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The performance bottlenecks of graph applications depend not only on the algorithm and the underlying

hardware, but also on the size and structure of the input graph. As a result, programmers must try different

combinations of a large set of techniques, whichmake tradeoffs among locality, work-efficiency, and parallelism,

to develop the best implementation for a specific algorithm and type of graph. Existing graph frameworks and

domain specific languages (DSLs) lack flexibility, supporting only a limited set of optimizations.

This paper introduces GraphIt, a new DSL for graph computations that generates fast implementations for

algorithms with different performance characteristics running on graphs with different sizes and structures.

GraphIt separates what is computed (algorithm) from how it is computed (schedule). Programmers specify the

algorithm using an algorithm language, and performance optimizations are specified using a separate scheduling

language. The algorithm language simplifies expressing the algorithms, while exposing opportunities for

optimizations.We formulate graph optimizations, including edge traversal direction, data layout, parallelization,

cache, NUMA, and kernel fusion optimizations, as tradeoffs among locality, parallelism, and work-efficiency.

The scheduling language enables programmers to easily search through this complicated tradeoff space by

composing together a large set of edge traversal, vertex data layout, and program structure optimizations. The

separation of algorithm and schedule also enables us to build an autotuner on top of GraphIt to automatically

find high-performance schedules. The compiler uses a new scheduling representation, the graph iteration

space, to model, compose, and ensure the validity of the large number of optimizations. We evaluate GraphIt’s

performance with seven algorithms on graphs with different structures and sizes. GraphIt outperforms the

next fastest of six state-of-the-art shared-memory frameworks (Ligra, Green-Marl, GraphMat, Galois, Gemini,

and Grazelle) on 24 out of 32 experiments by up to 4.8×, and is never more than 43% slower than the fastest

framework on the other experiments. GraphIt also reduces the lines of code by up to an order of magnitude

compared to the next fastest framework.
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1 INTRODUCTION

In recent years, large graphs with billions of vertices and trillions of edges have emerged in
many domains, such as social network analytics, machine learning, and biology. Extracting infor-
mation from these graphs often involves running algorithms for identifying important vertices,
finding connections among vertices, and detecting communities of interest. Speeding up these
algorithms can enhance the efficiency of data analytics applications and improve the quality of
web services [Eksombatchai et al. 2018; Fu et al. 2017; Sharma et al. 2016].

It is difficult to implement high-performance graph algorithms. The performance bottlenecks of
these algorithms depend not only on the algorithm and the underlying hardware, but also on the
size and structure of the graph [Beamer et al. 2015]. As a result, different algorithms running on
the same machine, or even the same algorithm running with different types of graphs on the same
machine, can exhibit different performance bottlenecks. For example, some algorithms, such as
PageRank, spend most of the time working on the entire graph, while traversal algorithms, such as
Breadth-First Search (BFS), work on a smaller subgraph at a time. In addition, running the same
algorithm on a social network with small diameter and power-law degree distribution exposes
different performance bottlenecks compared to running on a road network with large diameter
and uniform degree distribution.

Graph optimizations make tradeoffs among locality, parallelism andwork-efficiency [Beamer et al.
2012, 2017; Kiriansky et al. 2016; Shun and Blelloch 2013; Zhang et al. 2017] to improve performance.
Since many graph algorithms have very different performance bottlenecks, and optimizations
make different tradeoffs, one optimization can significantly boost the performance for some graph
algorithms on certain types of graphs, while hurting the performance of other algorithms or
the same algorithm running on other types of graphs [Malicevic et al. 2017]. Programmers must
iterate over multiple implementations of the same algorithm to identify the best combination of
optimizations for a specific algorithm and input data.
Existing graph frameworks perform well for a subset of algorithms for specific types of input,

but have suboptimal performance on algorithms with different bottlenecks and graphs of different
sizes and structures [Beamer et al. 2015; Satish et al. 2014]. Developers writing performance-critical
applications cannot afford such a level of slowdown. This performance inconsistency exists because
each framework was designed to support only a limited set of optimization techniques, and does
not allow for easy exploration of the large space of optimizations. It is infeasible to write hand-
optimized code for every combination of algorithm and input type. A compiler approach that
generates efficient implementations from high-level specifications is therefore a good fit. However,
existing graph domain specific languages (DSLs) [Aberger et al. 2016; Hong et al. 2012; Lam et al.
2013] do not support composition of optimizations or expose comprehensive performance tuning
capabilities to programmers.
We introduce GraphIt,1 a new graph DSL that produces efficient implementations with perfor-

mance competitive with or faster than state-of-the-art frameworks for a diverse set of algorithms
running on graphs with different sizes and structures. GraphIt achieves good performance by en-
abling programmers to easily find the best combination of optimizations for their specific algorithm
and input graph. In this paper, we focus on providing mechanisms that make it possible to easily
and productively explore the space of optimizations.
GraphIt separates algorithm specifications from the choice of performance optimizations. Pro-

grammers specify the algorithm using an algorithm language based on high-level operators on
sets of vertices and edges. Performance optimizations are specified using a separate scheduling
language. The algorithm language simplifies expressing algorithms and exposes opportunities for

1The GraphIt compiler is available under the MIT license at http://graphit-lang.org/
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optimizations by separating edge processing logic from edge traversal, edge filtering, vertex dedu-
plication, and synchronization logic. We formulate graph optimizations, including edge traversal
direction, data layout, parallelization, cache, NUMA, and kernel fusion optimizations, as tradeoffs
among locality, parallelism and work-efficiency. The scheduling language enables programmers to
easily search through the complicated tradeoff space by composing a large set of edge traversal,
vertex data layout, and program structure optimizations.

GraphIt introduces novel scheduling representations for edge traversal, vertex data layout, and
program structure optimizations. Inspired by iteration space theory for dense loops [Padua and
Wolfe 1986; Wolf and Lam 1991], we introduce an abstract graph iteration space model to represent,
compose, and ensure the validity of edge traversal optimizations. We encode the graph iteration
space in the compiler’s intermediate representation to guide program analyses and code generation.
The separation of algorithm and schedule also enables GraphIt to search for high-performance

schedules automatically. The large scheduling space and long running time of the applications make
it costly to do an exhaustive search. We show that it is possible to discover schedules with good
performance in much less time using autotuning. Programmers familiar with graph optimizations
can leverage their expertise to tune performance using the scheduling language directly.

We perform a comprehensive analysis of GraphIt’s performance using six state-of-the-art shared-
memory frameworks (Ligra [Shun and Blelloch 2013], GraphMat [Sundaram et al. 2015], Ga-
lois [Nguyen et al. 2013], Green-Marl [Hong et al. 2012], Gemini [Zhu et al. 2016], andGrazelle [Gross-
man et al. 2018]) with seven algorithms consisting of PageRank (PR), Breadth-First Search (BFS),
Connected Components (CC) with synchronous label propagation, Single Source Shortest Paths
(SSSP) with frontier-based Bellman-Ford, Collaborative Filtering (CF), Betweenness Centrality (BC),
and PageRankDelta (PRDelta), running on real-world graphs with different sizes and structures.
Our experiments show that GraphIt outperforms the next fastest of the shared-memory frame-
works on 24 out of 32 experiments by up to 4.8×, and is never more than 43% slower than the
fastest framework on the other experiments. For each framework and DSL, we show a heat map of
slowdowns compared to the fastest of all seven frameworks and DSLs in Fig. 1. GraphIt does not
introduce any new optimizations. Instead, the DSL achieves competitive or better performance
compared to other frameworks by generating efficient implementations of known combinations
of optimizations, and finding previously unexplored combinations by searching through a much
larger space of optimizations. GraphIt also reduces the lines of code compared to the next fastest
framework by up to an order of magnitude.
This paper makes the following contributions:

• A systematic analysis of the fundamental tradeoffs among locality, work-efficiency, and paral-
lelism in graph optimizations (Section 2).

• A high-level algorithm language that separates edge processing logic from edge traversal,
synchronization, updated vertex tracking, and deduplication logic (Section 3).

• A new scheduling language that allows programmers to explore the tradeoff space by composing
edge traversal, vertex data layout, and program structure optimizations (Section 4).

• A novel scheduling representation, the graph iteration space model, that can represent, combine
and reason about the validity of various edge traversal optimizations (Section 5).

• A compiler that leverages program analyses on the algorithm language and an intermediate
representation that encodes the graph iteration space to generate efficient and valid implemen-
tations for different combinations of optimizations. (Section 6).

• A comprehensive evaluation of GraphIt that shows it is faster than the next fastest state-of-the-
art framework on 24 out of 32 experiments by up to 4.8×, and never more than 43% slower than
the fastest framework on the other experiments (Section 7).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 121. Publication date: November 2018.
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Fig. 1. A heat map of slowdowns of various frameworks compared to the fastest of all frameworks for
PageRank (PR), Breadth-First Search (BFS), Connected Components (CC) using label propagation, and Single
Source Shortest Paths (SSSP) using Bellman-Ford, on five graphs with varying sizes and structures (LiveJournal
(LJ), Twitter (TW), WebGraph (WB), USAroad (RD), and Friendster (FT)). Lower numbers (green) are better,
with one being the fastest for the specific algorithm running on the specific graph. Gray means that either an
algorithm or a graph is not supported by the framework. We try to use the same algorithms across different
frameworks. For Galois, we used the asynchronous algorithm for BFS, and the Ligra algorithm for SSSP.

2 TRADEOFF SPACE AND OPTIMIZATIONS

1 Rank = {0, . . . , 0} ▷ Length V array
2 DeltaSum = {0.0, . . . , 0.0} ▷ Length V array
3 Delta = {1/V , . . . , 1/V } ▷ Length V array
4 procedure PageRankDelta(Graph G , α , ϵ )
5 Frontier = { G .vertices }
6 for round ∈ {1, . . . ,MaxIter} do
7 NextFrontier = {}
8 parallel for src : Frontier do
9 for dst : G .getOutNgh[src] do
10 AtomicAdd(DeltaSum[dst], Delta[src]/G.OutDegree[src])

11 parallel for v : G .vertices do
12 if round == 1 then
13 BaseScore = (1.0 − α )/V
14 Delta[v] = α · (DeltaSum[v])+ BaseScore
15 Delta[v] −= 1/V
16 else
17 Delta[v] = α · (DeltaSum[v])

18 Rank[v] += Delta[v]
19 DeltaSum[v] = 0
20 if |Delta[v] |> ϵ ·Rank[v] then
21 NextFrontier.add(v)

22 Frontier = NextFrontier

Fig. 2. PageRankDelta (SparsePush).

While the effects of various optimiza-
tions are well-known to expert pro-
grammers, we believe that we are
the first to characterize the optimiza-
tion tradeoff space for graph optimiza-
tions. Our tradeoff space includes three
properties of graph programsÐlocality,
work-efficiency, and parallelism.Local-
ity refers to the amount of spatial and
temporal reuse in a program. Increasing
the amount of reuse improves locality
due to increasing the number of cache
hits. In a NUMA system, locality also
refers to the memory location relative
to the processor. Increasing the ratio of
local memory accesses to remote mem-
ory accesses improves locality.Work-

efficiency is the inverse of the number of instructions, where each instruction is weighted according
to the number of cycles that it takes to execute assuming a cold cache. Reducing the number of
instructions improves work-efficiency. Parallelism refers to the relative amount of work that can
be executed independently by different processing units, which is often affected by the load balance
and synchronization among processing units. Increasing parallelism improves performance by tak-
ing advantage of more processing units, and helping to hide the latency of DRAM requests. We use
PageRankDelta (described in Section 2.1 and shown in Fig. 2) as an example to illustrate the effects
of various optimizations on these three metrics. Each optimization can affect multiple properties in

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 121. Publication date: November 2018.
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the tradeoff space, either positively or negatively. The complex tradeoff space motivates the design
of GraphIt’s scheduling language and compiler, which can be used to easily search for points in the
tradeoff space that achieve high performance.

2.1 PageRankDelta

PageRankDelta [Shun and Blelloch 2013] is a variant of the standard PageRank algorithm [Page
et al. 1999] that computes the importance of vertices in a graph. It maintains an array of ranks, and
on each iteration, updates the ranks of all vertices based on the ranks of their neighbors weighted
by their neighbors’ out-degrees. PageRankDelta speeds up the computation by updating only the
ranks of vertices whose ranks have changed significantly from the previous iteration.

The pseudocode for PageRankDelta is shown in Fig. 2, where V is the number of vertices in the
graph, 0 ≤ α ≤ 1 is the damping factor that determines how heavily to weight the neighbors’ ranks
during the update, and ϵ ≥ 0 is a constant that determines whether a vertex’s rank has changed
sufficiently. For simplicity, we update the ranks of vertices for MaxIter number of iterations,
although the code can easily be modified to terminate based on a convergence criterion. The
algorithm maintains the set of vertices whose ranks (stored in the Rank array) have changed
significantly from the previous iteration in the variable Frontier (represented as a sparse array). We
will refer to this as the active set of vertices, or the frontier. Initially all vertices are in the active set
(Line 5). On each iteration, each vertex in the active set sends its Delta (change in Rank value) from
the previous iteration to its out-neighbors by incrementing the DeltaSum values of its neighbors
(Lines 8ś10). Since vertices are processed in parallel, the updates to DeltaSum must be atomic. Then
in parallel, all vertices compute their own Delta and Rank values based on their DeltaSum value
and α (Lines 11ś18). Delta is computed differently for the first iteration. If the Delta of the vertex is
larger than ϵ times its Rank, then the vertex is active for the next iteration and is added to the next
frontier (Lines 20ś21).

2.2 Graph Optimizations

We describe the tradeoffs of the optimizations listed in Table 1 with PageRankDelta (Table 11
describes which optimizations are supported by which frameworks and DSLs). Table 1 contains the
effect of optimizations relative to the baseline in Fig. 2, which we refer to as SparsePush.

Table 1. Effect of optimizations on the different properties of the
tradeoff space relative to the baseline SparsePush. For each prop-
erty, ↑means positive impact on performance, ↓means negative
impact on performance, ↕ means it could increase or decrease
depending on various factors (described in the text), and no entry
means no effect on performance.

Optimization Locality Work-efficiency Parallelism

DensePull ↕ ↕

DensePush ↕ ↑

DensePull-SparsePush ↕ ↕

DensePush-SparsePush ↕ ↑

edge-aware-vertex-parallel ↓ ↑

edge-parallel ↓ ↑

bitvector ↑ ↓

vertex data layout ↕ ↓

cache partitioning ↑ ↓

NUMA partitioning ↑ ↓ ↓

kernel fusion ↑ ↓

Direction Optimization and Fron-

tier Data Structure. Lines 8ś10 of
SparsePush iterate over the outgoing
neighbors of each vertex, and update
the DeltaSum value of the neighbor.
DensePull (Fig. 3 (left)) is a different
traversal mode where each vertex iter-
ates over its incoming neighbors that
are in the active set, and updates its
own DeltaSum value. DensePull in-
creases parallelism relative to Sparse-
Push since it loops over all vertices in
the graph. This increases work com-
pared to SparsePush, which only loops
over vertices in the active set. The up-
date to the DeltaSum array no longer
requires atomics since an entry will

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 121. Publication date: November 2018.
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1 parallel for dst : G .vertices do
2 for src : G .getInNgh[dst] do
3 if src ∈ Frontier then
4 DeltaSum[dst] += Delta[src] / G.OutDegree[src]

1 parallel for src : G .vertices do
2 if src ∈ Frontier then
3 for dst : G .getOutNgh[src] do
4 AtomicAdd(DeltaSum[dst],Delta[src] / G.OutDegree[src])

Fig. 3. DensePull (left) and DensePush (right).

not be updated in parallel, and this reduces synchronization overhead. Instead of doing random
writes as in SparsePush, DensePull does random reads and mostly sequential writes, which are
cheaper. For some algorithms (e.g., breadth-first search), the inner loop over the in-neighbors in
DensePull can exit early to reduce overall work. Therefore, the overall number of edges traversed
could increase or decrease. A detailed performance study of the two traversal methods can be found
in Beamer et al. [2012] and Besta et al. [2017]. We can further use bitvectors instead of boolean arrays
to keep track of vertices on the frontier for the DensePull direction. A dense frontier implemented
using a bitvector improves spatial locality, but requires extra work to compress the boolean array.
DensePush (Fig. 3 (right)) loops through all vertices and checks if each one is on the frontier

instead of only looping over frontier vertices as in SparsePush. While iterating over all vertices
reduces work-efficiency, this could be offset by not having to maintain the frontier in a sparse
format. Parallelism increases as there is more parallel work when looping over all vertices.

Hybrid traversal modes (DensePull-SparsePush and DensePush-SparsePush) use different directions
(SparsePush, DensePull, and DensePush) in different iterations based on the size of the active set
to improve work-efficiency [Beamer et al. 2012; Shun and Blelloch 2013]. In PageRankDelta, the
number of vertices in the frontier gradually decreases as the ranks of vertices converge. In the early
iterations, DensePull is preferred due to lower synchronization overheads and avoiding random
writes. As the frontier shrinks, SparsePush is preferred due to the fewer number of vertices that need
to be traversed. DensePull-SparsePush computes the sum of out-degrees of the frontier vertices and
uses DensePull if the sum is above some threshold, and SparsePush otherwise. However, computing
the sum of out-degrees of the vertices in the active set in every iteration incurs significant overhead
if one direction is always better than the other.
GraphIt is able to support all of these traversal directions whereas existing frameworks only

support a subset of them. GraphIt also supports both bitvectors and boolean arrays for the frontier
representation in dense traversals, as well as the sparse array representation for sparse traversals.

Parallelization. For each traversal mode, there are different methods for parallelization. The
parallelization shown in Fig. 2 and 3 processes the vertices in parallel. This approach (vertex-parallel)
works well on algorithms and inputs where the workload of each vertex is similar. However, if
the degree distribution is skewed and the workload of each vertex is proportional to the number
of incident edges, this approach can lead to significant load imbalance. For these workloads, an
edge-aware vertex-parallel scheme (edge-aware-vertex-parallel) can be more effective. This approach
breaks up the vertices into a number of vertex chunks, where each chunk has approximately the
same number of edges. However, this scheme reduces work-efficiency due to having to compute
the sum of degrees of vertices in each chunk. Finally, we can parallelize across all edges, instead
of just vertices, by parallelizing the inner loop of the edge-traversal code computing DeltaSum in
Fig. 2 and 3. This method (edge-parallel) improves parallelism but reduces work-efficiency due to
the overhead of work-stealing in the inner loop and atomic updates needed for synchronization.
For graphs with a regular degree distribution, using static parallelism instead of work-stealing
parallelism can sometimes reduce runtime overhead and improve performance. GraphIt supports
all three modes of parallelism while existing frameworks only support one or two.

Cache Partitioning. Cache partitioning tries to keep random accesses within the last level
cache (LLC) to improve locality. This optimization first partitions the vertices into p segments

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 121. Publication date: November 2018.
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(V0,V1, . . . ,Vp−1), which correspond to the range of source vertexsets in the pull mode or the destina-
tion vertexsets in the push mode for each Segmented Subgraph (SSG). For the pull mode, incoming
edges (src ,dst ) are assigned to SSGi if src ∈ Vi , and sorted bydst . For the pushmode, outgoing edges
(src , dst ) are assigned to SSGi if dst ∈ Vi , and sorted by src . Each SSG is processed before moving
on to the next. Vi controls the range of random memory accesses through segmenting the original
graph. If we fit Vi into LLC, we can significantly reduce the number of random DRAM accesses
when processing each SSG. Cache partitioning improves locality but sacrifices work-efficiency due
to vertex data replication from graph partitioning and merging partial results [Beamer et al. 2017;
Nishtala et al. 2007; Zhang et al. 2017]. Fine-tuning the number of SSGs can reduce this overhead.
Most existing frameworks do not support cache partitioning.

NUMA Optimizations. NUMA partitioning improves locality by minimizing slow inter-socket
memory accesses [Sun et al. 2017; Zhang et al. 2015; Zhu et al. 2016]. This optimization partitions
the graph into a set of Segmented Subgraphs (SSGs) in the same way as cache partitioning in order
to limit the range of random memory access. While the cache partitioning optimization processes
one SSG at a time across all sockets, NUMA partitioning executes multiple SSGs in parallel on
different sockets. Each SSG and the threads responsible for processing the subgraph are bound to
the same NUMA socket. The intermediate results collected on each socket are merged at the end
of each iteration. As with cache partitioning, NUMA partitioning improves locality but reduces
work-efficiency due to vertex data replication from graph partitioning and the additional merge
phase. Parallelism might also decrease for highly skewed graphs due to workload imbalance among
SSGs [Sun et al. 2017]. For algorithms with performance bottlenecked on load imbalance instead of
inter-socket memory accesses, simply using an interleaved allocation across sockets can result in
better performance. GraphIt and a subset of existing frameworks support NUMA optimizations.

Vertex Data Layout Optimizations. The layout of vertex data can significantly affect the locality
of memory accesses. Random accesses to the same index of two separate arrays (e.g., the Delta and
OutDegree arrays in PageRankDelta) can be changed into a single random access to an array of
structs to improve spatial locality. However, grouping together fields that are not always accessed
together expands the working set and hurts the locality of the data structures. Vertex data layout
optimizations reduce work-efficiency due to the extra overhead for reorganizing the data. GraphIt
supports both arrays of structs and structs of arrays.

Program Structure Optimizations. When two graph kernels have the same traversal pattern
(they process the same vertices/edges on each iteration), we can fuse together the edge traversals
and transform their data structures into an array of structs. We refer to this optimization as kernel
fusion. This improves spatial locality by enabling the program to access the fields of the two kernels
together when traversing the edges. Additional work is incurred for performing the AoS-SoA
optimization, but this is usually small compared to the rest of the algorithm.

3 ALGORITHM LANGUAGE

GraphIt leverages an algorithm and a scheduling language to compose graph optimizations, enabling
programmers to easily navigate the complex performance tradeoff space described in Section 2.
The algorithm language can express a variety of algorithms, while exposing opportunities for
optimizations. We use PageRankDelta (GraphIt code shown in Fig. 4) to showcase the language.

3.1 Data Model

GraphIt’s data model consists of elements, vertexsets and edgesets, and vertex and edge data.
The programmer first defines vertex and edge element types (Vertex and Edge on Lines 1ś2 of
Fig. 4). GraphIt supports multiple types of user-defined vertices and edges, which is important

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 121. Publication date: November 2018.
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1 element Vertex end

2 element Edge end

3 const edges : edgeset{Edge}(Vertex,Vertex) = load(argv[1]);

4 const vertices : vertexset{Vertex} = edges.getVertices();

5 const damp : double = 0.85;

6 const base_score : double = (1.0 - damp)/vertices.size();

7 const epsilon : double = 0.1;

8 const OutDegree : vector{Vertex}(int) = edges.getOutDegrees();

9 Rank : vector{Vertex}(double) = 0;

10 DeltaSum : vector{Vertex}(double) = 0.0;

11 Delta : vector{Vertex}(double) = 1.0/vertices.size();

12 func updateEdge(src : Vertex, dst : Vertex)

13 DeltaSum[dst] += Delta[src]/OutDegree[src];

14 end

15 func updateVertexFirstRound(v : Vertex) -> output : bool

16 Delta[v] = damp * (DeltaSum[v]) + base_score;

17 Rank[v] += Delta[v];

18 Delta[v] = Delta[v] - 1.0/vertices.size();

19 output = fabs(Delta[v] > epsilon*Rank[v]);

20 DeltaSum[v] = 0;

21 end

22 func updateVertex(v : Vertex) -> output : bool

23 Delta[v] = DeltaSum[v] * damp;

24 Rank[v] += Delta[v];

25 DeltaSum[v] = 0;

26 output = fabs(Delta[v]) > epsilon * Rank[v];

27 end

28 func main()

29 var V : int = vertices.size();

30 var Frontier : vertexset{Vertex} = new vertexset{Vertex}(V);

31 for i in 1:maxIters

32 #s1# edges.from(frontier).apply(updateEdge);

33 if i == 1

34 Frontier = vertices.filter(updateVertexFirstRound);

35 else

36 Frontier = vertices.filter(updateVertex);

37 end

38 end

39 end

Fig. 4. GraphIt code for PageRankDelta.

for algorithms that work on multiple graphs. After defining element types, the programmer can
construct vertexsets and edgesets. Lines 3ś4 of Fig. 4 show the definitions of an edgeset, edges,
and vertexset, vertices. Each element of the edgeset is of Edge type (specified between ł{ }ž), and
the source and destination of the edge is of Vertex type (specified between ł( )ž). The edgeset
declaration supports edges with different types of source and destination vertices (e.g., in a bipartite
graph). vertices uses the getVertices method on the edgeset to obtain the union of source and
destination vertices of edges. Data for vertices and edges are defined as vectors associated with an
element type denoted using the { } syntax (Lines 8ś11).

3.2 Language Constructs and Operators

The language constructs of GraphIt (shown in Table 2) separate edge processing logic from edge
traversal, edge filtering (from, to, srcFilter, and dstFilter), atomic synchronization, and modified
vertex deduplication and tracking logic (apply and applyModified). This separation enables the
compiler to represent the algorithm at a high level, exposing opportunities for edge traversal and
vertex data layout optimizations. Moreover, it frees the programmer from specifying low-level
implementation details, such as synchronization and deduplication logic.

In the GraphIt code for PageRankDelta (Fig. 4), the from operator (Line 32) ensures that only edges
whose source vertex is in the frontier are traversed, and the apply operator uses the updateEdge

function on the selected edges to compute DeltaSum, corresponding to Lines 8ś10 of Algorithm 2.
This separation enables the compiler to generate complex code for different traversal modes
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Table 2. Vertexset and Edgeset API. disable_deduplication is an optional parameter.

Set Operators Return Type Description

size() int Returns the size of the set.

Vertexset operators

filter(func f) vertexset Filters out vertices where f(vertex) returns true.

apply(func f) none Applies f(vertex) to every vertex.

Edgeset operators

from(vertexset vset) edgeset Filters out edges whose source vertex is in the input vertexset.

to(vertexset vset) edgeset Filters out edges whose destination vertex is in the input

vertexset.

filter(func f) edgeset Filters out edges where f(edge) returns true.

srcFilter(func f) edgeset Filters out edges where f(source) returns true.

dstFilter(func f) edgeset Filters out edges where f(destination) returns true.

apply(func f) none Applies f(source, destination) to every edge.

applyModified(func f,

vector vec,

[bool disable_deduplication])

vertexset Applies f(source, destination) to every edge. Returns a ver-

texset that contains destination vertices whose entry in the

vector vec has been modified in f. The programmer can

optionally disable deduplication within modified vertices.

Deduplication is enabled by default.

and parallelization optimizations, while inserting appropriate data access and synchronization
instructions for the updateEdge function. #s1# is a label used in the scheduling language (explained
in Section 4). Lines 34 and 36 of Fig. 4 compute the updated Delta and Rank values by applying
updateVertexFirstRound and updateVertex functions on every vertex. Vertices with Delta greater
than epsilon of their Rank are returned as the next frontier, corresponding to Lines 11ś21 of
Algorithm 2. As shown in Table 2, GraphIt provides various operators on vertexsets and edgesets
to express graph algorithms with different traversal and update logic. The applyModified operator
trackswhich vertices have been updated during the edge traversal and outputs a vertexset containing
just those vertices. By default, applyModified ensures that each vertex is added only once to the
output vertexset. However, the programmer can optionally disable deduplication for algorithms
that are guaranteed to insert each vertex only once (e.g., BFS) for better performance.

1 template <class vertex>

2 struct PR_F {

3 vertex* V;

4 double* Delta, *nghSum;

5 PR_F(vertex* _V, double* _Delta, double* _nghSum) :

6 V(_V), Delta(_Delta), nghSum(_nghSum) {}

7 inline bool update(uintE s, uintE d){

8 double oldVal = nghSum[d];

9 nghSum[d] += Delta[s]/V[s].getOutDegree();

10 return oldVal == 0;}

11 inline bool updateAtomic (uintE s, uintE d) {

12 volatile double oldV, newV;

13 do { oldV = nghSum[d]; newV = oldV + Delta[s]/V[s].getOutDegree();

14 } while(!CAS(&nghSum[d],oldV,newV));

15 return oldV == 0.0;}

16 inline bool cond (uintE d) { return cond_true(d); }};

Fig. 5. Ligra’s PageRankDelta edge update function, corresponding to
Lines 12ś14 of Fig. 4 in GraphIt’s PageRankDelta example.

We demonstrate how GraphIt
simplifies the expression of the
algorithm by showing Ligra’s
implementation of the edge up-
date function in Fig. 5 (note
that the 16 lines of Ligra code
shown correspond to only 3
lines in GraphIt’s implementa-
tion in Fig. 4). Ligra requires
the programmer to specify edge
processing (Lines 8ś9, 12ś14),
edge filtering (Line 16), dedupli-
cation andmodification tracking
(Lines 10 and 15), and synchro-
nization logic (Lines 12ś14). GraphIt only requires the programmer to specify the edge processing
logic in this case.

GraphIt also supports traditional control flow constructs such as for, while, and if for expressing
fixed iteration loops, loops until convergence, and conditional control flow. After setting up a new
vertexset called Frontier, Line 31 in Fig. 4 uses a for loop to iterate maxIters times. An alternative
implementation could use a while loop that iterates until the ranks of all vertices stabilize.
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Table 3. GraphIt Scheduling Language functions. The default option for an operator is shown in bold.
Optional arguments are shown in [ ]. If the optional direction argument is not specified, the configuration is
applied to all relevant directions. We use a default grain size of 256 for parallelization.

Apply Scheduling Functions Descriptions

program->configApplyDirection(label, config); Config options: SparsePush, DensePush, DensePull,

DensePull-SparsePush, DensePush-SparsePush

program->configApplyParallelization(label,

config, [grainSize], [direction]);

Config options: serial, dynamic-vertex-parallel, static-vertex-

parallel, edge-aware-dynamic-vertex-parallel, edge-parallel

program->configApplyDenseVertexSet(label,

config, [vertexset], [direction])

Vertexset options: both, src-vertexset, dst-vertexset

Config Options: bool-array, bitvector

program->configApplyNumSSG(label, config,

numSegments, [direction]);

Config options: fixed-vertex-count or edge-aware-vertex-

count

program->configApplyNUMA(label, config,

[direction]);

Config options: serial, static-parallel, dynamic-parallel

program->fuseFields({vect1, vect2, ...}) Fuses multiple arrays into a single array of structs.

program->fuseForLoop(label1, la bel2,

fused_label)

Fuses together multiple loops.

program->fuseApplyFunctions(label1, label2,

fused_func)

Fuses together two edgeset apply operators. The fused apply

operator replaces the first operator.

4 SCHEDULING LANGUAGE

After specifying the algorithm using the language described in Section 3, programmers can explore
different combinations of optimizations using GraphIt’s scheduling language. In this section, we
describe the design of the scheduling language functions and demonstrate how they work with
PageRankDelta.

4.1 Scheduling Language

We use labels (#label#) in algorithm specifications to identify the statements onwhich optimizations
apply. Programmers can assign a label on the left side of a statement and later reference it in the
scheduling language. Fig. 6 shows a simple schedule for the PageRankDelta implementation in Fig. 4.
The programmer adds label s1 to the edgeset operation statement. After the schedule keyword,
the programmer can make a series of calls to scheduling functions.

30 ...

31 for i in 1:maxIters

32 #s1# edges.from(frontier).apply(updateEdge);

...

38 end

...

41 schedule:

42 program->configApplyDirection("s1", "DensePull-SparsePush");

Fig. 6. Scheduling PageRankDelta.

We designed GraphIt’s schedul-
ing language functions (shown in Ta-
ble 3) to allow programmers to com-
pose together edge traversal direc-
tion, frontier data structure, paral-
lelization, cache, NUMA, vertex data
layout, and program structure opti-
mizations discussed in Section 2. The configApplyDirection function allows programmers to
configure directions used for traversal. The programmer can use the configDenseVertexSet func-
tion to switch between bitvector and boolean array for source and destination vertexsets. The
configApplyNumSSG function configures the number of segmented subgraphs and how the subgraphs
are partitioned (fixed-vertex-count and edge-aware-vertex-count). Setting the right number of
segments and partitioning configuration allows random accesses to be restricted to a NUMA node
or last level cache with balanced load as described in Section 2. configApplyNUMA configures the
segmented subgraphs to be executed in parallel with static or dynamic NUMA node assignment
(static-parallel and dynamic-parallel), ensuring the random memory accesses are restricted to the
local NUMA node, while maintaining good parallel scalability. Finally, vertex data vectors can be
fused together into an array of structs with fuseFields.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

double * Delta = new double[num_verts];
int * OutDegree = new int[num_verts];
…
out_degree_sum = sumDegree(from_vertexset)
if (out_degree_sum > threshold) {
  Bool * bool_map = from_vertexset->bool_map
  parallel_for( NodeID d : G.vertices) {
    for( NodeID s : G.getInNgh(d) ){
       if ( bool_map[s] ) { 
         DeltaSum[d] += ( Delta[s]  
                              / OutDegree[s] );
       } } } } else {
  NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;
  parallel_for (NodeID s : dense_vertex_set) {
    for(NodeID d : G.getOutNgh(s)){
      fetch_and_add( &DeltaSum[d], 
                           ( Delta[s] / OutDegree[s] ));  
   } } }  

double * Delta = new double[num_verts];
int * OutDegree = new int[num_verts];
…
out_degree_sum = sumDegree(from_vertexset)
if (out_degree_sum > threshold) {
  Bool * bool_map = from_vertexset->bool_map
  for( NodeID d : G.vertices) {
    for( NodeID s : G.getInNgh(d) ){
       if ( bool_map[s] ) { 
         DeltaSum[d] += ( Delta[s] / OutDegree[s] );
       } } } } else {
  NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;
  for (NodeID s : dense_vertex_set) {
    for(NodeID d : G.getOutNgh(s)){
      DeltaSum[d] = ( Delta[s]/OutDegree[s] ));} } }

double * Delta = new double[num_verts];
int * OutDegree = new int[num_verts];
…
long m = from_vertexset->size();
NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;
for (NodeID s : dense_vertex_set) {
  for(NodeID d : G.getOutNgh(s)){
    DeltaSum[d] = ( Delta[s] / OutDegree[s] )); } } }  

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) Generated Code with Default Configuration

(b) Generated Code with Direction Configuration
program->configApplyDirection(“s1“, DensePull-SparsePush”);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

(c) Generated Code with Parallelization Configuration
program
->configApplyDirection(“s1“,  DensePull-SparsePush”)
->configApplyParallel(“s1”, “dynamic-vertex-parallel”);

(d) Generated Code with Data Layout Configuration
program->fuseVectors({“Delta”, “OutDegree”})
->configApplyDirection(“s1“, DensePull-SparsePush”)
->configApplyParallel(“s1”, “dynamic-vertex-parallel”)
->configApplyDenseVertexSet(“s1”, “src-vertexset”, 
                                              “bitvector”, “DensePull”);

typedef struct fused_struct { 
  float Delta; 
  int OutDegree;
} fused_struct;
fused_struct *  fused_struct_array 
                         = new fused_struct[num_verts];
…
out_degree_sum = sumDegree(from_vertexset)
if (out_degree_sum > threshold) {
  Bool * bool_map = from_vertexset->bool_map
  Bitmap bitmap = convertBitMap(bool_map);
  parallel_for( NodeID d : G.vertices) {
    for( NodeID s : G.getInNgh(d) ){
       if ( bitmap.get_bit(s) ) { 
         DeltaSum[d] += ( fused_struct[s].Delta  
                              / fused_struct[s].OutDegree );
       } } } } else {
  NodeID *dense_vertex_set 
                 = from_vertexset->vert_array;  
  parallel_for (NodeID s : dense_vertex_set) {
    for(NodeID d : G.getOutNgh(s)){
      fetch_and_add( &DeltaSum[d], 
                     ( fused_struct_array[s].Delta  
                   / fused_struct_array[s].OutDegree ));
  } } }  

Fig. 7. Each subfigure shows pseudocode generated from applying the schedule in the caption to the GraphIt
PageRankDelta code with labels from Fig. 4 and Fig. 6. The options in the caption highlighted in blue are
newly added scheduling commands relative to the previous subfigure and the code highlighted in purple is
pseudocode updated due to the new schedules.

To compose together different optimizations, the programmer first chooses a direction for
traversal. Then the programmer can use the other scheduling functions to pick one option for
the parallelization, graph partitioning, NUMA, and dense vertexset optimizations for the current
direction. The programmer can configure each direction separately using the optional direction
argument for hybrid directions (DensePush-SparsePush or DensePull-SparsePush). If no direction
argument is specified, then the configuration applies to both directions.

4.2 Scheduling PageRankDelta

Fig. 7 shows different schedules for PageRankDelta. Fig. 7(a) starts with the pseudocode generated
from the default schedule that performs a serial SparsePush traversal. Fig. 7(b) adds hybrid traversal
code that first computes the sum of out-degrees and uses it to determine whether to do a DensePull
or a SparsePush traversal. This allows the implementation to pick the traversal mode that minimizes
the number of edges that need to be traversed, improving work-efficiency. Fig. 7(c) adds dynamic-
vertex-parallelism to both directions in the generated code by parallelizing the loops and inserting
synchronization code for SparsePush. Finally, Fig. 7(d) adds vertex data layout and bitvector
optimizations. Fusing together the vectors Delta and OutDegree with the fuseFields function
improves spatial locality of memory accesses since the two vectors are always accessed together.
This optimization changes the declaration and access points for the arrays. Finally, for the DensePull
direction, the source vertexset specified in from can be dynamically compressed into a bitvector to
reduce the working set size, further improving spatial locality.

4.3 Scheduling Program Structure Optimizations

To support program structure optimizations, we introduce scoped labels, which allow labels to
function even after complex program transformations, and scheduling functions for fusing together
loops and edgeset apply operators. Fig. 8 shows two iterative edgeset apply operators (Lines 2 and 5)
that can be fused together into a single iterative edgeset apply operator. GraphIt first performs
loop fusion, creating a new loop (l3), and destroying the two old loops (l1 and l2). Now, it would
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be difficult if we wanted to schedule the first edgeset apply operator in the l3 loop as the original
loops l1 and l2 have been removed from the program. Since both edgeset apply operators have
s1 as their label, it is hard to identify them individually. To address this, we introduce scoping to
labels. The two apply operators will obtain labels l1:s1 and l2:s1, respectively.

1 #l1# for i in 1:10

2 #s1# edges.apply(func1);

3 end

4 #l2# for i in 1:10

5 #s1# edges.apply(func2);

6 end

7 schedule:

8 program->fuseForLoop("l1", "l2", "l3")

9 ->fuseApplyFunctions("l3:l1:s1", "l3:l2:s1", "fusedFunc")

10 ->configApplyDirection("l3:l1:s1", "DensePull");

Fig. 8. GraphIt loop and function fusion

We also need a name node, which en-
forces a named scope for the label. Loops l1
and l2 are replaced with name nodes with
labels l1 and l2, respectively. The resulting
pseudocode is shown in Fig. 9. This enables
the user to reference the first edgeset apply
as l3:l1:s1 and the second edgeset apply as
l3:l2:s1. After the loops are fused together,
we can use fuseApplyFunctions to create a new edgeset apply to replace the l3:l1:s1 statement,
which can be further configured (Fig. 10). The new edgeset apply function, fusedFunc, concatenates
the statements in the original functions, func1 and func2. In Section 7, we show that fusion of
multiple iterative kernels with similar traversal patterns (Eigenvector Centrality and PageRank),
and the vertex data vectors they access boosts the performance of the application by up to 60%.

1 #l3# for i in 1:10

2 #l1# namenode

3 #s1# edges.apply(func1);

4 end

5 #l2# namenode

6 #s1# edges.apply(func2);

7 end

8 end

Fig. 9. Pseudocode after loop fusion

1 #l3# for i in 1:10

2 #l1# namenode

3 #s1# edges.apply(fused_func);

4 end

5 end

Fig. 10. Pseudocode after function fusion

5 SCHEDULING REPRESENTATION

The schedules for an optimized PageRankDelta implementation become even more complex than
those shown in Fig. 7(d) as we further combine NUMA and cache optimizations. It is challenging
to reason about the validity of, and to generate code for, combinations of optimizations. GraphIt
relies on multiple scheduling representations, specifically the graph iteration space, the vertex data
vector tags, and the scoped labels, to model combinations of edge traversal, vertex data layout, and
program structure optimizations. Fig. 11 shows the full space of optimizations.

5.1 Graph Iteration Space

Motivation. The graph iteration space is an abstract model for edge traversals that represents
the edge traversal optimizations specified by the scheduling commands in Table 3. The model
simplifies the design of the compiler by representing different combinations of optimizations as
multi-dimensional vectors. This representation enables the compiler to easily compose together
different optimizations, reason about validity through dependence analysis, and generate nested
loop traversal code. The graph iteration space also defines the space of edge traversal optimizations
supported by GraphIt, revealing new combinations of optimizations not explored by prior work.

Definition. Let us assume that we have an operation that traverses edges and applies a user-defined
function F on an edgeset Edges as shown in Fig. 12(a). A graph iteration space defines the set of
directed edges on which F is applied and the strategy of traversing the edges. The concept of graph
iteration space is inspired by the traditional iteration spaces in dense nested loops [Padua and
Wolfe 1986; Wolf and Lam 1991]. First, we represent the graph as an adjacency matrix, where a
column in a row has a value of one if the column represents a neighbor of the current row (the
top part of Fig. 12(b)). With this representation, we can traverse through all edges using dense
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<    SSG_ID,    BSG_ID,    OuterIter_Vert,   InnerIter_Vert  > 

Parallelization Tag (PR-Tag)

Serial (SR) Parallel

Static Parallel (SP) Work-Stealing Parallel (WSP)

Filtering Tag (FT-Tag)

Sparse
Array (SA)

Dense 
Bool 

Array (BA)

Dense 
Bitvector (BV)

Partitioning tag (PT-Tag)

Fixed Vertex 
Count (FVC)

Edge-Aware Vertex 
Count (EVC)

Edge Traversal Optimizations Vertex Data Layout 

Optimizations (vector tags)

Array of
Structs 
(AoS)

Struct of 
Arrays 
(SoA)

GraphIt Scheduling Representation

( Graph Iteration Space + Tags )

Direction Tag (DR-Tag)

src dst

Program Structure 

Optimizations (scoped labels)

Fig. 11. GraphIt’s scheduling representation for edge traversal, vertex data layout, and program structure
optimizations. The tags of the graph iteration space represent the direction and performance optimization
choices for each vertex data vector and each dimension of the graph iteration space.

Fig. 12. Representing an edge traversal as nested loops and corresponding graph iteration spaces. Subfigure
(c) shows the four dimensions for the graph iteration space, assuming using pull direction and the fixed vertex
count partitioning strategy for both SSG and BSG dimensions.




src_set = filtered src vertexset of F, dst_set = filtered dst vertexset of F
O ∈ src_set ∧ I ∈ dst_set or O ∈ dst_set ∧ I ∈ src_set
ssg_set = subgraphs created by segmenting the graph based on InnerIter

⟨ S [tags], B [tags], O [tags], I [tags] ⟩ bsg_set = subgraphs created by blocking the graph based on OuterIter
S (Segmented Subgraph ID) ∈ ssg_set
B (Blocked Subgraph ID) ∈ bsg_set
⟨ O , I ⟩ ∈ edges within the subgraph (B or S )




Fig. 13. Definition of the graph iteration space with four dimensions. S , B, O , and I are abbreviations for
SSG_ID, BSG_ID, OuterIter, and InnerIter.

two-level nested for loops that iterate through every row and every column. The traversal can be
viewed as a traditional 2-D iteration space. Unlike the dense iteration space, the edge traversal
only happens when there is an edge from the source to the destination. Thus, we can eliminate
unnecessary traversals and make the loops sparse by iterating only through columns with non-zero
values in each row (the blue part in Fig. 12(b)). We define the row iterator variable as OuterIter, and
the column iterator variable as InnerIter. The green part of Fig. 12(b) shows that a two dimensional
graph iteration space vector is used to represent this two-level nested traversal. The two-level
nested for loops can be further blocked and segmented into up to four dimensions as shown in
Fig. 12(c). The dimensions of the graph iteration space encode the nesting level of the edge traversal,
and the tags for each dimension specify the strategy used to iterate through that dimension. We
provide more details of the graph iteration space below.
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< S [PR-tag, (PT-Tag, count)],  B [PR-tag, (PT-Tag, count)],  O [DR-Tag, PR-Tag, FT-Tag],  I [DR-Tag, PR-Tag, FT-Tag] > 

Fig. 14. Graph Iteration Space Tags: Direction Tags (DR-Tag), Partitioning Tags (PT-Tag), Parallelization Tags
(PR-Tag), and Filtering Tags (FT-Tag) (explained in Fig. 11) specify direction and optimization strategy for
each dimension, and are shown in square brackets next to each dimension.

Table 4. Mapping between GraphIt’s scheduling language functions to the relevant dimensions and tags
(highlighted in bold) of the graph iteration space.

Apply Scheduling Functions Graph Iteration Space Dimensions and Tags Configured

program->configApplyDirection(label,

config);

⟨ S [tags], B [tags], O [direction tag, filtering tag], I

[direction tag, filtering tag] ⟩. Note, for hybrid directions (e.g.

DensePull-SparsePush), two graph iteration space vectors are

created, one for each direction.

program->configApplyParallelization(label,

config, [grainSize], [direction]);

⟨ S [tags], B [partitioning tag, parallelization tag],O [tags],

I [tags] ⟩

program->configApplyDenseVertexSet(label,

config, [vertexset], [direction])

⟨ S [tags], B [tags], O [filtering tag], I [filtering tag] ⟩

program->configApplyNumSSG(label, config,

numSegments, [direction]);

⟨ S [partitioning tag], B [tags], O [tags], I [tags] ⟩

program->configApplyNUMA(label, config,

[direction]);

⟨ S [parallelization tag], B [tags], O [tags], I [tags] ⟩

Graph Iteration Space Dimensions. The graph iteration space in GraphIt uses four dimensions,
defined in Fig. 13 and illustrated in Fig. 12. The dimensions are ⟨ SSG_ID, BSG_ID, OuterIter,
InnerIter ⟩ and are abbreviated as ⟨ S , B, O , I ⟩. Unused dimensions are marked with ⊥.
OuterIter (O) and InnerIter (I ) in Fig. 13 are the vertex IDs of an edge (Fig. 12(b)). The ranges

of O and I dimensions depend on the direction. For the push direction, O is in the filtered source
vertexset (src_set) and I is in the filtered destination vertexset (dst_set). For the pull direction, O
is in the dst_set and I is in the src_set. The OuterIter dimension sequentially accesses vertices,
while the InnerIter dimension has a random access pattern due to neighbor vertex IDs not being
sequential. The edge (O, I ) is in the edgeset of the subgraph identified by BSG_ID and SSG_ID.
The BSG_ID (Blocked Subgraph ID) dimension identifies a Blocked Subgraph (BSG) in the

Blocked Subgraphs Set (bsg_set). The bsg_set is created by partitioning the graph by the OuterIter
dimension as illustrated in the top part of Fig. 12(c). This partitioning transforms the loops that
traverse the edges without changing the graph data structure. The graph can be partitioned with a
grain size on the number of OuterIter vertices or on the total number of edges per BSG, depending
on the schedule. This dimension controls the different strategies for parallelization optimizations.

The SSG_ID (Segmented Subgraph ID) identifies a Segmented Subgraph (SSG) in the Segmented
Subgraphs Set (ssg_set). The ssg_set is created by partitioning the graph by the InnerIter dimension
as demonstrated in the top part of Fig. 12(c). The partitioning transforms both the graph data
structure and the loops that traverse the edges. Details of the partitioning scheme are described in
prior work [Zhang et al. 2017]. This dimension controls the range of random accesses, enabling
cache and NUMAoptimizations. The ordering of the dimensions ensures that the graph is segmented
into SSGs before each SSG is blocked into BSGs.

Graph Iteration Space Tags. Each dimension is annotated with tags to specify the direction
and optimization strategies (Fig. 11 illustrates the tags in GraphIt). There are four types of tags:
Direction Tags (DR-Tag), Partitioning Tags (PT-Tag), Parallelization Tags (PR-Tag), and Filtering
Tags (FT-Tag). We show tags for each dimension within square brackets in Fig. 14. Table 4 shows
the mapping between scheduling language commands from Section 4 and the corresponding graph
iteration space vector and tags.
Direction Tags specify whether the traversal is in push or pull direction. In the push direction,

the OuterIter is tagged as src and InnerIter tagged as dst ; in the pull direction, the tags are reversed.
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Table 5. The schedules applied for PageRankDelta and the generated graph iteration space vectors with tags,
following the examples in Fig. 7. Newly added scheduling commands and the affected dimensions and tags in
the graph iteration space are highlighted in bold. ⊥ is an unused dimension. The abbreviated dimensions
and tags are defined in Fig. 13 and Fig. 11. The keyword ‘Program’ and the continuation symbol ‘->’ are
omitted. ‘ca’ is an abbreviation for ‘configApply’. "caParallel" is short for configApplyParallelization. Note that
configApplyNumSSG uses an integer parameter (X ) which is dependent on the data and hardware system.

PageRankDelta Schedules Graph Iteration Space

caDirection("s1", "SparsePush"); ⟨ ⊥, ⊥, O [src , SR, SA], I [dst , SR] ⟩

capDirection("s1","DensePull-SparsePush"); runtime decision between two graph iteration space vectors

⟨ ⊥, ⊥, O [dst , SR], I [sr c , SR, BA] ⟩ and

⟨ ⊥, ⊥, O [src , SR, SA], I [dst , SR] ⟩

caDirection("s1","DensePull-SparsePush");

caParallel("s1","dynamic-vertex-parallel");

runtime decision between two graph iteration space vectors

⟨ ⊥, B [WSP, (FVC, 1024)],O [dst , SR], I [src , SR, BA] ⟩ and

⟨ ⊥, B [WSP, (FVC, 1024)], O [src , SR, SA], I [dst , SR] ⟩

caDirection("s1","DensePull-SparsePush");

caParallel("s1","dynamic-vertex-parallel");

caDenseVertexSet("s1","src-vertexset",

"bitvector","DensePull");

runtime decision between two graph iteration space vectors

⟨ ⊥, B [WSP, (FVC, 1024)], O [dst , SR], I [src , SR, BV] ⟩ and

⟨ ⊥, B [WSP, (FVC, 1024)], O [src , SR, SA], I [dst , SR] ⟩

caDirection("s1","DensePull-SparsePush");

caParallel("s1","dynamic-vertex-parallel");

caDenseVertexSet("s1","src-vertexset",

"bitvector","DensePull");

caNumSS’("s1","fixed-vertex-count",X,

"DensePull");

runtime decision between two graph iteration space vectors

⟨ S [SR, (FVC, num_vert / X)], B [WSP, (FVC, 1024)],O [dst ,

SR], I [src , SR, BV] ⟩ and

⟨ ⊥, B [WSP, (FVC, 1024)], O [src , SR, SA], I [dst , SR] ⟩

Partitioning Tags specify the strategy used for partitioning the SSG_ID or BSG_ID dimensions.
For example, the default fixed vertex count (FVC) partitioning strategy will partition the graph
based on a fixed number of InnerIter or OuterIter vertices as shown in Fig. 12(c). Depending on the
input, this scheme may lead to an unbalanced number of edges in each SSG or BSG. Alternatively,
the edge-aware vertex count (EVC) scheme partitions each subgraph with a different number
of InnerIter or OuterIter vertices to ensure each subgraph have similar number of edges. The
EVC tag is used when the users specify the edge-aware-dynamic-vertex-parallel option with
configApplyParalllelization or the edge-aware-vertex-count option with configApplyNumSSG.
Parallelization Tags control whether to iterate through the dimension using serial (SR), static-

partitioned parallel (SP), or dynamic work-stealing parallel (WSP) execution strategies. The PR-Tag
for the BSG_ID dimension controls the parallelization strategy across different Blocked Subgraphs
within a Segmented Subgraph. Tagging the SSG_ID dimension to be parallel enables NUMA
optimizations by executing multiple SSGs in different sockets in parallel. If work-stealing is enabled,
threads on one socket can steal unprocessed SSGs from another socket to improve load balance.
Filtering Tags on the OuterIter and InnerIter dimensions control the underlying data structure.

Filtering is implemented with sparse arrays (SA), dense boolean arrays (BA), or dense bitvectors
(BV). The sparse arrays contain all of the vertices that pass the filtering, while the dense boolean
arrays or the bitvectors set the value to true or the bit to one for each vertex that passes the filtering.

Graph Iteration Spaces for PageRankDelta. Table 5 continues to use PageRankDelta as an
example to illustrate how scheduling language commands generate graph iteration space vectors
and tags. The first row shows that the SparsePush schedule maps to a graph iteration space vector
with only two dimensions used (⊥ means the dimension is unused). The direction tags for the
OuterIter and InnerIter dimensions, src and dst , indicate that this graph iteration space is for the
push direction. Going from SparsePush to DensePull-SparsePush creates a new graph iteration
space vector for the pull direction. A runtime threshold on the size of the source vertexset is used
to decide which vector gets executed. The configApplyParallelization function configures the
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# generate edgeset traversal code based on 
# apply_expr: algorithmic operators. such as apply, from, to, src_filter, and dst_filter
# gis_vec_list: graph iteration space vectors generated with the scheduling language
gen-edgeset-apply (List<GraphIterSpaceVector> gis_vec_list, EdgesetApplyExpr apply_expr){
    # two graph iteration space vectors might be supplied
    # one of the two graph iteration space vectors will be selected at runtime
    if (gis_vec_list contains two graph iteration space vectors) {
       # generate a condition to select one of the two graph iteration space vectors
        print “if”; emit-gis-vector-select-condition (gis_vec_list, apply_expr); print “{“;
        gen-SSG (gis_vec_list[0], apply_expr);
        print “ } else { ”;
        gen-SSG (gis_vec_list[1], apply_expr);
        print “}”;
    } else { gen-SSG (gis_vec_list[0], apply_expr); }
}
# generate traversal code for the SSG dimension
gen-SSG (GraphIterSpaceVector gis_vec, EdgesetApplyExpr apply_expr) {
    emit-SSG-traversal-loop (gis_vec, apply_expr); # see subsection SSG Code Generation
    gen-BSG (gis_vec, apply_expr);
    emit-SSG-post-traversal-code (gis_vec, apply_expr);
}
# generate traversal code for the BSG dimension
gen-BSG (GraphIterSpaceVector gis_vec, EdgesetApplyExpr apply_expr) {
    emit-BSG-traversal-loop (gis_vec, apply_expr); # see subsection BSG Code Generation
    gen-OuterIter-InnterIter (gis_vec, apply_expr);
    emit-BSG-post-traversal-code (gis_vec, apply_expr);
}
# generate traversal code for the outerIter and innerIter
gen-OuterIter-InnterIter (GraphIterSpaceVector gis_vec, EdgesetApplyExpr apply_expr) {
    # see subsection OuterIter and InnerIter Code Generation 
    emit-OuterIter-InnerIter-Nested-loops (gis_vec, apply_expr);
}

Fig. 15. Code generation algorithm for the graph iteration space.

BSG_ID dimension with work-stealing parallelism (WSP) and uses the default 1024 grainsize. The
fourth row demonstrates that configDenseVertexSet sets the filtering tag for the innerIter dimension
to bitvector (BV) in the graph iteration space vector for the pull direction. Finally, configNumSSG
sets up the SSG_ID dimension to partition the graph for cache locality. In the fixed-vertex-count
configuration (FVC), the InnerIter range for each SSG is computed by dividing the total number of
vertices by the number of SSGs specified with X .

Generalizing Graph Iteration Spaces. The graph iteration space concept can be generalized to
expand the space of supported optimizations. In GraphIt, we restrict the graph iteration space to four
dimensions with fixed partitioning schemes. Adding more dimensions and/or removing constraints
on how the dimensions are partitioned can potentially represent additional optimizations.

5.2 Vertex Data Layout and Program Structure Optimizations Representation

Since the vertex data are stored as abstract vectors, they can be implemented as an array of structs
or struct of arrays. We use vector tags to tag each vertex data vector as Array of Structs (AoS) or a
separate array in the implicit global struct (SoA). These tags can be configured with the fuseFields
scheduling function. Program structure optimizations update the structure of the loops and edgeset
apply operators. We use the scoped labels (described in Section 4.3), which are specified in the
scheduling language with fuseForLoop and fuseApplyFunctions, to represent the optimizations.

6 COMPILER IMPLEMENTATION

This section describes the GraphIt compiler, which generates optimized C++ code from an algorithm
and a schedule. We also built an autotuner on top of the compiler to automatically find high-
performance schedules.
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1 for (int i = 0; i < Frontier.size(); i++){

2 NodeID src = Frontier.vert_array[i];

3 for (NodeID dst : G.getOutNghs(src)){

4 if (dstFunc(dst)){

5 applyFunc(src, dst); }}}

Fig. 17. Generated SparsePush code.

1 for (NodeID dst = 0; dst < num_verts; dst++){

2 if (dstFunc){

3 for (NodeID src : G.getInNghs(dst)){

4 if (Frontier.bool_map(src)){

5 applyFunc(src, dst); }}}}

Fig. 18. Generated DensePull code.

6.1 Code Generation for Graph Iteration Space

We first show the high-level code generation algorithm for the graph iteration space in Fig. 15. To
deal with hybrid traversal modes that have two graph iteration space vectors, such as DensePull-
SparsePush, gen-edgeset-apply generates two implementations of edge traversal logic with addi-
tional logic to choose an implementation based on the sum of the out-degrees of active vertices (the
"if", "else", and emit-gis-vector-select-condition shown in Fig. 15) as described in Section 2. The
functions gen-SSG, gen-BSG, and gen-OuterIter-InnerIter generate nested traversal loops for the
different graph iteration space dimensions. Below, we provide more details on the code generation
functions and the mechanisms to ensure the validity of the optimizations.

OuterIter and InnerIter Code Generation. We demonstrate how to generate traversal code for
the OuterIter and InnerIter dimensions using a simple example with the SparsePush configura-
tion shown in Fig. 16 (graph iteration space and tags: ⟨ ⊥, ⊥, O [src , SR, SA], I [dst , SR, BA] ⟩;
abbreviations and sets are defined in Fig. 13 and Fig. 11).

1 #s1# edges.from(Frontier).dstFilter(dstFunc).apply(applyFunc)

2 schedule:

3 program->configApplyDirection("s1","SparsePush");

Fig. 16. SparsePush configuration.

For the push direction, OuterIter
is src and InnerIter is dst . Since the
source (OuterIter) filtering is tagged
as Sparse Array (SA), the outer loop
iterates over the source vertexset (Frontier). The dst (InnerIter) filtering uses the user-defined
boolean function dstFunc. The generated code is shown in Fig. 17.

We show code generated for a DensePull traversal mode (⟨ ⊥, ⊥, O [dst , SR, BA], I [src, SR, BA]
⟩ ) in Fig. 18. The OuterIter is now dst and the InnerIter is src . The user-defined function applyFunc

is applied to every edge as before. The vertexsets are automatically converted from the sparse array
of vertices (vert_array shown in the SparsePush example above) to a boolean map (bool_map in
the DensePull example). Filtering on destination vertices (dstFilter) is attached as an if statement
next to the dst iterator (OuterIter).

Blocked Subgraph (BSG) Code Generation. The BSG dimension in the graph iteration space is
created by partitioning the OuterIter dimension. GraphIt uses the partitioning tag for this dimension
to control the granularity and blocking strategy for load balancing, and the parallelization tag to
control the mode of parallelization. Fig. 19 shows an example of the generated code, assuming
OuterIter represents src .

1 parallel_for (int BSG_ID = 0; BSG_ID < g.num_chunks; BSG_ID++){

2 for (NodeID src = g.chunk_start[BSG_ID]; src < g.chunk_end[BSG_ID]; src++)

3 for (NodeID dst : G.getOutNghs(src))

4 applyFunc(src,dst);}

Fig. 19. Generated BSG code.

If the edge-aware ver-
tex count (EVC) partition-
ing tag is used, the compiler
generates chunks with ap-
proximately the number of
edges specified by the schedule. For the fixed vertex count (FVC) partitioning tag, the compiler
uses the built-in grain size in OpenMP. For parallelization tags static parallelism (SP) and dynamic
work-stealing parallelism (WSP), we simply use the OpenMP pragmas to implement parallel_for
(pragma omp for parallel schedule (static) and schedule (dynamic)).

Segmented Subgraph (SSG) Code Generation. Using the SSG dimension requires adding a loop
outside of the existing traversals and changing the data layout of the graph. GraphIt generates code
in the main function to create the SSGs by partitioning the graph by InnerIter. This partitioning
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can use a fixed range of vertices (FVC) in the InnerIter or a flexible range of vertices that takes
into account the number of edges in each SSG (EVC) with an edge grain size. The random memory
access range in each SSG is restricted to improve locality. Fig. 20 shows edge traversal code that
uses both SSG and BSG dimensions (⟨ S [SR], B [SR], O [dst , SR], I [src , SR] ⟩). The segmented
subgraphs are stored in g.SSG_list.

1 for (int SSG_ID = 0; SSG_ID < num_SSG; SSG_ID++){

2 sg = g.SSG_list[SSG_ID];

3 for (int BSG_ID = 0; BSG_ID < sg.num_chunks; BSG_ID++){

4 for (NodeID dst = sg.chunk_start[BSG_ID]; dst < sg.chunk_end[BSG_ID]; dst++)

5 for (NodeID src : G.getInNghs(dst))

6 applyFunc(src,dst);}}

Fig. 20. Generated SSG and BSG code.

The cache optimiza-
tion processes one SSG
at a time (SR), but
processes the BSGs
within the SSG in par-
allel. The programmer
can enable NUMA optimizations by specifying the parallelization tag for SSG as static parallel (SP);
the compiler then assigns different SSGs to be executed on different sockets. GraphIt implements
this assignment using numa_alloc in the main function to first allocate SSGs on different sockets,
and then uses the proc_bindAPI in OpenMP to assign threads to process each socket-local subgraph.
If work-stealing parallelism (WSP) is enabled for SSGs, then a socket can steal an SSG allocated on
another socket if no work remains on the current socket.

In some cases, we need to use NUMA-local buffers to store intermediate results from each SSG.
The compiler generates code for allocating NUMA-local buffers and changes the data references
from updating global vertex data vectors to the NUMA-local buffers. The compiler also generates
code for a merge phase that merges NUMA-local buffers to update the global data vectors.

Validity of Optimizations. GraphIt ensures the validity of single edge traversal optimizations
by imposing a set of restrictions on the GraphIt language and using dependence analysis to insert
appropriate atomic synchronization instructions.
We enforce some restrictions on read-write accesses and reduction operators for vertex data

vectors across user-defined functions used in srcFilter, dstFilter, and edgeset apply functions for
a given edgeset traversal operation. Each vertex data vector must have only one of the following
properties: read-only, write-only, or reduction. Additionally, reductions are commutative and
associative. With these two restrictions, transformations do not need to preserve read-after-write
dependences, and transformations remain valid independent of edge traversal order. Therefore, a
transformed program is valid as long as each filtered edge is processed exactly once. GraphIt does
provide asyncMax and asyncMin reduction operators for cases where there can be some read and
write dependences. The programmer is responsible for ensuring that reordering traversals will
not affect the final outcome of the program when using asyncMax and asyncMin. These operators
are useful for applications such as connected components and single-source shortest paths as the
vertex data values will eventually converge.

To ensure that each filtered edge is processed exactly once, we insert synchronization code to
vertex data vector updates by leveraging dependence analysis theory from dense loop iteration
spaces [Li et al. 1989; Maydan et al. 1991]. Dependence analysis is well-suited for GraphIt because
the language prevents aliasing and each vertex data vector represents a separate data structure.
Additionally, the goal of the analysis is not to automatically parallelize the loop with a correctness
guarantee, but the much easier task of determining whether synchronization code is necessary for
a given parallelization scheme. Accomplishing this task does not require a precise distance vector.

Below we show a code snippet of PageRankDelta with the SparsePush configuration ( ⟨ ⊥, ⊥, O
[src , SR, SA], I [dst , SR] ⟩), the distance vector, and read-write properties of the vectors.
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1 for (int i = 0; i < Frontier.size(); i++){

2 NodeID src = Frontier.vert_array[i];

3 for (NodeID dst : G.getOutNghs(src)){

4 DeltaSum[dst] += Delta[src]/OutDegree[src];

5 }}}

Vector Dependence Distance Vector Read-Write

DeltaSum ⟨∗, 0⟩ reduction

Delta ⟨0, 0⟩ read-only

OutDegree ⟨0, 0⟩ read-only

The compiler builds a dependence vector for the OuterIter and InnerIter dimensions based on
their direction tags. We see that DeltaSum has a dependence with the reduction operator (it is both
read from and written to). Different source nodes can update the same dst , and so we assign ∗ to the
first element of the distance vector to denote that there is a dependence on an unknown iteration
of src , which maps to OuterIter based on the direction tags. Given a src , we know that the dst ’s
are all different, and thus, there is no data dependence on the second iterator and we assign the
second value of the distance vector as 0. Since Delta and OutDegree are both read-only, they have
the distance vector ⟨0, 0⟩ with no dependence across different iterations. Given that DeltaSum’s
distance vector’s first element is ∗, the compiler knows that synchronization must be provided
when parallelizing the OuterIter (outer loop). If only the InnerIter (inner loop) is parallelized, then
no synchronization is needed.
A similar analysis works on a DensePull (⟨ ⊥, ⊥, O [dst , SR, BA], I [src , SR] ⟩) PageRankDelta.

The code snippet and distance vectors are shown below. The first element in the distance vector for
DeltaSum is 0 given that there is no dependence among different destination vertices and OuterIter
represents dst . However, the value is ∗ on the second element because different sources will update
the same destination. Parallelizing OuterIter in this case does not require any synchronization.

1 for (NodeID dst = 0; dst < num_verts; dst++) {

2 for (NodeID src : G.getInNghs(dst)){

3 if (Frontier.bool_map(src))

4 DeltaSum[dst] += Delta[src]/OutDegree[src];

5 }}}

Vector Dependence Distance Vector Read Write

DeltaSum ⟨0, ∗⟩ reduction

Delta ⟨0, 0⟩ read-only

OutDegree ⟨0, 0⟩ read-only

Since BSG is partitioned by OuterIter, parallelizing the BSG_ID dimension would have the same
effect as parallelizing OuterIter. Similarly, parallelizing SSG_ID has the same effect as parallelizing
InnerIter given SSG is partitioned by InnerIter.
When applying NUMA optimizations to the second code snippet with the DensePull direction

(parallelizing both the SSG and BSG dimensions), we have a dependence vector of ⟨∗, ∗⟩ for DeltaSum.
In this case, GraphIt writes the updates to DeltaSum[dst] to a socket-local buffer first and later
merges buffers from all sockets to provide synchronization.

For the hybrid traversal configurations, GraphIt generates two versions of the user-defined apply

function since the synchronization requirements for the push and pull directions are different. Each
version will be used in the corresponding traversal mode.

6.2 Code Generation for Vertex Data Layout Optimizations

1 func vertexset_apply_f(v:Vertex)

2 parent[v] = -1;

3 end

4 func main()

5 vertices.apply(vertexset_apply_f);

6 end

Fig. 21. Vertexset apply code.

To generate code with different physical data layouts for the
vertex data (array of structs or struct of arrays), GraphIt gen-
erates declaration and initialization code in the main function
and updates references to vertex data in the other functions.
The compiler first transforms assignments on vertex data vec-
tors into vertexset apply operations that set the values of the
data vectors. If the programmer specifies the fuseField command, GraphIt generates a new struct
type, an array of structs declaration, and changes the references to the vertex data vectors in the
functions to access fields of the struct instead of separate arrays. For example, the assignment
statement for the parent vector parent : vector {Vertex}(int) = -1; is implemented by first
declaring an apply function vertexset_apply_f and another vertices.apply statement in the main
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function that uses vertexset_apply_f as shown in Fig. 21. The vector access expression in the apply
function will then be lowered from parent[v] to fused_struct[v].parent (Line 2 of Fig. 21). The
correctness of the program is not impacted by the vertex data layout optimization as it does not
affect the execution ordering of the program.

6.3 Code Generation for Program Structure Optimizations

Traditional compilers with a fixed number and order of optimization passes are ill-suited for program
structure optimizations, such as kernel fusion. The GraphIt compiler introduces a new schedule-
driven optimization pass orchestration design that allows users to add more optimization passes and
dictate the order of the added optimizations with the label-based scheduling language described in
Section 4. Users can perform fine-grained loop fusion, loop splitting, and fusion of apply functions on
loops and functions specified with statement labels and scheduling commands. These optimizations
are implemented as customized optimization passes on the intermediate representation of the
program. GraphIt implements these program structure transformation schedules by adding new
optimization passes that transform the intermediate representation.

6.4 Autotuning GraphIt Schedules

Finding the right set of schedules can be challenging for non-experts. GraphIt can have up to 105

valid schedules with each run taking more than 30 seconds for our set of applications and input
graphs. Exhaustive searches would require weeks of time. As a result, we use OpenTuner [Ansel
et al. 2014] to build an autotuner on top of GraphIt that leverages stochastic search techniques (e.g.,
AUC bandit, greedy mutation, differential mutation, and hill climbing) to find high-performance
schedules within a reasonable amount of time.

Search space.We limit the tuning to a single edgeset apply operation identified by the user. The
autotuner will try different configurations for the direction of the traversal (configApplyDirection),
the parallelization scheme (configApplyParallelization), the data layout for the dense vertexset
(configApplyDenseVertexSet), the partitioning strategy of the graph (configApplyNumSSG), and the
NUMA execution policy (configApplyNUMA).

Not all generated schedules are valid because schedules have dependencies among them. For ex-
ample, configApplyNumSSG, which takes a direction parameter, is only valid if the direction specified
is also set by configApplyDirection. Instead of reporting an invalid schedule as error, GraphIt’s au-
totuner ignores invalid schedules to smooth the search space. For example, the configApplyNumSSG

configuration is ignored if the direction specified is not valid.

7 EVALUATION

In this section, we compare GraphIt’s performance to state-of-the-art frameworks and DSLs on
graphs of various sizes and structures. We also analyze performance tradeoffs among different
GraphIt schedules. We use a dual socket system with Intel Xeon E5-2695 v3 CPUs with 12 cores
each for a total of 24 cores and 48 hyper-threads. The system has 128GB of DDR3-1600 memory
and 30 MB last level cache on each socket, and runs with Transparent Huge Pages (THP) enabled.

Data Sets. Table 6 lists our input datasets and their sizes. LiveJournal, Twitter, and Friendster are
three social network graphs. Friendster is special because its number of edges does not fit into a
32-bit signed integer. We use WebGraph from the 2012 common crawl. USAroad is a mesh network
with small and undeviating degrees. The Netflix rating dataset and its synthesized expansion
(Netflix2x) are used to evaluate Collaborative Filtering.
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Algorithms.We try to use the same algorithms across different frameworks to study the impact of
performance optimizations. Our evaluation is done on seven algorithms: PageRank (PR), Breadth-
First Search (BFS), Connected Components (CC) with synchronous label propagation, Single Source
Shortest Paths (SSSP) with frontier based Bellman-Ford algorithm, Collaborative Filtering (CF),
Betweenness Centrality (BC), and PageRankDelta (PRDelta). For Galois, we used the asynchronous
algorithm for BFS, and the Ligra algorithm for SSSP.

Table 6. Graphs used for experiments. LiveJournal and
Friendster are undirected, and the number of edges counts
each edge in both directions. All other graphs are directed.

Dataset Num. Vertices Num. Edges
LiveJournal (LJ) [Davis and Hu 2011] 5 M 69 M
Twitter (TW) [Kwak et al. 2010] 41 M 1469 M
WebGraph (WB) [Meusel et al. [n. d.]] 101 M 2043 M
USAroad (RD) [Demetrescu et al. [n. d.]] 24 M 58 M
Friendster (FT) [Leskovec and Krevl 2014] 65.6 M 3.6 B
Netflix (NX) [Bennett et al. 2007] 0.5 M 198 M
Netflix2x (NX2) [Li et al. 2013] 1 M 792 M

Existing Frameworks. We compare
GraphIt’s performance to six state-of-
the-art in-memory graph processing sys-
tems: Ligra, GraphMat, Green-Marl, Ga-
lois, Gemini, and Grazelle. Ligra has fast
implementations of BFS and SSSP [Shun
and Blelloch 2013]. Among prior work,
GraphMat has the fastest shared-memory
implementation of CF [Sundaram et al.
2015]. Green-Marl is one of the fastest
DSLs for the algorithms we evaluate [Hong et al. 2012]. Galois (v2.2.1) has an efficient asyn-
chronous engine that works well on road graphs [Nguyen et al. 2013]. Gemini is a distributed
graph processing system with notable shared-machine performance [Zhu et al. 2016]. Compared to
existing frameworks, Grazelle has the fastest PR and CC using edge list vectorization, inner loop
parallelism, and NUMA optimizations [Grossman et al. 2018].

7.1 Comparisons with State-of-the-Art Frameworks

Table 7 shows the execution time of GraphIt and other systems. The best performing schedules
for GraphIt are shown in Table 8. Table 9 shows the line counts of four graph algorithms for each
framework. GraphIt often uses significantly fewer lines of code compared to the other frameworks.
Unlike GraphIt, other frameworks with direction optimizations require programmers to provide
many low-level implementation details as discussed in Section 3. GraphIt outperforms the next
fastest of the six state-of-the-art shared-memory frameworks on 24 out of 32 experiments by up to
4.8×, and is never more than 43% slower than the fastest framework on the other experiments.

PR. GraphIt has the fastest PR on 4 out of the 5 graphs and is up to 54% faster than the next fastest
framework because it enables both cache and NUMA optimizations when necessary. Table 10
shows that on the Twitter graph, GraphIt has the lowest LLC misses, QPI traffic, and cycles stalled
compared to Gemini and Grazelle, which are the second and third fastest. GraphIt also reduces the
line count by up to an order of magnitude compared to Grazelle and Gemini as shown in Table 9.
Grazelle uses the Vector-Sparse edge list to improve vectorization, which works well on graphs with
low-degree vertices [Grossman et al. 2018], outperforming GraphIt by 23% on USAroad. GraphIt
does not yet have this optimization, but we plan to include it in the future. Frameworks other than
Gemini and Grazelle do not optimize for cache or NUMA, resulting in much worse running times.

BFS. GraphIt has the fastest BFS on 4 out of the 5 graphs (up to 28% faster than the next fastest)
because of its ability to generate code with different direction and bitvector optimizations. On
LiveJournal, Twitter, WebGraph, and Friendster, GraphIt adopts Ligra’s direction optimization.
On USAroad, GraphIt always uses SparsePush and omits the check for when to switch traversal
direction, reducing runtime overhead. In the pull direction traversals, GraphIt uses bitvectors to
represent the frontiers when boolean array representations do not fit in the last level cache, whereas
Ligra always uses boolean arrays and Grazelle always uses bitvectors. GraphIt outperforms Galois’
BFS, even though Galois is highly-optimized for road graphs. GraphMat and Green-Marl do not
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Table 7. Running time (seconds) of GraphIt and state-of-the-art frameworks. The fastest results are bolded.
The missing numbers correspond to a framework not supporting an algorithm and/or not successfully
running on an input graph. Galois’ Betweenness Centrality (BC) uses an asynchronous algorithm, while
other frameworks use a synchronous one. We ran PageRank (PR) for 20 iterations, PageRankDelta (PRDelta)
for 10 iterations, and Collaborative Filtering (CF) for 10 iterations. Breadth-First Search (BFS), Single Source
Shortest Paths (SSSP), and Betweenness Centrality (BC) times are averaged over 10 starting points.
Algorithm PR BFS CC CF
Graph LJ TW WB RD FT LJ TW WB RD FT LJ TW WB RD FT NX NX2
GraphIt 0.342 8.707 16.393 0.909 32.571 0.035 0.298 0.645 0.216 0.490 0.068 0.890 1.960 17.100 2.630 1.286 4.588
Ligra 1.190 49.000 68.100 1.990 201.000 0.027 0.336 0.915 1.041 0.677 0.061 2.780 5.810 25.900 13.000 5.350 25.500
GraphMat 0.560 20.400 35.000 1.190 0.100 2.800 4.800 1.960 0.365 9.8 17.9 84.5 5.010 21.600
Green-Marl 0.516 21.039 42.482 0.931 0.049 1.798 1.830 0.529 0.187 5.142 11.676 107.933
Galois 2.788 30.751 46.270 9.607 117.468 0.038 1.339 1.183 0.220 3.440 0.125 5.055 15.823 12.658 18.541
Gemini 0.430 10.980 16.440 1.100 44.600 0.060 0.490 0.980 10.550 0.730 0.150 3.850 9.660 85.000 13.772
Grazelle 0.368 15.700 20.650 0.740 54.360 0.052 0.348 0.828 1.788 0.512 0.084 1.730 3.208 12.200 5.880

Algorithm SSSP PRDelta BC
Graph LJ TW WB RD FT LJ TW WB RD FT LJ TW WB RD FT
GraphIt 0.055 1.349 1.680 0.285 4.302 0.183 4.720 7.143 0.494 12.576 0.102 1.550 2.500 0.650 3.750
Ligra 0.051 1.554 1.895 1.301 11.933 0.239 9.190 19.300 0.691 40.800 0.087 1.931 3.619 2.530 6.160
GraphMat 0.095 2.200 5.000 43.000
Green-Marl 0.093 1.922 4.265 93.495 0.082 3.600 6.400 29.050
Galois 0.091 1.941 2.290 0.926 4.643 0.237 3.398 4.289 0.806 9.897
Gemini 0.080 1.360 2.800 7.420 6.147 0.149 1.358 2.299 31.055 3.849

Table 8. Schedules that GraphIt uses for all applications on different graphs. The schedules assume that
the edgeset apply operator is labeled with s1. The keyword ’Program’ and the continuation symbol ’->’ are
omitted. ’ca’ is the abbreviation for ’configApply’. Note that configApplyNumSSG uses an integer parameter
(X ) which is dependent on the graph size and the cache size of a system. BC has two edgeset apply operators,
denoted with s1 and s2.
Apps USAroad LiveJournal Twitter WebGraph Friendster

PR caDirection(“s1”, ”DensePull")  
caParallelization(“s1”, ”dynamic-vertex-parallel”)

caDirection(“s1”, ”DensePull")  
caParallelization(“s1”, “dynamic-vertex-parallel”)

caDirection(“s1”, "DensePull") 
caParallelization(“s1”, “edge-aware-dynamic-vertex-parallel”) 
caNumSSG(“s1”, "fixed-vertex-count", X) 
caNUMA(”s1”, ”dynamic-static-parallel”)

BFS caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “static-vertex-parallel”) 

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel") 

caDirection(“s1”, ”DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s1”, "dynamic-vertex-parallel") 

CC caDirection(“s1”, "DensePush-SparsePush") 
caParallelization(“s1”, “static-vertex-parallel”)

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel")

caDirection(“s1”, "DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s1”, "dynamic-vertex-parallel") 
caNumSSG(“s1”, “fixed-vertex-count", X, “DensePull”)

SSSP caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel")

caDirection(“s1”, "DensePush-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel")

caDirection(“s1”, "DensePush-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel")

PRDelta caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel”) 
fuseFields("OutDegree", "Delta")

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, "dynamic-vertex-parallel") 
fuseFields("OutDegree", "Delta")

caDirection(“s1”, "DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull") 
caParallelization(“s1”, "dynamic-vertex-parallel") 
caNumSSG(“s1”, "fixed-vertex-count", X, “DensePull”) 
caNUMA(“s1”, “static-parallel”, “DensePull") 
fuseFields("OutDegree", "Delta")

BC caDirection(“s1”, "SparsePush") 
caParallelization(“s1”, “static-vertex-parallel”) 
caDirection(“s2”, "SparsePush") 
caParallelization(“s2”, “static-vertex-parallel”)

caDirection(“s1”, "DensePull-SparsePush") 
caParallelization(“s1”, “dynamic-vertex-parallel”) 
caDirection(“s2”, "DensePull-SparsePush") 
caParallelization(“s2”, “dynamic-vertex-parallel")

caDirection(“s1”, ”DensePull-SparsePush") 
caDenseVertexSet(“s1”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s1”, “dynamic-vertex-parallel") 
caDirection(“s2”, ”DensePull-SparsePush") 
caDenseVertexSet(“s2”, “src-vertexset”, “bitvector”, “DensePull”) 
caParallelization(“s2”, "dynamic-vertex-parallel")

CF For Netflix and Netflix2x graphs 
caDirection(“s1”, "DensePull") 
caParallelization(“s1”, “edge-aware-dynamic-vertex-parallel") 
caNumSSG(“s1”, fixed-vertex-count, X)

Table 9. Line counts of PR, BFS, CC, and SSSP for GraphIt, Ligra, GraphMat, Green-Marl, Galois, Gemini,
and Grazelle. Only Green-Marl has fewer lines of code than GraphIt. GraphIt has an order of magnitude fewer
lines of code than Grazelle (the second fastest framework on the majority of the algorithms we measured).
For Galois, we only included the code for the specific algorithm that we used. Green-Marl has a built-in BFS.

GraphIt Ligra GraphMat Green-Marl Galois Gemini Grazelle
PR 34 74 140 20 114 127 388
BFS 22 30 137 1 58 110 471
CC 22 44 90 25 94 109 659
SSSP 25 60 124 30 88 104

have the direction optimization so it is much slower. Ligra is slightly faster than GraphIt on the
smaller LiveJournal graph due to better memory utilization, but is slower on larger graphs.
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Table 10. LLC miss rate, QPI traffic, cycles with pending memory loads and cache misses, and parallel
running time (seconds) of PR, CC, and PRDelta running on Twitter, and CF running on Netflix.

Algorithm PR CC PRDelta CF

Metrics GraphIt Ligra Gemini Grazelle GraphIt Ligra Gemini Grazelle GraphIt Ligra GraphIt Ligra

LLC miss rate (%) 24.59 60.97 45.09 56.68 10.27 48.92 43.46 56.24 32.96 71.16 2.82 37.86

QPI traffic (GB/s) 7.26 34.83 8.00 20.50 19.81 27.63 6.20 18.96 8.50 33.46 5.68 19.64

Cycle stalls (trillions) 2.40 17.00 3.50 4.70 0.20 0.96 1.20 0.30 1.25 5.00 0.09 0.22

Runtime (s) 8.71 49.00 10.98 15.70 0.89 2.78 3.85 1.73 4.72 9.19 1.29 5.35

CC. GraphIt has the fastest CC on Twitter, WebGraph, and Friendster because of the direction,
bitvector, and cache optimizations. Table 10 showsGraphIt’s reduced LLCmiss rate and cycles stalled.
Interestingly, Gemini has the lowest QPI traffic, but is much slower than GraphIt. With NUMA
optimizations, vertices in one socket fail to see the newly propagated labels from vertices in another
socket, resulting in slower convergence. Unlike other NUMA-aware graph processing frameworks,
GraphIt can easily enable or disable NUMA optimizations depending on the algorithm. We choose
the label propagation algorithm option on Galois and use the FRONTIERS_WITHOUT_ASYNC
option on Grazelle in order to compare the same algorithm across frameworks. Galois’ CC is 35%
faster than GraphIt on USAroad because it uses a special asynchronous engine instead of a frontier-
based model. We also ran Galois’s union-find CC implementation but found it to be slower than
GraphIt on all graphs except USAroad. Grazelle’s CC using the Vector-Sparse format, implemented
with hundreds of lines of assembly code as shown in Table 9, is 43% faster than GraphIt on USAroad.
The best performing schedule that we found on USAroad without any asynchronous mechanism is
DensePush-SparsePush.

CF. For CF, GraphIt is faster than Ligra and GraphMat (by 4ś4.8×) because the edge-aware-dynamic-
vertex-parallel schedule achieves good load balance on Netflix. Cache optimization further improves
GraphIt’s performance and is especially beneficial on Netflix2x.

SSSP. GraphIt has the fastest SSSP on 4 out of the 5 graphs because of its ability to enable or disable
the direction optimization and the bitvector representation of the frontier. We run Galois with the
Bellman-Ford algorithm so that the algorithms are the same across systems. We also tried Galois’s
asynchronous SSSP but found it to be faster than GraphIt only on WebGraph. Green-Marl’s SSSP
on USAroad is 328 times slower than GraphIt because it uses the DensePush configuration. On
every round, it must iterate through all vertices to check if they are active. This is expensive on
USAroad because for over 6000 rounds, the active vertices count is less than 0.4% of all the vertices.

PRDelta. GraphIt outperforms Ligra on all graphs by 2ś4× due to better locality from using
bitvectors as frontiers, fusing the Delta and OutDegree arrays as shown in Fig. 4, and applying
both the cache and NUMA optimizations in the pull direction. Table 10 shows GraphIt’s reduced
LLC miss rate, QPI traffic, and cycles stalled.

BC. GraphIt achieves the fastest BC performance on the USAroad and Friendster graphs and has
comparable performance on the other graphs. GraphIt is a bit slower than Gemini on Twitter and
WebGraph because it does not support bitvector as a layout option for vertex data vectors layouts.
We plan to add this in the future.

7.2 Performance of Different Schedules

Fig. 22 demonstrates the impact of traversal direction, data structures used for keeping track of
active vertices, and cache optimizations. For a given algorithm, there is no single schedule that
works well on all input graphs. For BFS, DensePullSparsePush with cache optimizations reduces
the number of memory accesses on LiveJournal, Twitter, WebGraph, and Friendster, achieving up
to 30× speedup. However, using only SparsePush can reduce the runtime overhead on USAroad
as described in Section 7.1. For CC, the bitvector and cache optimizations improve locality of
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Fig. 22. Performance of different schedules for BFS, CC, and PRDelta. SparsePush and DensePullSparsePush
refer to the traversal directions. BitVec refers to the dense frontier data structure. Cache refers to the cache
optimization. The descriptions of these schedules can be found in Section 2.2. The full scheduling commands
are shown in Table 8.

Fig. 23. Scalability of CF, PRDelta, and BFS with different schedules. Hyper-threading is disabled.

memory accesses for Twitter, WebGraph, and Friendster, but hurt the performance of LiveJournal
and USAroad due to lower work-efficiency. For PRDelta, SparsePush sometimes outperforms
DensePullSparsePush, but when the cache optimization is applied to the pull direction, hybrid
traversal is preferred.
Fig. 23 shows that the parallelization scheme can have a major impact on scalability, and again

there is no single scheme that works the best for all algorithms and inputs. For CF, the amount of
work per vertex is proportional to the number of edges incident to that vertex. Consequently, the
edge-aware-dynamic-vertex-parallel scheme is 2.4× faster than the dynamic-vertex-parallel ap-
proach because of better load balance. For PRDelta, the number of active vertices quickly decreases,
and many of the edges do not need to be traversed. As a result, the edge-aware-dynamic-vertex-
parallel scheme has a smaller impact on performance. The dynamic-vertex-parallel approach is a
good candidate for BFS because not all edges incident to a vertex are traversed. Using the edge-
aware-dynamic-vertex-parallel scheme for BFS ends up hurting the overall load balance.We omit the
edge-parallel approach because it is consistently worse than edge-aware-dynamic-vertex-parallel
due to the extra synchronization overhead.

7.3 Autotuning Performance

The autotuner found schedules that performed within 5% of the hand-tuned schedules for all of
the benchmarks in under 5000 seconds. For three benchmarks, the autotuner found schedules that
outperformed hand-tuned schedules by up to 10%.

7.4 Fusion of Multiple Graph Kernels

Fig. 24 demonstrates the performance improvement of kernel fusion with PageRank and Eigenvector
Centrality. They have similar memory access patterns. GraphIt significantly improves the spatial
locality of the memory accesses by fusing together the two kernels and the vectors they access
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Fig. 24. Normalized Execution Time, and L1 and L2 Cache Stall Cycles with Fusion of PageRank and
Eigenvector Centrality

Table 11. Optimizations adopted by various frameworks (explained in Section 2): WSVP (work-stealing
vertex-parallel), WSEVP (work-stealing edge-aware vertex-parallel), SPVP (static-partitioned vertex-parallel
with no work-stealing), EP (edge-parallel), BA (dense boolean array), BV (dense bitvector), AoS (Array of
Structs), SoA (Struct of Arrays), SPS (SparsePush), DPS (DensePush), SP (SparsePull), DP (DensePull), SPS-DP
(hybrid direction with SPS and DP depending on frontier size), DPS-SPS (hybrid with DPS and SPS), DPS-DP
(hybrid with DPS and DP).
Frameworks Traversal

Directions
Dense
Frontier
Data Layout

Parallelization Vertex
Data
Layout

Cache
Opt.

NUMA
Opt.

Optimization
Combinations
Count

Integer
Params
Count

GraphIt SPS, DPS, SP,
DP, SPS-DP,
DPS-SPS

BA, BV WSVP,
WSEVP,
SPVP, EP

AoS, SoA Partitioned,
No Partition

Partitioned,
Interleaved

100+ 3

Ligra SPS-DP,
DPS-SPS

BA WSVP, EP SoA None Interleaved 4 1

Green-Marl DPS, DP BA WSVP SoA None Interleaved 2 0
GraphMat DPS, DP BV WSVP AoS None Interleaved 2 0
Galois SPS, DP, SPS-

DP
BA WSVP AoS None Interleaved 3 1

Polymer SPS-DP,
DPS-SPS

BA WSVP SoA None Partitioned 2 0

Gemini SPS, DP, SPS-
DP

BA,BV WSVP SoA None Partitioned 6 1

GraphGrind SPS-DP,
DPS-SPS

BA WSVP SoA None Partitioned,
Interleaved

4 1

Grazelle DPS, DP,
DPS-DP

BV EP SoA None Partitioned 3 1

(vertex data layout optimization). Fig. 24 shows significant reduction in cycles stalled on L1 data
cache and L2 cache misses, leading to the speedups.

8 RELATED WORK

Shared-Memory Graph Processing Libraries and DSLs.Many high-performance graph frame-
works and DSLs, including GraphIt, optimize their performance for shared-memory systems. Many
of these frameworks support only a limited set of combinations of optimization techniques as
shown in Table 11 (these optimizations are described in Section 2). GraphIt significantly expands

the space of optimizations by composing large number of effective optimizations, supporting two

orders of magnitude more optimization combinations than existing frameworks. GraphIt achieves
high performance by enabling programmers to easily find the best combination of optimizations for
their specific algorithm and input graph. GraphIt also finds previously unexplored combinations of
optimizations to significantly outperform state-of-the-art frameworks on many algorithms.
Many shared-memory graph systems, such as Ligra [Shun and Blelloch 2013], Gunrock [Wang

et al. 2016], GraphGrind [Sun et al. 2017], Polymer [Zhang et al. 2015], Gemini [Zhu et al. 2016] and
Grazelle [Grossman et al. 2018], adopt the frontier-based model. Galois [Nguyen et al. 2013] also
has an implementation of the model and a scheduler that makes it particularly efficient for road
graphs. The frontier-based model [Shun and Blelloch 2013] operates efficiently on subsets of vertices
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(frontiers) and their outgoing edges using the direction optimization [Beamer et al. 2012]. Flat
data-parallel operators are used to apply functions to the frontier vertices and their neighbors with
parallel direction optimizations. Existing frameworks only support up to three of the many possible
directions, with little support for different parallelization schemes and frontier and vertex data layout
optimizations. GraphIt significantly expands the space of optimizations by enabling combinations of
data layout optimization, different direction choices, and various parallelization schemes (Table 11).
GraphIt also makes programming easier by freeing the programmer from specifying low-level
implementation details, such as updated vertex tracking and atomic synchronizations.
Many frameworks and techniques have been introduced to improve locality with NUMA and

cache optimizations. GraphGrind, Grazelle, Gemini and Polymer all support NUMA optimizations.
CSR Segmenting [Zhang et al. 2017] and cache blocking [Beamer et al. 2017; Nishtala et al. 2007]
have been introduced to improve the cache performance of graph applications through graph
partitioning. However, both techniques have not been integrated in a general programming model
or combined with direction optimizations. GraphIt supports NUMA optimizations and integrates a
simplified variant of CSR segmenting to compose cache optimizations with other optimizations.
Other shared-memory systems [Sundaram et al. 2015; Yan et al. 2017] adopt the vertex-centric

model to exploit data parallelism across vertices. Programmers specify the logic that each (active)
vertex executes iteratively. Frameworks [Kang et al. 2011; Lugowski et al. 2012] use sparse matrix-
vector multiplication with semirings to express graph algorithms. However, both programming
models cannot easily integrate direction optimization, which requires different synchronization
strategies for each vertex in push and pull directions.

Green-Marl [Hong et al. 2012], Socialite [Lam et al. 2013], Abelian [Gill et al. 2018], and Empty-
Headed [Aberger et al. 2016] are DSLs for shared-memory graph processing. Green-Marl provides
a BFS primitive, and so programs that can be expressed with BFS invocations are relatively concise.
However, for other graph programs, the programmer needs to write the loops over vertices and
edges explicitly, making it hard to integrate direction optimization due to the lower level nature
of the language. Socialite and EmptyHeaded provide relational query languages to express graph
algorithms. The underlying data representation is in the form of tables, and due to extensive
research in join optimizations, these systems perform especially well for graph algorithms that
can be expressed efficiently using joins (e.g., subgraph finding). However, since these languages do
not allow for explicit representation of active vertex sets, their performance on graph traversal
algorithms is worse than the frontier-based frameworks [Aberger et al. 2016; Satish et al. 2014].
These DSLs also do not support composition of optimizations or expose extensive performance
tuning capabilities.

A number of graph processing frameworks have been developed for GPUs (see [Shi et al. 2018]
for a survey). We did not focus on GPUs in this paper as the current GPU memory capacities do
not allow us to process very large graphs in-memory.

Out-of-Core Graph Processing Frameworks. There has been a significant amount of work
dealing with graphs that cannot fit in memory (e.g., [Jun et al. 2018; Kyrola et al. 2012; Maass et al.
2017; Roy et al. 2013; Vora et al. 2016; Wang et al. 2017, 2015; Yan et al. 2017; Zheng et al. 2015; Zhu
et al. 2015]), while GraphIt focuses on in-memory graph processing. Some of the optimizations in
out-of-core systems also focus on improving locality of accesses, parallelism, and work-efficiency,
but the tradeoff space for these techniques is very different when optimizing for the disk/DRAM
boundary, instead of the DRAM/cache boundary. The higher disk access latency, lower memory
bandwidth, and larger granularity of access lead to very different techniques [Jun et al. 2018]. When
the graphs do fit in memory, out-of-core systems, such as X-Stream [Roy et al. 2013], have shown
to be much slower than shared-memory frameworks [Grossman et al. 2018; Zhang et al. 2017].
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Distributed Graph Processing Frameworks. Graph analytics has also been studied extensively
in distributed memory systems (e.g., [Chen et al. 2015; Dathathri et al. 2018; Gonzalez et al. 2012;
Low et al. 2010; McCune et al. 2015; Prabhakaran et al. 2012; Roy et al. 2015; Sakr et al. 2017; Yan et al.
2017; Zhu et al. 2016]). The tradeoff space is also different for distributed graph processing systems
due to the larger network communication overhead and greater need for load balance. Techniques
used by GraphIt, such as direction optimization and locality enhancing graph partitioning can
also be applied in the distributed domain [Zhu et al. 2016]. These systems, when run on a single
machine, generally cannot outperform shared-memory frameworks [Satish et al. 2014].

Scheduling Languages. GraphIt introduces an expressive scheduling language. Examples of exist-
ing scheduling languages include Halide [Ragan-Kelley et al. 2017], CHiLL [Chen et al. 2008], and
HMPP [Romain et al. 2007]. These languages mainly focus on loop nest optimization in applications
that manipulate dense arrays. Unlike these scheduling languages, the GraphIt scheduling language
is designed for graph applications. It is the first scheduling language designed to address the
challenges of graph applications, graph data structures, and graph optimizations. It allows the
programmer to perform data layout transformations (which is not possible in Halide), and allows
full separation between the algorithm and the schedule (which is not possible in HMPP). Unlike
CHiLL, which was designed mainly for the application of affine transformations on loop nests,
the GraphIt scheduling language supports a large set of non-affine transformations, which are the
main type of optimizations in the context of graph applications.

Program Synthesis. Program synthesis techniques have been explored in the context of graph
algorithms [Prountzos et al. 2012, 2015], which allow many different implementations of an applica-
tion to be generated. However, little control is provided to compose together different optimizations.
GraphIt enables programmers to apply their knowledge to find profitable combinations of opti-
mizations. GraphIt also supports a much wider range of optimizations.

Physical Simulation DSLs. GraphIt is heavily influenced by DSLs for physical simulations, in-
cluding Simit [Kjolstad et al. 2016] and Liszt [DeVito et al. 2011]. However, Simit and Liszt do not
support efficient filtering on vertices and edges, and do not have a scheduling language.

9 CONCLUSION

We have described GraphIt, a novel DSL for graph processing that generates fast implementations
for algorithms with different performance characteristics running on graphs with varying sizes and
structures. GraphIt separates algorithm specifications from performance optimizations. The algo-
rithm language simplifies expressing the algorithms. We formulate graph optimizations as tradeoffs
among locality, parallelism, and work-efficiency. The scheduling language enables programmers
to easily search through the complicated tradeoff space. We introduce the graph iteration space

to model, compose, and ensure the validity of the edge traversal optimizations. The separation of
algorithm and schedule, and the correctness guarantee of edge traversal optimizations enabled us
to build an autotuner on top of GraphIt. Our experiments show that GraphIt is up to 4.8× faster
than state-of-the-art graph frameworks. Future work includes extending the compiler to support
more optimizations and hardware platforms (e.g., GPU and distributed-memory).
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