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Results of electron-induced one- and two-nucleon hard knockout reactions, A(e, e′ p) and A(e, e′ pN), in 
kinematics sensitive to nuclear short-range correlations, are studied using the nuclear contact formalism. 
A relation between the spectral function and the nuclear contacts is derived and used to analyze the 
dependence of the data on the initial energy and momentum of the knocked-out proton. The ratio 
between the number of emitted proton-proton pairs and proton-neutron pairs is shown to depend 
predominantly on a single ratio of contacts. This ratio is expected to present deep minima in the initial 
energy and momentum plane, associated with the node in the proton-proton wave function.
The formalism is applied to analyze data from recent 4He and 12C electron-scattering experiments 
performed at Jefferson laboratory. Different nucleon-nucleon potentials were used to assess the model-
dependence of the results. For the ratio of proton-proton to proton-neutron pairs in 4He, a fair agreement 
with the experimental data is obtained using the two potentials, whereas for the ratio of proton-proton 
pairs to the total knocked-out protons in 12C, some of the features of the theory are not seen in the 
experimental data. Several possible explanations for this disagreement are discussed. It is also observed 
that the spectral function at specific domains of the momentum-energy plane is sensitive to the nucleon-
nucleon interaction. Based on this sensitivity, it might be possible to constrain the short range part of 
the nuclear potential using such experimental data.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In order to fully describe nuclear systems, it is necessary to 
understand the short-range behavior of interacting nucleons, i.e. 
the implications of few nucleons being close to each other in-
side the nucleus. These nuclear short-range correlations (SRCs) 
have been studied intensively in the last decades. High-energy and 
large momentum-transfer electron and proton-scattering experi-
ments show that almost all of the nucleons with momentum larger 
than the Fermi momentum are part of an SRC pair, which amount 
to about 20% of the nucleons in medium-size and heavy nuclei 
[1–9]. A dominance of neutron-proton pairs was observed among 
the different possible pairs [5–11]. These conclusions are also sup-
ported by theoretical works, in which ab-initio calculations of mo-
mentum distributions in nuclei show a universal high-momentum 

* Corresponding author.
E-mail addresses: ronen.weiss1@mail.huji.ac.il (R. Weiss), nir@phys.huji.ac.il

(N. Barnea).
https://doi.org/10.1016/j.physletb.2019.02.019
0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
tail, similar in shape to the deuteron high-momentum tail [12–17]. 
For more details, see recent reviews [18,19].

Recently, the nuclear contact formalism, a new approach for an-
alyzing nuclear SRCs, was presented [20–23]. In this theory, new 
parameters, called the nuclear contacts, describe the probability of 
finding two nucleons close to each other inside the nucleus. The 
values of these contacts depend on the specific nucleus discussed. 
Another important ingredients of this theory are the universal two-
body functions that describe the motion of the SRC pairs. These 
functions can be model-dependent, i.e. depend on the nucleon-
nucleon interaction, however they are identical for all nuclei. This 
theory was used previously to derive the nuclear contact relations, 
which are relations between the nuclear contacts and different nu-
clear quantities, such as the one-body and two-body momentum 
and coordinate space distributions [21,23], the photo-absorption 
cross section [20,24], the Coulomb sum rule [25], and the corre-
lation function [26].
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The purpose of this paper is to study and analyze electron-
scattering experimental data using the contact theory. We will 
focus on hard semi-exclusive and exclusive scattering experiments, 
in which one or two emitted nucleons are measured in addition 
to the scattered electron [7–9,27–29]. These measurements, in ap-
propriate kinematics, are one of the main experimental methods 
for studying nuclear SRCs, and thus it is important to have a good 
theoretical description of their results.

In electron-scattering experiments, under the one-photon ex-
change approximation, momentum q and energy ω are transferred 
to the nucleus by a virtual photon. If Q 2 ≡ q2 −ω2 is large enough 
(� 1.5 GeV2), the photon is predominantly absorbed by a sin-
gle nucleon. This nucleon is knocked out from the nucleus and 
its momentum p′

1 and energy ε′
1 are measured. Neglecting final-

state interaction (FSI), the initial momentum and (off-shell) energy 
(p1, ε1) of the nucleon in the nucleus ground state, before it was 
knocked out, can be reconstructed

p1 = p′
1 − q, ε1 = ε′

1 − ω. (1)

If the initial momentum p1 is larger than the typical Fermi mo-
mentum pF ≈ 255 MeV/c = 1.3 fm−1, then it is most likely that 
the knocked-out nucleon was part of an SRC pair. In this case, an 
emission of a second nucleon is to be expected. This nucleon is the 
correlated partner. Its final momentum p′

2 equals its initial-state 
momentum inside the nucleus p2 = p′

2.
This description indicates that the semi-exclusive and exclusive 

cross sections should be proportional to the probability of finding 
a nucleon with momentum p1 and energy ε1 in the initial state, 
which is just the definition of the spectral function S N (p1, ε1). In-
deed, it was shown in [30] that within the plane-wave impulse 
approximation (PWIA), the (e, e′N) cross section is given by

d4σ

d�k′dε′
kd�p′

1
dε′

1
= p′

1ε
′
1σeN S N(p1, ε1) (2)

where, k′
μ = (k′, ε′

k) is the final electron four-momentum, N de-
notes a knocked-out neutron or a proton, and σeN is the off-shell 
electron-nucleon cross section.

In the case of high-Q 2 two nucleon knockout reactions, previ-
ous theoretical [17,31,32] and experimental [6] studies have shown 
that the measured cross-section can be factorized in a similar 
manner to Eq. (2), replacing the one-body spectral function by 
the two-body decay function D A(p1, p2, E R). The latter represents 
the probability for a hard knockout of a nucleon with initial mo-
mentum p1, followed by an emission of a recoil nucleon with 
momentum p2. E R is the energy of the A − 1 system, composed of 
nucleon 2 and the residual A − 2 nucleus. We note that integrat-
ing the decay function over all recoil nucleon momenta (p2) yields 
the spectral function.

Under few simple assumptions, which will be presented below, 
the asymptotic high-momentum proton spectral function can be 
written as

S p(p1, ε1) = C1
pn S1

pn(p1, ε1) + C0
pn S0

pn(p1, ε1)

+ 2C0
pp S0

pp(p1, ε1). (3)

Here, Cα
ab are the nuclear contacts, that measure the probability 

to find a proton-proton (pp) pair or a proton-neutron (pn) pair 
close together, with quantum numbers denoted by α, while the 
functions Sα

ab are the contributions of these pairs to the spectral 
function. α = 1 corresponds to the spin-one deuteron quantum 
numbers, and α = 0 corresponds to the spin-zero s-wave quantum 
numbers. These are the main two-body channels of nuclear SRC 
pairs [23]. Based on the experience with the one-body momentum 
distribution [23], Eq. (3) is expected to be valid for p1 > pF . The 
probability to find a proton with energy ε1 and large momentum 
p1, has contribution from both pp and pn pairs. The equivalent 
neutron spectral function is obtained by changing between n and 
p.

The derivation of Eq. (3) starts with the definition of the spec-
tral function

S N(p1, ε1) =
∑̄

i

∑
s1, f

δ(ε1 + E A−1
f − E A

i )

×
∣∣∣〈�A−1

f |ap1,s1 |�A
i 〉

∣∣∣2
(4)

where �A
i is the ground state wave function, E A

i = (Am − B A
i ) is 

the ground state energy and B A
i is its binding energy, �A−1

f is an 
(A − 1)-body eigenstate of the nuclear Hamiltonian with energy 
E A−1

f , and 
∑̄

i is an average over the magnetic projections of the 
ground state. m is the nucleon mass and ap1,s1 is the annihilation 
operator of a nucleon N with momentum p1 and spin s1. S p and 
Sn are normalized to the total number of protons and neutrons in 
the nucleus, correspondingly, i.e., 

∫
dε1

d3 p1
(2π)3 S p(p1, ε1) = Z .

For p1 −→ ∞, neglecting three-body or higher correlations, the 
ground state wave function is dominated by an SRC pair with very 
large relative momentum p12 = (p1 − p2)/2 and can be written as

�A
i −−−−−→

p12→∞
∑
α

ϕ̃α
12(p12) Ãα

12(P 12, {pk}k 
=1,2). (5)

This is the basic assumption of the contact theory, and it was 
validated using ab-initio calculations [23,33]. ϕ̃α

ab are universal 
two-body functions, while Ãα

ab describe the motion of the rest of 
the particles, and the pair’s center of mass (CM) motion, P 12 =
p1 + p2. In this picture, once particle 1 is removed, particle 2 is 
left with high momentum and can be treated as a spectator. Con-
sequently, we may write

�
A,12
f ≡ a†

p1,s1�
A−1
f = NÂ

{
�A−2

f |p1s1; p2s2〉
}

. (6)

Here, �A−2
f is an eigenstate of the (A − 2)-body nuclear Hamil-

tonian with energy E A−2
f , si is the spin of particle i, Â is the 

anti-symmetrizing operator, and N normalization factor. It follows 
that

E A−1
f = ε2 + (A − 2)m − B A−2

f + P 2
12

2m(A − 2)
(7)

where ε2 =
√

p2
2 + m2 is the energy of the second correlated nu-

cleon, B A−2
f is the binding energy of the (A − 2)-nucleon system, 

and the last term is the contribution of the CM motion of the 
(A − 2)-nucleon system.

Substituting Eqs. (5) and (6) into Eq. (4), and assuming that the 
(A − 2)-nucleon binding energy is narrowly distributed around a 
central value B̄ A−2

f , we arrive at Eq. (3). For pairs of nucleons ab, 
the SRC functions Sα

ab are given by

Sα
ab = 1

4π

∫
dp2

(2π)3
δ( f (p2))

∣∣ϕ̃α
ab(|(p1 − p2)/2|)∣∣2

nα
ab(p1 + p2)

(8)

and

f (p2) = ε1 + ε2 − 2m + (B A
i − B̄ A−2

f ) + (p1 + p2)
2

, (9)

2m(A − 2)
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where nα
ab(P ), the CM momentum distribution of the SRC pair, is 

given by Cα
abnα

ab(P ) = 〈 Ãα
ab(P )| Ãα

ab(P )〉. In practice, it can be as-
sumed that all SRC pairs have similar CM distribution nC M(P ), 
which we shall take as a three-dimensional Gaussian with a width 
σC M [28,34,35]. The spectral functions Sα

ab are expected to be al-
most identical across the table of nuclides, as the CM and binding 
energy corrections are relatively small for nuclei heavier than 12C 
[28].

The delta function in Eq. (8) can be used to eliminate the inte-
gration over the angles, and Sα

ab can be obtained through numer-
ical integration over p2, without further approximations. In this 
integration we also require that |(p1 − p2)/2| > pF . Alternatively, 
we can continue analytically if we replace the CM term of Eq. (9)
by its mean value T̄ A−2

C M = 〈P 2
12〉/2m(A − 2) = 3σ 2

C M/2m(A − 2). 
This should be a good approximation for small values of σC M or 
large values of A. Then, the delta function can be used to fix the 
magnitude of p2, given by

p0
2(ε1) =

√[
2m − ε1 − (B A

i − B̄ A−2
f ) − T̄ A−2

C M

]2 − m2. (10)

We can also see that if the CM momentum distribution nC M (P )

has a zero width, i.e. nC M is a delta function which dictates 
p2 = −p1, the spectral function becomes simply a delta function, 
centered around

ε1 = 2m −
√

p2
1 + m2 − (B A

i − B̄ A−2
f ). (11)

According to Eq. (10), the momentum magnitude p2 of the second-
emitted nucleon in A(e, e′pN) experiments depends only on the 
initial energy ε1 but not on the initial momentum p1 of the 
knocked-out proton. This might not seem reasonable at first 
glance, since we expect that p2 ≈ −p1 [5,6]. But, if one substi-
tutes the value of ε1 of Eq. (11) together with T̄ A−2

C M = 0, into Eq. 
(10), we obtain p0

2 = p1, as expected. For a given p1, the value of 
ε1 of Eq. (11) should be close to a maximum point in the spectral 
function, and thus most experimental data is centered around such 
values of p1 and ε1, leading to the observation of p2 ≈ −p1. If 
sufficient experimental data of exclusive experiments in other do-
mains of the momentum-energy plane will be available, it might 
be possible to see the energy dependence of p0

2 and compare it 
to Eq. (10). We expect for corrections to this relation due finite A, 
the distribution of the B A−2

f around the mean value B̄ A−2
f , and FSI 

effects.
To calculate the spectral function we must first calculate the 

universal functions ϕ̃α
ab(p). These are the zero-energy solutions of 

the two-body Schrodinger equation for the spin-zero α = 0 chan-
nel, and the deuteron wave-function for α = 1. In Fig. 1 we present 
the resulting functions using the AV18 nucleon-nucleon (NN) po-
tential [36] and the chiral EFT NN force N3LO(600) [37] for the 
pp spin-zero channel and the pn deuteron channel. It can be seen 
that the two potentials produce similar functions up to the cutoff 
value of the N3LO potential (p ≈ 3 fm−1). Some differences in the 
pp functions, like the location of the node, are observed.

Before presenting our calculations for the spectral function, we 
note that nC M(P ) is expected to have a narrow distribution around 
zero, in each axis, with σC M ≈ pF /2. Therefore, the main contribu-
tion to the spectral function comes from p2 being anti-parallel to 
p1. As can be seen in Fig. 1, the pp function has a node around 
pnode ≈ 2 fm−1, and thus we expect S0

pp to have a minimum for

p1 + p0
2(ε1)

2
= pnode. (12)

The calculations of S1
pn and S0

pp , based on Eqs. (8) and (9), are 
presented in Figs. 2 and 3, using the AV18 NN interaction. In Fig. 2, 
Fig. 1. The universal two-body functions calculated using two different potentials, 
for deuteron pn pairs and s-wave pp pairs. The functions are normalized such that ∫ ∞

pF
|ϕα

ab |2dp/(2π)3 = 1.

Fig. 2. S0
pp of 4He as a function of p1 for fixed ε1 = 0.82 GeV/c, using the AV18 

potential and different values of σC M : 10 MeV (cyan), 30 MeV (blue), 60 MeV (ma-
genta) and 100 MeV (black). The dashed red line is the back-to-back prediction of 
Eq. (11), and the black and magenta points are the estimated location of the min-
imum of S0

pp based on Eq. (12). Inset: the results for S1
pn for σC M = 30, 60 and 

100 MeV.

Fig. 3. The same as in Fig. 2, but as a function of ε1 for fixed p1 = 400 MeV/c.

they are presented as a function of p1, at ε1 = 0.82 GeV/c and 
different values of σC M . In Fig. 3, the calculations are a function of 
ε1 at p1 = 400 MeV/c. The calculations were done for 4He, taking 
B A

i to be its binding energy and B̄ A−2
f the binding energy of the 

deuteron for the pn case and zero for the pp case. We note that 
the experimental extraction of σC M of 4He is 100 ± 20 MeV [8,28], 
in a good agreement with available theoretical estimations [34,35].

Calculations for heavier nuclei are similar, with ε1 shifted due 
to the different values of B A

i and B̄ A−2
f . Similar calculations using 

the N3LO(600) potential are presented in the supplemental ma-
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Fig. 4. S0
pp and S1

pn for 4He as a function of ε1 for fixed p1 = 400 MeV/c, normalized 
to 1 at ε1 = 0.85 GeV. The solid and dashed black (red) lines correspond to S0

pp

(S1
pn) for the AV18 and N3LO(600) potentials, respectively. The bands around the 

black lines show the effect of changing the value of p1 between 390 − 410 MeV/c. 
The corresponding bands for the red lines are much narrower and are not shown 
here.

terials. It can be seen that for small values of σC M , the spectral 
function is very close to the zero-CM prediction of Eq. (11), corre-
sponding to back-to-back SRC pairs. As the CM width is increased, 
Sα

ab deviates from this back-to-back picture. In addition, we can see 
that the pp spectral function has an interesting structure as it de-
velops two maxima for σC M > 60 MeV/c. This structure reflects the 
node in the pp function, as predicted in Eq. (12).

To compare between the results of the AV18 and N3LO(600) 
potentials, we present in Fig. 4 the 4He calculations of S1

pn and 
S0

pp , as a function of ε1 for fixed p1 = 400 MeV/c and σC M =
100 MeV/c. Here, the results are normalized to 1 at ε1 = 0.85 GeV. 
The bands around the S0

pp results show the effect of changing the 
value of p1 between 390 − 410 MeV. It is clear that the S1

pn re-
sults are very similar for the two potentials, while the results for 
S0

pp show significant differences. This is due to the differences seen 
in the pp functions presented in Fig. 1 around their node. Based 
on this sensitivity of S0

pp to the potential, it might be possible to 
constrain the short-range part of the N N potential using SRCs ex-
perimental data, as we will further discuss below. We note that 
S0

pp becomes less sensitive to the potential for higher or lower val-
ues of p1.

It should be noted that our expressions for the spectral func-
tion derived from the contact formalism are similar to the con-
volution model presented by Ciofi degli Atti et al. in [34,38], and 
revisited recently in [39,40]. The convolution model was shown to 
agree with ab initio calculations of the spectral function of 3He 
[39]. Nevertheless, our model differs slightly from the convolution 
model. The contact formalism allows us, in principle, to take into 
account contributions from all two-body channels. In this work, we 
consider the two leading np two-body functions, as opposed to a 
single deuteron function used in the convolution model. The main 
contribution comes from the deuteron channel, and we expect the 
additional np channel to have an effect of about 10%. Another 
small difference is the integration domain of Eq. (8), where we 
included the constrain |(p1 − p2)/2| > pF , while in the recent cal-
culations of Ref. [39] a slightly different constrain was introduced, 
leading to a similar effect. Additionally, we use the experimental 
CM distributions, as opposed to the ab-initio CM distributions used 
in the convolution model. Notice also that we use relativistic ex-
pressions for the energy while the convolution model is completely 
non-relativistic. A direct comparison between the two models is 
presented in the supplemental materials, showing a good agree-
ment for 4He and some differences for 12C. The contact formalism 
was also shown to agree with ab-initio calculations of momentum 
and coordinate-space distributions [23].

Equipped with our contact relation for the spectral function, 
we can go back to the exclusive electron-scattering experiments. 
One of the main results of these experiments is the ratio between 
the number of emitted pp pairs and pn pairs, extracted from the 
A(e, e′ pp) and A(e, e′ pn) cross sections. Based on Eq. (3), we can 
see that if there is a proton in some nucleus A with off-shell en-
ergy ε1 and momentum p1 > kF , then it is part of an SRC pair, 
which is either a pp pair or a pn pair. The ratio of the number of 
such pp to pn pairs is given by

#pp

#pn
(p1, ε1) = C0

pp S0
pp(p1, ε1)

C1
pn S1

pn(p1, ε1) + C0
pn S0

pn(p1, ε1)
. (13)

For symmetric nuclei (N = Z ) we expect that C0
pp = C0

pn ≡ C0 [23], 
and thus this ratio depends only on a single parameter C1

pn/C0. We 
can see that this ratio generally depends on both the initial mo-
mentum of the proton p1 and its energy ε1. Within the PWIA, and 
based on Eq. (2), this ratio can be extracted from the exclusive-
scattering experiments and is given by A(e, e′ pp)/2A(e, e′ pn).

The relation of the measured nucleon knockout cross-section 
ratios to PWIA calculations and ground-state energy-momentum 
densities relies on the fact that for the high-Q 2 kinematics used in 
the measurement, according to calculations, reaction mechanisms 
other than the hard breakup of SRC pairs are suppressed and any 
residual effects are significantly reduced when considering cross-
section ratios as oppose to absolute cross-sections [18,41–44]. 
The cancellation of reaction mechanisms in the cross-section ra-
tio steams from the approximate factorization of the experimental 
cross-section at high-Q 2, which also allows correcting the data for 
any remaining effects of FSI and Single-Charge Exchange (SCX) of 
the outgoing nucleons using an Eikonal approximation in a Glauber 
framework [19,35,45,46]. The experimental data discussed in this 
work is already corrected for such effects [7–9,27]. It should be 
noted that these corrections were verified experimentally, see dis-
cussion in [18,41,43,46–49].

The #pp/#pn ratio was extracted from exclusive-scattering ex-
perimental data for 4He [8] and 12C [7,27]. In these experiments, 
the main focus was the dependence of these ratios on the initial 
momentum p1, and not the dependence on ε1. In both experi-
ments, the ratios were measured in several kinematical settings, 
each corresponding to specific central values of p1 and ε1. The 
momentum-dependence of the ratio was highlighted, but the ef-
fects of the initial energy ε1 were not discussed. This discussion 
is also missing in previous theoretical works that used the mo-
mentum distribution as a starting point to predict the #pp/#pn
ratio [23,33,50,51]. The study of this ratio, and SRC pairs in gen-
eral, should be extended to include the full energy and momentum 
(ε1, p1) dependence.

Using Eq. (13) we can predict the value of the #pp/#pn ratio 
as a function of both p1 and ε1, for any nucleus, if the values of 
the contacts and σC M for this nucleus are known. The values of 
the contacts for several nuclei with mass number up to A ≤ 40
were extracted recently [23] using variational Monte Carlo (VMC) 
two-body densities in momentum and coordinate space [16,52], 
calculated using the AV18 NN potential and the Urbana X (UX) 
three-nucleon force [53]. We will focus here on 4He and 12C, for 
which the experimental data is also available. As mentioned be-
fore, for symmetric nuclei as these, the #pp/#pn ratio depends 
only on one contact ratio. We use the available experimental data 
of Refs. [8] to fit this ratio of contacts for 4He, utilizing Eq. (13). For 
12C, we fit the ratio of contacts to the #pp/#p ratio of Ref. [27], 
which will be discussed below. The fitted values for 4He and 12C 
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Table 1
The fitted values of the contact ratio C1

pn/C0 for 4He and 12C. The rows correspond 
to different potentials and the columns correspond to different fits. (e, e′ pN) is the 
fit to the experimental #pp/#pn ratio of Ref. [8] for 4He, and to #pp/#p of Ref. [27]
for 12C, presented in this work. The k-VMC and r-VMC are fits to VMC two-body 
densities in momentum and coordinate space, respectively, taken from Ref. [23]. 
Only the values in the (e, e′ pN) column are used in this paper.

A Potential (e, e′ pN) k-VMC r-VMC

4He

AV18 20 ± 5 18.4 ± 0.8 20.5 ± 0.2
N3LO(600) 33 ± 8 – –
N2LO(1.0) 19 ± 5 – –
N2LO(1.2) 15 ± 4 – –

12C

AV18 14 ± 3 12.5 ± 2 18.0 ± 0.2
N3LO(600) 25 ± 5 – –
N2LO(1.0) 19 ± 4 – –
N2LO(1.2) 20 ± 5 – –

are given in Table 1, using the AV18, the N3LO(600) and the local 
chiral N2LO [54,55] potentials, for the calculation of the spectral 
function, the experimental estimate σC M(4He) = 100 MeV [8], and 
σC M(12C) = 143 MeV [5,27,28], and the relevant bound-state ener-
gies for B A

i and B̄ A−2
f . The local N2LO chiral potential includes two 

cutoffs, R = 1.0 fm and R = 1.2 fm, denoted here by N2LO(1.0) and 
N2LO(1.2), respectively. Previously extracted contact values, using 
the AV18 NN potential and the UX three-body force, are also given 
in the table, and agree with the AV18 ratio extracted here. This ra-
tio of contacts C1

pn/C0 gives us the ratio between the total number 
of SRC pn pairs in the deuteron channel and the number of SRC 
pp pairs. Only the values in the first column of Table 1 are used in 
the reminder of this paper.

The extracted contact ratio using N3LO(600), also shown in Ta-
ble 1, is larger than the one obtained using AV18, which shows 
that this ratio is model dependent. The main source for this model 
dependence is the sharp fall of the N3LO(600) |ϕ̃α

ab|2 functions 
for p > 3 fm−1 (Fig. 1). This reduces significantly the number of 
SRC pp pairs, i.e. the value of C0

pp , because the contribution of 
p > 3 fm−1 is small, while the AV18 pp function has significant 
contribution to SRC pairs for p > 3 fm−1. We can look on the total 
number of pn deuteron pairs over pp pairs with relative momen-
tum restricted to pF < p < pmax ≡ 3 fm−1, given by

C1
pn

∫ pmax
pF

dp|ϕ̃1
pn(p)|2

C0
pp

∫ pmax
pF

dp|ϕ̃0
pp(p)|2 . (14)

For AV18 we get a ratio of 32 ± 8 for 4He, which is much larger 
than the ratio of all p > pF pairs of Table 1. For N3LO(600) we get 
a ratio of 35 ± 9 for 4He, similar to the original ratio shown in the 
table. We can see that the two potentials give consistent values 
when restricting the momentum range to pF < p < 3 fm−1, and 
the model dependence disappears. Similar result is obtained also 
for 12C. In this discussion, it is important to distinguish between 
two #pp/#pn SRC ratios. One is measured in exclusive scattering, 
given by Eq. (13), and depends on both the initial momentum p1
and the initial energy ε1 of the knocked out proton. The second, 
describes the number of pp and pn (deuteron) pairs with relative 
momentum p, and is given by C0

pp |ϕ̃0
pp(p)|2/C1

pn|ϕ̃1
pn(p)|2.

Regarding the local chiral interactions, for 4He, the “hardest” 
chiral interaction, N2LO(1.0), results in a contact ratio that is very 
similar to that of the phenomenological AV18 interaction. Increas-
ing its cutoff to 1.2 fm slightly reduces the contact ratios. As 
mentioned above, the softer non-local N3LO(600) interaction pro-
duces a larger contact ratio. For 12C, the cutoff dependence of 
the N2LO interaction is somewhat less pronounce and they both 
agree, within uncertainties, with the AV18 extraction. As discussed 
Fig. 5. (Top) The 4He #pp/#pn ratio as a function of both p1 and ε1, according to 
Eq. 13 and the contact ratio fitted in this work (Table 1), using the AV18 potential. 
The red line is the analytic prediction for a minimal ratio value, and the black points 
are the experimental data of Ref. [8]. The location of experimental points that do 
not intersect the surface are indicated by a gray patch on the surface. (Bottom) The 
same but using the N3LO(600) potential. The values of the experimental data in the 
momentum and energy axes are p1 = 0.49 ± 0.1, 0.62 ± 0.09, 0.75 ± 0.08 GeV/c
and ε1 = 0.81+0.09

−0.21, 0.74+0.11
−0.19, 0.66+0.09

−0.21 GeV, respectively.

before, some of these differences can be attributed to the differ-
ences in the universal functions, which depend on the potential. 
Model-independence is expected for contact ratios of two nuclei, 
for the same interaction and two-body channel, as observed in 
Refs. [56,57], but not for the ratios presented in Table 1. Deci-
sive conclusion regarding such model independence is not possible 
here, due to the relatively large uncertainties in the extracted con-
tact values.

Using the fitted contact ratio for 4He, we can now predict the 
full dependence of the #pp/#pn ratio. The results are presented in 
Fig. 5 using the AV18 and N3LO(600) potential. We can see that the 
surface describes well the exclusive-scattering experimental data 
of Ref. [8] (the black points) using both potentials. We also in-
clude our analytic prediction for the (p1, ε1) points for which the 
#pp/#pn ratio is minimal (red line), based on Eq. (12). There is a 
good agreement with the full numerical calculations. One can see 
that the available experimental data sits on a diagonal line in the 
(p1, ε1) plane, while there is no experimental data for substantial 
parts of this plane. Thus, additional experimental data, covering 
the (p1, ε1) plane, is needed to fully investigate the theoretical 
predictions presented in Fig. 5.

Based on Fig. 5, it seems that AV18 and N3LO(600) predict 
a similar structure for #pp/#pn. This takes us back to Fig. 4, 
which showed that S0

pp is sensitive to the NN potential around 
p1 = 400 MeV. Thus, if the number of SRC pp pairs will be mea-
sured in future exclusive experiments as a function of ε1 with 
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Fig. 6. The same as in Fig. 5, but for the 12C #pp/#p ratio, according to Eq. (15), us-
ing the AV18 potential. The black points are the experimental data of Ref. [27]. The 
values of the experimental data in the momentum and energy axes are p1 = 0.35 ±
0.05, 0.45 ± 0.05, 0.55 ± 0.05 GeV/c and ε1 = 0.86+0.04

−0.11, 0.84+0.05
−0.15, 0.79+0.11

−0.14 GeV, 
respectively.

fixed p1 = 400 MeV, it might be possible to use it to constrain 
the NN potential. Since we are discussing pp pairs with high rel-
ative momentum, it should be sensitive to the short distance part 
of the potential. Based on the bands presented in Fig. 5, we note 
that the experimental uncertainty of the value of p1 should not 
be larger than 10 MeV, in order to differentiate between AV18 and 
N3LO(600).

One can also consider the #pp/#p ratio, i.e. the number of cor-
related pp pairs consisting of a proton with off-shell momentum-
energy (p1, ε1), divided by the total number of such protons. For 
p1 > kF , this ratio should be given by

#pp

#p
(p1, ε1) = C0

pp S0
pp

2C0
pp S0

pp + C1
pn S1

pn + C0
pn S0

pn
. (15)

This ratio was extracted from exclusive scattering experiments for 
4He [8] and 12C [27]. We note that similar corrections to those 
discussed above (for FSI and SCX) were already applied to the 
cross sections to obtain the experimental #pp/#p ratio. These 
corrections are much more significant here, comparing to the 
#pp/#pn corrections, and include transparency effects and signif-
icant model-dependent acceptance corrections (of the order of a 
factor of 10 for the experimental data analyzed here).

Fig. 6 depicts the #pp/#p ratio for 12C using the AV18 poten-
tial, based on Eq. (15) and the contact ratio fitted in this work 
(Table 1), compared to the experimental data of Ref. [27]. Here, 
one can see that while the theory predicts deep minima in the ra-
tio, the experimental data seems to show a constant ratio of about 
5%. Similar figure is presented in the supplemental materials us-
ing the N3LO(600) potential. There are few possible explanations 
for this disagreement between our theory and the data. As men-
tioned above, the corrections applied to the data in order to obtain 
the #pp/#p ratio are quite significant. The disagreement shown in 
Fig. 6 might indicate that these corrections should be re-examined. 
Experimental data which requires smaller corrections can be use-
ful here, for example using large-acceptance detectors (see e.g. 
Ref. [9]). It is also possible that the limited statistics and the large 
bins of the data presented in Fig. 6 smears the finer details of the 
#pp/#p ratio, yielding approximately a constant ratio. If this is the 
case, to verify the theoretical predictions of this work, better data 
is needed. Finally, corrections to the theory should also be studied, 
such as the effects of the energy distribution of the A − 2 system 
(B A−2) around its mean value.
f
In the supplemental materials, we present the #pp/#p ratio 
also for 4He and the #pp/#pn ratio for 12C , using the same val-
ues of the contacts (Table 1). Similar to 12C, the experimental data 
for the #pp/#p ratio of 4He [8] seems to indicate a constant value 
for the ratio, while the theory shows a different picture. The sin-
gle experimental point for the 12C #pp/#pn ratio is in agreement 
with the theoretical predictions. The analysis of the #pn/#p ra-
tio is also presented in the supplemental materials for 4He and 
12C. The experimental data for this ratio [7,8] includes quite large 
errorbars and better data is needed to investigate the theoretical 
predictions. Similar analysis using the local chiral N2LO potential 
is also presented in the supplementary.

To summarize, the nuclear contact formalism was used to de-
rive a relation between the nuclear contacts, describing the prob-
ability to find SRC pairs in the nucleus, and the spectral function. 
This relation was utilized to analyze the #pp/#pn, #pp/#p and 
#pn/#p ratios for 4He and 12C, emphasizing the full dependence 
in the (p1, ε1) plane and revealing a richer structure than was as-
sumed so far, using few different nuclear potentials. For #pp/#pn
there is a good agreement with the available experimental data, 
extracted from exclusive electron-scattering experiments, while for 
#pp/#p there seems to be a disagreement. Possible explanations 
for this disagreement were discussed. Better experimental data is 
needed for #pn/#p in order to compare with the theoretical pre-
dictions. The contact ratio C1

pn/C0 for 4He and 12C extracted using 
the AV18 potential agrees with previous values, extracted using the 
same potential. The contact values seem to depend on the NN in-
teraction, but this model dependence is resolved if one is looking 
on a limited high-momentum range. It was also shown that the 
contribution of SRC pp pairs to the spectral function is sensitive to 
the NN potential, which can be used to constrain the short-range 
part of the potential, if appropriate experimental data is available.

A main conclusion of this work is that the full energy and mo-
mentum dependence of exclusive electron-scattering experiments 
should be studied, experimentally and theoretically, in order to 
obtain a full picture regarding nuclear SRCs. Further experimen-
tal data for the #pp/#pn, #pp/#p and #pn/#p ratios and other 
observables, for different nuclei, covering the energy-momentum 
plane, is required for investigating the predictions presented in this 
work.

Acknowledgements

This work was supported by the PAZY Foundation, the Israel 
Science Foundation under grant number 1334/16 and by the Office 
of Nuclear Physics of the U.S. Department of Energy under grant 
Contract Numbers DE-FG02-94ER40818.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .physletb .2019 .02 .019.

References

[1] L.L. Frankfurt, M.I. Strikman, D.B. Day, M. Sargsyan, Phys. Rev. C 48 (1993) 2451.
[2] K. Egiyan, et al., Phys. Rev. C 68 (2003) 014313.
[3] K. Egiyan, et al., Phys. Rev. Lett. 96 (2006) 082501.
[4] N. Fomin, et al., Phys. Rev. Lett. 108 (2012) 092502.
[5] A. Tang, et al., Phys. Rev. Lett. 90 (2003) 042301.
[6] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J.W. Watson, Phys. Rev. Lett. 

97 (2006) 162504.
[7] R. Subedi, et al., Science 320 (2008) 1476.
[8] I. Korover, et al., Phys. Rev. Lett. 113 (2014) 022501.
[9] O. Hen, et al., CLAS Collaboration, Science 346 (2014) 614.

[10] H. Baghdasaryan, et al., Phys. Rev. Lett. 105 (2010) 222501.
[11] M. Duer, et al., CLAS Collaboration, arXiv:1810 .05343, 2018.

https://doi.org/10.1016/j.physletb.2019.02.019
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4672615361723933s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib45676979616E3033s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib45676979616E3036s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib466F6D696E3132s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib54616E6732303033s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib5069617365747A6B793036s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib5069617365747A6B793036s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib5375626564693038s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4B6F726F7665723134s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib48656E5363693134s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib42616768646173617279616E3130s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib44756572323031385F6E70s1


248 R. Weiss et al. / Physics Letters B 791 (2019) 242–248
[12] R. Schiavilla, R.B. Wiringa, Steven C. Pieper, J. Carlson, Phys. Rev. Lett. 98 (2007) 
132501.

[13] M. Alvioli, C. Ciofi degli Atti, H. Morita, Phys. Rev. Lett. 100 (2008) 162503.
[14] H. Feldmeier, W. Horiuchi, T. Neff, Y. Suzuki, Phys. Rev. C 84 (2011) 054003.
[15] M. Alvioli, C. Ciofi degli Atti, L.P. Kaptari, C.B. Mezzetti, H. Morita, Phys. Rev. C 

87 (2013) 034603.
[16] R.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Phys. Rev. C 89 (2014) 024305.
[17] M. Sargsian, T.V. Abrahamyan, M.I. Strikman, L.L. Frankfurt, Phys. Rev. C 71 

(2005) 044615.
[18] O. Hen, G.A. Miller, E. Piasetzky, L.B. Weinstein, Rev. Mod. Phys. 89 (2017) 

045002.
[19] C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1.
[20] R. Weiss, B. Bazak, N. Barnea, Phys. Rev. Lett. 114 (2015) 012501.
[21] R. Weiss, B. Bazak, N. Barnea, Phys. Rev. C 92 (2015) 054311.
[22] R. Weiss, N. Barnea, Phys. Rev. C 96 (2017) 041303(R).
[23] R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky, O. Hen, Phys. Lett. B 780 (2018) 

211.
[24] R. Weiss, B. Bazak, N. Barnea, Eur. Phys. J. A 52 (2016) 92.
[25] R. Weiss, E. Pazy, N. Barnea, Few-Body Syst. 58 (2017) 9.
[26] R. Cruz-Torres, et al., Phys. Lett. B 785 (2018) 304.
[27] R. Shneor, et al., Phys. Rev. Lett. 99 (2007) 072501.
[28] E.O. Cohen, et al., CLAS Collaboration, Phys. Rev. Lett. 121 (2018) 092501.
[29] M. Duer, et al., CLAS Collaboration, Nature 560 (2018) 617.
[30] T. De Forest, Nucl. Phys. A 392 (1983) 232.
[31] L. Frankfurt, M. Strikman, Phys. Rep. 160 (1988) 235.
[32] L. Frankfurt, M.M. Sargsian, M. Strikman, Int. J. Mod. Phys. A 23 (2008) 2991.
[33] M. Alvioli, C. Ciofi degli Atti, H. Morita, Phys. Rev. C 94 (2016) 044309.
[34] C. Ciofi degli Atti, S. Simula, Phys. Rev. C 53 (1996) 1689.
[35] C. Colle, W. Cosyn, J. Ryckebusch, M. Vanhalst, Phys. Rev. C 89 (2014) 024603.
[36] R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51 (1995) 38.
[37] E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773.
[38] C. Ciofi degli Atti, S. Simula, L.L. Frankfurt, M.I. Strikman, Phys. Rev. C 44 (1991) 

R7(R).
[39] C. Ciofi degli Atti, C.B. Mezzetti, H. Morita, Phys. Rev. C 95 (2017) 044327.
[40] C. Ciofi degli Atti, H. Morita, Phys. Rev. C 96 (2017) 064317.
[41] J. Arrington, D.W. Higinbotham, G. Rosner, M. Sargsian, Prog. Part. Nucl. Phys. 

67 (2012) 898.
[42] C. Colle, et al., Phys. Rev. C 92 (2015) 024604.
[43] C. Colle, W. Cosyn, J. Ryckebusch, Phys. Rev. C 93 (2016) 034608.
[44] W.U. Boeglin, et al., Phys. Rev. Lett. 107 (2011) 262501.
[45] L.L. Frankfurt, M.M. Sargsian, M.I. Strikman, Phys. Rev. C 56 (1997) 1124.
[46] D. Dutta, K. Hafidi, M. Strikman, Prog. Part. Nucl. Phys. 69 (2013) 1.
[47] O. Hen, et al., CLAS Collaboration, Phys. Lett. B 722 (2013) 63.
[48] L. Frankfurt, M. Strikman, M. Zhalov, Phys. Lett. B 503 (2001) 73.
[49] V.R. Pandharipande, S.C. Pieper, Phys. Rev. C 45 (1992) 791.
[50] J. Ryckebusch, et al., J. Phys. G, Nucl. Part. Phys. 42 (2015) 055104.
[51] T. Neff, H. Feldmeier, W. Horiuchi, Phys. Rev. C 92 (2015) 024003.
[52] D. Lonardoni, A. Lovato, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 96 (2017) 024326.
[53] S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64 (2001) 

014001.
[54] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, 

Phys. Rev. Lett. 111 (2013) 032501.
[55] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, 

A. Schwenk, Phys. Rev. C 90 (2014) 054323.
[56] R. Weiss, A. Schmidt, G.A. Miller, N. Barnea, Phys. Lett. B 790 (2019) 484.
[57] J.-W. Chen, W. Detmold, J.E. Lynn, A. Schwenk, Phys. Rev. Lett. 119 (2017) 

262502.

http://refhub.elsevier.com/S0370-2693(19)30114-5/bib536368696176696C6C613037s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib536368696176696C6C613037s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib416C7643696F4D6F723038s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib46656C644E6566663131s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib416C7643696F3133s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib416C7643696F3133s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib5769725363685069653134s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib536172677369616E32303035s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib536172677369616E32303035s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib48656E5F726576696577s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib48656E5F726576696577s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib43696F31355F726576696577s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib57656942617A4261723135s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib57656942617A426172313561s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib5765694261723137s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib57656948656E3137s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib57656948656E3137s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib57656942617A4261723136s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib57656950617A426172s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib636F7272656C6174696F6E5F66756E63s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib53686E656F7232303037s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4572657A3138s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib447565723138s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4465466F726573743833s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib46726153747231393838s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib46726153747232303038s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib416C7643696F3136s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib43696F53696D3936s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib436F6C6C653134s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib61763138s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4E334C4Fs1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib43696F5374723931s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib43696F5374723931s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib43696F4D657A4D6F72313761s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib43696F4D6F72313762s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib417272696E67746F6E323031317873s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib417272696E67746F6E323031317873s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib436F6C6C6548656E3135s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib436F6C6C6532303135656E61s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib426F65676C696E323031316D74s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4672616E6B66757274313939367878s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib447574746132303133s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib48656E3A32303132797661s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4672616E6B6675727432303031s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib50696570657231393932s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib5279633135s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4E65666646656C64486F723135s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib576972696E67615F43564D43s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib756278s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib756278s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib47657A5363683133s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib47657A5363683133s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib47657A5363683134s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib47657A5363683134s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib6368617267655F64656E73697479s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4368656E31375F454D43s1
http://refhub.elsevier.com/S0370-2693(19)30114-5/bib4368656E31375F454D43s1

	Energy and momentum dependence of nuclear short-range correlations - Spectral function, exclusive scattering experiments and the contact formalism
	Acknowledgements
	Appendix A Supplementary material
	References


