory. (This result is

in agreement with that determined by Jacobs (1964) in a re-

lated problem. )

Thesis Supervisor: Harvey P. Greenspan

Title: Professor of Mathematics
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INTRODUCTION

In this report we shall be concerned with fluid mo-
tions which are in some sense nearly rigid rotations.
Primarily we are interested in the manner in which rigid
fluid rotation is established from a prescribed initial
state of motion within a unifcrmly rotating container,

The initial motion is subject to two constraints. First,
we require that it te a physically acceptable motion,
That is, it must satisfy the requirements of mass conver-
sation and zero normal velocity at the boundary. Second,
we require that it differ only slightly from the ultimate
state of rigid rotation. When this latter stipulation is
met, it is then meaningful to speak of nearly rigid rofa-
tions: The deviations of the transient motions from the
steady state are small enough that they may be adequately
described by a linear theory.

Two basic properties of rotating fluids are especially
relevant to the present problem. The Taylor-Proudman thec-
rem asserts that in slow steady motion of a uniformly ro-
tating incompressible inviscid fluid (angular velocity'§§ s
say) the fluid velocity % does not vary in the direction

-

of . That is, (5-‘7)7&: 0 . (Such motions are called

"geostrophic.” More broadly, the adjective is applied to
almost-steady motions, in which the time scale of the ob-

served motions is long compared to the basic rotation



2=

period of the fluid.) The Taylor-Proudman theorem implies
that within a closed container, a column of fluid of height
h, measured along fZ » must move about the interior as a
unit, preserving its length. From this crucizl constraint
stems the general theory of contained geostrophic motions
developed by Greenspan (1965). PFurther aspects of these
motions will be discussed below.

The structure and role of rotating viscous boundary
layers 1s also known tc differ markedly from that in non-
rotating configurations. In the absence of rotation, lami-
nar boundary layers affect the interior, inviscid portions
of the fluid solely through viscous diffusion. When the
boundaries are rotating, however, additional effects are
present, The soluticn of the rotating viscous flow equa-
tions, the Ekman boundary layer, forms an integral part of
the present thesis. We shall derive this solution for con-
tainers of arbitrary shape, and thereby show that (1) the
Ekman layer is established very quickly, within one or two
rotation periods; (2) its structure is nearly uniform over
the entire solid surface, the exceptions being those points
at which twice the local normal component of rotation
equals a free inviscid oscillation frequency; and (3) second-
ary interior motion is directly induced by a small net mass
flux from the Ekman layer.

These two fundamental characteristics of rotating

fluids--the Taylor-Proudman theorem and the Exman boundary
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layer--underlie all cf the analysis presented in this
thesis. The interior motion induced by the Ekman layers

is instrumental in bringing about the steady state, the
transient decay time being of the order (;3,AV(EY“ :

(L is a typical dimension of the container, and » is the
kinematic viscosity of the fluid.) This was first clearly
demonstrated by Greenspan and Howard (1963}, who analyzed
the role of the Ekman layer in the mechanics of transition
from one state of rigid rotation to a slightly different,
faster spinning state. They showed that the interior fluid
attains the new angular velocity and voriicity not primarily
by viscous diffusion from the bcundaries, but by =he trans-
portc of angular momentum in a clecsed circulation. Suction
intc the Ekman layer stretches the vortex lines cf the in-
terior fluid, thereby increasing vorticity. To replace
fluid entering the Ekman layer (mass conservation) a slow
inward radial f.ow occurs in the interior. This inward mo-
tion in turn increases the angular velocity of the interior
fludid, in accordance with the principle of conservation of
angular momentum. The circulation is closed via the Ekman
layers: Fluid entering ©che layers is thrown radially out-
wards from the rotation axis by centrifugal action, acquires
increased angular mementum, and is injected back into the
fluid in the vicinity of the side boundary region where the

top and bottom Ekman layers meet.
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Greenspan and Howard chcse a rather simple configura-
tion (two parallel infinite disks) to illustrate this spin-
up principle, but further analysis by Greenspan (1965) has
shown that similar results hold for closed containers in
general. This was proved by a modal synthesis. A general
linear theory was developed to determine the manner in
which any prescribed initial state of motion is distributed
among all the natural (free) modes of oscillation within an
arbitrary container. The basis of this linear theory is a
separation of the flow into geostrophic motion and inertial
oscillations. (Geostrophic motion corresponds to the to-
tality of eigfenfunctions with zero eigenfrequencies, and
therefore changes relatively slowly in time. Inertial oscil-
lations comprise all other eigenfunctions; their frequencies
g are restricted to the range |o| £ 2Q.) When these modes
are corrected for the eftects of viscosity, the result is
that they all essentially decay in the same "spin-up" time,
(LE/+8 yh . An explicit formulation of the decay time fer
each mode in an arbitrary container is derived in the
present thesis.

In summary, there are three time scales which charac-
terize the transient processes: (1) The formation of the
Ekman layers, T, ~ O(') ; (2) the viscous decay of the
initial state of motion, T, ~ O(L*/+£2)"™ ; and (3) the
dissipation of small residual oscillations resulting from

viscous diffusion,'ﬁ ~ C)(L?/vﬂ . Therefore, the important
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phenomena in the transition from initial to final state
occur in the time 11 s l.e., beforé the boundary layers
have been appreciably thickened by diffusion.

In addition to this multiple time-scale structure,
spatial nonuniformities also occur at certain critical posi-
tions in the boundary layers, as has already been mentioned.
Bondi and Lyttleton (1953) and Stewartson and Roberts (1963)
have both suggested that free shear layers originate at
these critical boundary positions and penetrate the interior
fluid regions. These effects, however, are of a lower order
than those which we shall consider. This was essentially
demonstrated by Rcberts an&ustewartson (1963) and again by
Stewartson and Roberts (1963). Experiments to date sup-
port these conclusions: no boundary-layer erupticns from
the critical positicns have been observed. Nevertheless,
the very existence of these boundary-layer-nonuniformities
makes a comprehensive asymptotic analysis quite difficult,;
and for this reason only first-order corrections to the
inviscid modal soclutions are considered.

One further difficulty exists. When the modal analysis
is applied to containers with vertical sidewalls, a separate
study of the geostrophic mode is necessary. (No such dis-
parity is found for the inertial oscillations.) On the
geostrophic time-scale, the vertical side-wall boundary
layer structure is significantly dirferent from that of

the Ekman layers. There is an outer boundary layer region
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of thickness (1df/f2y& , and an inner one of thickness

( vl /Q)” , each being terminated at the top and bottom

by an Ekman layer. The effect of this multiple structure
on axisymmetric geostrophic flow in a cylinder was in-
vestigated by Greenspan and Howard, and an extension of
this work to include nonaxisymmetric motions is made in
this thesis. Additional studies have been made by Stewart-
son (1957 ) and Jacobs (196%). These ana’vses all show

that the sharp velocity gradients can only be supported
through the interaction of the two layers with each other
and with the main body of the fluid. This is true whether
the gradients occur in the néighborhood of sélid boundaries
or across free shear layers in the fluid.

As the above discussioir shows, boundary layer nethods
are applied to determine the essential features of the
flow in the general case of arbitrary containers. For
any particular body, however, more detailed aspects of
the flow depend upon a knowledge of the inertial oscilla-
tions (eigenfunctions). These are determined by solving

9, 1] . . / 3 3
thenon-=self-adjoint Poincare problem for the dimensionless

pressure p = d}e'“ ,

o - (k9] = 0

with  nU& - (2/i\)nkeVE - (4/;@)(%-@)&9@ = () on the bound-

ary. This problem has interesting properties aside from
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its physical relevance: The eigenvalue A, a real number,
appears both in the equation and boundary condition. It
is also clear that the equation is hyperbolic, parabolic,
or elliptic according as )f is less than, equal to, or
greater than 4, whereas the boundary condition is a rela-

tion between ® and its normal and tengential derivatives
2

Llemd T\
Lila L

on a closed boundary. It can be shown, however,
must be restricted to the range A <L > so that the
equation must be hyperbolic. This in turn means that ro-
tation endows an incompressiblie fluid with the ability to
support traveling waves, a remarkable property. (It is

an open gquestion whether Poincaré!s problem is the correct
linear representation for the Tlow when A= 4 (Morgan,
1956) and further analysis is needed in this area,) Ex-
plicit separable solutions for the cylinder and ellipsoid
may be found, giving the spatial structure of the inertial
oscillations, but no solutions are known for other confi-

gurations. Some properties of the eigenfunctions for

spheroids and cylinders are presented in this thesis.
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CHAPTER 1
FORMULATION; EFFECTS OF VISCOSITY

Let a fluid-filled closed container of arbitrary shape
rotate with uniform angular velocity'fi about the fixed
vertical axis. We choose a reference frame rotating with
the container (5 = Q ﬁ) and measure all quantities with
respect to this frame. The equations of motion then are

> - - S - -
:_2. + a,v% + 2Qx% +QX(QKI') = - (‘;Vp + qu , V"I{_ =0

with % = 0 af solid boundares,

-

a(!‘:ﬂ = E{:(F) ot t=0.

The initial velocity distribution ,ngf) is assumed to
differ only slightly from rigid rotation f%x - . Jn addi-
tion, ZL must satisfy the physical requirements cof mass
conservation and zero normal velocity at the boundary.

1r L, eQlL and (Y’ characterize the leagth, ini-
tial velocity, and time, respectively, then the eguations

of motion, under the transformations

;{__, eQLF 2_ L |7 +—s ()t

become
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L 94+ okeg +Tp= RAG, V-0

2 -
where R=QLU- "> 1 and 2 is the actual pressure less the
A 2L 2 A 2 .

centrifugal piessure -7‘:99 L (er) . Henceforth, all
variables are dimensionless. Moreover, we shall consider
only the linear problem; nonlinear effects are assumed to
be relatively unimportant compared to viscous effects, and
accordingly we put €=0 . Then

aa '_4‘ = ~ - IS
_.-%+<kxq’-+Vp.~RAQ, V.,q_z(}

with q = 0 af solid boundarres,

qF 8 = 7,(F) of t=0.

1

Since the linearized equations of motion (both invis-
cid and viscous) admit the separabtle solution E: = Q(?)eirt ,
substitution of this expression leads to a condition on (¢ ,
as we shall see. For such a mod&l solution,

>

icr'a + ZLKQ = -Vé + R"A5

V.G =0
with a = 0 on the boundary S. J!

(1)

-
Multiplying by Q¥ (the complex conjugate) and integrat-

> =\
ing over the velume, we readily find, since T = Vo(’éQ“/,
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ia-j]fé’."d*gv + zﬁ-ﬂfaxa“d\/ = R-'J,- ST\ (1.2)
Now, from the vector identities

- —= -
div{dsb) = bocurld - Ticurlb

Ad = 3r'a.d (diva) - curl (c.u.rlZ)

it follows that
_\,“ - . I3 -)* -\ - —3*
QAQ = d‘\r(Q xcu.rlQ)— cal @ el QF

Further,

Ox0* = i Im(Bx0%) .

Therefore, we have from (1.2) that

- ViLT AV mRemm -~ S

For the inviscid problem (R =o¢ ) it is clear from
(L.3) that o 1is real. For R large but finite, o is of
course complex; its imaginary part is a measure of the
rate of decay of velocity due to viscous effects. DNow it
is known that direct viscous action is coafined to a thin-
boundary layer at the container wall of thickness O(R-‘h)
when R >> 1. Until diffusion has had sufficient time to
thicken this boundarsy region, the flow can therefore be
studied by the methods of boundary layer analysis. These
methods will now be used to determine the complex correction

factor to each inviscid eigenfrequency.
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CHAFTER 2

(1

THE BOUNDARY LAYER SOLUTION AND
\ I3C0US CORRECTION FACTOR S,

Following Greenspan (1965), a solution tec the linear
problem is sought in the form of a superposition of all
the natural modes of “he inviscid problem (R =00 ), each
of which is corrected for the effects of viscosity. In
order to include all the impcrtant phenomena in the
analysis, the solution of the fundamental boundary value
problem must be uniformly valid in space and time at least

i
through times of the order R'™ , the dimensionless spin-up

time,
The typical inertial mode is represented as
(Bt @) (B W)
o = (éme%f+1{“qm+m)+_(§“+.§%am+“q L (2.1)
with Sp = 1A * Q—'/zé,f,') +... )

Here (@m,Xm) or equivalently (5;,Xm} represents the
mth natural mode, and the tilde symbol denotes a boundary

layer function of the (stretched) boundary layer coordinate
(1)
ol

I (see below for details). The parameter S is the

viscous correction factor to the value iAm determined by

inviscid theory. .  is chosen so that secular terms
possessing unacceptable growth rates are eliminated from

the solution.



-12-

Substitution of these expressions into the basic equa-
tions and boundary conditions (1.1) leads to a sequence of
problems for the inviscid and boundary layer flows and
their mutual interactions.

To obtain the interior equations we substitute (2.-)
into (1.1) and take the limit R-—>00 with the interior
variable ~ fixed. By equating like powers of Rﬂﬁ s wWe
arrive at an asymptotically valid problem sequence. De-
ncting the limit procedure by Limg)

Lim, = [imit
R — o0

-
 F/XED

we require

Lim, { G+ R G o } -0,

with a similar equation for the pressure.

Then, from the basic relation for the interior equations,

A o - t -2 -y
Liﬁ’,{ (g-t +2kt =R A)( Qh\esm +Rl€m|+“‘) + V(@mes,"t‘l- R/chm‘-b,,,)} = O,

\

it follows that the O(i1) balance is

"

D Qe + 2k%Gu + VB, = O

(2.2)
Ve 65111 =0.

/2

The correspeonding O(R" ) equations are found by

eliminating the 0(1) balance from (1.1), dividing the re-

maining terms by R-%' , and applying the limit procedure



Lim, . The result is
bqsm' + 2,‘: Y + v¢ - - 5(1/' 5 eSmt
E—'F * Qo mi m Y (2_3)
-
V" [[nn = D

L

We postpcne consideration of the boundary conditions
(no fluid motions relative to the boundaries) until the

remaining equations have been established.

In the boundary iayer, (= R*A-(7 -, and
PRV R'/I:t n is the unit outward normal at the surface
P =r . We substitute (2.1) and take the limit R — o0

with ¢ fixed. This means that the interior functions
{those lacking the tilde) are evaluated at the boundary,
but these can be eliminated by using the interior equations

written above. With

3

: = [imit ! - é_ - O R“'/t
{ Fixeo
we have
. 2 S Y = T L S Sl ) -
lez{(.{t-"ZI(x—b—Ez)q'm R ﬂbz(cpm.‘-etom +"'} =0 |

Ll'mz{ ( ax(AxY) - Rha A).(é’m + R;'ll;l‘;m + ... ) } = 0.

L , |
It follows that the terms of O(R'* ) contribute the primary

balance,



fge = O (2.4)

whereas those of 0(l) constitute the general formulation

of the Ekman layer problem:

(ht b;‘)‘ﬁm + 2kxgn — A <0,
(2.5)

From the above equations (2.2) - (2.5) we arrive at
the following problem sequence., For the O(l) boundary

layer and interior functicus,

A d
<)Y
fu
i}
(&

() & =0,

T~
Iy

- - b
(l.l.) imem + 2kxQn * (\7§m

The requirement that the boundary layer functions be

transcendentally small just outside the boundary layer

means that

A (= Smt 3
The vanishing of the normal component ﬂ~(Qme"‘+u§;) at

the surface S leads to the expected inviscid boundary con-

dition given in (ii). Hence, (ii) is identically satisfied



-15-

by definition of the natural modes. Later we shall ke
concerned with solving (ii) for the eigenfunctions. This

will entail solving for the pressure $, and then deter-

-y
mining Q,, as a vector function of V&, . This vector

A -

function is easily found by eliminating kx@Q, fromn the

momentum equations:

O
/\
(LS Y
o~
Q
S——

> ‘iAm ZA l"(‘ \\A}
= . - == kxVSB, — —(kVUE.lk
The divergence of thic expression yields the fundamental

elgenvalue equation

Vlém _ %(‘L.V)zém - 0’ (2.6 b)

whereas the condition f5~§L = () on S is equivalent to
D 0B, - 2 FknTE, - A6 kEVE) = 0 o S (26c)
iAm A

Equations (2.6&, b, ¢) constitute the basic eigenvalue
problem for the interior motion. We shall return to these
later when we derive the eigenfunctions for spheroids and
cylinders. It will also be shown that these equations re-
quire A, real and A, < 4 for containers of arbitrary
shape.

The next order boundary layer equations in the asymp-

totic problem sequence are (cf. (2.5))
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i 2 b:‘ Py 2 L x > - " 0 mi
(ul) (&- 3 z)qm + 2k ,?'_ n B_(p,’:— = 0,
Z-C'%‘E[m = — fAx (F“V)'Qm = n.Ux (;"'({m)
with 'E[:Im + 3.4, S 0 ot S (the no-slip condi‘l‘a’on)
al'\d %ﬂ' = O az‘ f - O .

The corresponding interior equations are

- . A~ St
(iv) %Qm + 2kxp + Y@y, = ~ S, Qe ,

with N (G + 55_,,,,) =0 on S.
and ,’ém =0 ot t= 0.

Tire boundary condition here indicates that a divergent or
convergent boundary layer motion will in general induce a
secondary laterior flow. That is, the inviscid normal
velocity %JE;" at the boundary must match the normal
outflow from the boundary layer.

Both problems (iii) and (iv) can be solved using the
Laplace transform. On the basis of classical perturbation
procedure, it may be expected that the forcing term in
problem (iv) would give rise to secular terms possessing
unacceptable growth rates in time. The parameter sg)
will have to be chosen to eliminate these secular terms

sOo that the ccndition of uniform validity is met. How-

ever, the resolution of this difficulty is best deferred
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until we can establish the actual form of the 0(1l) boundary
correction &g, via problem (iii).
Let the Laplace transforms of the relevant boundary

layer functions be defined as

00 ‘ - 0 . 00“

5 st 3 5 -5ty 5 = (%0 4t

Y e qmdt, -U; = e ,?mdt, (ﬂ —/e %'dt.
[ (-] (-3

It follows directly from (iii) that

\ 2
f (2.7)

2 - A a 5
= NV, = —'Y\t(’h&V)“U’
al
with v o= ~ G om S
S~ S J

From the first of these we find, since =-¥ =0, that

S.2kxy = AL
(14
Hence
(a‘zz-s)m:} = - (2k-R)¥ \
2
2 .1 A pa- ~ » oy PN 2-8
(?37;‘ —s)«r = 2kxv —(m-lkx«r)n ? (2.6)

1

2k ) Mmx v
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If & x v is eliminated between the two equations in

(2.8), then

'_01 \2'_'; ( -\‘):
> - s lw = ={(2knjv .
(‘bﬁ" )

For the solution, let

a—~L
-~

!\s—-sm)‘? = -\/ = z—;' exp(ﬂ/—';':'() + 5: exp(—\f‘Y_T(j) )

m

~

(2.9)

« i(2k.a)

ol
"
wn

Then a, and a, are determined from the requirements
! 2
; -
(s-—s,..)ﬂ' = = Qn at =0
a‘l ‘:5 A A A ‘:» Py
( 2t - 5)1/' = (\Zk-n)nx‘\r for all ()

and therefore \

- o A =
a, = - (Qm- hx m)

™~ .

L=0 (2.10)

-
~

a, = ~ é(Qm+i”xam)<=°

Inversion of (2.9) is now readily accomplished with the

aid'of tables, and the result is

Gn = sEEQER) + tGT (G ) (2.11)
where 10, = Am t 2%-n

and
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’ét'/z\

} +

o (tp) = esmt[l exp{ (" } erbe {5, + (i)
+ eXP{ ‘(ip)'/‘[} erfc { %"*—(ip)%t%}l )

eV = 'g.r& (1 + 5?;) :

When the container has vertical side-walls, the above
analysis is stiil valid (the boundary layer thickness at

" ) in the 0(1) time scale) but the

the sides being O(R™
results are somewhat simplified since now %-2-=C). This
means that p, = . = A, and the solution (2.11) may be

written

G = --;—5.,,} E (Lt ,) (z.11)
Z=0
This completes the solution for the O(1) boundary
layer corrections as defined by (2.1), for we have already
seen that &L = 0.
We now return to the difficulties inherent in the solu-
tion of problem (iv). Once again we utilize the Laplace

transform and define
oo

3= fetidt, g [ at

Then we have directly from (iv) that



S+ 2ked v = —s0 Ga \
S~Sm ,
R | (2.12)
Vv, =0
with wv = — (he%) on [ =0.

A single equation for ¢, 1is obtained by solving the
first of equations (2.12) for ¥ and taking the diver-
gence. Moreover, the value of -(»%-:u';) ons ({=0) is
found by integrating the second of equations (2.7) and
using (2.9).

In this way it is first established that

py = -3 - .é—lx q. Ao 1 +
.U; q_+sz (v(?l S k V('pl + -g;(kvcpl)k)
o Sm (3 - 20G + LT
S"'Sm m ) m Sz m

When use is made of the relations (2.6a, b, c), the function

e, is seen to satisry

2 4~ ~bsY (s+idg),~ _
Vg, + Skvlg = = 5=(s-sm3 V) &,
2.13
with ?Q )
nVe, - %% kx7g, + é;('?\-i)&.vq =
. @ 5 3 .
= _‘*_if_ fax(mv)-vmdt - S"‘——(% V§m+ﬁ.ﬁ&w§m
S(S-Sm\ 5 S(S‘Sm) t /\mS
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~
=3

on S, where \/, is defined in (2.9), (2.10).

Again, (@a,,xm) is the mth eigenvalue-eigenfunction
pair for the inviscid problem. Indeed, we note that since
the completely homogeneous problem corresponding to (2.13)
possesses nontrivial solutions whenever s-= iA, for any
m, then the general solution must have singularities at
these values of s. Further, the inhomogeneous terms all
have a simple pole at S= S, ; hence, the solution must
also have tnis singularity. In particular this means the
general solution must have two simple poles a distance
O(R‘Vz ) apart in the complex plane, and upon inversion

VAN

we would obtain a solution which is O(R'* ). That is,

the function ¢, would behave like

Guy  ~ RPexp(R7s02)

so that
R—'/z (-Pnn ~ O ( 1 ) )

thereby violating our requirement that the expansions (2.1)

be uniformly valid.

We therefore choose S,  so that the terms arising
from the twc closely situated poles are eliminated. That
is, we require that ¢, have only a simple pole in the
neighborhood of i\, , the lccation being 5= S, . Ac-

cordingly, we assume that



where ¥ is some function regular in a neighborhood of s, ,

including iA, . Upon multiplying (2.13) by (s-s) and
taking the double limit s—s,, R—e in that order,
we find that ¥/,  satisfies
= - \1 y (!) -\ 2
v - = &viY = 8 f"' (k.9 &, 1
with
- 2 .1 L NTSAY _
w9 - e M kxVY, ';i(ﬂ"‘)kv‘k =
80
l-'”-;- p 1 ~ -y S(‘\ " [+ A A
= 4w i /m(;\m-\/m & — Em (598, + =0l NS,

on the boundary S.
Now since @m is in fact a solution of the completely
homogeneous form of (2.14), the inhomogeneous problem has

a solution only when s,(,:‘ assumes & value consistent with

the homogeneous equaticns., This value is determined by

multiplying (2.1%4) by &) and integrating over the

volume, using the divergence theorem and the boundary

conditions satisfied by c}: and NP' . By this method

we first obtain as an intermediate result

%]

EE AR }as =
3 M

709, - -i- hokxTY, —

1\m

]/é,’:(;\-al 178, &S —
S

I !L.v*m\zd\/) .

8isl
A

(2.14)
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If we now substitute the boundary condition for ‘R from
(2.14), the result is

(‘]M((Vé |+ 5 l"V‘f’ \)JV fﬂ[[ illimf; ) hx('nxV) V dl)ds (2.15)

s

This is the desired formula for 5:’, but we shall derive
a more useable form from which it shall be clear that
Re (s2) < ( . The derivation of the alternate formula

involves somewhat tedious algebra, and the details are

given in Appendix A. There it is shown that

Sﬁ\.f[[( N;,m[2+_;;m[t«V§mlz>AV = -:(_ltZ:_)fT_\ j{sjds ,

(2.16)
where ( LA = "= 2 Y. ‘/; /
J = :—G«.L)‘{l“'l“ m = tkQ| (HT%)“D*,
oo B8 (e ) | )
P = Ap xRk J

We see at once that when A;< 4 and )m is real, then
Re (55 < 0, and | Im(sg) | ¢ [ Re(s$H .
Greenspan (1965) has in fact demonstrated that the eigen-
values Ay are real and M, ¢ 4 . This was established
in the following manner:

All inviscid inertial oscillations are solutions of

. tV& =0, V-¢,=0 (2.17)

/

o)

-
'.xm Qm
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- -
with %.Qu=0 on S. Multiplying by Q,  and integrat-

ing over the volume of the container,

o [ GOV + 2 [qeknGaV = - [TV, 4V.
v v "

Jon 92,4l = [9-z,35) 0V - [3.(7-Q4V = O,
v v Y}

and therefore

L (3% -ixQ, Q¥ _ =2 Im( -G xQF 4V)
J1& 1%V JAY-AEYY

This shows that M\, is real., The bound [A,! & 2

Ead

determined by writing Q,=.A +iB

is

, and recognizing that
-y

l-m(ﬁ-Qm"a;) =2BxA . Then

] < bR ABlY b [rarIBlY
. JOAR+131) Y ((RF+1BF)

But 412(@»‘ < ZQK\2+l§|Z), and this gives the desired
result

N | € 2. (2.18)

This means that all the modes decay in the dimension-

less time O(R'/" ) with the possible exception of those

modes for which }\:, = U . For in this latter case, (2.16)

O] .
is also valid and we have S, = O We shall show in

Chapter 3, however, that the values A, = %2 are not
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proper eigenvalues for any finite, closed container. This

permits us tc replace (2.18) by the strict inequality

| Y | € 2. (2.19)

Equation (2.16) can be derived in a more direct way
without using the arguments based on coalescence of poles
and nonuniform behavior. This alternate method assumes
that all functions, including those in the boundary layers,
have the complete exponential time dependence exp(s,t).
However, a serious mathematical difficulty arises due to
nonintegrable singularities at the surface positions
20k = + A4 » and one cannot justify the necessary
interchanges of integration involving nand [ at these
points., A somewhat less restrictive but equally unsatis-
factory aspect of the classical method is that the actual
time-dependent behavior of the boundary layer solution is
not just a simple exponential function, as equation (2.11)
shows, These difficulties are avoided in the Laplace trans-
form analysis. By judicious application of the double
limit, %Egi}-s%igit, all integrals occurring in the de-
rivation remain finite. In order to point out just where

the classical method breaks down, we now solve problems

(iii) and (iv) again.

1t

smt st

For problem (iii), we put qm = Q€ , 4;,", = %,,"e

It is then readily established that
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3. - _%(8m-iaxb'm) exp{-m Z} - ZL(S,,,+ iafémle,xp{q/';—(xm-zﬁ.&) Z}. (2.20)

From the mass conservation requirement,

-:—c’?h'gm\ = %'vx(;’xa\m))

it follows that

(8- Qu) =~ R

>
j >
3
S’
(-39
i~

(2.21)

To solwve problem (iv), we again assume the separable

forms ‘:Zm = 5};1 es"‘t, = @mes"‘t. The governing equations
then are
- A = _)_a
iAm Qe + 2k Quy + VR, = -5Q,
(2.22)
q
V'Qrm = 0 ‘
- N -~ )
with 5. Qu = -1 Gu on D, J

-
However, Qm is the solution to the completely homogeneous

form of (2.22). A nontrivial solution 6"" therefore ex-

ists only if S,f") assumes a value consistent with the

homogeneous equations. This value is found by multiplying

(2.22) by 5,: , integrating over the volume, and using the
-

—
equations satisfied by Gn, s and Q,: . In this way we

arrive at the result



(Z“V*(ﬁ*_@'.,)dl)dS : (2.23)

Il
|
-
gﬁ
*

Sé"jvké’m\z v

Because 5; is given by (2.20), the integrand in
(2.23) is nonintegrable whenever Zﬁfﬂ=.trkm) behaving
like (2nk * Xmiiyé . If we proceed Tormally and inter-
change the integrations over { and f; we will recover
formula (2.16). But there is no real justification for

interchanging these integrations, and that is why the

Laplace transform method is preferred.
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CHAPTER 3

THE VALUES An = * 2
ARE NOT PROPER EIGENVALUES

We prove this by establishing the identity
N > - Iy 2 I'_ A a
) ffETe v = ff (s 98 ko \eozl) v ()

which holds for all A, A,  different from zero. On put-

IR}

. . T ¥
ting A; = A\, so that ¥ = 4?3. , we have

-3) 1G4V = [ (198, + & [z, [") dV

ol

Therefore when X; =4 and when the container has finite
volume, the right-hand side must vanish. This in turn re-

quires that

@m = constant | when )\:‘= 4 (3.2)

To establish (3.1), we use the inviscid equations and

boundary conditions,

1
o
A

"
(]
‘

- A
2)\JQJ. + Zk»Qj +V<§J-

|
<&
4
o'
; »
n
O

"i\ma}; « 2kx QF +98, =

A R L
w-Q = n-Qy = O, on S .
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It then follows that
V&, B = NG+ 2kx @ J{ 000+ 2iex Q2 |

= WA Qo0+ LllnG)(RxQ)) + {iAij-zu@;— iA,,Q:-kaQJ.}

But we may further deduce that

End -3* - -—
,.

(0, 2cly - Q0 2k Q) + 208G = MJ[98, - 4 VE,
\

J m

Combining these results, we find

_ 'h vz 0.0% + JiA QU - iN0.-UB
8, V&) + }\_J_;‘-(k.v@j)(kw’;) = o )G 8, + {inGL98 - G vgj},

from which (3.1) follows directly upon integration.

Now, equation (3.2) alone doesn't necessarily mean
that éi“ = (0 . It may be that Coriolis force and local
time acceleration are in balance, as shown by the equation

A G = —2kxC o= 2 (3.3)
m Xm s " .

m 3

However, using this relation between the components

—

of Q,u s we shall establish that

~ -)
(1} on the boundary, {1 —-Q%tky}ch‘z; 0 ;
(ii) in polar coordinates the radial component is

4 Zﬂ"uJ . . .
U, = ;-F(fe 5 5),where F is an arbitrary function;
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&y

2

(1ii) ‘ZTF'= 0, where YV,

The direct coasequence of (i)-(iii) is that F, and hence

i
r +Fz "

21
o/

-
2|
2]

—y
Q.. » vanishes identically.

(1) The boundary condition.
Since iy Qu = ~2kx Gy and e G,=0 on S
then nxQ, = %.}ak)é"' =(?\-l<}kx W an S.

If we multiply this relation by nx , the result is

F\x(ﬁxa.ﬁ —(?»L)«:\x (& *6"‘) = O or equivalently,
pos i * 2
Qui 1~k =0 on S.

(i1) The formal solution.

Equation (3.3) shows that
O = (Y Ve W) = (Un, 2" U, 0).

Mass conservation then requires

> A 3 ( _
r‘&.—("u"“) to3 a'm‘ru"‘) = 0.

This has the general solution
Am

1w
rLLN = F_(re ¢ ) i),
Note that the arbitrary function F must vanish at r = O,

2 p— 2 ~~
(ii1) LA W s
\Liiy v“ Fos Fooar  or raw? 0.

This follows directly from the relations



; hen F N — 11 idmay )
oF i L2 o " le'7° K
r_—{)—;_ = re z 'F) C A0 o ¢ F. + r'e r }
. ‘Amu / 2 K A . x
LoF ‘l“"e“‘_ E - T N S S I m“’[:"
VI o Raae T w ) F trs ‘

where prime denotes differentiation with respect to the
Z*_m 2
argument re * “’, and Ao = 4.
By the two-dimensional Green's theorem, the equation

2
VuF = 0 implies that

JRUGE A = e+ [\V“Fi’aA = (.

Since F* = O on the boundary, then Y K =0. F is there-
fore constant with respect to r and w, and this must hold
for any value of z. Hence, F= 0, and X, = *2 are not
proper eigenvalues of the system.

The assumption on which this proof rests is that the
container encloses a finite volume. Normal modes of fre-
quency A=+2 do in fact exist, for example, when the
fiuid is bounded by two infinite horizontal disks rotat-
ing about a common vertical axis (Greenspan and Howard,
1963). In this case, not only is the enclosed volume in-
finite, but also there are no other permissible values of

A different from zero.
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CHAPTIER 4

EIGENFUNCTIONS AND VISCOUS
CORRECTION FACTORS FOR SPHEROIDS

For spheroidal geometries it is natural to use the

orthogonal coordinate system £, &, given by

x N z
Fe (o) (-8 £ o= g, (h.t)

(see for example Stewartson and Roberts, 1963). A'very
useful modification of this transformation, one which, in-
cidentally, renders the resulting C,p coordinate system

nonorthogonal, is due to Greenspan:

r-r

2\/2 a2
« (1-07) (1-H) ) (l*z)
(xp)lp .

t

Under this transformation, the basic eigenfunction

equation (cf. (2.6)),

PSR X £.3)
V‘em x-m b%z ) ( "

n
(&

yields the separable solutions

k k. ik
G, = Pm(C\,Pm H)G ¢

(4. &)

provided we take
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i
(5"—__4__1: - 1, say.

) £

k)
L]
If we write the equation of the surface as

r* o+ '%r = 1,

then by (4.2) the surface is given in the g, p

C —( .bl )l/l _ ( 2:‘ \)l/;_
<" 1+ e(1=82)

where
of = 1+e(-§) ) ¢ 1-—11,
(1+€)(1-E:) b

(4.'3::.)

system as

(4st)

(4.

5

To put the eigenfunctions (4.4) in a more useable form,

Toomre has suggested writing the associated Legendre

k.o,
functions f;(n as

?,,:(x) = [C,,,L (1-)(‘)"/z F(x‘)]'{ 1,X }

according as m-k is even or odd. Here F(x’) is a pocly-

. - . . . 2
nomial in xz with real and distinct zeroes X

J=1,...,N. Accordingly, we can write

c)



\

k 2 !"/z N L2 _ (Zm)!

Pm(x)zcmkx (“"X) W\X_XJB) ka~?m Y|
j=t L om: (M-kJ: , .
(4.6)
where
. 0o if m-k even
N = (m-k)-v  and 1):{{l £ w-k odd J

Using (4.6) and (4.4) together with (4.5a, c) the follow-

ing result is then readily established (for details, see

Appendix B):

- PP ek . ¢ f zkw(-i_ﬂ:}kﬁ‘ D +Ar +B 2 \
Qm = m(C/ﬁ,(P)C = L € apl \& jz({". ; ) }

where
D, = X (K-1) Y (4.7)
1+ € L 2
Al = < E(t_s;) '(J (’ Em)
1+€ 2
R. = '%:\(‘-XJ)
4 1+e(1-%2) J

and x; are the N = (m-k)-v real and distinct zeroes of
k . .
P, (x) exclusive of zero and one. & (3, and §,

are defined in (4.5).

The eigenvalues XM= ZEM are determined from the

boundary condition

799, ~ 2400V, - L Rkke, =0, (k.8)
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which reduces to

k eviVh Lk %
(-0 o (RN et xaom ()
dx 1+ ¢ { i+ z(1-§,‘“\}/"

An alternate form of the eigenvalue relation (4.9), showing
rrore clearly the nature of this relation, is derivable us-
ing (4.7). We find that §, 2 A\,/2 is determined by the

polynomial eguation

N
2x" k &, ith 2 < S . (&.10)
v +,Z._-, X=X T (e e)(1- ) w = (-8

This shows that in general there will be several eigenvalues
corresponding to given indices (m,k). Therefore, a more

complete notation is

G = A (L) P:(p)e‘k” <13m“e"1““ AR ACTIR N I (1)
the eigenvalues belng ka1.

Using the above results it is now possible to reduce
equation (2.16)--which determines the viscous correction
factors ;:’ for each modal solution--to a form suitable
for calculation.

Replacing the notation

. “2
Pm:wme > SM: 1)‘”‘+R Sm

by that used in (4.11),
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ke Smuf -\ o
pm = émkl A e , Sm“ = TApr R mel
we find after some algebraic manipulations that
A y L (4.12)
sm(d = k! J'
where . ey
2 4 2
J = Jr’dr’ [ dx - ‘V@ l a@mkl (4“13)
J ekl )\l 32
r:0  3z.pf1-rt mk{
and , with = (1 +e)?

2
b@mkl + ZY (‘_‘_azaé,*]'
o

.§,+ /.
A l (14-1—- ) z

—+
1 ¥
-+ "55 LIS 2¥" (1-«-&‘)10@"'“1 ‘}2 ,1“‘-{—:—5'-:-. \'i?-i'&]i (4 lli)
ar i) 2T | ( ] 'I) ‘ }-\- ? )
In (4.14)
"P+ = Amki . {(‘*‘E)p‘ tfy
2 4 ep ’
d
o - = >\m|-(|

1+ gt

_ { (‘+£)#2 }'/1
2
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In the special case of a sphere ( £ = 0), the above 1e-
sults are of course greatly simplified. Instead of (4.7),
the eigenfunctions for the sphere are

N

dn = Cooe® e () TT{mw + fiaiirt s 8, 0-91F) Gy

[« 93 H
i

where

1

0‘1 =
] - EA
1 - Emu

Of practical importance, the eigenvalues A =2 , are
P : mktl mki

the roots of the equation (cf. (4.9))

k
(1-x?) ‘L::(Q = Idf:(x), at X =§,.. - (4.9)I

The viscous correction factor .5;3 is similarly modified.
The accompanying tables and graphs show the results
of calculations of S;z for several spheroidal ellipti-
cities €& , illustrating how oblateness affects the decay
rate of some of the natural modes. To perform the calcula-
tions, the eigenvalues -Xmu must first be determined from
(4.9) or (4.9)!; clearly, the larger the value (m-k) is;
the greater is the degree of this polynomial, and the com-
puted roots will be correspondingly less accurate.
From the few fundamental modes for which data was cal-
culated we see at once the marked efrfect of varying the

v,
radius-to-height ratio 1/o = (1'+¢ )* . The eigen-
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frequencies A range over the whole interval -2 < A\ < 2
for nearly spherical shapes, but as 1/b is increased beyond
unity (the configuration becoming more like concentric
disks) the eigenvalues asymptotically approach the values
+2, Similarly, for 1/b — 0, the eigenvalues rapidly de-
crease to zero. Only in the approximate range ﬁ'< 7% < 4
is there any appreciable tendency for the eigenfrequency to
depend on the spatial structure of the modes.

There is a similar phenomenon in the decay character-
istics of these modes. A noticeable change in the decay
rates (Re(s,l/ )) takes place as one passes from prolate}to
oblate spheroidal shapes. The rates rapidly approach dif-
ferent asympto.ic values in the two cases.

The coalescence of the eigenvalues and decay rates
means that for forced oscillations of the container at a
given frequency, more modes will be in resonance or near-
resonance for the extreme shapes than for nearly spherical
bodies. However, when the force is removed the theory
predicts that these modes will all decay in very nearly
the same time,

In interpreting and comparing these data with the
analogous data given Jlater for a cylinder, it should be
noted that a different scaling procedure was applied to
the spheroids and cylinders.,. For spheroids the length
has been scaled so that the dimensionless radius is unity,

whereas in the cylinders thé dimensionless height is unity.
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This means that the volume goes tOo zerc as we concider
flatter spheroids, but tends toward infinity for flatter
cylinders. The antithetical behavior of the decay factor
in the two classes of containers 1s a direct reflection

of the different scaling procedures used, and under-
scores the physical influence of the total fluid volume on
the viscous decay process. These remarks do not apply to
the eigenfrequencies, which depend only on contailner

shape and not volume.
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n,k,m

3,0,1

5’0,1

6,0,]_

EIGENVALUES

46

Miw AND VISCOUS CORRECTIONS S,

kN

FOR SPHEROID r+ — =

-1

NS VA
o

no
o

= O
o ©o o

Ak Re(sn::r- )
2481 -1.639
L4851 -2.326
.7022 -2.841
.894L -3.248
1.414 -4,205
1.789 -4 ,825

4e3z2 -1.928

LTOHT -2.651
1.089 -3.099
1.309 -3.385
1.732 -3.844
1.922 -4,025

.5694 -2.181
1.021 -2.892
1.330 -3.254
1.530 -3.447
1.843 -3.698
1.957 -3.779

L6979 -2.397
1.194 -3.065
1.490 -3.349
1.660 -3.479
1.896 -3.629
1.972 -3.673

nkm

Im(SO’)

nkm

-0.2089
-0,1665
+¢,01216
+0,2853
+0,1584
+0,3027

-0.3437
-0.2214
+0.07998
+0.4258
+1.384
+1.933

-0.4357
-0.2119
+0.,1643
+0.5054
+1.194
+1..487

-0.4982
-0.1704
+0.2425
+0.5536
+1.070
+1.258
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EIGENVALUES ~ Aw. AND VISCOUS CORRECTIONS S

FOR SPHEROID r® + = = |

n,k,m b X ke Re(sS)) In(sy,
3,1,1 .25 .4000 -1.699 -0.4777
5 . 9045 -2.297 -0.34c4
75 1.277 -2.542 +0.06871
1.0 1.510 -2.642 +0.4351
2.0 1.847 -2.734 +1.082
4,0 1.959 -2.755 +1,321
4,1,1 .25 6221 -2.006 -0.6254
.5 1.213 -2.492 -0.2549
.75 1.539 -2.609 +0.2077
1.9 1.708 -2.639 +0.5037
2.0 1.917 -2.655 +0,9154
4,0 1.978 -2.657 +1.043
5,1,1 .25 .8126 -2.244 -0.6931
.5 1.415 -2.590 -0.1326
75 1.682 -2.631 +0.3037
1.0 1.8056 -2.633 +0.5382
2.0 1.947 -2.627 +0.8263
4.0 1.985 -2.624 +0.9093
6,1,1 .25 .9766 -2.423 -0.6960
.5 1.552 -2.639 -0,01735
.75 1.768 -2.640 +0.3735
1.0 1.862 -2.629 +0,.5584
2.0 1.963 -2.613 +0.7723
4.0 1.991 -2.609 +0.8312



n,k,m

b,2,1

552:1
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)
EIGENVALUES A, AND VISCOUS CORRECTIONS Spi,

FOR SPHEROID r* + {?. = 1
b At Re(s. ) Im (s )
.25 2746 -2.004 -0.3046
.5 L6345 -2.805 -0.2970
.75 L9707 -3.285 +0.007221
1.0 1.232 -3.562 +0.4033
2.0 1.719 -3.936 +1.441
4.0 1.920 -4.055 +1.962
25 4372 -2.267 ~0. 4344
.5 .9127 -3.046 -0.2940
.75 1.268 -3.404 +0.1206
1.0 1.496 -3.568 +0.5031
2.0 1.839 -3.744 +1.219
b,0 1.957 -3.792 +1.497
.25 Y -2.501 -0.5278
.5 1.118 -3.214 -0.2453
.75
1.0 1.643 -3.565 +0.5567
2.0 1.89%4 -3.658 +1.085
4.0 1.972 -3.681 +1.263
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CHAPTER 5
FORCED OSCILLATIONS

We now formulate in generai terms the problem of the
response of the fluid to forced oscillations of the rotat-
ing container. Of particular interest is the question of
forced oscillations at a resonant fregquency. This wiil
also be dealt with by the present methods.

Let the container be oscillated at frequency o .

The Ekman layer flow, being to lowest order confined to

the directions parallel to the boundary, causes a small
O(R""z ) mass flux from the intericr into the boundary layers
(mass conservation) thereby stimulating the inviscid modes.
The bcundary condition for the normal component of interior

flow at the boundary S is
> A F‘- tdt (-—1)
Qtﬂ —] e 5.
where F is a known scalar function cf the surface velocity.
If we put
iat 5
q=vinyade ™ p::p(«-,w,e)e‘“t

then o (qw,z) satisfies

Te - % - g (52)

a* DR*

subject to the boundary condition
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—;\.V(Q - ._2_4\‘&:&7(9 - 5_4\1 ﬁqu = 4 -« F = G, say. (5.3)

id a® i

3

Expanding ¢ in ‘erms of the eigenfunctions &
(where m = 1,2,...N(w) indicates that to a given index
¥ there may correspond more than one eigenvalue), the
coefficients B, in the expansion

e = Z Bﬂ?m év‘m

v,m

must then be determined from equations (5.2) and (5.3).
Upon substitution and use of the equations satisfied by

the eigenfunctions, these equations become

47 B (52 - ) M = 0 (5.4)
and on S,
G= 478, (5~ @)k iVE, = 2i7 B, (- - 1)abvs, . 69)

We multiply (5.4) and (5.5) by 4%: and integrate over the

volume and surface, recpectively, Then

A

0 = 47 B, (n _o_‘(;){j[fvc.v@:, s, dV —-ﬁ;‘..@:, k.VCI:'MdS} )

J

[eed = 38, (5. - Jr){(,i,: 3wl 78,48 +
)

v 4 [ 8T 49 j
S
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or, as a single equation,

4215,,,“(;:;"‘ ;“-){G«: &)ﬁ{fcv ; k3, 4V +—-Sni< V& dS} gf:lj JSG_)
5.

Now fcr two distinct eigenvalue-eigenfunction pairs

(N x,,é ) ()\,,m, @,,,,.) the orthogonality condition is
4()\“,4-)\1;.”) Iﬁ kVé dV —_ th[“ k= nlv-vm S
xni >\1JM y

From this condition it follows that, when (x,l) # (¥m),

{(-'x- + )mv V&) kv, d + __jj; kx@,,V@,mdS] Aum (%20 fnkx 88,45

v Z1x (M +)\
(5.72)

Let

D= 5 (5 i—)ﬂj L[4 f [rlegiva s | (6n2)

Through the use of (5.7a, b) equation (5.6) may be written

in the form

B {102 [RiegTa. &) = [8GL. (o)

4 (x-At) L
at = DxleY + ; +\ )
m s S

wmyFl,l)

Before discussing the consequences of these eguatious,
_> .
we show how the effect of a general body force ¢e it
may be considered by the same methods. The governing

equations are
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> 1 A g ¢ f A =
V.%:O) Z_E+2_kxq' +VP= &ed ; ’V\'q’-‘-o on S

ot S

so that, with ‘p=¢e" ,<Z=5e£°‘t the basic forced prob-

lem is

(cf. (5.2)), the boundary condition being

nN¢ - 3‘%%-&!’\1’@ - gqﬁ-ﬂ kVy = ¥ .
-—p

Here the scalars & and ¢/ are related to the force &

by the equations

- aA—v R -
&= TP - &‘t._lk$ +Ti-k~('\7x€f),
. s A* el L‘. .- A
9 = ¢ -z?_a%.kxéﬁ - = wk)k-g o S

The expansion

—
= Z B\)m é&m
v,m

now leads by the previously-employed methods to a system
of equations for ‘Ebm differing little from (5.8). Only
the right-hand side of (5.8) is mecdified; it now must in-
clude the effects of both & and &f . The modified

system is



_53_

tennp, <4 ) B0, [pbaiva.s]] -

+ N\
#0c,1)

- gy + [EHS (5.8)

The Fourier constants va constitute the solutions
of an infinite system of linear equations with constant
coefficients. To solve for [3, ~ the eigenfunctions must
first be found. (This is probably an impossible task if
the container is not describeable by a separable coordi-
nate system.) Once the eigenfunctions are found, it is
sometimes possible to reduce the infinite sum in (5.8) to

a finite sum by re-expanding wn-kxV$,, on the surface as

kT8 = ) Copg B (S) (5.94)

For if there exists a surface orthogonality ccndition such

as

jjsclbﬁ,@m dS = §,¥(xp) (5.95)

then (5.9a2) and (5.9b) together may be used to make the
sum in (5.8) finite. Relations (5.9a, b) will certainly
be applicable when the container 1s any configuration for

which Laplace's equation is separable, for the basic equation

Vzé—i@ = O

o odE*



~-54 -

obviously reduces to Laplace’s equation when the z-
coordinate is distorted by the factor (%~4 ﬁ)% =-i|€Q ‘Il%.
When the oscillation frequency & equals an eigen-
value  Apq » it is clear from (5.8) that resonance oc-
curs unless G is such that f[&) G dS = 0 . It is not
difficult to show that the 0(1) response at resonance is

restricted to the corresponding mode e >) as we would

oq
expect from any linear analysis. In this case the equa-
tions may be replaced by a single equation for the de-
termination of the resonant amplitude E%% provided
we replace ‘%?q by the eigenvalue corrected for viscosity,
Mo + R°Im (55) . (The determination of s has al-
ready been discussed in a previous section. )

We shall demonstrate this for the simple case of
spheroids.

In terms of the eigenfunctions

W

&, ‘f’vum@[kw = Ek(C)P:(p)eiL Ck=0,1,2,.. (5.10)

=vm

where (Z,M) are certain transformations of the polar co-
ordinate variables (r,z), see Chapter 4, equation (5.8)

reduces to the following:

Nkl- 2
(=Nt Dett Bt = "Z (o= Nk Exk,,,/Bxém = %H,,/J (5.11)
. ms=1

mz!

where 1 =12,.. N
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Here N,;, is the (finite) number of eigenvalues deter-

mined by the boundary condition, and

D = o+ Myl }'1 f’/‘—:‘? %(%‘_E'.‘_"—’)zrdrdz _ ke« {Ek(lz)}zjkﬂk(y))zdp\

o
z
* ‘XR‘I r=0 {:-bﬁ—_r-? ZX“A’

-

PO BL) 1 ek

E"k"‘t ) Nkl + Nk 2+ 1 (X~ k)!

J

Hmkl = f én.ld e-ébd Gk [’ 1+€V2}'/Ld[~1 .

The spheroid is defined by

k3

r" + —Zr- =. 1
and &= )p-1i. {. is the value of [ on the surface,

namely

o = Nt { b+ 5(44:,",)}"‘,

G, 1indicates that only that Fourier component of G is-
sociated with index k is to be taken. The surface ortho-

k
gonality of the associated Legendre functions R (|.A),

' k 2 ‘(K+k)!
lﬂ(p)ﬁ,(p)dp = ST oo bt

has been used to obtain Enkml , as indicated formally

by (5.9a, b).
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To complete the proof that oscillation at a resonant

frequency A\ exiicites only the corresponding mode

wkj
P.L; » we introduce a few definitions. If the x,k sub-

i =By, efc_) and

x

script notation is suppressed (B

2)

f2 o (o t 1 ' (2 ¢
sz R’ E;’+B;)3 d-A = (5;‘-{-.& (3;’. (a_gj)(a_\‘,)=7‘. +R 2(‘ .

J

then (5.11) becomes

AW ) (e) () (o) _ ( ]
O(R )‘ ﬂl {‘DZBZ —k"Z.tEmiﬁmBm} - O \5’2}

01): 5,‘"{ kZE “R "‘} :Z_’H {@,mDB AN ,B,f,"}, (5.13)

!

At resonance, i.e., &« = >\ /3}": 0, (5.12) becomes a system of

N, - 1 homogeneous equations for the N, - 1 coefficients
B,(:\ , m + J . These coefficients must therefore vanish:
(e) .
B, =0, m#] (5.14)

(o)
We determine the resonant amplitude B}. by putting [ = |
in (5.13). Then

)

" (7-) \
E H] D (3 (5‘15-)

)
where /3;2 = —Re (S,f;; )

Equations (5.14) and (5.15) show that in a spheroid

the O(1) response to forced oscillation at an eigenfrequency
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Al

)“ki is restricted to the corresponding mode éhki’ and
this completes the proof. A similar proof can be given
whenever the basic system (5.8) reduces to a finite system
as discussed above.

As a particular application of these results we consi-
der a sphercid oscillating at a resonant frequency about
its mass center and calculate the amplitude of the excited
normal mode.

The oscillation of the surface shall be represented as

—

C—Q’(q%)ei(““*“t) = Yxr (5.16)

where in polar coordinates (r, w,%)

,\’; - (O)O,]_).eikw-&ial‘ (5“7)
and -
Q@ = (o,r0) (5.18)

(This oscillation is referred to the rotating reference
frame. In additiocn to the forced oscillation, the spheroid
is rotating with dimensionless angular velocity z = (0,0,l)
measured in inertial space.)

Now, for any surface osciliation of the form

5(‘_'2_) 'e_i(/uo +O(t)

the forcing function F&kl in (5.11), which represents the

small mass fiux from the interior into the boundary layers,

can be shown to be
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- Jal (S [ -Fa)as. (5.19)

]

The Ekman layer velocity .€’ is given by
&: .'2.(6~iﬁx§)exp-v§,jz ;—(Q-&-;nxQ)eXp IR, s = j(at2nk),

Therefore, once we introduce the explicit formula-
tion of the eigenfunctions from Chapter 4, the system of
equations (5.11) will be completely specified. Equation
(5.15) can then be used to determine the resonant amplitudes.

Calculations have been made for a few representative
modeé. These show that the real and imaginary parts (and
hence the magnitudes) of the resonant amplitudes are mono-
tonic functions of spheroidal ellipticity. The larger the
radius-to-height ratio, the smaller the induced response.

The amplitudes depicted in the graphs are those asso-
ciated with normalized eigenfunctions. The normalization
is such that the kinetic energy of each mode within the

container is unity,

J‘!( Quij* lﬂdV 1 —_— f{ iV‘f’kkj!l"‘ ; }ci\/ !.

/ b -
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RESONANT AMPLITUDE Ba4o;
MEASURES PRESSURE RESPONSE
TO FORCED OSCILLATION AT
EIGENFREQUENCY XAg01.
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RESONANT AMPLITUDES

B,m FOR FORCED

OSCILLATION OF THE SPHEROIDS

o'|-
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.50
.75
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o U

.25
.50
.75
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o ul

.25

.50

75
1.0
1.5
2.0
L.o

Inviscid
Eigenvalue

0.4232
0.7947
1.089
1.309
1.585
1.732
1.922

0.4000
0.9045
1.277
1.510
1.745
1.847
1.959
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1.415
1.682
1.806
1.908
1.947
1.986

k2
r}+l§

Re(B,p,)

O C O O O C O OO O OO OO MM OO0 O O o O oo

.3157
.2283
. 1907
.1682
J14oh
.1229
.0880

484

.5922
.2845
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.1319
.1086
.0762

.2584
.06713
.05533
.1733
. 1667
. 1490
.02782

.

OOOOOOOOOOOOOOOOOOOOOv

Im(B

.07 064
. 04330
02915
.02028
.01041

. 005707
.000897

.9168

.2074

.08516
.05111
.03157
.02596
.02050

.1017

.02307
.01.802
.05673
.05716
05309
.01057
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CHAPTER 6

ON THE MOTION OF A LIQUID
IN A PRECESSING SPHEROID

As a further application of the modal analysis presented

in previous sections, we examine the time-dependent motion
of a viscous incompressible fluid which wholly fills a
precessing, rotating spheroidal container. This problem
nas also been investigated recently by K. Stewartson and
P. .H. Roberts (1963, 1965) by a different method.

In the present analysis, the precession problem is
considered as a boundary-value problem only. Initial con-
ditions are ignored in deriving a particular solution. The
initial-value problem, modified to include the value of the
particular sclution at the initial instant, can then be
solved by Fourier synthesis of the inviscid modes. Our
main concern here, however, is to show how the modal analy-
sis picks out the appropriate O(l) interior solution for
spheroids, and to note that the special case of a sphere
may be dealt with by the same methods. The problem of
synthesizing arbitrary initial conditions among the vari-
ous modes has been resolved by Greenspan (1965) under
quite general conditions.

Physically, the precession problem may be stated as
follows. The spheroid S and the fluid-filled interior are
in uniform rigid rotation, Eﬁx?:, about the symmetry axis

of S. At time t = O there is imparted to the spheroid a
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—>

small retrograde angular velocity (! about a spatially
fixed axis which is inclined to the symmetry axis through
an arbitrary, constant angle o . We suppose that this
motion is started impulsively, so that 5 is an absolute
constant, and we want to determine the ensuing time-
dependent motion,

We shall consider the equations of motion in a refer-
ence frame f‘, fixed in the precessing, rotating spher-
oidal shell. & therefore rotates with angular velocity
@ +C-§ relative to axes fixed in space and instantane-
ously coinciding with & . (This procedure differs from
that used by Stewartson and Roberts. They chose a refer-
ence frame in which both @ and (’3 are absclute con-
stants, While there are certain advantages to using such
a coordinate system, it is not the natural frame in which
to measure departures from solid body rotation (@W+GQ)x7,
and it is not convenient for the formulation of boundary
conditions except for axisymmetric containers.)

If U is the fluid velccity referred to axes taken
in fp , then the dimensional equations of motion are

{%—t +(0+Q)x {H +(:J+§)x?'} = -%V‘p + VAU (6.1)

74 =0 (6.2)

where DF/Dt = u, D/dt = 3/fst + d-V.
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The polar coordinates (r,8,z) in § are chcsen with

z directed aldng the symmetry axis so that

w = (0,0, w). (6.3)
In this system,
6 = r ] { sin o - cos(9+wf)) - sina- sin(G*—wt)’ -coso:} (6./4)
and
a-&-d) A > g
]2%’:—-9— = 2———? = —(wa). (b.5)

To linearize (6.1) we neglect squares and products

- -
of u and §! in accordance with the assumption that ||

is small. The result is
g‘_f + 2(3xi) = -VP + vAU + (2e)x 7, (6.6)
where P = p/o - 'z{(3+ﬁ)x?}2.
If we introduce the transformations
t—o't, FoLE, u— (lLu, P— Glol’P

where L is the semi-major axis of the spheroid, equation
(6.6) is put into the nondimensional form,

2+ 2k = -UP Rad + (kxv)x?. (6.7)
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Here R v/(sz) <«< 1, Moreover,

1]

v = {s'm«- cos(8+t), - sina -sin(B+t), -cosa(} (6.8)

o~
6~
~0

~—

(&x@)xfz = Re( ei(e-+t)sino:{ 1, ii,-r} )
The 0(1) interior solution to (6.7) must also satisfy
V-u = 0 (6.10)
and the boundary condition
ad-n=0 on S. (6.1)

For later usage we record the unit outward normal

n on S:
N2
'I):\ ={(I+E)&t} ( r ) O ) 1) (‘0-’2)
1+ e (1+¢€)%
where = (1+€)F on M+ (1+0)E = 1,

In the interior region, we shall of course neglect
the viscous terms in (6.7). (Boundary layer suction in-
duces a secondary interior circulation which is small
compared to tiie O(1) solution.) For the inviscid solu-
tion (R = =) we write

-

- - .
u = U, + v (b.13)

Then the two problems to be solved are



(6.15)

and

W phxF = VP
ot (6.16)
J- v = 0
with 7% = =7y on S,

A solution to {6.15) is

-

U, = ~sinaé zsm(8+t), 2 cos(8+t), rsin(ﬂ--&t)} ((0.1'7)
(8
so that
A (G+ed k 2+¢ ) : :
A, = - _..__i‘-z _.__-.) r sing - sin (G+t) (G.18)
1+ e 1+ ¢
On putting

P = Re{ c@(ﬁ%)ei(”f)}

we can determine the particular solution to (6.16) from
the equations
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2,39 _ Y _ 304 _ \
raaer T e? T3 =0
\
with (6.19)
r%‘_f -3(1+s)£z_(: 4+ 2@ = 3(2+€)rE sina J
on S.

Clearly one such solution is

2+ €
= - — rg
¢ ”
+ .
1_7' = 2-—-é~§5|ﬂq'

o

sin

(6.20)

i(O+F'( . .
Re| el HL{I%,—Z-,-N’"})

Now, using the theory of Chapter 5, we are obliged

tc look for a serilies solution

L

@ =) BB =) B BIR W | ket (e21)

However,

B (L) B ()

= Az!m ri )

where A, has a known dependence on thecéigenvalues,

and B'((,.) is constant on S. Therefore all the in-

homogeneous terms in the system of equations (5.8) which

determines Isvm« vanish unless V=2 by virtue of

the orthogonality relation among the Legendre functions:



)'[jSP;(Cv,,.)P,:(W{(Hﬂ:‘}"zrids X JP;(M)P;(MAP =0, vs2.

This means that in (6.20) we have already determined the
only nontrivial term of the expansion (6.21).

Combining (6.17) with the real part of (6.20), the
particular 0(1) solution to the inviscid precession

problem is

- _ ~2sina . ) s
d="=2 {z(1+e)sm(9+t), z(1+€)cos (B+2), ”"‘(“t)} (6.22)

P: —(zgs) rz sina- cos (8 +t)

The vorticity of this flow has constant magnitude and
no vertical component,

curl 4 = ?’(2;“ siny {cos (8 +¢t), —sin (9-+t')) O} .

Moreover, curl (curl W) = 0. Therefore (6.22) is an exact
solution to the viscous equations of motion, fhough it fails
to satisfy the ne-slip condition on S.

It is important to note that for the spheroid S, the

eigenfunction with e'e dependence is

- _ z 1'* - i(e-l-)\f)
Q = {2 ) ) }e

NP N (.23)

where
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N\ = 2li+e) (b.24)
2+t

For a sphere (e = 0) it follows that X =1 and

— . (0+T
Q( = {i,ti, —r}et(+ ), (6.25)
£=0

Therefore in this special case the force (kxv¥)x 7
(see (6.7), (6.9)) is in resonance with the natural mode
(6.25). On the basis cf the analysis presented thus far,
this is the reason that (6.22) is invalid when € — 0.

Now a precessing spherical boundary cannot directly
influence the interior fluid motion except through vis-
cous effects. The correct O(1) inviscid solution when
€ = 0 must remain sclid-body rotation around the initial
(t = 0) rotation axis. This means that we cannot let
e— 0 after putting R = «» without some further modifica-
tion to the analysis.

When we chose w™' for the typical time scale, we
made the tacit assumption that lﬁl//lai is negligible.
The proper time scale, however, is not W™ s but

-1
(w+ ) » as Greenspan has shown., For then

pa D Qs . i(¢ +0#)
(kxw)x7 = :—E%‘—Re({%,rt-r}e ) (6.26)

in dimensionless variables, where
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w + S

Even when € =0, (6.26) is not in resonance with
(6.25), and the solution may be shown to be
3 ({-q)sina | \ i(8+0t)

= Az —(2-%) ‘& 97
— i N2, 1A, —(2-Alr @ , (6.27)

where A\ is given by (6.24). Therefore,

. - . . i(8 +at)
zlf:g(u) = —smcx{ 2, 1%,-*“}6 . (6-28)

This is in fact the original solid-body ratation referred
to the moving & - axes.

The soluticn (6.28) shows that the linear theory is
capable of producing the correct inviscid solution when
¢ = 0, provided the three parameters ¢,R, Q/o,) are
dealt with properly. The order in which one takes the
limits £¢—0, R—0, Q/w — 0 forms a critical
phase of the analysis and may restrict the range of

validity of the soluticn.
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CHAPTER 7
VERTICAL SIDE-WALLS: THE CYLINDER

We determine what modifications are necessary to the
general theory for containers with vertical sidewalls by
considering a right circular cylinder, r<m ) 2] < 1.
(r, = A/H, where A istthe dimensional radius, 2H the
dimensional height of the cylinder.)

This section is in two parts: nn the first we consi-
der the inertial motions ( X\, # 0 ), deriving the eigen-
functions and eigenvalue relation. Through numerical
computations, the effect cf viscosity and of variable r,
on these solutions is illustrated. In the second part we
consider nonaxisymmetric geostrophic motion ('Am'z O).
This was not treated in detail for the spheroid because
for such a configuration the gencral theory of geostrophic
mo2z2s developed by Greenspan is entirely applicable. How-
ever, containers of cocnstant height (and therefore with
vertical sidewalls) are a special case which must be consi-
dered separately from the general theory. We shall see
that in a cylinder these modes exhibit an unexpected
structure: The boundary layers at r = r_, in reducing the
interior tangential velocities to zero, have a net O(R-Va)
outflow which drives an interior moticn on the same order

of magnitude. Jacobs (1964), in a study of the Taylor

column problem for viscous steady flow in a rotating
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cylindrical annulus, found that the same order of magnitude
efflux occurs at the walls of the Taylor column.

The relatively large order secondary circulation is
not present in the axisymmetric geostrophic modes, and in-
deed is not predicted by the Ekman layer theoryrpresented
in Chapter 2. We shall see that it exists solely to satisfy
mass conservation requirements.

The Inertial Modes

The pasic eigenvalue problem for the pressure

Lo = Pmic (2] expf ik 20 IV X #0

is (see equation (2.6))

a3k 4 z _
{Fi'rr%_r Lo+ (- 3:}-;} Qe = U
(7.1)
with Ok 0 on 2 =+1
02
) 2k - -
(e " J0 o s

By the method of separation of variables, we find



P = Ji (Yi™) cOs Mz \
. {
U= T e dl) + o)
/ v
_ cos mmWE & (q,,r) + VLR o, r)) (5.
mG‘ b — Nowie (2 kah ) r- Jk(m" (7.2)

mT sin mTE
= o} I")

where o(:'k = (4-\:‘“ ) m"n”'/ 7\:“ .

J

The eigenvalues A, satisfy the transcendental

equation determined by the boundary condition at r = r,

(which is the condition that U,, vanish there):
! ok 1
)], () + 2= J (@) = 0 at r=g. (7.33)
i

By the definition of & , 6 we have that

(amuz )?'+ 11 (7.3 )

o |

Kl

»2.
7\““_ ' dm/& \

Substitution for 2/}\“‘(‘ in (7.3a) then gives a form suit-

able for computation,

2 1 "
j_xJ“(x) 4 {‘{(M' ) -+ Xz}zjk(x) = O) X = amkro ' (7.3 C)

TG
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By finding the roots of (7.3c) we can then use (7.3b) to
determine the eigenvalues. (Ccmparable calculations have
been made by Fultz (1958) for axisymmetric motions.) It

is clear from (7.3b, c) that Mo depends on the product
m.r,. Keeping this product fixed while varying m and r,
wlill result in the same eigenfrequency for given k. Note

further that when k¥ = 0 the above analysis still holds ex-

cept that the eigenvalue relation is simply

J teus) = 0. (1.3d)

In this case both Lﬁd and LLA vanish at the side wall.

In general, because of (7.3), { 1imk,wdmk, VVmu}

are given at r = Ty by

-k ws mm2 -(MT sin M2
Upe =05 Vi ) ;| = Timmsin o 7
k k T JL ik ®) ; ‘Mmk ~ Jk @,5) . (7.4)

The vertical and horizontal sidewalls cause a modifi-
cation in the general formula for the viscous correction
factor Snﬂ) . This stems from the altered mass outflow
condition at r = ry which in turn is dependent upon the
boundary layer solution given by equation (2.11)'. How-
ever, on the O(1) time scale, this modification is quanti-
tative, not qualitative, for the boundary layer thickness
is still O(R-Vz ), as it is in the Ekman layers.

. . d . X .
A closed analytic expression for s, is derived in

Appendix C on the basis of certain well-known properties



-T4-

of the Bessel functions. Thig evaluation enables us to
compare the relative effects of the two boundary layers
on the correction factor

Let I, denote the contribution to st

wmk from the

boundary layer at r = r,: and Iz the corresponding
contribution from the Ekman layers at z = +1. It is

shown in Appendix C that

e fa{laar (e )2

}\mk (;1 l}‘mk‘/ 2 ‘
o ,/ - A 2 .
I,= éf”i’{ | 2 1 | G Tk Q| (1) +
4]
}\"& Nl > = z .
+ } ey Qe+ 1kx Qo (1-1)

2 .
2 ol 141
— ‘-)k Stue) = A (kz+ mer e, - 2 Ami )( y +
2->‘nl¢ {.2+)\mk} :

2 2 2 7 Zk\mk )( ! —i ) (’LG)
+(k M = S {I_Am‘j;/z
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and , 2
Ak . ;
(" _(1_T$){I1+IZ}
Swk =T 2 (7'7)
(Jk SLZCL D mag - €\
Y >‘nk z

Equations (7.5), (7.6) show that as r, is increased,
the sidewall contribution to the viscous correction factor
diminishes with respect to that of the Ekman layers in the

,." 20
ratioc l/ro.
l!l
Re (1,) C (=2l

Re(IZ) I";" 1 — l(/( kz+m11T‘(;l)j

, > (78)

Calculations show that Re(s;Q ) is sensibly inde-

pendent of (m,k) except in the neighborhood of rox= 1,
the values rapidly approaching 0 or -« as r, =« or 0,
respectively. In addition, the eigenvalues approach
A= 2 asymptotically for large r_, and go to zero
linearly with ry-

Thus in the two extreme cases the modes exhibit some-
what unexpected behavior: all the modes are nearly geo-
strophic (x::o) and are quickly damped for narrow,
elongated cylinders; and they tend to persist beyond
times of order R’ for wide, flat cylinders, with fre-
quencies near the critical value [\l= 2.

The expectation is that this behavior is essentially

independent of (m,k); indeed, in the extreme case r, =«



-76-

it is known that A i = & are the only permissible eigen-
values (corresponding to s = 0).

In the intermediate range ry = O(l) the frequency
spectrum is probably denumerably intfinite in the range
0< |x] <2. cCertainly this is true when k = 0, for

the eigenvalue equation is then simply \L(«MJ;) = (.

Now it is known that the equation
/
xJ, )+ Hk) \Jk(x) =0,

where H(k) is a real constant, has an infinite number
of real roots. This is approximately our equation, when
meatrt is large, and this is the motivation for the
above conjecture, for the case k # O.

For the important case of axisymmetric motions (k = 0)
the explicit formulas (7.7) and (7.5), (7.6) are greatly

simplified and this bonus allows us further insight into
(1

the nature of Sk . We readily see that
i
Re(s0) = AN D W ) 1{2'%* L 2w ) (1.9)
‘k-.o 4vz 5 2\ @+ )" (2= i) ?

and knowing the )wk vs. T, behavior from our numerical

results, we have that
-1

V?r‘s/z as ‘:-_?O) [>\mkl°< r‘) )
°

Re(s“‘)l ~

k=0

Relsm)| ~ —{1—‘13‘5@1‘\}72 as n—o0, D\ |—
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N (1)
EIGENVALUES A\, AND VISCOUS CORRECTIONS s,

FOR CYLINDER { r<r , lzl<i}

n,k,m To A nkm Re (Sn(l::n) Im( sn(i:m)
1,0,1 .25 0.4016 -7.875 -6.586
.5 0.7586 -3.085 -1.586
.75 1.048 -1.375 -2.724
1.0 1.268 -1.369 +0.2459
2.0 1.708 -0.7342 +0.5799
4.0 1.913 -0.4056 +0.3926
2,0,1 .25 0.7586 -9.412 -7.913
.5 1.268 -2.798 -1.183
.T5 1.552 -1.403 +0,08979
1.0 1.708 -0.9221 +0.3920
2.0 1.913 -0.4212 +0.3770
4.0 1.977 -0.2128 +0.2098
3,0,1 .25 1.048 -9.434 ~7.741
.5 1.552 -2.182 -0.6893
.75 1.758 -1.002 +0.2252
1.0 1.853 -0.6438 +0.3632
2.0 1.960 -0.2876 +0,26T4
4,0 1.990 -0.1431 +0.1418
k,0,1 .25 1.268 -8.512 -6.896
.5 1.708 -1.674 -0.3594
.75 1.853 -0.7499 +0.2570
1.0 1.913 -0.4836 +0.3146
2.0 1.977 -0.2171 +0.2056
4.0 1.994 -0.1076 +0.1069



-85-

EIGENVALUES A, AND VISCOUS CORRECTIONS s‘a

w

FOR THE CYLINDER { rer, , l2l¢ 1}

m,k,1 r, N kel Re (Smit Im (5,00
1,1,1 .25 . 48982 -9.5968 -8.3959
.50 99553 -3.3061 -1.8057
.75 1.34%77 -1.6985 -0.1342
1.0 1.5616 -1.1188 +0.35179
1.5 1.7735 -0.69346 00,50158
2.0 1.8649 -0.51814 0.45158
4,0 1.9641 -0.26531 0,26074%
2,1,1 .25 .99553 -10,742 -9.2418
.50 1.5616 -2.2335 -0.76297
.75 1.7735 -0.97235 +0,22268
1.0 1.8649 -0.61490 0.35482
1.5 1.9372 -0.37070 0231564
2.0 1.9641 -0,27196 :0,25410
4.0 1.9909 -0,13492 0.13378
31,1 .25 1.3%77 -8.8029 -7.2386
.50 1.7735 -1.4372 -2.4214
.75 1.8915 -0.62729 +0.25406
1.0 1.9372 -0.40484 0.28150
1.5 1.9715 -0.24777 1 0.22262
2.0 1.9839 -0,18216 0.17411
4.0 ~1.9959 -0.090178 .00089670
4,1,1 .25 1.5616 -6.6926 -5.2220¢
.50 1.8649 -1,0019 -0,032201
.75 1.9372 -0.45264 -0.23371
1.0 1.9641 -0.29854 +0.22751
1.5 1.9839 -1.8528 - 0.17099
2.0 1.9909 -0.13662 0.13207
4.0 1.9977 -0.067680 0.067394
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AND VISCOUS CORRECTIONS S,

{ Py

A mk!

.32635
66724
.97259
2151
.5284
.6969
.9120

66724
.2151
.5284
6969
.8499
.9120

L9771

97259
.5284
7509
.8499
.9297
.9597
.9897

2151
.6969
.8499
.9120 -
.9597
L9771
.9942

el < 1)

Re (Swit)

-7.6922
-3.1710
-1.9226
-1.3887
-0.94088
-0.73786
-0.40704

10.039
-3.0055
-1.4558
-0.93924
-0.57203
-0.42300
-0.21310

10.354
-2.3140
-1.0261
-0.65079
-0.39267
-0.28825
-0.14320

-9.4730

-1.7448

-0.76105
-0.48683
-0.29597
-0.21736
-0.10766

(1

In (i)

-6.5223
-1.8026
-0.40132
+0.,16226
0.55797
0.58784
0.39513

-8.6709
-1.4246
-0.043052
+0.38646
0.44228
0.37917
0.21018

-8.8322

-0.81515

+0.21243
0.36382
0.33099
0.26814
0.14190

-7.8920

-0.41909

+0.25326
0.31533
0.26042
0.20591
0.10694
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EIGENVALUES \,, AND VISCOUS CORRECTIONS s\

FOR THE CYLINDER { rev, (zl< 1 }

m,k, 1l Ty Akl Re (‘Sm(l:)l ) Im(snf::i )
£,3,1 .25 .25460 -6.8057 -5.6565
.50 .51580 -2.9568 -1.6519
.75 .T6436 -1.9223 -0.47811
1.0 .98417 -1.4654 +0.075388
1.5 1.3170 -1,0610 0.52400
2.0 1.5293 -0.86874 0.63195
k.o 1.8490 ~-0.51967 0.49741
2,3,1 .25 .51580 -9.0571 -7.7522
.50 .98417 -3.1956 -1.6548
.75 1.3170 -1.7153 -0.13023
1.0 1.5293 -1.1546 +0.34604
1.5 1.7500 -0.72673 0.51394
2.0 1.8%490 -0.54632 0.47077
k.o 1.9593 -0.28210 0.27677
3,3,1 .25 .TEL36 ~-10.072 -8.6284
.50 1.3170 -2.8056 -1.2206
.75 1.6038 -1.3278 +0.11056
1.0 1.7500 -0.85189 0.38878
1.5 1.8782 -0.51671 0.41071
2.0 1.9291 -0.38098 0.34553
k.o 1.9817 -0.1909% 0.18860
4,3,1 .25 .98417 ~10.117 -8.5758
.50 1.5293 -2.2983 - -0.79758
.75 1.7500 -1.0271 +0.21356
1.0 1.8490 -0.65284 0.36420
1.5 1.9291 -0.39438 0.33212
2.0 1.9593 -0.28960 0.26927
L o 1.9896 -0.14392 0.14261
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EIGENVALUES A, AND VISCOUS CORRECTIONS .S,

FOR THE CYLINDER { ref , [#] & | }

myk, 1 r, Akl Re(qﬁz) Im(jﬁ&)
1,4,1 .25 .21130 -6.2496 -5.1179
.50 42587 -2.7951 £155309
.75 63422 -1.8856 -0.49853
1.0 .82733 -1.4837 +0.003199
1.5 1.1474 -1.1218 0.46712
2.0 1.3773 -0.94780 0.62799
4.0 1.7791 -0.61054 0.57464
2,4,1 .25 42587 -8.3371 -7.0728
.50 .82733 -3.1923 -1.7054
.75 1.1474 -1.8427 -0.25368
1.0 1.3773 -1.2921 +0.28367
1.5 1.6462 -0.84513 +0.54845
2.0 1.7791 -0.64822 0.53696
4.0 1.9381 -0.34507 0.33670
3,41 .25 .63422 -9.5396 -8.1525
.50 1.1474 -3.0440 -1.4550
.75 1.4642 -1.5425 -0.0008249
1.0 1.6462 -1.0130 +0.38061
1.5 1.8201 -0.62434 0.46902
2.0 '1.8934 ~0.46413 0.41064
4.0 1.9719 -0.23563 C0223199
oy, .25 .82733 -10.027 -8.5399
.50 1.3773 -2.6694 -1.0936
.75 1.5462 -1.2479 +0. 14564
1.0 1.7791 -0.79894 0.38623
1.5 1 8934 -0.48397 0.39081
2.0 1,9381 -0.35638 0.32540
k.o 1

.9841 -0.17817 0.17613
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The Geostrophic Mode

While a general theory for the geostrophic mode has
been developed by Greenspan (1965) for containers of ar-
bitrary shape, it is necessary to consider certain special
cases separately. One of these is closed containers in
wh.ch the height h(x,y)--the distance from the bottom sur-
face to the top at any point x,y--1is independent of'k and
'y¥. The cylinder is, of course, the simplest example of
such a container.

We recall from Chapter 2 that the Ekman layer thickness
is O(R™* ) on the O(1) time scale. This is in fact alsc
true on the geostrophic time scale t ~ O(R'h'), as we shall
see below. The primary balance is still petween Coriclis
force and viscous shears which act on tengential velocities
of the same order of magnitude,

In the vicinity of the vertical sidewalls (r = ro)
however, a different kind of boundary layer is formed.
There is an outer boundary layer region of thickness O(R'W‘ )
and an inner one of thickness O(R-'/3 ), each being ter-
minated at #he top and bottom by an Ekman layer. The ef-
fect of this multiple structure on axisymmetric geostrophic
flow in a cylinder has been investigated by Greenspan and
Howard (1963). It was shown that viscous diffusion acting
through a time O(RV‘ ) affects a region of thickness
O(Rﬂm ) near the sidewall, and in so doing creates a

fluid vorticity higher than that at the top and bottom
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surfaces. The result is that fluid is drawn out of the
Ekman layers by this high vorticity, creating a relatively

"% layer. 1In

large O(R™ ™ ) vertical motion in the R
this region, however, there do not exist sufficient vis-
cous stresses on the vertical motion to satisfy the no-

slip condition at r = s and it is only within the thinner
R™’* layer that the vertical velocity is reduced to zero
at the wall, Neither layer alone can satisfy both the no-
slip condition and the requirement of matching with the
interior geostrcphic flow.

Much the same physical picture exists in the non-
aiisymmetric case, with one significant difference: The
normal outflow from the side bcundary layers i1s of a higher
order than for axisymmetric motions (O(R™7* ) vs. oR™" )).
This mass efflux drives an interior circulation of the same
order of magnitude. Physically, it is the mass conserva-
tion requirement which is at the root of this difference.
For within the boundary layer the 0(1) azimuthal motion v
is a function of angular position w , and this results in
a variable net mass flux across any section perpendicular
to the walls. There being no O0(1) vertical velocity to ab-
sorb this net flow, the only possibility is that it be
balanced by the normal gradient of the normal component W« :

W, LW oo .
or rodJ
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Since 3/br is O(RwF ) in the region, then the normal
velocity is O(R™ % ). It is of course possible that the
balance be a peffect one in the sense that at the outer

1
74 layer there be no net w . However,

edge of the R
it is found that this would require v to remain nonzero

right up to the walil; and the inner R layer does not
provide sufficient viscous stresses on the azimuthal motion
to compensate for this.

It should also be remarked that since there is no in-
duced interior O(R™“ ) vertical flow, a qualitatively
similar flow pattern exists in the interior at 0(1) and
O(R-V‘ ). Both flows are strictly two-dimensional, the
0(1) flow satisfying the condition of zerc normal velocity
at r = r_ and the 0(R™” ) flow balancing the small mass
effiux caused by the azimuthal variation of the boundary
layer velocities. The side boundaries also feed the inter-
ior at higher orders of magnitude. In particular, the O(R'%-)
interior flow induced by suction into the Ekman layers must
match the corresponding mass flux at the side boundary.

We now describe the physical balances that take place
in each of these different layers.

The equations of motion on the geostrophic time

1 .
scale T = R °t, namely,

R™ 2

DY

+ 2kxq = -Vp +R—‘A§

3l

Vo

DY
1
o
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can be reduced to a single equation for the pressure,

R4 —ZR-%(V‘)Z:_E + R V”P + 4;;’2 =0. (7.n)

Near z = +1 we stretch the normal coordinate by putting

[ = Rﬁ(1¢ ) so that, to lowest order,
23 G
A | gpME X % L MU gt L g
AL’ 2T 3T et az,‘

The only choice of A which makes the most highly differ-
entiated term at least comparable in order of magnitude
to the other terms is clearly determined by requiring
6A - 2 = 2A, or A = 3. The equations of motion in the

Ekman layer, retaining terms of lowest order, are

Cay = - % W
r At
- _10p R
*W = men Yo
_ vk b +a:-£
0 = IR*% T

R 2] '/'wa‘
0 Y ru . = .

l"(brr * 30 ) + R 0
These are steady equations, not the same as one obtains on
the 0(1) time scale. After the first few revolutions in

which the Ekman layers are established, there is essentially
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a steady-state balance between viscous shear and Coriolis
force. (The horizontal pressure gradient which appears
in these equations reflects the superposition of the in-
terior solution on the boundary layer perturbation quanti-
ties; p is essentially constant through the layer.)

Near r = Ty the stretched normal coordinate

P::‘RA(r-Q) transforms (7.11) into

2 \6 -3 iz 2 2
728 _aptrat e LM L4l o =0,
9 af,ﬂ 3 3p* ot 7

so that now A is determined from the possible balances

6A-2= 4A-3, | bA-2=2A-1, 6A-2=0.

Clearly, A = 2 is not a solution to these equations.

The classical Ekman layer does not exist on the verti-
cal sidewalls for the geostrophic moctions. Two other
1 1

possibilities do exist, however: A = 5 and A = ry

With the choice A = » the pressure equation becomes

L
3

b 2
oLy = 0.
) 2
ap 0%
The physical meaning of this balance is seen more clearly

from the eguations of motion. TFor, with p = R%(r-nr)

these equations are, to lowest order;



Vv W

~ )

t
X3 2 g‘

The large gradients of tangential velocity across the R
layer (viscous shear forces) are in balance with the verti-
cal shears caused by vortex line stretching. The tangen-
tial components v and w are both of the same order of

I/3

magnitude in the R~ layer.

With the choice A = 'Z , a different type of boundary

layer becomes possible, one’in which the primary balance

is essentially geostrophic. The pressure equation,

) <3 -
R"“&—ZRMZQ—% +R2A'§1_3:l?1+4}iz}3 +. =0
2 %" BT 0" ot 0t |

becomes, to lowest order,

P - 0.
22

The corresponding equations of motion, with

(u;V:W:p) = ( RJ/*U, v,b ~~R-'4’W, Si'/‘.P ), are

_ P
2V %

s -

W
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These equations reveal the unusual fact that to lowest

Zh layer is entirely inviscid:

order the mechanics of the R~
The layer is too thick for viscosity to affect the lowest
order motion. The region more closely resembles a shear
layer of the type considered by Proudman (1956) and
Stewartson (1957) than it dces a simple boundary layer.
Having now discussed the overall structure of the

sidewall layers, we turn to a more explicit formulation
of the problem. To describe the different flow regions
succinctly, we use the variables introduced by Greenspan

and Howard. ZLet p,W,_L be the stretched normal

coordinates given by

_l/ 1
r=rp +R p =G+R3"’]: L= R*(1712);
the relevant domains are D1: r<rn y 12l
D2: rer, = 0(1)
2=+ D3: 1'1:0(”, 12 1< 1
D%
Josk D1 D . P:O(ﬂ , 1zl
D23 D2
D24 — D23: n=00), =01

D24t p=0{), C=0(1)

For each domain we determine the solutions as

asymptotic expansions and complete the solution by matching
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the expansions with those of adjacent domains. The re-
sults for the six different regions are summarized below;
the detailed analysis on which these results depend is
contained in Appendix D. (By symmetry the six regions
cover the entire cylinder except for an additional corner
'région where =0(1), r-r, = O(ﬁ%). No analysis is at-
tempted for this region because of the mathematical diffi-
culty of the equations, but it is not likely that the flow
there alters the basic result concerning the R~
circulation.)

of prihcipal interest is the interior circulation. If

sl/

) B (1) = (@)
p\ - Pl + R p‘ + R ‘p, + Ct
denotes the interior rressure, we shall show that

vz(n Kv1“0~éeXM'T}

with ok _ 0 at r=r

It is important to note that V' (°) = Zk curl q('”
twice the vertical component of vorticity. It is this
vorticity component which must be prescribed at time
T = 0 , not the pressure 101“), for otherwise we

would not have a properly-posed problem,
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A similar boundary-value problem for 'pfn will also

be derived:

v = (vﬂof"),t - exp{-v)

=0

. (¥ (o\
WA’]th bp‘ ’ a't r- - r-o .

braw

s =Y, . 2
In addition the O{R *) solution /qf) has been

> 2 0 = (o) 1 T .0 _7 ~
q:z) - =5 V"q‘ + 7 o kx[(‘ +Vx B(r‘,u,t) )

with

URe = - {2ked? + FA)

(In this notation the subscript identifies the domain in
which the function is defined and the superscript relates
the functions to its relative position in the asymptotic
expansion E{ = ZP-RMQU‘) )

The three-component vector \/x f}(rco't) must be
compatible with the mass flux conditions at the walls,
but it is not completely determinate without considera-
tion of higher order terms in the expansions.

At z = +1, the mass flux condition has been shown

to be
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- A
w_‘u\ - l:‘ e o VX ZL:“

From this it follows that
A -
ke VxB = 0

or, with B = (B.,Bz.B‘s))

For the axisymmetric modes, this means that B, = O.

Also, as we shall determine below, the mass flux

condition at r = r_ is

(1) o)
@ _ e T U [T U, + U,

This demands that

8) — " m
L(Z’Bs\ :{Ebfﬁ( +2.‘/I(a—g-‘+ﬁt)
6\ 2w/ 2 3c T\ T !
- !

r=0 r=r,

a condition which is identically satisfied when 13/30 = 0.

We now summarize the results in the six domains.
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Region D1: The Interior

. - —l/: -t
wn g (uuw) = 3OFD + RUG0 4 R3S

- (c) WA o (2
P - P‘ + R p‘ + R P + st

T=R"
the solutions are , with k = 0,1
W _2_.; %%ﬂ" , 101(“= 090, 7)
1)_|(|0 =+ %%__m
w‘(k) = 0

where pf"\: pf°‘(r,a,fr) is the interior 0(1l) geostrophic

pressure. It is clear from this solution that both the

0(1) and O(R"’4 ) circulations are strictly two-dimensional

(the Taylor-Proudman theorem).

. (2) (0)
=2 lution : () - X Q.E‘__ - L é_ﬂ-—
O(R ) soluti M, 7 e 7 37
(2\ (0N
AR op” 1 AW
2 A
w_‘m= - 9_ d ‘(o\ _ 1 M:o)
- T | Or )
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(2) shows the

The solution for the vertical component W,
effect of vorticity changes. Interior fluid is drawn
vertically into the Ekman layers at z = +1 where it is
then converted into an 0{1) tangential boundary layer

velocity. This is one of the primary transient mechanisms

to establish the new steady state.
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Region D2: The Ekman layers near z = +1

Now write for the total q as seen in the boundary

layers the expansion

- (o =Y = (1) =2 (2)

q = 47 +R g, +R4G, +..

Then

u(k\ - uf&){ 1 - e-tcasc - o;(“)e-csinl:

~

1
J
- -c -
1)__z(le)__ 11.|(U{ 1 -—egc.osc } + u.(l‘\e sin{

ar E’:J

~
n

1

_ -L . 2 Ky 3 (W
+_;:.-(1—e {(ps§+sm(})( 8}!'11" —{wu‘ )

where k = 0,1 and the interior functions (subscript “17)
are evaluated at the boundaries z = +1. Now w;“’ , the
0(R™* ) normal velocity in the Ekman layer, is finite as
[ — o0 .  Therefore this net normal flow must be
matched by the corresponding O(R™"* ) interior w-, as
we expect from the general Ekman layer analysis of

Chapter 2:
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(2) (2)

From this condition, together with the known form of
)
W, | we determine that the O(l) interior pressure is

the solution of

z, (0 z (o
%_?(V ’p‘() + Vﬂ” = 0 (7.12)

or,

Tpe = (Tp) - exp{-tl (7.3)

\
T=0
- raN \ N . s = . a o = - . . -
'\V’pi““ )'t-=o , twice the 1nltlal vertlical component

of vorticity, is given. (7.13) must be solved subject to

the boundary condition of vanishing normal velocity at

u“o, = -—_1_ b_P_'.- = 0 af r':("o . (7.’4)

The interior solution is then completed by computing

. ) co)
1,;"" = 3_-3%—— . In general, v;m will not vanish at
r = r_, whereas both & and w™ do. The 0(1)

sidewall boundary layer solution must therefore reduce

2, to zero and meet the conditions of zero radial
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and verticel components at the outer edge of the layer.
Now the important point is that the O(1l) Ekman layer
flow induces an O(R”Vz ) interior secondary circulation.
It is also clear that an O(R'V‘+ ) Ekman flow would simi-
larly induce an O(R-»% ) interior circulation. Since the
interior circulation is still essentially inviscid at this
order of magnitude, we may expect that the same type of
analysis which was used to derive (7.12) will also be

valid to derive an equation for 4pf” . The resulting

equation is

L (7R) + T = 0 (1:15)

or,

vz)p‘m - (vlp‘(!))t; QKP{-T} = O, (Tl(o)

0

Here we assume that initially there is no O(R™) in-
terior vertical vorticity, but this assumption is not
crucial to the analysis.

Equation (7.16) must be solved subject to an appropriate

boundary condition at r = ryt The normal velocity ,ufd

must match that produced by the sidewall region D4,

) (€}
u.,' = %q_

r=r F:-w
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This condition will be seen o be

(3]

— 2, (0
w® = IR . 2\/% (-_‘__aB ) at r=r. (’7.1'7)

2r dw 2r Jdrdw
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Region D4: The Outer Boundary Layer

> -~ -
with g = (wyw) = 30+« R%G° + 8% + ...,

and p = R'/"(r— ), we find for the 0(1) solution:

u‘('O\ - 0
= [ v;m} er'l':{ -p (27h) }
w(b) - O
. =
where 1/7“" ; the interior azimuthal velocity component,

includes as we know the factor exp(-7 ). The bracket no-

tation denotes a function evaluated at r = r

- iaeo,
[f(r;u,z,ﬂ] = f(p,u,:T).

O’

For the O(R™7* ) solution, we find

)

Tt L )

ar

w = ] [l e
et = ”z%”;f - e e { KT

and the O(R"/" ) solution is given by
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()
(2) v (P duy d 1 !L(l, 4+ ! 0)
- -— — - — --U'
e o -2( dw P o P% 2 ¢

v NOT DETERMINED

(L)) (0)
() z 0 Ve 'u:l»
wr = - = — —— .
¥ 2 dp (o4

We see at once that the vertical components uﬁf”

and u@“’ do not vanish at the wall p= 0 . This also
occurred in the axisymmetric solution of Greenspan and
Howard, and it is necessary to solve the inner boundary
layer equations in order to completely satisfy the no-
slip condition.

From these solutions it may be seen that the mass efflux

which drives the interior circulation is given by

o [ AU,
Oo™): w ~ 27 [32] a5 p e,

oy~ 517 + T3] +2fF (3] < [¥])

For axisymmetric modes we know that uf“ = 1% %%?)5 0.
Therefore the mass efflux at r = r_ is o(R"™).

For the nonaxisymmetric modes, «”# (Q . Hence
Mﬂ“/ar does not necessarily vanish at r = Ty and the

e

mass efflux is O(R™ 7% ). A nontrivial O(R™’* ) interior
circulationwhich matches this condition at r = ry must

therefore exist.
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Region D24: The Ekman Layer Adjacent to D4

> -~ (0 % > (1)
Here 4= 4ylpwt) + REE0 4

L= R*(1=x%), p=R*(r-g).

o(1): u,;:’ = —11;'“” e-csinl

‘};((:” - %(“{1 _ e.gcosc }

o = 0

OR™): = wp{r- e"r’cos(,} - ue st

' - ) _-L .
v = - e(oosC} + ul e Csinl

- E

5

- D -C/ .
o 537,‘*—{1 -e (smC-v-c.osC)}

"/z\' (Z)
O(R™)r

NOT DETERMINED

2\
Vo

) (6)

{3&{*_4-1_}7“_)(1— e-§{51n5+wst}>.
29 o

These are the typical Ekman layer solutions with the
important exception that the vertical outflow which in-
duces further circulation within D4 is O(R™ ™). This is,

as it must be, consistent with the solution given above
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for region D4, It bears out an earlier remark that the
fluid vorticity in D4 essentially dzraws fluid out of the

-/4 ) vertical

Ekman layer, creating a relatively large O(R-
motion which does not satisfy the no-slip condition within
D4. Also, as p—-~o0 there is a net normal R mass flux
corresponding to that found in D4; consequently, a matching

O(R™™ ) Exman layer flow is required.
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Region D3: The Inner Sidewall Boundary Layer

In this region, = R (r-r) and

Y2 (o "44(3)

Zz = R q, w10 + R 4,

The velocity components are determined by Fourier analysis.

( "/I‘l.) : M(n = 0

O(‘Q"/.@): M;” - 0

{0) xnn
v = _ @rﬂ';z 31 { Y cos rm< - Jik (Yﬂ) }

n, bk

(o) .
ur;” = —:-%:g_—)—,:]- +Z {A"k('s.'t') e‘l‘“f sin mrz(ex"q + 75,;‘(’1})}

'/
K, = ZYITT= 3
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Hence to O(Rﬂhz) the sidewall region D3 has no effect:
The R "* solution above is just the D% solution seen in
D3. However, the R~ components do satisfy the no-slip
condition at the wall, m=0, and match the corresponding
outer boundary layer components at N=-o . The lower

order boundary layer solution is thereby completed. It

Y

should be noted that a higher order R mass efflux

from D3 induces a comparable circulation in D4,
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Region D23: The Corner Ekman Layer Adjacent to D3

The equations in this region (where £ = R™*(tz%)
M = R?(r-r) are still of the Ekman layer type through
o(R™™ ). With

€= T{.'za(” + R‘/A—’B)

3 ‘bz Lot

the solutions are given by

N

OWR”™):  wuy Lv™] Y eFsinl

z‘ (‘n"l' )1/1.

( (€.}) -
1rz(;):m"—‘_"_h’.‘ EI,'V?(1"eC<.asI)
(e ) \

w =10

£s
4\ @3 _ _ { _(3) . -; .
O(R™): Uy = — 1\ ){21 e “sin(

) (;)) , -7

v, = + (1/; - 1— e s

3 3 [ '] -{, .
Wn = lzl'z('rm-)'/z {1” € (5"15*'%55)}'

)
(t", )a=1 is the azimuthal velocity component in the
inner boundary layer region D3, evaluated at the top sur-

face z = 1. By symmetry, it takes the same value at

z =+1 and at z = -1.
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APPENDIX A

DERIVATION OF FORMULA FOR THE VISCOUS
CORRECTION FACTOR s\ "

It will now be shown that equation (2.15), namely

sﬁl‘fj(lvqs,,|’+ s %})4\} (- )JL’"L’.&_( m) [ (7xY) wf/md?-')dS (a.1)

is equivalent to the relation

“’ﬁ]({%
where | o | o
J = 1-c;‘.;,z{|?"‘“ m—:ko,,,} (H‘(%)' o |" r
+ | Gat ik, “(1+ %HP-[V‘ }
P+ = -A;'“ £ fek

We first show that the surface integral in (A.1) is given by

(V5 //nnf 'T/ d()ds , (A.BS

[I:;nit(_;)?oﬁx(ﬁx\?)-%/ d.C)dS = jj[ /.
: 5
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>
To establish this we need the known form of
(ef. (2.9)),
Y L (G i) 0T} 2 (B i) esp{ L) (a
Y, = s % i(Zﬁ:f;)
Now,

But by (A.4) and the boundary condition f-+ G = 0

we must have

Using this, we find

~

B Ax (i) V), = - Ux(E1AV, )+ B, (e

and (A.3) follows at once.
We next derive an alternate expression for the surface

integral

[ =]

L= [ bl o | VEL-
S a

;i&t

It }A_S-, s = i RSO ()
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which will then establish (A.2).

It is clear from the form of

4
£~

in (A.4) that

;<l.z

© - A 2 2 .. A A

lm . lom i = _.( Qu ~ 7% Qu + Mﬁa\], Pr= At 24k

R=00 s—=s5, / 2,/;b+' 2\/“@:‘ J : ( 8)
A.

Therefore the quantity of primary interest in I is

. * Ly R# ~
Now, %m= 1)\QO - 2kxQ

¥* -~ A - . ~ ~ -»> -»> A " - -
Thus V&, (Q +xnme) = 1(>\”.f2“"<)0m‘o,: + (2;< f}\mh).me Q: .
On putting t==-ﬁx(GxL)+-ﬁ(ﬁlj and noting that

{Rx(ﬁx&)}-{am"fb:‘} = on S,

o

we find
IEY A A L3 -4
va, - ( 7 i hxQ ) = [\, th-k){zOm'Qm + n-meQ‘;} )
We shall now show that, on S,
" -3 A >y A ~> A 2 - L 4*
he Qux Of = _‘%'IT{ k<@ (k-0 ) — A-kx m(“‘Qm)}. (410
1 —(nk)

For the proof, we subtract the two vector identities
(18- (ke (®) = F 50 -(kQk-7eQ
(x G+ (ko e = (k@) - {2 - Ge)Q |
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obtaining
fBxQF = (ke Bxd* + Q) keQ - (LG ARG, (aum)
But
L GGt = [g(éa)-ax(axk)]‘ Q*Qf
= (#k) 7Gx on S, (a-12)
since Q.G = =0 on S,

Substitution for - Q (3* in (A.11) establishes

(A.10).

In turn, (A.9) may be rewritten as

(Bu=ihcd,)e 8 = S0 F"“‘[{ -GGG -

t = (n.k)*

(Mg * 200k)

| RxQ, T kG
1= (nk)

Now our basic requirement is that ﬂip+ have positive

real part; thus



Vips 2 | n, 20k N T 20k

Together with (A.14), this means that

and this, together with (A.6) and (A.8), shows that

P A= 2 M ‘.‘ ~ ’/7_
flexB, - ik ml.(1+1(_"~££“_ﬁ‘)-]ﬁ"+c\.k\ +
N+ 20 k) 2

This establishes (A.2).
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APPENDIX B

DERIVATION OF SPHEROID EIGENFUNCTIONS
AND BOUNDARY CONDITION

Under the transformation

r

(o & Y™ (1 )™

a

M

we have the following operator identity:

S 1 [ 2 3 a3
L .2 o == [ L+ St L
rar’ or 2t 7\24—«‘#‘(3“( B O 37, ') Y)
Now let
2= -1fG = —iﬁ»w.
where

namely

13 34 kK _ k f —
L e - kg o+ (1 4\)—%‘?‘ =0, (B.1)
becones
i [ 2 ¢ D, 1 09 k¢
——— -+ L) =
N+ ( op ) K 37)) (0(4-1))(1— *) 0.
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Putting =tal  so that

O R CTe
Tt " (B.2)
T = (af) G
then
___1-__ é_ ‘- z)b_(? - 6_,1_2;;)6_&0) _ kch }
az(p}_(‘)(,b’} v DM b‘(\ 1d dz(1-'§z)(1-pﬂ O (B.3)
Now

- (- %) o L(z 4 o
(‘_nz)(‘_“}) (-}L" {- (;z .
Therefore, (B.3) is equivalent to

2 2, '\
O (1-p) %9 _ _kd LIS CL SLL 2y B.k)
('0)*(1 P-)@ 1_‘*1) - (K(\ M5 ) 0,

1 -2

whence

(8.5)

By the known form of the associated Legendre function
ﬁf(x) , it follows that

N

k & 2z k/ 2 2
ﬁxx\=.Lmkkvh—x)z.|R(x—ﬁ)) (8.0)
J':l

where
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C, _ (Zm“
mk mi (m-k)!
0 if m-k even
vV =
{ 1 i m-k odd

x} are the N = (m-k)-v distinct squ.ured

zeroes of P:(X), exclusive of 0,1,

Equation (B.5) is now readily cast into a product of
factors involving r and z by substituting directly from

(B.6) and (B.2). For, it is clear that
Vi ¥ : \ )
R

z 2 r 2 X. { .
(=GN w=k) = (OG-0 + 5+ =

It may also be recalled from Chapter 4 that

1+ g(1- E: ) 2 1 - *
ol = : , g = ____;"*_k (B.8)
(1+ E)( - ?m,‘) Emlz
where g = ’/g -1 corresponding to the spheroid
r* 4 (/b)Y = 1 , and for brevity &, = A,./2.

Therefore

2 kz l"z N
9 = BEOLN (W = C () (17 (1) TTE=GN-x)
J-_(
2 2 V¢ r k d 2 2 i
CCAET(EN T ~ar 5

5:‘
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where — 2 2
{+ € 2 2
.= - X, (1—2"‘\3
AJ 1+ e (1=-E2) I .
1+ ¢ 2 2
B = 'E..‘k(1’x')~
J 1+ e{1-85) !

This is the result quoted in Chapter 4, Equation (%.7).

We can also derive a simple form of the general bound-

ary condition

A

wve, - Tg—rhi(xv«)m - -[t;( \L Vo, = 0
PN N

which on the spheroid is equivalent to

249 k 1 -E: Y
ro_m + = e T —— 2 m = O
dr §mcp 5* (=) 2% !

m

on rra e =1,

For, using (B.9) we may rewrite this last equation as

2 v k 1 i = 2 iy
BT [t ) ot Bl T, s ar%e 52} +

m
J'-:l

+ ZZ{(A w1 "a.)(‘*i)B 2)(—{:—‘: {D1+A1rl+ Btil }).} = 0. (3‘10)
i 1]

Now,
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1 ot = 14 %, _(1+£\(1—§,,,\
k(1+ 5...) + v (1 E:)(« +€) -—--Em {k -_—gm—--—-v} . (B.11)

When r*+ (1+€)z°= 1 , it follows from (B.2) that

£y 2

r= 1-p

2

(+e)t" = p

Hence, on the spheroid,

Art e (3= 208 wead = SEEXITER) (o) (8.12)
- (= g (i-g2)
Moreover,
D, + Ajrt+ Bt = (=25 x7). (B.13)

The boundary condition (B.10) now becomes greatly
simplified upon substitution of (B.11)-(B.13). The re-

sult is

(1 +e)(1-84) 2_‘52 (1+)(1-8) <. 1
X k = —m—— ¥ - s . -3 =
{ ( Em ) 14+ g ((=52) 5. Z =X O)
J'.i
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or, since the first factor does not vanish identically
3

N
VvV + ZCZ ‘ 11 2 = L?M \
£ -x; (1+&)(1-§,)

j:(

£

1+ ¢ (1-E2)

on ¢ =

(B.14)
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APPENDIX C
EVALUATION OF s.” FOR 4 CYLINDER

As noted in the main text (Chapter 7) it is desirable
to derive an explicit evaluaticn of the viscous correction
factor sé” for a cylinder, for this is one of the few
geometries which permits such an evaluation and we can
determine certain properties of s." directly without
numerical calculations.

First, however, the general formula for sé“ (see
Chapter 2 or Appendix A) has to be modified. Since
(ﬁ ¢ %)z =1l at z = +1, the surface integrand cannot be
calculated as given. An alternate formula which circum-
vents this difficulty is now derived.

We begin the derivation with equation (A.9), Appendix A,

namely

2 . A 2 * A‘ ,"‘ "’* N - 30 3
(Gu=i3=0) 78 = Omr2nd)ide8r £5-G08 Y.
In place of the analysis which followed (A.9), we Obserxve

that the term on the right may be written
~ " e .~ = 2 R
A R A NP
L

:
2

. as is readily verified by direct calculation. Therefore

(cf. (A.14)),
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From this there follows a revised formula for s:)

N ENIR - VER

)

v
where
- .. : Yy - LA ; Yy
j:lQm—mem“(1+:_gj)lp+l -+ lQm+xnme\z(1+%)|Rl )
Pt = >\.i'-“ T \’;‘\L .

It is clear that the integral over S must be taken in two

parts, one at z = +1, the other at r = r

o]
Let L denote that part of the surface integral

vz J dS taken over the surface at r = r_, and

o
I, the contribution from the surfaces z = +1. Then

\ - A " v
I, = 2“1“{ lka‘z(H' :l'fig)‘ )::_k‘/ }

r=r,

We recall the following expressions for the inviscid

-y -
velocity Q. = O, = {Umk s Vo W“““S :
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-7 cos mmz | / 2k \
= % " [ A,Y I (o™ + 2 J (e ,7s )
um[‘ k- X:,k \ ik mk N \Smk r L( mi' - /

{os mTre

Vma -- ___._( 20(,,,4 J;,_/(“mk") + kak JL(“...L'))

—

b - Nt r (CJ)

M sin mT'2 .
Wmé. = J (dmk.()
N L

J /\ml'_:ié O'

where b =N . ey
o( = miw -
mk X
Wik

The vanishing of the normal component WUW,, atr =r

o)
requires

/ -2k

[ (g = —2  J(a.r - r

RO Kmaamkrjk i) af r=ro. (c.2)

We proceed first to evaluate I1 . Substituting

from (C.1), we have directly that

Ak

I = 27(1 + i}‘"“) 7

l )\ml-l

A -\ 2 'r
[ { Ja (dmk'”} m‘ﬁ’} sinfwmz dz  +
>\mk ~1

/ , 2 ! ,
+ 28 S (i) + 0/ 0) J, @) /cos?'m'n'e dz ) ) (¢.3)
b - N

rz6,

and using (C.2) it also follows that
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N ™

{ ZOtMLJ (dml(r 4 J (dm‘_ } — mk i J(dm(‘ro)
>\n\L Yo
r=r,
Therefore, 2
. '/ 2 2 % 2
PN e \[ A |7 [T, @) | [ K+ ' . (c.&)
! lhmk’ >\m4 r',,"

The calculation of Iz is somewhat more lengthy, and

we shall need the following known properties of Bessel

functions:
- k
o = Ko w0 = Fhe -] X (c.5)
2 (3
Jx(Jk(ux))z dx = %{[Jﬁm] = J (o J“'(mx)} (c.6)

(c.7)

I
< | %
A\L.
<

Jk_'(xs + Jk“ (x)

i
)
-

Using (C.1) we see that, on z

. " ' I ok I kA,
Que = {—z()‘mkakaa * T‘—\};))(ZNMI‘J;. - Téi)’ O}

s AT
b-N..

i,l:"amkz h_k_x’— {—i(zqu‘-](: + E<—i\:"“-k\};‘)) ( i nkJ +2kj) 0} )

C T Nk
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and from these relations it follows that

2
— i —» A Zam
‘ka '—‘k"ka' = (24_)\“") {J (&,

"

2 2
= PR z - dek ! k \\
l Qe + lkamk‘ = mz{ Jk (o(mkr) + -&::'r'_ \L(dmkr/ ! .

In view of the identities (C.5), these last two equations

become
2 2
i A 2 _ 20,
Q’“‘_"‘XO““‘ - (2+x..n)z{‘j‘t+'(a”‘"r}} 1 (c.8)
- ~ e 2 2
otk Q] = (2- xu){‘]‘“(a"‘“ }
Now .

upon substituting from (C.8) we have, equivalently,

-
o 2

~J, @ de (c.9)
{ k-t }

L)

2
I,= F9. o(:,‘f r{.]k+f°‘...“)\] dr  + F@.oﬁk

m

o*\_..,\

[}

F@ am 4 (>‘me+2lllz

where

£O = ar o lm—zl
ﬁ‘ ( mk-z3
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But by the known relation (C.6),

s - 2
d:‘ff{\jkf'(uubr)}l'dr = (:"{?Z:E) {(ktl(d,:fa)) — \J‘:‘(dmlj;) J’:tz(u”“r;)} (Q_i())

[}

We now show that because of the eigenvalue relation (C.2)
we can rewrite the integrals (C.lO) in terms of just

2
{,Jk(dmaﬁ)} . To do this we observe that (C.2) and

(C.5) together imply

J '(kaﬁ) )\m;:-z : kr Jk (C\'mkﬁ,\ )
- a ¢t
mh (ca1t)
and similarly
MNa¥2 ko1,
Y (\am&r;) = - ' \!L k%ﬁ) .
k+1 xmk I

Then (C.7) and (C.11) show that

[2(k-0 k
Jk_z(umkre) = Jk(dmk%) - -;\—--()\mk‘Z) - 1\

i e r‘;l mk (C 0 )

J’( L.az r_z. }\m“

+2
‘mk ©

G = Jk(amhr,) Z‘k*"._‘f_,(xmﬁz) - 1]
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Collecting the results (C.10)-(C.12) and substituting for

2 2 \ m7rt .
amk=(4-)%k%331 y wWe determine that
m

2 : z 4")‘:& : z 2 2l A
o Jr’ J (U...u”)}dr = — @) )| k + mrtg ~ =) (c.13)
AR 2R T 23,
7] mi

Finally, then, we may substitute (C.13) into (C.39) to obtain

the desired result for the integral 125

: Z 141
I, = 2w q'xmk/ Jk(a’"“r°)> [{ K +wd' - 2kAn }-_"_\;'/1

W2 \ A Z- Mok} (2527
2 a2 2 2k A k 1—1
4+ {k+mmren - ™ }""—'_z (c.ik)
{ 2+>‘mk (z_xmk);/ ]

It is a relatively simple matter now to complete the

evaluation of 5:0’ which we recall is given by

s 18N = - (T+ 1), (c.1s)

To compute the volume integral N = ﬁf[&kkfiv)
we once again appeal to the identities (C.5)-(C.7) and the

consequent result (C.13). These enable us to establish

that



whence

"'or jé? Ith\ =

2(
(4 ’\mb.)

2
N = z'rr( J‘w‘“‘m)-—————
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o

27 2;1 }( sin” mT2 dz ‘[J' "{
wmk ! é

( +Amk‘ 0(21‘

cos mwe d xl

0

fr- T (0( r)}dr

o

J{J (orr') }

JL. (dmk")}zé P:ll -+



-131-

APPENDIX D
THE GEOSTROPHIC MODE IN A CYLINDER

The method of solution for the interior problem (D1)
and Ekman layer problem (D2) has already been indicated
in the general theory of Chapter 2, and the details need
not be repeated here. Indeed, with but slight modifica-
tion Greenspan's general theory of geostrophic motions
readily yields the solutions quoted in Chapter 7, above.
Therefore, we turn to discussion of the sidewall boundary
layer regions,

The basic method used throughout the following deriva-
tions is tc assume an asymptotic expansion for the ve-
locity and pressure variables ‘q’F’ in each domain. The
form of these expansions is dictated primarily by the

/2 ) circu-

knowledge that the Ekman layers induce an O(R™
lation in the interior, and by the requirement that the
expansions of one domain join (match) those of adjacent
domains in the common overiap regions. (The choice of
variables appropriate to each domain has already been
discussed in Chapter 7.) These expansions are then sub-
stituted into the equations of motion and boundary condi-
tions in order to obtain an asymptotic sequence of prob-

lems. The solution of this problem seqguence gives the

representation of the flow variables in the given domairn.



We choose polar coordinates (r,w,z) and let

'é': (u,vyw) , as in Chapter 7.
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3 3 -’/
on the geostrophic time scale T=R 't are

-2V + b.E = -R—Vzéi
ar
1 - R
24 * E i RO &
¥ . QW
(k3
u + '—(u.-&-a_‘r_) +
dC r Iw
* _ i
where V = ot

The boundary conditions are that

aries, and

+ R"{v’:u, - L (4“- Zg-‘—;)}

rl

+ RV - 5 (v- 2]

2w
-t 2
+R VYVw
W =
1%
2 2
t t 2 d
- = —_ . 4 =—
cie TP T

-0

q (A7) =g ®) at time 7= 0.

‘_\/—"

Then the equations of motion

(D.1)

at solid bound-
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Region D4:

The interior flow has already been detzrmined as

- (o) Y = (1) ~'/2 -» (2)

q = 4, + R 4. + R 4,

with

(0}

g7 = fue vty {23 13 e

t
] « )y v Zfbw’zar

In D4, where p = R'/“(r-r;\ , this interior solution is re-

presented as

- =¥ (0), Y g"'(o‘ b"’(.\ r 3
> (o) ro ] [-m\ 2 1 °q, 2@
[ ] {\0[ or 4 ] +R e [P | T l.q'
where [f(r.w,z,'l')] = f(z,%2,7) . (This bracket notation will
be used extensively throughout this section.)
The requirement of matching at the outer edge of D4

suggests an expansion in powers of R 4 s

R T - TR o J I
o = (o\ IQ ’P:\ - R 'Pm
P = RW. ( r- ro) .

When these expansions are substituted into (D.l), an
asymptotically valid problem sequence can be derived.

For the radial momentum equation, substitution shows that
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W@, S , -3 > o\ =% (1) N
—2{y s RN+ )+ R Fg{ﬂ +R P, +} -

-l

'« =St <3 % -1
- —RI%{ULO)"’R/“AL;‘*"‘} + {H 362+R4lF‘L }{A.L:O)—t- R ‘u.;“"--'} + O(R )

Here, we have written

-t

. K3 3 _|/zz_ _3/4
R'T = R (St i " 2w R v 8

]
et Rt

By regrouping terms, it then follows that
, d (0) bbu) _'/4 m bp(z)
= R B ) b (2 %) 4R (—Z«r + 4 ) +
0 = dp L Y) Y

(3) >

_llz‘ 2
+ R (—21;;‘%3&. +{a—-~b—-}uf‘ +
3 “ 2 . bto)
+ R"(—z\r:”+3@_+{§--a—l}u” 1% )y

+ OIWR).

Entirely similar operations are applied to the re-

maining equations of motion. In each equation, we equate

like powers of R™/* , and thereby derive the following

asymptotic problem sequence:
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g
bR
d (o) y
bug =0, sy 0 as pr-o0
()
(i) —ZUI:O) ____3Pq, =0
0p
. )
2uy + o0y - 2 2R
o dw G
3,
hdx} 0
2
I & [ AR LI 2,
2 olae
C2)
(ﬁ") _ 2 \I“:ﬂ + 3pq- 0
00
2 4™ Lo o 36, -2 )g”
4 + 7 o " * 3 01
0 dW o dw » o
()
p, _ (T -\
x>z \3p T *
\ W) ‘
buf: A W bwm %
d Faw+u‘*+r°b‘f)+£ﬁ
P ° h d r;t o



iv)y —2Y, >0 20
2 @) 2 .. ) o)
@Y g bp!m - 3___1__ '_0__)4,‘;“‘4_ _P_‘ DBI 4 _bP_*_ + L OV
24y ¥ 230 LA G ow R} dw o 3P
o 3\ 1
(R T E
1Y ¢ o ¢f

&3 @) o ortE O) 2 (o)
(W e W) e, M) g
20 o\ ® 2% A W o} dw

Problem (i) says simply that the normal velocity and

the pressure do not change to first order through the

boundary layer. Therefore,

o _ A ©_T. the interior pressure
U, =0 -p“'~[p']’ at r=r;.
Problem (ii) then shows that
w v
MLy, Mg, (D.2)
0% 02

. ) .
Hence, the condition wf: 0 at z = +1 requires

M],':M = 0. (D-3)
The mass conservation requirement is satisfied if
| P btrm
w = “ dp . D.4
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(t)

It is necessary that «, =0 af ¢ =0 . As subsequent

analysis will show, there can be no O(R-V&) mass efflux

-y ) )
3 layer. However, we still must determine

from the R
v, . For this we need to impose the condition that the
solution match the Ekman layer mass flux at z = +1. But

before doing this we formally complete the solution in D4.

()

By eliminating in the equations of problem (iii),

it is found that

mﬂu\ ' f’ 2 bUi”
= - —| = - — )
% 2\ 2" p
whence
1. (03
) -1 3 IV, )
wy = 7(5‘9 3‘?) + uIL {p)u),’t') ».5)

This and the above results are sufficient to establish

)
a relation for .u: 3

2) [} (o)
Tl oWt (pu) 4 (T-1 )
2p D oW G 9P

u;“\ must be found by invoking the matching conditions at

z = +1. In addition, problem (iii) entails that

(<)
AV,

— = 0.
2%
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We shall need one more component of the solution, the
-l/
O(R * ) vertical velocity in D¥. This is determined by

problem (iv):

A\ )
aw;(z . 61 _ E_ BU['_(‘) ~ A 6_1_ _ E_ \1’.(“ v i—%(o \
2 Z\dpt ¥T ) op 26\ 9" 3?} : 26 29*




_139_

Region D24:

In what follows the meaning of the double sign ¥ or
¥+ is that the upper sign is used for the Ekman layer

near z = +1, the lower sign for the layer near z = -1,

We write

Ve > (1) )

§ = queatt + RUGL + /G0 -

(132).

with p= R™(r-r), =R

The solutions in this regiou must (a) match with the
adjacent Ekman layer (D2) solutions; (b) match tangential
components with the adjacent outer boundary layer (D4) solu-
tions; and (c¢) satisfy no-slip conditions at { = 0.

I addition the small normal outflow Rﬂmuar‘+ Rﬂ&uqf)+m
will give us the necessary conditions to complete the solu-

tion in D4.

The governing problem sequence is seen to be:

(o)

O
00

(c\

*pi
dG

= 0

o)
b _

— 0
3g



2  (0) [}
(i L 2 w = ﬂ
2L* op
azﬂ::) _ Zd(m _ 1_ ap(o\
AC* 4 e 3w
1) ) 0
apz# =0 bw;.lc- = + a“’zh-
3 ’ 2 Y,
o) 2
(i) °“1‘; + 205 = oPu
d¢ op
)
BUJ — o u® = l_bR;)
Y AT 5 dw
(¢ ) [0
OPa -0 0y _ o, SOy L v
;M (et
53 34 p s 3w

These equations show that, through O(R-'/z ), the pressure
is constant within the layer:

= (5") k=012

t=t|

Moreover, from the form of the solutions in the adjacent

region D2, namely

. 0 () -
w = u( {1‘6 coo.C§ 3e sinC

z

Gy

A
va

‘d“,m{ 1- e‘cmt} + ,uf") € Csinl , 1= 0,1

we must require at p= -0 that
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€0)

u ~ - [o]e sin

o el et

o = (U T =€) (o3 [
4);_2‘ N (P[ m\ [4;-"‘])(1 - m() (P[%’;’] + [MS\D e_gsinl,

We shall write the solutions in thie form

and

Wy _ w _-¢ .
Mz“’ "% e SW‘Z

v = i {1- el ]

Wy = m{ 1-€ an} /U'me Leing

) o) -1 ] w _-C_.
‘U'z“:%{l—e mt}""uq_esu‘c.

To satisfy the matching conditions at p=-00 we take

"7:0\ - [ 11',“’] . 'Vq-“"

w @ St
and require that U ’——"0 \/q_ — 0, \/ — (0 as p—-00 .
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u)

. . . 1) (o)
However, in order to determine U, and \A , Vp  We

must first consider the mass outflow conditions at T =100.
From problem (ii) and the above solution functions,

it follows that

1\ o) (a)
AW, ou ovp  ~C .
2% _ t 2l = T __ll-_ Q. sin C .

I 3p 3p

This can be integrated, with the result

o)
i = 3328 {1 - & singrast) )

Hence,

(D.6)

By similar methods we find from problem (iii) that
(1) <0

l'(“_(7.) - ;li(_al}_-&_ + )( 1 —Q-E{s'\vlt‘i-cnst]])

24 3? o

(1)

2) - b\rq_ (.r('_ - Q)
w,m, = 4 -E( —_— e — = w,‘

¢ = o0

Now, in the discussion of the solutions in region D4,

it was shown that
(o\

w =2 [F 2 Yo A (0
T B I S T
e ?-(ae’ W) 3¢ Wy ()

and



1 (oY 2 )
d \| AV 3+ 2 A (2}
@ _ -t L T S i o w )
W, 2( 2z q-/( ) 20 R & (V, ) .

By substituting these functions into (D.6) and (D.7),

respectively, we derive the equations governing the flow

in D4:
a‘z 3 5“}:'-(o) > v;:o\ O (D 8)
(5{1‘ ) b—T) 0 % '

2 (a0}

O () 2
az _ b\r B\T,‘, - 1 ULO)_(Q_ _E ) bJUZt
(w" )b? 2 f:{ U AT (2:9)

The solution to (D.8) subject to the boundary conditions

(o) (0) ()
xm° = 0; v~ [U} ] as p—>-00; =0

p=0 tr =9

is reddily obtained by Ilaplace transform calculus:

(o\ - [.U.(o)] arﬂp{ Z,z.,, } . (D.IO)

Whth the boundary conditions

(1)

)
m IV, )
v = 03 0" N e[ 1.\_{«;’(‘] &s P_.,-oo:‘ VZ"

e=0 'r=0

the solution to (D.9) is by similar methods seen to be
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e

0 f‘@ -__P_
;U} pe Zc{ 2Trlz} . (D.ﬁ)

7|

4

v = P[z.’l{'_] + [vf“] er?{%%,lz} + i

To complete the solution in region D4 we must deter-

mine " and u Irom the relations

Q) (o)
Moo -l Mf,"k =0 (D.12)
aP r; dw e:O
)
WL LT x (o) ufE 2 el o (g
3}p AW Y 2\ag* 3t/ 2p M S
p=o0

From the first of these we cobtain

o - [ AfE (et ) v pet{Zh) . o

)
since at r = r_ we must have W/ = —(1/0) 2w ow .
Clearly, at the outer edge of the boundary layer

({,__‘, —oO) the matching requirement at O(R-w') is

W~ oF (5] = Ll (0.15)

Integration of (D.13) is also a straightforward matter

once we make the substitution (cf. (D.8))



(£,-2)ms oot
20" 3T/ 3p 29
For then,
()}
(2) b\J‘,b 1 Q) ¢ @)
dy = Go dp ~ FoPu*u- TN - (D.16)

Now we are primarily interested in the value of o

at p=-00, for it is this normal mass flux which drives

the interior O(R™"*) circulation. We find that as p— -00,

(o)
bllr_] + I['_‘_).‘IL ]

2 o) — (o)
-Loud o~ £ -2 2T 1%,
2 G dr ™ r,odr
| Q)] ~ \ )
E% 2[\1“ ]
At r = ro we must have
\ (
b\(fn _ . 6V1(°\ bu(l\ . ﬁ\ _ 1 3_}_}.1.‘\
s G ooy ar G G0

with

Therefore, as p—=> -c0,
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LG‘

e S 2] < s T B o))

-~
[J

The interior solution will match this mass efflux, provided

that

W] = sl ] ()< [4]). e

"'/3

We turn now to consider how the R iayer brings

ihe vertical velocity to zero at the wall.
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Region D3:

Expanding the outer (D4) solution in terms oftthe

inner variable v = R (ror) = R"*p

“ 3 () Yo 2 gﬁ (e) < 3 63.. (o\
Gu= ()RR RMT(E) g {l(—ﬂ&)+*"’\
'qli (%‘f )P=° n(ap /92-0 2 ‘0?1. b=o 31 aP! hae (LLQ {7:0

we have from our already-determined D4 sclution that

~

i W -t (0 o
g, = /{0, o) &M o, 1 L] Lo

(wr)’ 3 27 (w)2 ! 2 (we)h

This suggests the expansion to be taken in D3:

= > gy b (3D -k/z

R

The corresponding asymptotic problem sequence is then seen
to be

) 3y _ Op,
3q1 D2
(5)
EE& = 2«50\
an
(5) 2 (1)
2u® 4+ 1% - 24
3 o dw bn‘
(s (1\ (1)
é&i + AI Eﬁﬁ = 0



G
b‘v)‘ LE T
)
9 3)
¥ = 2
an
y 2 dW, Yy
2{.‘.;’ + l"‘-‘s—b = 31.
B 3w DV\ T
G2 1) w('&\
AUy RN M L.
b‘y) ro a(:.) a%

A solution consistent with (i) and the no-slip condi-

tions at w = 0 is simply

n W)
¢ - _ b bU’s d
s % L o )
-,
u}u\ = - [v.‘m] ('\T‘ft) 2
W}m - O .

Thus the R 1layer does not affect the solution to
O(R'—y'z ). Nevertheless we record these variables for
they are needed in the solution of problem (ii). Indeed

we see at once from (ii) that

3 (3 (3)
dWy L o

bfy)’ 0%

51413“\ W (3) [€)

a'y)-3 0% [k b'y)
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or as a pair of uncoupled eguations,
) 2 (3)
3 [
(-;r +—LF511)45 O

TR 3y _
(~5T4—1>w—3 - Oo

We determine the solution by separation of variables, sub-

ject to the no-slip conditions at %= 0 and matching con-

ditions at n = -0 ¢
3) 3) w“’
At 7]:0: 4)'3 = WS = ‘d_%;- = O
, A A S (D.18)
At m=-oo 573 e e

@ ]
4”-3 ‘ iy

2 (art)
Note that the condition B,u.;”/b% =(Q is in general necessary
but not sufficient to ensure uf”: 0 at 7 = 0 ; but it
shall be evident from the solution that in fact u;"' =0

at n = 0.
Let

‘L‘ )
wl = Z(Bmk(n)e Y sin h’n'z) S (D.19)

2 (avy'lr

",k

Then
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"t L \ 3 (o)]
N = SLASIR e W ocos n772 + . [Ar, (1.50)
g 2’2( e 1 v ] 31 2x(wa)’ \2-20)
ow™ L w1y a‘w}f‘ﬁ
2z E{ZWf 0% G 0w Dy
B3 . 2
z lZ ek gin nrz { 'Z‘L'B:“ - -‘-‘i‘i.:f’:k} (D.21)
z dn s dn

The coefficients Bﬂk satisfy the sixth-order equation

J.ank

i + bwr* By 0.

Solutions such that B — 0 as n—>-00 are, with
= lZ‘lf\'l'(’l'/3 ,

B = exp{n,,ﬂ + Qs exp{e n.,v,} + Qg e’a(;cl ..7} (D.22)

The boundary conditions (D.18) at »= 0 together with the
expansions (D.19)-(D.21) give us three equations for the

determination of the constant coefficients @, Qpuuz, Anks -

g -2 [\
Z eckw Sin Wir: (ahld + Qh'ﬂ + ahk;) = —2 (['IT"‘C \' |/]l
Z e‘ku cos nMr: (\ Qpiy ~ anéz - ank:) = O

Z x? ek sinnrz { (nr - ¢

o=

°

ik 2 -i ¥
)y, - Lmr +;)(e U, + € am)} = (.



Since

the above equations are equivalent to

2
] -k [,U-'“”] do

— |
Gay ¥ Qukr + Qug = ,n,n, '5‘

(,n/,-c)'/‘l.
Gaky — Gnkx — a-nk; = O
1.217'/3 -.iz"'/j ’.h 2-5/ _"tlz
W(I'(G.,,k, - e ankz - € ank!) = _':o an 1 +e a ¢ a‘nki) .
From this we readily find that
amh = A‘nk (ro,rt)
-iTy ( k
e nmw -
Quiy = A"k(f'o,’t){ "3"'»)}
nr + ik
o
Vs (e o
mu=‘4umﬂ{ e’ " [ + )
v 4+ ik
M
where
y\ Z'ﬁ' .
_ - )
Ank(roﬁ‘) = - ) "‘-Je Lw__[,d-'(o] .
2nT 2T ) (,“,q,)-/z

Substituting these back into (D.22) and (D.19)-(D.21) yields

the O(R ) solution in D3 which satisfies the no-slip con-

ditions at the wall:
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3 .o
(2) LY, ] !
v, 3 _ _;L' Pyyrm=a Z A"k\r 'ue cos nr { exb(m.m f,k("])]

o_ & [v?] e x) e, \
- 4 E A (nz)e smm}{exp ®an) + £, (n)

where
Ly, _ .
f‘(y)) = 2exp (3 :ﬂ{nq cos(—}:(,;q..g) _f_k sin(go{,v’\ _ g)l '
" v .1___ \3(‘0 L
nw + o J

This circulation is, as we have seen, balanced by an

..7/‘1
O(R """ ) normal component:

W= =) (- E)y, hcqme““’(m "‘“)(expi*-ﬂ = G d'ﬂ)

where
_ 2exp(Gem) T w\ | ik i3 w
ank('r)) = m{?ﬂfcos(;n,v’+5> - ‘.-}SM('Z—“J) 4-3) )

Mo
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