
MIT Open Access Articles

Video Enhancement with Task-Oriented Flow

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1007/s11263-018-01144-2

Publisher: Springer Science and Business Media LLC

Persistent URL: https://hdl.handle.net/1721.1/135146

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135146
http://creativecommons.org/licenses/by-nc-sa/4.0/


Video Enhancement with Task-Oriented Flow

Tianfan Xue1 · Baian Chen2 · Jiajun Wu2 · Donglai Wei3 · William T. Freeman2,4

t=1

t=2

t=3

(I-b) EpicFlow (I-d) Task-oriented Flow(I-c) Interp. by EpicFlow (I-e) Interp. by Task-oriented Flow

Frame interpolation

(I-a) Input Low-frame-rate

Videos Video denoising

t=1

t=4

t=7

(II-b) EpicFlow (II-d) Task-oriented Flow(II-c) Denoise by EpicFlow (II-e) Denoise by Task-oriented Flow(II-a) Input Noisy Videos

Fig. 1: Many video processing tasks, e.g., temporal frame-interpolation (top) and video denoising (bottom), rely on flow
estimation. In many cases, however, precise optical flow estimation is intractable and could be suboptimal for a specific
task. For example, although EpicFlow (Revaud et al 2015) predicts precise movement of objects (I-b, the flow field aligns
well with object boundaries), small errors in estimated flow fields result in obvious artifacts in interpolated frames, like the
obscure fingers in (I-c). With the task-oriented flow proposed in this work (I-d), those interpolation artifacts disappear as in
(I-e). Similarly, in video denoising, our task-oriented flow (II-d) deviates from EpicFlow (II-b), but leads to a cleaner output
frame (II-e). Flow visualization is based on the color wheel shown on the corner of (I-b).

Abstract Many video enhancement algorithms rely on op-
tical flow to register frames in a video sequence. Precise
flow estimation is however intractable; and optical flow it-
self is often a sub-optimal representation for particular video
processing tasks. In this paper, we propose task-oriented
flow (TOFlow), a motion representation learned in a self-
supervised, task-specific manner. We design a neural net-
work with a trainable motion estimation component and a
video processing component, and train them jointly to learn
the task-oriented flow. For evaluation, we build Vimeo-90K,
a large-scale, high-quality video dataset for low-level video
processing. TOFlow outperforms traditional optical flow on
standard benchmarks as well as our Vimeo-90K dataset in
three video processing tasks: frame interpolation, video de-
noising/deblocking, and video super-resolution.

1 Introduction

Motion estimation is a key component in video processing
tasks such as temporal frame interpolation, video denoising,
and video super-resolution. Most motion-based video pro-

cessing algorithms use a two-step approach (Liu and Sun
2011; Baker et al 2011; Liu and Freeman 2010): they first es-
timate motion between input frames for frame registration,
and then process the registered frames to generate the final
output. Therefore, the accuracy of flow estimation greatly
affects the performance of these two-step approaches.

However, precise flow estimation can be challenging and
slow for many video enhancement tasks. The brightness
constancy assumption, which many motion estimation al-
gorithms rely on, may fail due to variations in lighting and
pose, as well as the presence of motion blur and occlusion.
Also, many motion estimation algorithms involve solving a
large-scale optimization problem, making it inefficient for
real-time applications.

Moreover, solving for a motion field that matches ob-
jects in motion may be sub-optimal for video processing.
Figure 1 shows an example in frame interpolation. EpicFlow (Re-
vaud et al 2015), one of the state-of-the-art motion esti-
mation algorithms, calculates a precise motion field (I-b)
whose boundary is well-aligned with the fingers in the im-
age (I-c); however, the interpolated frame (I-c) based on it
still contains obvious artifacts due to occlusion. This is be-

ar
X

iv
:1

71
1.

09
07

8v
2 

 [
cs

.C
V

] 
 1

1 
M

ar
 2

01
9



2

cause EpicFlow only matches the visible parts between the
two frames; however, for interpolation we also need to in-
paint the occluded regions, where EpicFlow cannot help. In
contrast, task-oriented flow, which we will soon introduce,
learns to handle occlusions well (I-e), though its estimated
motion field (I-d) differs from the ground truth optical flow.
Similarly, in video denoising, EpicFlow can only estimate
the movement of the girl’s hair (II-b), but our task-oriented
flow (II-d) can remove the noise in the input. Therefore,
the frame denoised by ours is much cleaner than that by
EpicFlow (II-e). For specific video processing tasks, there
exist motion representations that do not match the actual ob-
ject movement, but lead to better results.

In this paper, we propose to learn this task-oriented flow
(TOFlow) representation with an end-to-end trainable con-
volutional network that performs motion analysis and video
processing simultaneously. Our network consists of three
modules: the first estimates the motion fields between in-
put frames; the second registers all input frames based on
estimated motion fields; and the third generates target out-
put from registered frames. These three modules are jointly
trained to minimize the loss between output frames and
ground truth. Unlike other flow estimation networks (Ran-
jan and Black 2017; Fischer et al 2015), the flow estimation
module in our framework predicts a motion field tailored to
a specific task, e.g., frame interpolation or video denoising,
as it is jointly trained with the corresponding video process-
ing module.

Several papers have incorporated a learned motion es-
timation network in burst processing (Tao et al 2017; Liu
et al 2017). In this paper, we move beyond to demonstrate
not only how joint learning helps, but also why it helps. We
show that a jointly trained network learns task-specific fea-
tures for better video processing. For example, in video de-
noising, our TOFlow learns to reduce the noise in the in-
put, while traditional optical flow keeps the noisy pixels
in the registered frame. TOFlow also reduces artifacts near
occlusion boundaries. Our goal in this paper is to build a
standard framework for better understanding when and how
task-oriented flow works.

To evaluate the proposed TOFlow, we have also built
a large-scale, high-quality video dataset for video process-
ing. Most existing large video datasets, such as Youtube-
8M (Abu-El-Haija et al 2016), are designed for high-level
vision tasks like event classification. The videos are often of
low resolutions with significant motion blurs, making them
less useful for video processing. We introduce a new dataset,
Vimeo-90K, for a systematic evaluation of video process-
ing algorithms. Vimeo-90K consists of 89,800 high-quality
video clips (i.e. 720p or higher) downloaded from Vimeo.
We build three benchmarks from these videos for interpola-
tion, denoising or deblocking, and super-resolution, respec-
tively. We hope these benchmarks will also help improve

learning-based video processing techniques with their high-
quality videos and diverse examples.

This paper makes three contributions. First, we propose
TOFlow, a flow representation tailored to specific video pro-
cessing tasks, significantly outperforming standard optical
flow. Second, we propose an end-to-end trainable video pro-
cessing framework that handles frame interpolation, video
denoising, and video super-resolution. The flow network in
our framework is fine-tuned by minimizing a task-specific,
self-supervised loss. Third, we build a large-scale, high-
quality video processing dataset, Vimeo-90K.

2 Related Work

Optical flow estimation. Dated back to Horn and Schunck
(1981), most optical flow algorithms have sought to min-
imize hand-crafted energy terms for image alignment and
flow smoothness (Mémin and Pérez 1998; Brox et al 2004,
2009; Wedel et al 2009). Current state-of-the-art methods
like EpicFlow (Revaud et al 2015) or DC Flow (Xu et al
2017) further exploit image boundary and segment cues to
improve the flow interpolation among sparse matches. Re-
cently, end-to-end deep learning methods were proposed for
faster inference (Fischer et al 2015; Ranjan and Black 2017;
Yu et al 2016). We use the same network structure for mo-
tion estimation as SpyNet (Ranjan and Black 2017). But in-
stead of training it to minimize the flow estimation error,
as SpyNet does, we train it jointly with a video processing
network to learn a flow representation that is the best for a
specific task.

Low-level video processing. We focus on three video pro-
cessing tasks: frame interpolation, video denoising, and video
super-resolution. Most existing algorithms in these areas
explicitly estimate the dense correspondence among input
frames, and then reconstruct the reference frame according
to image formation models for frame interpolation (Baker
et al 2011; Werlberger et al 2011; Yu et al 2013; Jiang et al
2018; Sajjadi et al 2018), video super-resolution (Liu and
Sun 2014; Liao et al 2015), and denoising (Liu and Free-
man 2010; Varghese and Wang 2010; Maggioni et al 2012;
Mildenhall et al 2017; Godard et al 2017). We refer readers
to survey articles (Nasrollahi and Moeslund 2014; Ghoniem
et al 2010) for comprehensive literature reviews on these
flourishing research topics.

Deep learning for video enhancement. Inspired by the suc-
cess of deep learning, researchers have directly modeled en-
hancement tasks as regression problems without represent-
ing motions, and have designed deep networks for frame in-
terpolation (Mathieu et al 2016; Niklaus et al 2017a; Jiang
et al 2017; Niklaus and Liu 2018), super-resolution (Huang
et al 2015; Kappeler et al 2016; Tao et al 2017; Bulat et al



3

2018; Ahn et al 2018; Jo et al 2018), denoising Mildenhall
et al (2018), deblurring Yang et al (2018); Aittala and Du-
rand (2018), rain drops removal (Li et al 2018), and video
compression artifacts removal (Lu et al 2018).

Recently, with differentiable image sampling layers in
deep learning (Jaderberg et al 2015), motion information
can be incorporated into networks and trained jointly. Such
approaches have been applied to video interpolation (Liu
et al 2017), light-field interpolation (Wang et al 2017), novel
view synthesis (Zhou et al 2016), eye gaze manipulation (Ganin
et al 2016), object detection (Zhu et al 2017), denoising (Wen
et al 2017), and super-resolution (Caballero et al 2017; Tao
et al 2017; Makansi et al 2017). Although many of these al-
gorithms also jointly train the flow estimation with the rest
parts of network, there is no systematical study on the advan-
tage of joint training. In this paper, we illustrate the advan-
tage of the trained task-oriented flow through toy examples,
and also demonstrate its superiority over general flow algo-
rithm on various real-world tasks. We also present a general
framework that can easily adapt to different video process-
ing tasks.

3 Tasks

In the paper, we explore three video enhancement tasks:
frame interpolation, video denoising/deblocking, and video
super-resolution.

Temporal frame interpolation. Given a low frame rate
video, a temporal frame interpolation algorithm generates
a high frame rate video by synthesizing additional frames
between two temporally neighboring frames. Specifically,
let I1 and I3 be two consecutive frames in an input video, the
task is to estimate the missing middle frame I2. Temporal
frame interpolation doubles the video frame rate, and can be
recursively applied to generate even higher frame rates.

Video denoising/deblocking. Given a degraded video with
artifacts from either the sensor or compression, video de-
noising/deblocking aims to remove the noise or compres-
sion artifacts to recover the original video. This is typically
done by aggregating information from neighboring frames.
Specifically, Let {I1, I2, . . . , IN} be N consecutive, degraded
frames in an input video, the task of video denoising is to
estimate the middle frame I∗ref. For the ease of description,
in the rest of paper, we simply call both tasks as video de-
noising.

Video super-resolution. Similar to video denoising, given
N consecutive low-resolution frames as input, the task of
video super-resolution is to recover the high-resolution mid-
dle frame. In this work, we first upsample all the input
frames to the same resolution as the output using bicubic

interpolation, and our algorithm only needs to recover the
high-frequency component in the output image.

4 Task-Oriented Flow for Video Processing

Most motion-based video processing algorithms has two
steps: motion estimation and image processing. For exam-
ple, in temporal frame interpolation, most algorithms first
estimate how pixels move between input frames (frame 1
and 3), and then move pixels to the estimated location in
the output frame (frame 2) (Baker et al 2011). Similarly,
in video denoising, algorithms first register different frames
based on estimated motion fields between them, and then
remove noises by aggregating information from registered
frames.

In this paper, we propose to use task-oriented flow (TOFlow)
to integrate the two steps, which greatly improves the perfor-
mance. To learn task-oriented flow, we design an end-to-end
trainable network with three parts (Figure 2): a flow esti-
mation module that estimates the movement of pixels be-
tween input frames; an image transformation module that
warps all the frames to a reference frame; and a task-specific
image processing module that performs video interpolation,
denoising, or super-resolution on registered frames. Because
the flow estimation module is jointly trained with the rest of
the network, it learns to predict a flow field that fits to a par-
ticular task.

4.1 Toy Example

Before discussing the details of network structure, we first
start with two synthetic sequences to demonstrate why our
TOFlow can outperform traditional optical flows. The left of
Figure 3 shows an example of frame interpolation, where a
green triangle is moving to the bottom in front of a black
background. If we warp both the first and the third frames
to the second, even using the ground truth flow (Case I, left
column), there is an obvious doubling artifact in the warped
frames due to occlusion (Case I, middle column, top two
rows), which is a well-known problem in the optical flow
literature (Baker et al 2011). The final interpolation result
based on these two warp frames still contains the doubling
artifact (Case I, right column, top row). In contrast, TOFlow
does not stick to object motion: the background should be
static, but it has non-zero motion (Case II, left column). With
TOFlow, however, there is barely any artifact in the warped
frames (Case II, middle column) and the interpolated frame
looks clean (Case II, right column). This is because TOFlow
not only synthesize the movement of visible object, but also
guide how to inpaint occluded background region by copy-
ing pixels from its neighborhood. Also, if the ground truth
occlusion mask is available, the interpolation result using



4

Input 

frames

…

…

Flow net

Flow net

STN

STN

Motion

fields

Warped

input

Output

frame

Improc net

…

Flow Network

…

…

R
ef

er
en

ce
F

ra
m

e 
T

F
ra

m
e 

1

Flow Estimation Transformation Image Processing

Not used in interp.

Fig. 2: Left: our model using task-oriented flow for video processing. Given an input video, we first calculate the motion
between frames through a task-oriented flow estimation network. We then warp input frames to the reference using spatial
transformer networks, and aggregate the warped frames to generate a high-quality output image. Right: the detailed structure
of flow estimation network (the orange network on the left).

ground truth flow will also contain little doubling artifacts
(Case I, bottom rows). However, calculating the ground oc-
clusion mask is even harder task than estimate flow, as it also
requires inferring the correct depth ordering. On the other
side, TOFlow can handle occlusion and synthesize frames
better than the ground truth flow without using ground truth
occlusion masks and depth ordering information.

Similarly, on the right of Figure 3, we show an example
of video denoising. The random small boxes in the input
frames are synthetic noises. If we warp the first and the third
frames to the second using the ground truth flow, the noisy
patterns (random squares) remain, and the denoised frame
still contains some noise (Case I, right column. There are
some shadows of boxes on the bottom). But if we warp these
two frames using TOFlow (Case II, left column), those noisy
patterns are also reduced or eliminated (Case II, middle
column), and the final denoised frame base on them contains
almost no noise, even better than the result by denoising
results with ground truth flow and occlusion mask (Case
I, bottom rows). This also shows that TOFlow learns to
reduce the noise in input frames by inpainting them with
neighboring pixels, which traditional flow cannot do.

Now we discuss the details of each module as follows.

4.2 Flow Estimation Module

The flow estimation module calculates the motion fields be-
tween input frames. For a sequence with N frames (N = 3 for
interpolation and N = 7 for denoising and super-resolution),
we select the middle frame as the reference. The flow esti-
mation module consists of N−1 flow networks, all of which

Case I: With Ground Truth Flows

Case II: With Task-Oriented Flows

Input frames

TOFlow
Warped by

TOFlow

Denoised

frame

Video Denoising

?

Case I: With Ground Truth Flows

Case II: With Task-Oriented Flows

Input frames

TOFlow
Warped by

TOFlow

Interpolated

frame by TOFlow

Frame Interpolation

Warped by GT flow

Denoised

frame with 

GT flow

GT flow

Warped by GT flow

Interp. by GT 

flow

GT flow

Interp. by GT flow + mask

Interp. by GT flow 

+ mask
Interp. by GT flow + mask

Denoised

frame with GT 

flow + mask

Fig. 3: A toy example that demonstrates the effectiveness
of task oriented flow over the traditional optical flow. See
Section 4.1 for details.

have the same structure and share the same set of parame-
ters. Each flow network (the orange network in Figure 2)
takes one frame from the sequence and the reference frame
as input, and predicts the motion between them.



5

We use the multi-scale motion estimation framework
proposed by Ranjan and Black (2017) to handle the large
displacement between frames. The network structure is shown
in the right of Figure 2. The input to the network are Gaus-
sian pyramids of both the reference frame and another frame
rather than the reference. At each scale, a sub-network takes
both frames at that scale and upsampled motion fields from
previous prediction as input, and calculates a more accurate
motion fields. We uses 4 sub-networks in a flow network,
three of which are shown Figure 2 (the yellow networks).

There is a small modification for frame interpolation,
where the reference frame (frame 2) is not an input to the
network, but what it should synthesize. To deal with that, the
motion estimation module for interpolation consists of two
flow networks, both taking both the first and third frames as
input, and predict the motion fields from the second frame to
the first and the third respectively. With these motion fields,
the later modules of the network can transform the first and
the third frames to the second frame for synthesis.

4.3 Image Transformation Module

Using the predicted motion fields in the previous step, the
image transformation module registers all the input frames
to the reference frame. We use the spatial transformer net-
works (Jaderberg et al 2015) (STN) for registration, which is
a differentiable bilinear interpolation layer that synthesizes
the new frame after transformation. Each STN transforms
one input frame to the reference viewpoint, and all N − 1
STNs forms the image transformation module. One impor-
tant property of this module is that it can back-propagate the
gradients from the image processing module to the flow es-
timation module, so we can learn a flow representation that
adapts to different video processing tasks.

4.4 Image Processing Module

We use another convolutional network as the image process-
ing module to generate the final output. For each task, we
use a slightly different architecture. Please refer to appen-
dices for details.

Occluded regions in warped frames. As mentioned Sec-
tion 4.1, occlusion often results in doubling artifacts in the
warped frames. A common way to solve this problem is to
mask out occluded pixels in interpolation, for example, Liu
et al (2017) proposed to use an additional network that es-
timates the occlusion mask and only uses pixels are not oc-
cluded.

Similar to Liu et al (2017), we also tried the mask pre-
diction network. It takes the two estimated motion fields as
input, one from frame 2 to frame 1, and the other from frame

Motion 𝑣23 Mask 𝑚23

Warped frame 𝐼23

Warped frame 𝐼21

Interpolated 

frame 𝐼2

Mask 𝑚21Motion 𝑣21

Masked frame 𝐼23
′

Masked frame 𝐼21
′

Fig. 4: The structure of the mask network for interpolation

Input 𝐼1

Input 𝐼3

Warp 𝐼1 by EpicFlow

Warp 𝐼3 by EpicFlow

Warp 𝐼1 by TOFlow

Warp 𝐼3 by TOFlow

TOFlow interp (no mask)

TOFlow interp (use mask)

Fig. 5: Comparison between Epicflow (Revaud et al 2015)
and TOFlow interpolation (both with and without mask).

2 to frame 3 (v21 and v23 in Figure 4). It predicts two occlu-
sion masks: m21 is the mask of the warped frame 2 from
frame 1 (I21), and m23 is the mask of the warped frame 2
from frame 3 (I23). The invalid regions in the warped frames
(I21 and I23) are masked out by multiplying them with their
corresponding masks. The middle frame is then calculated
through another convolutional neural network with both the
warped frames (I21 and I23) and the masked warped frames
(I′21 and I′23) as input. Please refer to appendices for details.

An interesting observation is that, even without the mask
prediction network, our flow estimation is mostly robust to
occlusion. As shown in the third column of Figure 5, the
warped frames using TOFlow has little doubling artifacts.
Therefore, just from two warped frames without the learned
masks, the network synthesizes a decent middle frame (the
top image of the right most column). The mask network is
optional, as it only removes some tiny artifacts.

4.5 Training

To accelerate the training procedure, we first pre-train some
modules of the network and then fine-tune all of them to-
gether. Details are described below.

Pre-training the flow estimation network. Pre-training
the flow network consists of two steps. First, for all tasks,
we pre-train the motion estimation network on the Sintel



6

dataset (Butler et al 2012a), a realistically rendered video
dataset with ground truth optical flow.

In the second step, for video denoising and super-resolution,
we fine-tune it with noisy or blurry input frames to improve
its robustness to these input. For video interpolation, we
fine-tune it with frames I1 and I3 from video triplets as input,
minimizing the l-1 difference between the estimated optical
flow and the ground truth flow V23 (or v21). This enables
the flow network to calculate the motion from the unknown
frame I2 to frame I3 given only frames I1 and I3 as input.

Empirically we find that this two-step pre-training can
improve the convergence speed. Also, because the main
purpose of pre-training is to accelerate the convergence, we
simply use the l1 difference between estimated optical flow
and the ground truth as the loss function, instead of end-
point error in flow literature (Brox et al 2009; Butler et al
2012a). The choice loss function in the pre-training stage
has a minor impact on the final result.

Pre-training the mask network. We also pre-train our oc-
clusion mask estimation network for video interpolation as
an optional component of video processing network before
joint training. Two occlusion masks (m21 and m23) are esti-
mated together with the same network and only optical flow
v21,v23 as input. The network is trained by minimizing the
l-1 loss between the output masks and pre-computed occlu-
sion masks.

Joint training. After pre-training, we train all the modules
jointly by minimizing the l1 loss between recovered frame
and the ground truth, without any supervision on estimated
flow fields. For optimization, we use ADAM (Kingma and
Ba 2015) with a weight decay of 10−4. We run 15 epochs
with batch size 1 for all tasks. The learning rate for denois-
ing/deblocking and super-resolution is 10−4, and the learn-
ing rate for interpolation is 3×10−4.

5 The Vimeo-90K Dataset

To acquire high quality videos for video processing, previ-
ous methods (Liu and Sun 2014; Liao et al 2015) took videos
by themselves, resulting in video datasets that are small in
size and limited in terms of content. Alternatively, we re-
sort to Vimeo where many videos are taken with profes-
sional cameras on diverse topics. In addition, we only search
for videos without inter-frame compression (e.g., H.264), so
that each frame is compressed independently, avoiding arti-
ficial signals introduced by video codecs. As many videos
are composed of multiple shots, we use a simple threshold-
based shot detection algorithm to break each video into con-
sistent shots and further use GIST feature (Oliva and Tor-
ralba 2001) to remove shots with similar scene background.

As a result, we collect a new video dataset from Vimeo,
consisting of 4,278 videos with 89,800 independent shots

that are different from each other in content. To standard-
ize the input, we resize all frames to the fixed resolution
448×256. As shown in Figure 6, frames sampled from the
dataset contain diverse content for both indoor and outdoor
scenes. We keep consecutive frames when the average mo-
tion magnitude is between 1–8 pixels. The right column of
Figure 6 shows the histogram of flow magnitude over the
whole dataset, where the flow fields are calculated using
SpyNet (Ranjan and Black 2017).

We further generate three benchmarks from the dataset
for the three video enhancement tasks studied in this paper.

Vimeo interpolation benchmark. We select 73,171 frame
triplets from 14,777 video clips with the following three cri-
teria for the interpolation task. First, more than 5% pixels
should have motion larger than 3 pixels between neighbor-
ing frames. This criterion removes static videos. Second, l1
difference between the reference and the warped frame us-
ing optical flow (calculated using SpyNet) should be at most
15 intensity levels (the maximum intensity level of an image
is 255). This removes frames with large intensity change,
which are too hard for frame interpolation. Third, the aver-
age difference between motion fields of neighboring frames
(v21 and v23) should be less than 1 pixel. This removes non-
linear motion, as most interpolation algorithms, including
ours, are based on linear motion assumption.

Vimeo denoising/deblocking benchmark. We select 91,701
frame septuplets from 38,990 video clips for the denois-
ing task, using the first two criteria introduced for the in-
terpolation benchmark. For video denoising, we consider
two types of noises: a Gaussian noise with a standard de-
viation of 0.1, and mixed noises including a 10% salt-and-
pepper noise in addition to the Gaussian noise. For video de-
blocking, we compress the original sequences using FFmpeg
with codec JPEG2000, format J2k, and quantization factor
q = {20,40,60}.

Vimeo super-resolution benchmark. We also use the same
set of septuplets for denoising to build the Vimeo super-
resolution benchmark with down-sampling factor of 4: the
resolution of input and output images are 112× 64 and
448×256 respectively. To generate the low-resolution videos
from high-resolution input, we use the MATLAB imresize
function, which first blurs the input frames using cubic fil-
ters and then downsamples videos using bicubic interpola-
tion.

6 Evaluation

In this section, we evaluate two variations of the proposed
network. The first one is to train each module separately:
we first pre-train motion estimation, and then train video
processing while fixing the flow module. This is similar to



7

(c) Image mean flow frequency

0
.1

1
.1

2
.1

3
.1

4
.1

5
.1

6
.1

7
.1

8
.1

9
.1

1
0
.1

1
1
.1

1
2
.1

1
3
.1

F
re

q
u

en
cy

Flow

magnitude

(a) Sample frames

(b) Pixel-wise flow frequency

0
.1

1
.1

2
.1

3
.1

4
.1

5
.1

6
.1

7
.1

8
.1

9
.1

1
0
.1

1
1
.1

1
2
.1

1
3
.1

1
4
.1

1
5
.1

F
re

q
u

en
cy

Flow

magnitude

Fig. 6: The Vimeo-90K dataset. (a) are sampled frames from the dataset, which show the high quality and wide coverage
of our dataset. (b) is the histogram of flow magnitude of all pixels in the dataset, and (c) is the histogram of mean flow
magnitude of all images (the flow magnitude of an image is the average flow magnitude of all pixels in that image).

EpicFlow TOFlowFixed FlowSepConv Ground truthAdaConv

Fig. 7: Qualitative results on frame interpolation. Zoomed-in views are shown in lower right.

Methods Vimeo Interp. DVF Dataset

PSNR SSIM PSNR SSIM

SpyNet 31.95 0.9601 33.60 0.9633
EpicFlow 32.02 0.9622 33.71 0.9635
DVF 33.24 0.9627 34.12 0.9631
AdaConv 32.33 0.9568 — —
SepConv 33.45 0.9674 34.69 0.9656

Fixed Flow 29.09 0.9229 31.61 0.9544
Fixed Flow + Mask 30.10 0.9322 32.23 0.9575

TOFlow 33.53 0.9668 34.54 0.9666
TOFlow + Mask 33.73 0.9682 34.58 0.9667

Table 1: Quantitative results of different frame interpolation
algorithms on the Vimeo interpolation test set and the DVF
test set (Liu et al 2017).

the two-step video processing algorithms, and we refer to it
as Fixed Flow. The other one is to jointly train all modules as
described in Section 4.5, and we refer to it as TOFlow. Both
networks are trained on Vimeo benchmarks we collected.
We evaluate these two variations on three different tasks and
also compare with other state-of-the-art image processing
algorithms.

6.1 Frame Interpolation

Datasets. We evaluate on three datasets: Vimeo interpola-
tion benchmark, the dataset used by Liu et al (2017) (DVF),
and Middlebury flow dataset (Baker et al 2011).

Metrics. We use two quantitative measure to evaluate the
performance of interpolation algorithms: peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) index.

Baselines. We first compare our framework with two-step
interpolation algorithms. For the motion estimation, we use
EpicFlow (Revaud et al 2015) and SpyNet (Ranjan and
Black 2017). To handle occluded regions as mentioned in Sec-
tion 4.4, we calculate the occlusion mask for each frame us-
ing the algorithm proposed by Zitnick et al (2004) and only
use non-occluded regions to interpolate the middle frame.
Further, we compare with state-of-the-art end-to-end mod-
els, Deep Voxel Flow (DVF) (Liu et al 2017), Adaptive Con-
volution (AdaConv) (Niklaus et al 2017a), and Separable
Convolution (SepConv) (Niklaus et al 2017b). At last, we



8

Input noisy frames Ground truthTOFlowFixed Flow

Vimeo-Mixed Dataset

Vimeo-BW Dataset

V-BM4D Dataset

TOFlowV-BM4D Ground truthInput noisy frames Input noisy frames

G
au

ss
15

TOFlow

G
au

ss
25

M
ix

ed

Vimeo Noisy RGB Datasets
with different noise levels and noise types

Fig. 8: Qualitative results on video denoising. The differences are clearer when zoomed-in.

Methods Vimeo-Gauss15 Vimeo-Gauss25 Vimeo-Mixed

PSNR SSIM PSNR SSIM PSNR SSIM

Fixed Flow 31.92 0.9566 28.38 0.9333 28.56 0.9200

TOFlow 32.22 0.9580 29.10 0.9544 28.85 0.9407

Methods Vimeo-BW V-BM4D

PSNR SSIM PSNR SSIM

V-BM4D 27.38 0.8664 30.63 0.8759

TOFlow 29.41 0.9271 30.36 0.8855

Table 2: Quantitative results on video denoising. Left: Vimeo RGB datasets with three different types of noise; Right: two
grayscale dataset: Vimeo-BW and V-BM4D.

Methods PMMST DeepFlow SepConv TOFlow TOFlow
Mask

All 5.783 5.965 5.605 5.67 5.49
Discontinuous 9.545 9.785 8.741 8.82 8.54
Untextured 2.101 2.045 2.334 2.20 2.17

Table 3: Quantitative results of five frame interpolation al-
gorithms on Middlebury flow dataset (Baker et al 2011):
PMMST (Xu et al 2015), SepConv (Niklaus et al 2017b),
DeepFlow (Liu et al 2017), and our TOFlow (with and
without mask). Follow the convention of Middlebury flow
dataset, we reported the square root error (SSD) between
ground truth image and interpolated image in 1) entire im-
ages, 2) regions of motion discontinuities, and 3) regions
without texture.

also compare with Fixed Flow, which is another baseline
two-step interpolation algorithm1.

1 Note that Fixed Flow or TOFlow only uses 4-level structure of
SpyNet for memory efficiency, while the original SpyNet network has
5 levels.

Results. Table 1 shows our quantitative results2. On Vimeo
interpolation benchmark, TOFlow in general outperforms
the others interpolation algorithms, both the traditional two-
step interpolation algorithms (EpicFlow and SpyNet) and re-
cent deep-learning based algorithms (DVF, AdaConv, and
SepConv), with a significant margin. Though our model is
trained on our Vimeo-90K dataset, it also outperforms DVF
on DVF dataset in both PSNR and SSIM. There is also a
significant boost over Fixed Flow, showing that the network
does learn a better flow representation for interpolation dur-
ing joint training.

Figure 7 also shows qualitative results. All the two-step
algorithms (EpicFlow and Fixed Flow) generate a doubling
artifacts, like the hand in the first row or the head in the
second row. AdaConv on the other sides does not have the
doubling artifacts, but it tends to generate blurry output, by
directly synthesizing interpolated frames without a motion
module. SepConv increases the sharpness of output frame
compared with AdaConv, but there are still artifacts (see
the hat on the bottom row). Compared with these methods,

2 We did not evaluate AdaConv on DVF dataset, as neither the
implementation of AdaConv nor the DVF dataset is publicly available.



9

TOFlow correctly recovers sharper boundaries and fine de-
tails even in presence of large motion.

At last, Table 3 shows a qualitative comparison of the
proposed algorithms with the best four alternatives on Mid-
dlebury (Baker et al 2011). We use the sum of square differ-
ence (SSD) reported on the official website as the evaluation
metric. TOFlow performs better than other interpolation net-
works.

6.2 Video Denoising/Deblocking

Setup. We first train and evaluate our framework on Vimeo
denoising benchmark, with three types of noises: Gaussian
noise with standard deviation of 15 intensity levels (Vimeo-
Gauss15), Gaussian noise with standard deviation of 25
(Vimeo-Gauss25), and mixture of Gaussian noise and 10%
salt-and-pepper noise (Vimeo-Mixed). To compare our net-
work with V-BM4D (Maggioni et al 2012), which is a monoc-
ular video denoising algorithm, we also transfer all videos in
Vimeo Denoising Benchmark to grayscale to create Vimeo-
BW (Gaussian noise only), and retrain our network on it. We
also evaluate our framework on the a mono video dataset in
V-BM4D.

Baselines. We compare our framework with the V-BM4D,
with the standard deviation of Gaussian noise as its addi-
tional input on two grayscale datasets (Vimeo-BW and V-
BM4D). As before, we also compare with the Fixed Flow
variant of our framework on three RGB datasets (Vimeo-
Gauss15, Vimeo-Gauss25, and Vimeo-Mixed).

Results. We first evaluate TOFlow on the Vimeo dataset
with three different noise levels (Table 2). TOFlow outper-
forms Fixed Flow by a significant margin, demonstrating the
effectiveness of joint training. Also, when the noise level
increases to 25 or when additional salt-and-pepper noise is
added, the PSNR of TOFlow is still round 29dB, showing
its robustness to different noise levels. This is qualitatively
demonstrated in the right half of Figure 8.

On two grayscale datasets, Vimeo-BW and V-BM4D,
TOFlow outperforms V-BM4D in SSIM. Here we did not
fine-tune it on V-BM4D. Though TOFlow only achieves a
comparable performance with V-BM4D in PSNR, the out-
put of TOFlow is much sharper than V-BM4D. As shown in
Figure 8, the details of the beard and collar are kept in the
denoised frame by TOFlow (the mid left of Figure 8), and
leaves on the tree are also clearer (the bottom left of Fig-
ure 8). Therefore, TOFlow beats V-BM4D in SSIM, which
better reflects human’s perception than PSNR.

For video deblocking, Table 4 shows that TOFlow out-
performs V-BM4D. Figure 9 also shows the qualitative com-
parison between TOFlow, Fixed Flow, and V-BM4D. Note
that the compression artifacts around the girl’s hair (top)

Methods
Vimeo-Blocky

(q=20)
Vimeo-Blocky

(q=40)
Vimeo-Blocky

(q=60)

PSNR SSIM PSNR SSIM PSNR SSIM

V-BM4D 35.75 0.9587 33.72 0.9402 32.67 0.9287
Fixed flow 36.52 0.9636 34.50 0.9485 33.06 0.9168

TOFlow 36.92 0.9663 34.97 0.9527 34.02 0.9447

Table 4: Results on video deblocking.

and the man’s nose (bottom) are completely removed by
TOFlow. The vertical line around the man’s eye (bottom)
due to a blocky compression is also removed by our al-
gorithm. To demonstrate the robustness of our algorithms
on video deblocking with different, we also evaluated three
algorithms on input videos generated under three different
quantization levels, and TOFlow consistently outperforms
other two baselines. Figure 10 also shows that when the
quantization level increases, the deblocking output remain
mostly the same, showing the robustness of TOFlow.

6.3 Video Super-Resolution

Datasets. We evaluate our algorithm on two dataset: Vimeo
super-resolution benchmark and the dataset provided by Liu
and Sun (2011) (BayesSR). The later one consists of four se-
quences, each having 30 to 50 frames. Vimeo super-resolution
benchmark only contains 7 frames, so there is no full-clip
evaluation for it.

Baselines. We compare our framework with bicubic up-
sampling, three video SR algorithms: BayesSR (we use the
version provided by Ma et al (2015)), DeepSR (Liao et al
2015), and SPMC (Tao et al 2017), as well as a baseline
with a Fixed Flow estimation module. Both BayesSR and
DeepSR can take various number of frames as input. There-
fore, on BayesSR dataset, we report two numbers. One is us-
ing the whole sequence, the other is to only use seven frames
in the middle, as SPMC, TOFlow, and Fixed Flow only take
7 frames as input.

Results. Table 5 shows our quantitative results. Our algo-
rithm performs better than baseline algorithms when using
7 frames as input, and it also achieves comparable perfor-
mance to BayesSR when BayesSR uses all 30–50 frames
as input while our framework only uses 7 frames. We show
qualitative results in Figure 11. Compared with either DeepSR
or Fixed Flow, the jointly trained
toflow generates sharper output. Notice the words on the
cloth (top) and the tip of the knife (bottom) are clearer in the
high-resolution frame synthesized by TOFlow. This shows
the effectiveness of joint training.



10

Input compressed frames Ground truthV-BM4D TOFlowFixed Flow

Fig. 9: Qualitative results on video deblocking. The differences are clearer when zoomed-in.

Input compressed frames

q 
= 

20

TOFlow Input compressed frames TOFlow Input compressed frames TOFlow

q 
= 

40
q 

= 
60

Fig. 10: Results on frames with different encoding qualities. The differences are clearer when zoomed-in.

Bicubic Ground truthDeepSR Fixed Flow TOFlowSPMC

Fig. 11: Qualitative results on super-resolution. Close-up views are shown on the top left of each result. The differences are
clearer when zoomed-in.

To better understand how many input frames are suffi-
cient for super-resolution, we also trained our TOFlow with
different number of input frames, as shown in Table 7. There
is a big improvement when switching from 3-frame to 5-
frame, and the improvement becomes minor when further
switching to 7-frame. Therefore, 5 or 7 frames should be
enough for super-resolution.

Besides, the down-sampling kernels (also known as point-
spread function) that is used to create the low-resolution im-
ages may also affect the performance super-resolution (Liao
et al 2015). To evaluate how down-sampling kernels affect
the performance of our algorithm, we evaluated on three dif-
ferent kernels: cubic kernel, box down-sampling kernel, and

Gaussian kernel with variance equals 2 pixels), and Table 6
shows the result. There is 1 dB drops in PSNR when switch-
ing to box kernels, and another 1 dB drops when switch-
ing to Gaussian kernels. This is because that down-sampling
kernels remove high-frequency aliasing in low-resolution in-
put images, which makes the super-resolution harder. In this
work, in most of experiments, we just follow the convention
of previous multi-frame supersolution setup (Liu and Sun
2011; Tao et al 2017) which creates low-resolution images
through bicubic interpolation with no blur kernels. How-
ever, the results with blur kernels are also interesting, as it is
closer the actual formation of low resolution images when
captured by cameras.



11

Input Methods Vimeo-SR BayesSR

PSNR SSIM PSNR SSIM

Full Clip DeepSR — — 22.69 0.7746
BayesSR — — 24.32 0.8486

1 Frame Bicubic 29.79 0.9036 22.02 0.7203

7 Frames

DeepSR 25.55 0.8498 21.85 0.7535
BayesSR 24.64 0.8205 21.95 0.7369
SMPC 32.70 0.9380 21.84 0.7990
Fixed Flow 31.81 0.9288 22.85 0.7655

TOFlow 33.08 0.9417 23.54 0.8070

Table 5: Results on video super-resolution. Each clip in
Vimeo-SR contains 7 frames, and each clip in BayesSR
contains 30–50 frames.

Cubic Kernel Box Kernel Gaussian Kernel

PSNR SSIM PSNR SSIM PSNR SSIM

33.08 0.9417 32.08 0.9372 31.15 0.9314

Table 6: Results of TOFlow on video super-resolution when
different downsampling kernels are used for building the
dataset.

3 Frames 5 Frames 7 Frames

PSNR SSIM PSNR SSIM PSNR SSIM

32.66 0.9375 33.04 0.9415 33.08 0.9417

Table 7: Video super-resolution results with a different num-
ber of input frames.

In all the experiments, we train and evaluate our network
on an NVIDIA Titan X GPU. For an input clip with resolu-
tion 256×448, our network takes about 200ms for interpo-
lation and 400ms for denoising or super-resolution (the in-
put resolution to the super-resolution network is 64× 112),
where the flow module takes 18 ms for each estimated mo-
tion field.

6.4 Flows Learned from Different Disks

We now compare and contrast the flow learned from dif-
ferent tasks to understand if learning flow in such a task-
oriented fashion is necessary.

We did an ablation study by replacing the flow estima-
tion network in our model by a flow network trained on a
different task (Figure 13 and Table 8). There is a significant
drop in the performance when we use a flow network that is
not trained on that task. For example, with the flow network
trained on deblocking or super-resolution, the performance

Tasks trained on Tasks evaluated on

Denoising Deblocking SR

Denoising 29.01 36.13 31.30
Deblocking 24.23 36.92 31.86
Super-resolution 24.04 31.86 33.08

Fixed Flow 28.38 36.52 31.81
EpicFlow 26.98 30.09 28.05

Table 8: PSNR for applying TOFlow trained on one task
to different tasks. There is a significant performance drops
when using different flow representation.

of the denoising algorithm drops by 5dB, and there are no-
ticeable noises in the images (the first column of Figure 13).
There are also ringing artifacts when we apply the flow net-
work trained on super-resolution for deblocking (Figure 13
row 2, col 2). Therefore, our task-oriented flow network is
indeed tailored to a specific task. Besides, in all these three
tasks, Fixed Flow performs better than TOFlow if trained
and tested on different tasks, but worse than TOFlow if
trained and tested on the same task. This suggests joint train-
ing improves the performance of a flow network on one task,
but decreases its performance on the others.

Figure 12 contrasts the motion fields learned from dif-
ferent tasks: the flow field for interpolation is very smooth,
even on the occlusion boundaries, while the flow field for
super-resolution has artificial movements along the texture
edges. This indicates that the network may learn to encode
different information that is useful for different tasks in the
learned motion fields.

6.5 Accuracy of Retrained Flow

As we shown in the Figure 1, tailoring a motion estimation
network to a specific task will reduce the accuracy of esti-
mated flow. To illustrate that is the case, we evaluated the
flow estimation accuracy on Sintel Flow Dataset by Butler
et al (2012b). Three variance of flow estimation network are
tried: 1) pre-trained flow network on Flying Chair dataset, 2)
Fine-tuned network on denoising, 3) Fine-tuned network on
super-resolution. All the fine-tuned networks are fine-tuned
on Vimeo-90K dataset. As shown in Table 9, the accuracy of
TOFlow is much worse than either EpicFlow (Revaud et al
2015) or Fixed Flow3, but as shown in Table 2, 4, and 5,
TOFlow outperforms Fixed Flow on specific tasks. This is
consistent with the intuition that TOFlow is a motion repre-
sentations that do not match the actual object movement, but
lead to better video processing results.

3 The EPE of Fixed Flow on Sintel dataset is different from EPE of
SpyNet (Ranjan and Black 2017) reported on Sintel website, as it is
trained differently from SpyNet as we mentioned before.



12

Input Flow for Interpolation Flow for DeblockingFlow for Denoising Flow for Super-resoltuion

Fig. 12: Visualization of motion fields for different tasks.

Ta
sk

s t
ha

t f
lo

w
s t

ra
in

ed
 o

n

Tasks that flows evaluated on
Denoising Deblocking Super-resolution

D
en

oi
si

ng
D

eb
lo

ck
in

g
Su

pe
r-r

es
ol

ut
io

n

Fig. 13: Applying TOFlow trained on one task to different
tasks.

Methods TOFlow TOFlow Fixed Epic
Denoising SR Flow Flow

All 16.638 16.586 14.120 4.115
Matched 11.961 11.851 9.322 1.360
Unmatched 54.724 55.137 53.117 26.595

Table 9: End-point-error (EPE) of estimated flow fields on
the Sintel dataset. We evaluate TOFlow (trained on two
different tasks), as well as Fixed Flow and EpicFlow Revaud
et al (2015). Follow the convention, we reported errors over
full images, matched regions, and unmatched regions.

6.6 Different Flow Estimation Network Structure

Our task-oriented video processing pipeline is not limited
to one flow estimation network structure, although in all
previous experiments, we use SpyNet by Ranjan and Black
(2017) as flow estimation sub-network because its memory
efficiency. To demonstrate the generalization ability of our
framework, we also tried on FlowNetC (Fischer et al 2015)
structure, and evaluated on video denoising, deblocking,
and super-resolution. Because FlowNetC has larger memory
consumption, we only estimate flow at 256x192 resolution
and upsample it to the target resolution, and its performance
is therefore worse than the network using SpyNet, as shown
in Table 10. Still, in all these three tasks, TOFlow outper-
forms than Fixed Flow. This demonstrates the generaliza-
tion ability of TOFlow framework to other flow estimation
networks.

Methods Denoising Deblocking Super-resolution

PSNR SSIM PSNR SSIM PSNR SSIM

Fixed Flow 24.685 0.8297 36.028 0.9672 31.834 0.9291
TOFlow 24.689 0.8374 36.496 0.9700 33.010 0.9411

Table 10: Results of TOFlow on three different tasks, using
FlowNetC (Fischer et al 2015) as the motion estimation
module.

7 Conclusion

In this work, we propose a novel video processing model
that exploits task-oriented motion cues. Traditional video
processing algorithms normally consist of two steps: motion
estimation and video processing based on estimated motion
fields. However, a genetic motion for all tasks might be sub-
optimal and the accurate motion estimation would be neither
necessary nor sufficient for these tasks. Our self-supervised
framework bypasses this difficulty by modeling motion sig-
nals in the loop. To evaluate our algorithm, we also cre-
ate a new dataset, Vimeo-90K, for video processing. Exten-
sive experiments on temporal frame interpolation, video de-
noising/deblocking, and video super-resolution demonstrate
demonstrate the effectiveness of task-oriented flow.

Acknowledgements. This work is supported by NSF RI-
1212849, NSF BIGDATA-1447476, Facebook, Shell Re-
search, and Toyota Research Institute.

References

Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G, Varadarajan
B, Vijayanarasimhan S (2016) Youtube-8m: A large-scale video
classification benchmark. arXiv:160908675 2

Ahn N, Kang B, Sohn KA (2018) Fast, accurate, and, lightweight
super-resolution with cascading residual network. In: European
Conference on Computer Vision 3

Aittala M, Durand F (2018) Burst image deblurring using permutation
invariant convolutional neural networks. In: European Conference
on Computer Vision, pp 731–747 3

Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011)
A database and evaluation methodology for optical flow. Interna-
tional Journal of Computer Vision 92(1):1–31 1, 2, 3, 7, 8, 9

Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy op-
tical flow estimation based on a theory for warping. In: European
Conference on Computer Vision 2



13

Brox T, Bregler C, Malik J (2009) Large displacement optical flow. In:
IEEE Conference on Computer Vision and Pattern Recognition 2,
6

Bulat A, Yang J, Tzimiropoulos G (2018) To learn image super-
resolution, use a gan to learn how to do image degradation first.
In: European Conference on Computer Vision 2

Butler DJ, Wulff J, Stanley GB, Black MJ (2012a) A naturalistic open
source movie for optical flow evaluation. In: European Conference
on Computer Vision 6

Butler DJ, Wulff J, Stanley GB, Black MJ (2012b) A naturalistic open
source movie for optical flow evaluation. In: European Conference
on Computer Vision, pp 611–625 11

Caballero J, Ledig C, Aitken A, Acosta A, Totz J, Wang Z, Shi W
(2017) Real-time video super-resolution with spatio-temporal net-
works and motion compensation. In: IEEE Conference on Com-
puter Vision and Pattern Recognition 3

Fischer P, Dosovitskiy A, Ilg E, Häusser P, Hazırbaş C, Golkov V,
van der Smagt P, Cremers D, Brox T (2015) Flownet: Learning
optical flow with convolutional networks. In: IEEE International
Conference on Computer Vision 2, 12

Ganin Y, Kononenko D, Sungatullina D, Lempitsky V (2016) Deep-
warp: Photorealistic image resynthesis for gaze manipulation. In:
European Conference on Computer Vision 3

Ghoniem M, Chahir Y, Elmoataz A (2010) Nonlocal video denois-
ing, simplification and inpainting using discrete regularization on
graphs. Signal Process 90(8):2445–2455 2

Godard C, Matzen K, Uyttendaele M (2017) Deep burst denoising. In:
European Conference on Computer Vision 2

Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell
17(1-3):185–203 2

Huang Y, Wang W, Wang L (2015) Bidirectional recurrent convolu-
tional networks for multi-frame super-resolution. In: Advances in
Neural Information Processing Systems 2

Jaderberg M, Simonyan K, Zisserman A, et al (2015) Spatial trans-
former networks. In: Advances in Neural Information Processing
Systems 3, 5

Jiang H, Sun D, Jampani V, Yang MH, Learned-Miller E, Kautz J
(2017) Super slomo: High quality estimation of multiple inter-
mediate frames for video interpolation. In: IEEE Conference on
Computer Vision and Pattern Recognition 2

Jiang X, Le Pendu M, Guillemot C (2018) Depth estimation with
occlusion handling from a sparse set of light field views. In: IEEE
International Conference on Image Processing 2

Jo Y, Oh SW, Kang J, Kim SJ (2018) Deep video super-resolution
network using dynamic upsampling filters without explicit motion
compensation. In: IEEE Conference on Computer Vision and Pat-
tern Recognition, pp 3224–3232 3

Kappeler A, Yoo S, Dai Q, Katsaggelos AK (2016) Video super-
resolution with convolutional neural networks. IEEE Transactions
on Computational Imaging 2(2):109–122 2

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization.
In: International Conference on Learning Representations 6

Li M, Xie Q, Zhao Q, Wei W, Gu S, Tao J, Meng D (2018) Video
rain streak removal by multiscale convolutional sparse coding. In:
IEEE Conference on Computer Vision and Pattern Recognition,
pp 6644–6653 3

Liao R, Tao X, Li R, Ma Z, Jia J (2015) Video super-resolution via
deep draft-ensemble learning. In: IEEE Conference on Computer
Vision and Pattern Recognition 2, 6, 9, 10

Liu C, Freeman W (2010) A high-quality video denoising algorithm
based on reliable motion estimation. In: European Conference on
Computer Vision 1, 2

Liu C, Sun D (2011) A bayesian approach to adaptive video super
resolution. In: IEEE Conference on Computer Vision and Pattern
Recognition 1, 9, 10

Liu C, Sun D (2014) On bayesian adaptive video super resolution.
IEEE Transactions on Pattern Analysis and Machine intelligence
36(2):346–360 2, 6

Liu Z, Yeh R, Tang X, Liu Y, Agarwala A (2017) Video frame synthe-
sis using deep voxel flow. In: IEEE International Conference on
Computer Vision 2, 3, 5, 7, 8

Lu G, Ouyang W, Xu D, Zhang X, Gao Z, Sun MT (2018) Deep
kalman filtering network for video compression artifact reduction.
In: European Conference on Computer Vision, pp 568–584 3

Ma Z, Liao R, Tao X, Xu L, Jia J, Wu E (2015) Handling motion blur in
multi-frame super-resolution. In: IEEE Conference on Computer
Vision and Pattern Recognition 9

Maggioni M, Boracchi G, Foi A, Egiazarian K (2012) Video denoising,
deblocking, and enhancement through separable 4-d nonlocal spa-
tiotemporal transforms. IEEE Transactions on Image Processing
21(9):3952–3966 2, 9

Makansi O, Ilg E, Brox T (2017) End-to-end learning of video super-
resolution with motion compensation. In: German Conference on
Pattern Recognition 3

Mathieu M, Couprie C, LeCun Y (2016) Deep multi-scale video pre-
diction beyond mean square error. In: International Conference on
Learning Representations 2

Mémin E, Pérez P (1998) Dense estimation and object-based segmen-
tation of the optical flow with robust techniques. IEEE Transac-
tions on Image Processing 7(5):703–719 2

Mildenhall B, Barron JT, Chen J, Sharlet D, Ng R, Carroll R (2017)
Burst denoising with kernel prediction networks. arXiv preprint
arXiv:171202327 2

Mildenhall B, Barron JT, Chen J, Sharlet D, Ng R, Carroll R (2018)
Burst denoising with kernel prediction networks. In: IEEE Con-
ference on Computer Vision and Pattern Recognition 3

Nasrollahi K, Moeslund TB (2014) Super-resolution: a comprehensive
survey. Machine Vision and Applications 25(6):1423–1468 2

Niklaus S, Liu F (2018) Context-aware synthesis for video frame in-
terpolation. In: IEEE Conference on Computer Vision and Pattern
Recognition 2

Niklaus S, Mai L, Liu F (2017a) Video frame interpolation via adaptive
convolution. In: IEEE Conference on Computer Vision and Pattern
Recognition 2, 7

Niklaus S, Mai L, Liu F (2017b) Video frame interpolation via adap-
tive separable convolution. In: IEEE International Conference on
Computer Vision 7, 8

Oliva A, Torralba A (2001) Modeling the shape of the scene: A holistic
representation of the spatial envelope. International Journal of
Computer Vision 42(3):145–175 6

Ranjan A, Black MJ (2017) Optical flow estimation using a spatial
pyramid network. In: IEEE Conference on Computer Vision and
Pattern Recognition 2, 5, 6, 7, 11, 12, 14

Revaud J, Weinzaepfel P, Harchaoui Z, Schmid C (2015) Epicflow:
Edge-preserving interpolation of correspondences for optical flow.
In: IEEE Conference on Computer Vision and Pattern Recognition
1, 2, 5, 7, 11, 12

Sajjadi MS, Vemulapalli R, Brown M (2018) Frame-recurrent video
super-resolution. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp 6626–6634 2

Tao X, Gao H, Liao R, Wang J, Jia J (2017) Detail-revealing deep video
super-resolution. In: IEEE International Conference on Computer
Vision 2, 3, 9, 10

Varghese G, Wang Z (2010) Video denoising based on a spatiotemporal
gaussian scale mixture model. IEEE Transactions on Circuits and
Systems for Video Technology 20(7):1032–1040 2

Wang TC, Zhu JY, Kalantari NK, Efros AA, Ramamoorthi R (2017)
Light field video capture using a learning-based hybrid imaging
system. In: SIGGRAPH 3

Wedel A, Cremers D, Pock T, Bischof H (2009) Structure-and motion-
adaptive regularization for high accuracy optic flow. In: IEEE



14

Conference on Computer Vision and Pattern Recognition 2
Wen B, Li Y, Pfister L, Bresler Y (2017) Joint adaptive sparsity and

low-rankness on the fly: an online tensor reconstruction scheme for
video denoising. In: IEEE International Conference on Computer
Vision (ICCV) 3

Werlberger M, Pock T, Unger M, Bischof H (2011) Optical flow guided
tv-l1 video interpolation and restoration. In: International Confer-
ence on Energy Minimization Methods in Computer Vision and
Pattern Recognition 2

Xu J, Ranftl R, Koltun V (2017) Accurate optical flow via direct cost
volume processing. In: IEEE Conference on Computer Vision and
Pattern Recognition 2

Xu S, Zhang F, He X, Shen X, Zhang X (2015) Pm-pm: Patchmatch
with potts model for object segmentation and stereo matching.
IEEE Transactions on Image Processing 24(7):2182–2196 8

Yang R, Xu M, Wang Z, Li T (2018) Multi-frame quality enhancement
for compressed video. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp 6664–6673 3

Yu JJ, Harley AW, Derpanis KG (2016) Back to basics: Unsuper-
vised learning of optical flow via brightness constancy and motion
smoothness. In: European Conference on Computer Vision Work-
shops 2

Yu Z, Li H, Wang Z, Hu Z, Chen CW (2013) Multi-level video frame
interpolation: Exploiting the interaction among different levels.
IEEE Transactions on Circuits and Systems for Video Technology
23(7):1235–1248 2

Zhou T, Tulsiani S, Sun W, Malik J, Efros AA (2016) View synthesis
by appearance flow. In: European Conference on Computer Vision
3

Zhu X, Wang Y, Dai J, Yuan L, Wei Y (2017) Flow-guided
feature aggregation for video object detection. arXiv preprint
arXiv:170310025 3

Zitnick CL, Kang SB, Uyttendaele M, Winder S, Szeliski R (2004)
High-quality video view interpolation using a layered representa-
tion. ACM Transactions on Graphics 23(3):600–608 7

Appendices

Additional qualitative results. We show additional results
on the following benchmarks: Vimeo interpolation bench-
mark (Figure 14), Vimeo denoising benchmark (Figure 15
for RGB videos, and Figure 16 for grayscale videos), Vimeo
deblocking benchmark (Figure 17), and Vimeo super-resolution
benchmark (Figure 18). We randomly select testing images
from test datasets. Differences between different algorithms
are more clearer when zoomed in.

Flow estimation module. We used SpyNet (Ranjan and
Black 2017) as our flow estimation module. It consists of
four sub-networks with the same network structure, but each
sub-network has an independent set of parameters. Each
sub-network consists of five sets of 7×7 convolutional (with
zero padding), batch normalization and ReLU layers. The
number of channels after each convolutional layer is 32, 64,
32, 16, and 2. The input motion to the first network is a zero
motion field.

Image processing module. We use slight different struc-
tures in the image processing module for different tasks. For

temporal frame interpolation both with and without masks,
we build a residual network that consists of an averaging
network and a residual network. The averaging network sim-
ply averages the two transformed frames (from frame 1 and
frame 3). The residual network also takes the two trans-
formed frames as input, but calculates the difference be-
tween the actual second frame and the average of two trans-
formed frames through a convolutional network consists of
three convolutional layers, each of which is followed by a
ReLU layer. The kernel sizes of three layers are 9×9, 1×1,
and 1×1 (with zero padding), and the numbers of output
channels are 64, 64, and 3. The final output is the summa-
tion of the output of the averaging network and the residual
network.

For video denoising/deblocking, the image processing
module uses the same six-layer convolutional structure (three
convolutional layers and three ReLU layers) as interpola-
tion, but without the residual structure. We have also tried
the residual structure for denoising/deblocking, but there is
no significant improvement.

For video super-resolution, the image processing mod-
ule consists of four pairs of convolutional layers and ReLU
layers. The kernel sizes for these four layers are 9×9, 9×9,
1×1, and 1×1 (with zero padding), and the numbers of out-
put channels are 64, 64, 64, and 3.

Mask network. Similar to our flow estimation module, our
mask estimation network is also a four-level convolutional
neural network pyramid as in Figure 4. Each level consists
of the same sub-network structure with five sets of 7×7
convolutional (with zero padding), batch normalization and
ReLU layers, but an independent set of parameters (output
channels are 32, 64, 32, 16, and 2). For the first level, the
input to the network is a concatenation of two estimated
optical flow fields (four channels after concatenation), and
the output is a concatenation of two estimated masks (one
channel per mask). From the second level, the input to the
network switch to a concatenation of, first, two estimated
optical flow fields at that resolution, and second, bilinear-
upsampled masks from the previous level (the resolution is
twice of the previous level). In this way, the first level mask
network estimates a rough mask, and the rest refines high
frequency details of the mask.

We use cycle consistencies to obtain the ground truth
occlusion mask for pre-training the mask network. For two
consecutive frames I1 and I2, we calculate the forward flow
v12 and the backward flow v21 using the pre-trained flow
network. Then, for each pixel p in image I1, we first map
it to I2 using v12 and then map it back to I1 using v21. If it
maps to a different point rather to p (up to an error threshold
of two pixels), then this point is considered to be occluded.



15

EpicFlow AdaConv SepConv Fixed Flow TOFlow Ground Truth

Fig. 14: Qualitative results on video interpolation. Samples are randomly selected from the Vimeo interpolation benchmark.
The differences between different algorithms are clear only when zoomed in.



16

Input Fixed Flow TOFlow Ground Truth

Fig. 15: Qualitative results on RGB video denoising. Samples are randomly selected from the Vimeo denoising benchmark.
The differences between different algorithms are clear only when zoomed in.



17

Input V-BM4D TOFlow Ground Truth

Fig. 16: Qualitative results on grayscale video denoising. Samples are randomly selected from the Vimeo denoising
benchmark. The differences between different algorithms are clear only when zoomed in.



18

Input V-BM4D TOFlow Ground Truth

Fig. 17: Qualitative results on video deblocking. Samples are randomly selected from the Vimeo deblocking benchmark. The
differences between different algorithms are clear only when zoomed in.



19

Bicubic DeepSR Fixed Flow TOFlow Ground Truth

Fig. 18: Qualitative results on video super-resolution. Samples are randomly selected from the Vimeo super-resolution
benchmark. The differences between different algorithms are clear only when zoomed in. DeepSR was originally trained
on 30–50 images, but evaluated on 7 frames in this experiment, so there are some artifacts.


	1 Introduction
	2 Related Work
	3 Tasks
	4 Task-Oriented Flow for Video Processing
	5 The Vimeo-90K Dataset
	6 Evaluation
	7 Conclusion

