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Video Enhancement with Task-Oriented Flow

Tianfan Xue1 � Baian Chen2 � Jiajun Wu2 � Donglai Wei3 � William T. Freeman2;4

t=1

t=2

t=3

(I-b) EpicFlow (I-d) Task-oriented Flow(I-c) Interp. by EpicFlow (I-e) Interp. by Task-oriented Flow

Frame interpolation

(I-a) Input Low-frame-rate
Videos Video denoising

t=1

t=4

t=7

(II -b) EpicFlow (II -d) Task-oriented Flow(II -c) Denoiseby EpicFlow (II -e) Denoiseby Task-oriented Flow(II -a) Input Noisy Videos

Fig. 1: Many video processing tasks, e.g., temporal frame-interpolation (top) and video denoising (bottom), rely on �ow
estimation. In many cases, however, precise optical �ow estimation is intractable and could be suboptimal for a speci�c
task. For example, although EpicFlow (Revaud et al 2015) predicts precise movement of objects (I-b, the �ow �eld aligns
well with object boundaries), small errors in estimated �ow �elds result in obvious artifacts in interpolated frames, like the
obscure �ngers in (I-c). With the task-oriented �ow proposed in this work (I-d), those interpolation artifacts disappear as in
(I-e). Similarly, in video denoising, our task-oriented �ow (II-d) deviates from EpicFlow (II-b), but leads to a cleaner output
frame (II-e). Flow visualization is based on the color wheel shown on the corner of (I-b).

Abstract Many video enhancement algorithms rely on op-
tical �ow to register frames in a video sequence. Precise
�ow estimation is however intractable; and optical �ow it-
self is often a sub-optimal representation for particular video
processing tasks. In this paper, we propose task-oriented
�ow (TOFlow), a motion representation learned in a self-
supervised, task-speci�c manner. We design a neural net-
work with a trainable motion estimation component and a
video processing component, and train them jointly to learn
the task-oriented �ow. For evaluation, we build Vimeo-90K,
a large-scale, high-quality video dataset for low-level video
processing. TOFlow outperforms traditional optical �ow on
standard benchmarks as well as our Vimeo-90K dataset in
three video processing tasks: frame interpolation, video de-
noising/deblocking, and video super-resolution.

1 Introduction

Motion estimation is a key component in video processing
tasks such as temporal frame interpolation, video denoising,
and video super-resolution. Most motion-based video pro-

cessing algorithms use a two-step approach (Liu and Sun
2011; Baker et al 2011; Liu and Freeman 2010): they �rst es-
timate motion between input frames for frame registration,
and then process the registered frames to generate the �nal
output. Therefore, the accuracy of �ow estimation greatly
affects the performance of these two-step approaches.

However, precise �ow estimation can be challenging and
slow for many video enhancement tasks. The brightness
constancy assumption, which many motion estimation al-
gorithms rely on, may fail due to variations in lighting and
pose, as well as the presence of motion blur and occlusion.
Also, many motion estimation algorithms involve solving a
large-scale optimization problem, making it inef�cient for
real-time applications.

Moreover, solving for a motion �eld that matches ob-
jects in motion may be sub-optimal for video processing.
Figure 1 shows an example in frame interpolation. EpicFlow (Re-
vaud et al 2015), one of the state-of-the-art motion esti-
mation algorithms, calculates a precise motion �eld (I-b)
whose boundary is well-aligned with the �ngers in the im-
age (I-c); however, the interpolated frame (I-c) based on it
still contains obvious artifacts due to occlusion. This is be-
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cause EpicFlow only matches the visible parts between the
two frames; however, for interpolation we also need to in-
paint the occluded regions, where EpicFlow cannot help. In
contrast, task-oriented �ow, which we will soon introduce,
learns to handle occlusions well (I-e), though its estimated
motion �eld (I-d) differs from the ground truth optical �ow.
Similarly, in video denoising, EpicFlow can only estimate
the movement of the girl’s hair (II-b), but our task-oriented
�ow (II-d) can remove the noise in the input. Therefore,
the frame denoised by ours is much cleaner than that by
EpicFlow (II-e). For speci�c video processing tasks, there
exist motion representations that do not match the actual ob-
ject movement, but lead to better results.

In this paper, we propose to learn this task-oriented �ow
(TOFlow) representation with an end-to-end trainable con-
volutional network that performs motion analysis and video
processing simultaneously. Our network consists of three
modules: the �rst estimates the motion �elds between in-
put frames; the second registers all input frames based on
estimated motion �elds; and the third generates target out-
put from registered frames. These three modules are jointly
trained to minimize the loss between output frames and
ground truth. Unlike other �ow estimation networks (Ran-
jan and Black 2017; Fischer et al 2015), the �ow estimation
module in our framework predicts a motion �eld tailored to
a speci�c task, e.g., frame interpolation or video denoising,
as it is jointly trained with the corresponding video process-
ing module.

Several papers have incorporated a learned motion es-
timation network in burst processing (Tao et al 2017; Liu
et al 2017). In this paper, we move beyond to demonstrate
not only how joint learning helps, but also why it helps. We
show that a jointly trained network learns task-speci�c fea-
tures for better video processing. For example, in video de-
noising, our TOFlow learns to reduce the noise in the in-
put, while traditional optical �ow keeps the noisy pixels
in the registered frame. TOFlow also reduces artifacts near
occlusion boundaries. Our goal in this paper is to build a
standard framework for better understanding when and how
task-oriented �ow works.

To evaluate the proposed TOFlow, we have also built
a large-scale, high-quality video dataset for video process-
ing. Most existing large video datasets, such as Youtube-
8M (Abu-El-Haija et al 2016), are designed for high-level
vision tasks like event classi�cation. The videos are often of
low resolutions with signi�cant motion blurs, making them
less useful for video processing. We introduce a new dataset,
Vimeo-90K, for a systematic evaluation of video process-
ing algorithms. Vimeo-90K consists of 89,800 high-quality
video clips (i.e. 720p or higher) downloaded from Vimeo.
We build three benchmarks from these videos for interpola-
tion, denoising or deblocking, and super-resolution, respec-
tively. We hope these benchmarks will also help improve

learning-based video processing techniques with their high-
quality videos and diverse examples.

This paper makes three contributions. First, we propose
TOFlow, a �ow representation tailored to speci�c video pro-
cessing tasks, signi�cantly outperforming standard optical
�ow. Second, we propose an end-to-end trainable video pro-
cessing framework that handles frame interpolation, video
denoising, and video super-resolution. The �ow network in
our framework is �ne-tuned by minimizing a task-speci�c,
self-supervised loss. Third, we build a large-scale, high-
quality video processing dataset, Vimeo-90K.

2 Related Work

Optical �ow estimation. Dated back to Horn and Schunck
(1981), most optical �ow algorithms have sought to min-
imize hand-crafted energy terms for image alignment and
�ow smoothness (M·emin and P·erez 1998; Brox et al 2004,
2009; Wedel et al 2009). Current state-of-the-art methods
like EpicFlow (Revaud et al 2015) or DC Flow (Xu et al
2017) further exploit image boundary and segment cues to
improve the �ow interpolation among sparse matches. Re-
cently, end-to-end deep learning methods were proposed for
faster inference (Fischer et al 2015; Ranjan and Black 2017;
Yu et al 2016). We use the same network structure for mo-
tion estimation as SpyNet (Ranjan and Black 2017). But in-
stead of training it to minimize the �ow estimation error,
as SpyNet does, we train it jointly with a video processing
network to learn a �ow representation that is the best for a
speci�c task.

Low-level video processing. We focus on three video pro-
cessing tasks: frame interpolation, video denoising, and video
super-resolution. Most existing algorithms in these areas
explicitly estimate the dense correspondence among input
frames, and then reconstruct the reference frame according
to image formation models for frame interpolation (Baker
et al 2011; Werlberger et al 2011; Yu et al 2013; Jiang et al
2018; Sajjadi et al 2018), video super-resolution (Liu and
Sun 2014; Liao et al 2015), and denoising (Liu and Free-
man 2010; Varghese and Wang 2010; Maggioni et al 2012;
Mildenhall et al 2017; Godard et al 2017). We refer readers
to survey articles (Nasrollahi and Moeslund 2014; Ghoniem
et al 2010) for comprehensive literature reviews on these
�ourishing research topics.

Deep learning for video enhancement. Inspired by the suc-
cess of deep learning, researchers have directly modeled en-
hancement tasks as regression problems without represent-
ing motions, and have designed deep networks for frame in-
terpolation (Mathieu et al 2016; Niklaus et al 2017a; Jiang
et al 2017; Niklaus and Liu 2018), super-resolution (Huang
et al 2015; Kappeler et al 2016; Tao et al 2017; Bulat et al



3

2018; Ahn et al 2018; Jo et al 2018), denoising Mildenhall
et al (2018), deblurring Yang et al (2018); Aittala and Du-
rand (2018), rain drops removal (Li et al 2018), and video
compression artifacts removal (Lu et al 2018).

Recently, with differentiable image sampling layers in
deep learning (Jaderberg et al 2015), motion information
can be incorporated into networks and trained jointly. Such
approaches have been applied to video interpolation (Liu
et al 2017), light-�eld interpolation (Wang et al 2017), novel
view synthesis (Zhou et al 2016), eye gaze manipulation (Ganin
et al 2016), object detection (Zhu et al 2017), denoising (Wen
et al 2017), and super-resolution (Caballero et al 2017; Tao
et al 2017; Makansi et al 2017). Although many of these al-
gorithms also jointly train the �ow estimation with the rest
parts of network, there is no systematical study on the advan-
tage of joint training. In this paper, we illustrate the advan-
tage of the trained task-oriented �ow through toy examples,
and also demonstrate its superiority over general �ow algo-
rithm on various real-world tasks. We also present a general
framework that can easily adapt to different video process-
ing tasks.

3 Tasks

In the paper, we explore three video enhancement tasks:
frame interpolation, video denoising/deblocking, and video
super-resolution.

Temporal frame interpolation. Given a low frame rate
video, a temporal frame interpolation algorithm generates
a high frame rate video by synthesizing additional frames
between two temporally neighboring frames. Speci�cally,
let I1 and I3 be two consecutive frames in an input video, the
task is to estimate the missing middle frame I2. Temporal
frame interpolation doubles the video frame rate, and can be
recursively applied to generate even higher frame rates.

Video denoising/deblocking. Given a degraded video with
artifacts from either the sensor or compression, video de-
noising/deblocking aims to remove the noise or compres-
sion artifacts to recover the original video. This is typically
done by aggregating information from neighboring frames.
Speci�cally, Let fI1; I2; : : : ; INg be N consecutive, degraded
frames in an input video, the task of video denoising is to
estimate the middle frame I�ref. For the ease of description,
in the rest of paper, we simply call both tasks as video de-
noising.

Video super-resolution. Similar to video denoising, given
N consecutive low-resolution frames as input, the task of
video super-resolution is to recover the high-resolution mid-
dle frame. In this work, we �rst upsample all the input
frames to the same resolution as the output using bicubic

interpolation, and our algorithm only needs to recover the
high-frequency component in the output image.

4 Task-Oriented Flow for Video Processing

Most motion-based video processing algorithms has two
steps: motion estimation and image processing. For exam-
ple, in temporal frame interpolation, most algorithms �rst
estimate how pixels move between input frames (frame 1
and 3), and then move pixels to the estimated location in
the output frame (frame 2) (Baker et al 2011). Similarly,
in video denoising, algorithms �rst register different frames
based on estimated motion �elds between them, and then
remove noises by aggregating information from registered
frames.

In this paper, we propose to use task-oriented �ow (TOFlow)
to integrate the two steps, which greatly improves the perfor-
mance. To learn task-oriented �ow, we design an end-to-end
trainable network with three parts (Figure 2): a �ow esti-
mation module that estimates the movement of pixels be-
tween input frames; an image transformation module that
warps all the frames to a reference frame; and a task-speci�c
image processing module that performs video interpolation,
denoising, or super-resolution on registered frames. Because
the �ow estimation module is jointly trained with the rest of
the network, it learns to predict a �ow �eld that �ts to a par-
ticular task.

4.1 Toy Example

Before discussing the details of network structure, we �rst
start with two synthetic sequences to demonstrate why our
TOFlow can outperform traditional optical �ows. The left of
Figure 3 shows an example of frame interpolation, where a
green triangle is moving to the bottom in front of a black
background. If we warp both the �rst and the third frames
to the second, even using the ground truth �ow (Case I, left
column), there is an obvious doubling artifact in the warped
frames due to occlusion (Case I, middle column, top two
rows), which is a well-known problem in the optical �ow
literature (Baker et al 2011). The �nal interpolation result
based on these two warp frames still contains the doubling
artifact (Case I, right column, top row). In contrast, TOFlow
does not stick to object motion: the background should be
static, but it has non-zero motion (Case II, left column). With
TOFlow, however, there is barely any artifact in the warped
frames (Case II, middle column) and the interpolated frame
looks clean (Case II, right column). This is because TOFlow
not only synthesize the movement of visible object, but also
guide how to inpaint occluded background region by copy-
ing pixels from its neighborhood. Also, if the ground truth
occlusion mask is available, the interpolation result using



4

Input 
frames

�Y

�Y

Flow net

Flow net

STN

STN

Motion
fields

Warped
input

Output
frame

Improcnet

�«

Flow Network

�Y

�Y

R
ef

er
en

ce
F

ra
m

e 
T

F
ra

m
e 

1

Flow Estimation Transformation Image Processing

Not used in interp.

Fig. 2: Left: our model using task-oriented �ow for video processing. Given an input video, we �rst calculate the motion
between frames through a task-oriented �ow estimation network. We then warp input frames to the reference using spatial
transformer networks, and aggregate the warped frames to generate a high-quality output image. Right: the detailed structure
of �ow estimation network (the orange network on the left).

ground truth �ow will also contain little doubling artifacts
(Case I, bottom rows). However, calculating the ground oc-
clusion mask is even harder task than estimate �ow, as it also
requires inferring the correct depth ordering. On the other
side, TOFlow can handle occlusion and synthesize frames
better than the ground truth �ow without using ground truth
occlusion masks and depth ordering information.

Similarly, on the right of Figure 3, we show an example
of video denoising. The random small boxes in the input
frames are synthetic noises. If we warp the �rst and the third
frames to the second using the ground truth �ow, the noisy
patterns (random squares) remain, and the denoised frame
still contains some noise (Case I, right column. There are
some shadows of boxes on the bottom). But if we warp these
two frames using TOFlow (Case II, left column), those noisy
patterns are also reduced or eliminated (Case II, middle
column), and the �nal denoised frame base on them contains
almost no noise, even better than the result by denoising
results with ground truth �ow and occlusion mask (Case
I, bottom rows). This also shows that TOFlow learns to
reduce the noise in input frames by inpainting them with
neighboring pixels, which traditional �ow cannot do.

Now we discuss the details of each module as follows.

4.2 Flow Estimation Module

The �ow estimation module calculates the motion �elds be-
tween input frames. For a sequence with N frames (N = 3 for
interpolation and N = 7 for denoising and super-resolution),
we select the middle frame as the reference. The �ow esti-
mation module consists of N�1 �ow networks, all of which

Case I: With Ground Truth Flows

Case II: With Task-Oriented Flows

Input frames

TOFlow
Warped by
TOFlow

Denoised
frame

Video Denoising

?

Case I: With Ground Truth Flows

Case II: With Task-Oriented Flows

Input frames

TOFlow
Warped by
TOFlow

Interpolated
frame by TOFlow

Frame Interpolation

Warped by GT flow

Denoised
frame with 
GT flow

GT flow

Warped by GT flow

Interp. by GT 
flow

GT flow

Interp. by GT flow + mask

Interp. by GT flow 
+ mask

Interp. by GT flow + mask

Denoised
frame with GT 
flow + mask

Fig. 3: A toy example that demonstrates the effectiveness
of task oriented �ow over the traditional optical �ow. See
Section 4.1 for details.

have the same structure and share the same set of parame-
ters. Each �ow network (the orange network in Figure 2)
takes one frame from the sequence and the reference frame
as input, and predicts the motion between them.



5

We use the multi-scale motion estimation framework
proposed by Ranjan and Black (2017) to handle the large
displacement between frames. The network structure is shown
in the right of Figure 2. The input to the network are Gaus-
sian pyramids of both the reference frame and another frame
rather than the reference. At each scale, a sub-network takes
both frames at that scale and upsampled motion �elds from
previous prediction as input, and calculates a more accurate
motion �elds. We uses 4 sub-networks in a �ow network,
three of which are shown Figure 2 (the yellow networks).

There is a small modi�cation for frame interpolation,
where the reference frame (frame 2) is not an input to the
network, but what it should synthesize. To deal with that, the
motion estimation module for interpolation consists of two
�ow networks, both taking both the �rst and third frames as
input, and predict the motion �elds from the second frame to
the �rst and the third respectively. With these motion �elds,
the later modules of the network can transform the �rst and
the third frames to the second frame for synthesis.

4.3 Image Transformation Module

Using the predicted motion �elds in the previous step, the
image transformation module registers all the input frames
to the reference frame. We use the spatial transformer net-
works (Jaderberg et al 2015) (STN) for registration, which is
a differentiable bilinear interpolation layer that synthesizes
the new frame after transformation. Each STN transforms
one input frame to the reference viewpoint, and all N � 1
STNs forms the image transformation module. One impor-
tant property of this module is that it can back-propagate the
gradients from the image processing module to the �ow es-
timation module, so we can learn a �ow representation that
adapts to different video processing tasks.

4.4 Image Processing Module

We use another convolutional network as the image process-
ing module to generate the �nal output. For each task, we
use a slightly different architecture. Please refer to appen-
dices for details.

Occluded regions in warped frames. As mentioned Sec-
tion 4.1, occlusion often results in doubling artifacts in the
warped frames. A common way to solve this problem is to
mask out occluded pixels in interpolation, for example, Liu
et al (2017) proposed to use an additional network that es-
timates the occlusion mask and only uses pixels are not oc-
cluded.

Similar to Liu et al (2017), we also tried the mask pre-
diction network. It takes the two estimated motion �elds as
input, one from frame 2 to frame 1, and the other from frame

Motion �R�6�7 Mask �I �6�7

Warped frame �+�6�7

Warped frame �+�6�5

Interpolated 
frame �+�6

Mask �I �6�5Motion �R�6�5

Masked frame �+�6�7
�ñ

Masked frame �+�6�5
�ñ

Fig. 4: The structure of the mask network for interpolation

Input �+�5

Input �+�7

Warp �+�5 by EpicFlow

Warp �+�7 by EpicFlow

Warp �+�5 by TOFlow

Warp�+�7 by TOFlow

TOFlow interp(no mask)

TOFlow interp(use mask)

Fig. 5: Comparison between Epic�ow (Revaud et al 2015)
and TOFlow interpolation (both with and without mask).

2 to frame 3 (v21 and v23 in Figure 4). It predicts two occlu-
sion masks: m21 is the mask of the warped frame 2 from
frame 1 (I21), and m23 is the mask of the warped frame 2
from frame 3 (I23). The invalid regions in the warped frames
(I21 and I23) are masked out by multiplying them with their
corresponding masks. The middle frame is then calculated
through another convolutional neural network with both the
warped frames (I21 and I23) and the masked warped frames
(I021 and I023) as input. Please refer to appendices for details.

An interesting observation is that, even without the mask
prediction network, our �ow estimation is mostly robust to
occlusion. As shown in the third column of Figure 5, the
warped frames using TOFlow has little doubling artifacts.
Therefore, just from two warped frames without the learned
masks, the network synthesizes a decent middle frame (the
top image of the right most column). The mask network is
optional, as it only removes some tiny artifacts.

4.5 Training

To accelerate the training procedure, we �rst pre-train some
modules of the network and then �ne-tune all of them to-
gether. Details are described below.

Pre-training the �ow estimation network. Pre-training
the �ow network consists of two steps. First, for all tasks,
we pre-train the motion estimation network on the Sintel
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dataset (Butler et al 2012a), a realistically rendered video
dataset with ground truth optical �ow.

In the second step, for video denoising and super-resolution,
we �ne-tune it with noisy or blurry input frames to improve
its robustness to these input. For video interpolation, we
�ne-tune it with frames I1 and I3 from video triplets as input,
minimizing the l-1 difference between the estimated optical
�ow and the ground truth �ow V23 (or v21). This enables
the �ow network to calculate the motion from the unknown
frame I2 to frame I3 given only frames I1 and I3 as input.

Empirically we �nd that this two-step pre-training can
improve the convergence speed. Also, because the main
purpose of pre-training is to accelerate the convergence, we
simply use the l1 difference between estimated optical �ow
and the ground truth as the loss function, instead of end-
point error in �ow literature (Brox et al 2009; Butler et al
2012a). The choice loss function in the pre-training stage
has a minor impact on the �nal result.

Pre-training the mask network. We also pre-train our oc-
clusion mask estimation network for video interpolation as
an optional component of video processing network before
joint training. Two occlusion masks (m21 and m23) are esti-
mated together with the same network and only optical �ow
v21;v23 as input. The network is trained by minimizing the
l-1 loss between the output masks and pre-computed occlu-
sion masks.

Joint training. After pre-training, we train all the modules
jointly by minimizing the l1 loss between recovered frame
and the ground truth, without any supervision on estimated
�ow �elds. For optimization, we use ADAM (Kingma and
Ba 2015) with a weight decay of 10�4. We run 15 epochs
with batch size 1 for all tasks. The learning rate for denois-
ing/deblocking and super-resolution is 10�4, and the learn-
ing rate for interpolation is 3�10�4.

5 The Vimeo-90K Dataset

To acquire high quality videos for video processing, previ-
ous methods (Liu and Sun 2014; Liao et al 2015) took videos
by themselves, resulting in video datasets that are small in
size and limited in terms of content. Alternatively, we re-
sort to Vimeo where many videos are taken with profes-
sional cameras on diverse topics. In addition, we only search
for videos without inter-frame compression (e.g., H.264), so
that each frame is compressed independently, avoiding arti-
�cial signals introduced by video codecs. As many videos
are composed of multiple shots, we use a simple threshold-
based shot detection algorithm to break each video into con-
sistent shots and further use GIST feature (Oliva and Tor-
ralba 2001) to remove shots with similar scene background.

As a result, we collect a new video dataset from Vimeo,
consisting of 4,278 videos with 89,800 independent shots

that are different from each other in content. To standard-
ize the input, we resize all frames to the �xed resolution
448�256. As shown in Figure 6, frames sampled from the
dataset contain diverse content for both indoor and outdoor
scenes. We keep consecutive frames when the average mo-
tion magnitude is between 1�8 pixels. The right column of
Figure 6 shows the histogram of �ow magnitude over the
whole dataset, where the �ow �elds are calculated using
SpyNet (Ranjan and Black 2017).

We further generate three benchmarks from the dataset
for the three video enhancement tasks studied in this paper.

Vimeo interpolation benchmark. We select 73,171 frame
triplets from 14,777 video clips with the following three cri-
teria for the interpolation task. First, more than 5% pixels
should have motion larger than 3 pixels between neighbor-
ing frames. This criterion removes static videos. Second, l1
difference between the reference and the warped frame us-
ing optical �ow (calculated using SpyNet) should be at most
15 intensity levels (the maximum intensity level of an image
is 255). This removes frames with large intensity change,
which are too hard for frame interpolation. Third, the aver-
age difference between motion �elds of neighboring frames
(v21 and v23) should be less than 1 pixel. This removes non-
linear motion, as most interpolation algorithms, including
ours, are based on linear motion assumption.

Vimeo denoising/deblocking benchmark. We select 91,701
frame septuplets from 38,990 video clips for the denois-
ing task, using the �rst two criteria introduced for the in-
terpolation benchmark. For video denoising, we consider
two types of noises: a Gaussian noise with a standard de-
viation of 0.1, and mixed noises including a 10% salt-and-
pepper noise in addition to the Gaussian noise. For video de-
blocking, we compress the original sequences using FFmpeg
with codec JPEG2000, format J2k, and quantization factor
q = f20;40;60g.

Vimeo super-resolution benchmark. We also use the same
set of septuplets for denoising to build the Vimeo super-
resolution benchmark with down-sampling factor of 4: the
resolution of input and output images are 112� 64 and
448�256 respectively. To generate the low-resolution videos
from high-resolution input, we use the MATLAB imresize
function, which �rst blurs the input frames using cubic �l-
ters and then downsamples videos using bicubic interpola-
tion.

6 Evaluation

In this section, we evaluate two variations of the proposed
network. The �rst one is to train each module separately:
we �rst pre-train motion estimation, and then train video
processing while �xing the �ow module. This is similar to
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Fig. 6: The Vimeo-90K dataset. (a) are sampled frames from the dataset, which show the high quality and wide coverage
of our dataset. (b) is the histogram of �ow magnitude of all pixels in the dataset, and (c) is the histogram of mean �ow
magnitude of all images (the �ow magnitude of an image is the average �ow magnitude of all pixels in that image).

EpicFlow TOFlowFixed FlowSepConv Ground truthAdaConv

Fig. 7: Qualitative results on frame interpolation. Zoomed-in views are shown in lower right.

Methods Vimeo Interp. DVF Dataset

PSNR SSIM PSNR SSIM

SpyNet 31.95 0.9601 33.60 0.9633
EpicFlow 32.02 0.9622 33.71 0.9635
DVF 33.24 0.9627 34.12 0.9631
AdaConv 32.33 0.9568 � �
SepConv 33.45 0.9674 34.69 0.9656

Fixed Flow 29.09 0.9229 31.61 0.9544
Fixed Flow + Mask 30.10 0.9322 32.23 0.9575

TOFlow 33.53 0.9668 34.54 0.9666
TOFlow + Mask 33.73 0.9682 34.58 0.9667

Table 1: Quantitative results of different frame interpolation
algorithms on the Vimeo interpolation test set and the DVF
test set (Liu et al 2017).

the two-step video processing algorithms, and we refer to it
as Fixed Flow. The other one is to jointly train all modules as
described in Section 4.5, and we refer to it as TOFlow. Both
networks are trained on Vimeo benchmarks we collected.
We evaluate these two variations on three different tasks and
also compare with other state-of-the-art image processing
algorithms.

6.1 Frame Interpolation

Datasets. We evaluate on three datasets: Vimeo interpola-
tion benchmark, the dataset used by Liu et al (2017) (DVF),
and Middlebury �ow dataset (Baker et al 2011).

Metrics. We use two quantitative measure to evaluate the
performance of interpolation algorithms: peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) index.

Baselines. We �rst compare our framework with two-step
interpolation algorithms. For the motion estimation, we use
EpicFlow (Revaud et al 2015) and SpyNet (Ranjan and
Black 2017). To handle occluded regions as mentioned in Sec-
tion 4.4, we calculate the occlusion mask for each frame us-
ing the algorithm proposed by Zitnick et al (2004) and only
use non-occluded regions to interpolate the middle frame.
Further, we compare with state-of-the-art end-to-end mod-
els, Deep Voxel Flow (DVF) (Liu et al 2017), Adaptive Con-
volution (AdaConv) (Niklaus et al 2017a), and Separable
Convolution (SepConv) (Niklaus et al 2017b). At last, we
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Fig. 8: Qualitative results on video denoising. The differences are clearer when zoomed-in.

Methods Vimeo-Gauss15 Vimeo-Gauss25 Vimeo-Mixed

PSNR SSIM PSNR SSIM PSNR SSIM

Fixed Flow 31.92 0.9566 28.38 0.9333 28.56 0.9200

TOFlow 32.22 0.9580 29.10 0.9544 28.85 0.9407

Methods Vimeo-BW V-BM4D

PSNR SSIM PSNR SSIM

V-BM4D 27.38 0.8664 30.63 0.8759

TOFlow 29.41 0.9271 30.36 0.8855

Table 2: Quantitative results on video denoising. Left: Vimeo RGB datasets with three different types of noise; Right: two
grayscale dataset: Vimeo-BW and V-BM4D.

Methods PMMST DeepFlow SepConv TOFlow TOFlow
Mask

All 5.783 5.965 5.605 5.67 5.49
Discontinuous 9.545 9.785 8.741 8.82 8.54
Untextured 2.101 2.045 2.334 2.20 2.17

Table 3: Quantitative results of �ve frame interpolation al-
gorithms on Middlebury �ow dataset (Baker et al 2011):
PMMST (Xu et al 2015), SepConv (Niklaus et al 2017b),
DeepFlow (Liu et al 2017), and our TOFlow (with and
without mask). Follow the convention of Middlebury �ow
dataset, we reported the square root error (SSD) between
ground truth image and interpolated image in 1) entire im-
ages, 2) regions of motion discontinuities, and 3) regions
without texture.

also compare with Fixed Flow, which is another baseline
two-step interpolation algorithm1.

1 Note that Fixed Flow or TOFlow only uses 4-level structure of
SpyNet for memory ef�ciency, while the original SpyNet network has
5 levels.

Results. Table 1 shows our quantitative results2. On Vimeo
interpolation benchmark, TOFlow in general outperforms
the others interpolation algorithms, both the traditional two-
step interpolation algorithms (EpicFlow and SpyNet) and re-
cent deep-learning based algorithms (DVF, AdaConv, and
SepConv), with a signi�cant margin. Though our model is
trained on our Vimeo-90K dataset, it also outperforms DVF
on DVF dataset in both PSNR and SSIM. There is also a
signi�cant boost over Fixed Flow, showing that the network
does learn a better �ow representation for interpolation dur-
ing joint training.

Figure 7 also shows qualitative results. All the two-step
algorithms (EpicFlow and Fixed Flow) generate a doubling
artifacts, like the hand in the �rst row or the head in the
second row. AdaConv on the other sides does not have the
doubling artifacts, but it tends to generate blurry output, by
directly synthesizing interpolated frames without a motion
module. SepConv increases the sharpness of output frame
compared with AdaConv, but there are still artifacts (see
the hat on the bottom row). Compared with these methods,

2 We did not evaluate AdaConv on DVF dataset, as neither the
implementation of AdaConv nor the DVF dataset is publicly available.
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TOFlow correctly recovers sharper boundaries and �ne de-
tails even in presence of large motion.

At last, Table 3 shows a qualitative comparison of the
proposed algorithms with the best four alternatives on Mid-
dlebury (Baker et al 2011). We use the sum of square differ-
ence (SSD) reported on the of�cial website as the evaluation
metric. TOFlow performs better than other interpolation net-
works.

6.2 Video Denoising/Deblocking

Setup. We �rst train and evaluate our framework on Vimeo
denoising benchmark, with three types of noises: Gaussian
noise with standard deviation of 15 intensity levels (Vimeo-
Gauss15), Gaussian noise with standard deviation of 25
(Vimeo-Gauss25), and mixture of Gaussian noise and 10%
salt-and-pepper noise (Vimeo-Mixed). To compare our net-
work with V-BM4D (Maggioni et al 2012), which is a monoc-
ular video denoising algorithm, we also transfer all videos in
Vimeo Denoising Benchmark to grayscale to create Vimeo-
BW (Gaussian noise only), and retrain our network on it. We
also evaluate our framework on the a mono video dataset in
V-BM4D.

Baselines. We compare our framework with the V-BM4D,
with the standard deviation of Gaussian noise as its addi-
tional input on two grayscale datasets (Vimeo-BW and V-
BM4D). As before, we also compare with the Fixed Flow
variant of our framework on three RGB datasets (Vimeo-
Gauss15, Vimeo-Gauss25, and Vimeo-Mixed).

Results. We �rst evaluate TOFlow on the Vimeo dataset
with three different noise levels (Table 2). TOFlow outper-
forms Fixed Flow by a signi�cant margin, demonstrating the
effectiveness of joint training. Also, when the noise level
increases to 25 or when additional salt-and-pepper noise is
added, the PSNR of TOFlow is still round 29dB, showing
its robustness to different noise levels. This is qualitatively
demonstrated in the right half of Figure 8.

On two grayscale datasets, Vimeo-BW and V-BM4D,
TOFlow outperforms V-BM4D in SSIM. Here we did not
�ne-tune it on V-BM4D. Though TOFlow only achieves a
comparable performance with V-BM4D in PSNR, the out-
put of TOFlow is much sharper than V-BM4D. As shown in
Figure 8, the details of the beard and collar are kept in the
denoised frame by TOFlow (the mid left of Figure 8), and
leaves on the tree are also clearer (the bottom left of Fig-
ure 8). Therefore, TOFlow beats V-BM4D in SSIM, which
better re�ects human’s perception than PSNR.

For video deblocking, Table 4 shows that TOFlow out-
performs V-BM4D. Figure 9 also shows the qualitative com-
parison between TOFlow, Fixed Flow, and V-BM4D. Note
that the compression artifacts around the girl’s hair (top)

Methods
Vimeo-Blocky

(q=20)
Vimeo-Blocky

(q=40)
Vimeo-Blocky

(q=60)

PSNR SSIM PSNR SSIM PSNR SSIM

V-BM4D 35.75 0.9587 33.72 0.9402 32.67 0.9287
Fixed �ow 36.52 0.9636 34.50 0.9485 33.06 0.9168

TOFlow 36.92 0.9663 34.97 0.9527 34.02 0.9447

Table 4: Results on video deblocking.

and the man’s nose (bottom) are completely removed by
TOFlow. The vertical line around the man’s eye (bottom)
due to a blocky compression is also removed by our al-
gorithm. To demonstrate the robustness of our algorithms
on video deblocking with different, we also evaluated three
algorithms on input videos generated under three different
quantization levels, and TOFlow consistently outperforms
other two baselines. Figure 10 also shows that when the
quantization level increases, the deblocking output remain
mostly the same, showing the robustness of TOFlow.

6.3 Video Super-Resolution

Datasets. We evaluate our algorithm on two dataset: Vimeo
super-resolution benchmark and the dataset provided by Liu
and Sun (2011) (BayesSR). The later one consists of four se-
quences, each having 30 to 50 frames. Vimeo super-resolution
benchmark only contains 7 frames, so there is no full-clip
evaluation for it.

Baselines. We compare our framework with bicubic up-
sampling, three video SR algorithms: BayesSR (we use the
version provided by Ma et al (2015)), DeepSR (Liao et al
2015), and SPMC (Tao et al 2017), as well as a baseline
with a Fixed Flow estimation module. Both BayesSR and
DeepSR can take various number of frames as input. There-
fore, on BayesSR dataset, we report two numbers. One is us-
ing the whole sequence, the other is to only use seven frames
in the middle, as SPMC, TOFlow, and Fixed Flow only take
7 frames as input.

Results. Table 5 shows our quantitative results. Our algo-
rithm performs better than baseline algorithms when using
7 frames as input, and it also achieves comparable perfor-
mance to BayesSR when BayesSR uses all 30�50 frames
as input while our framework only uses 7 frames. We show
qualitative results in Figure 11. Compared with either DeepSR
or Fixed Flow, the jointly trained
to�ow generates sharper output. Notice the words on the
cloth (top) and the tip of the knife (bottom) are clearer in the
high-resolution frame synthesized by TOFlow. This shows
the effectiveness of joint training.
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Fig. 9: Qualitative results on video deblocking. The differences are clearer when zoomed-in.
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Fig. 10: Results on frames with different encoding qualities. The differences are clearer when zoomed-in.

Bicubic Ground truthDeepSR Fixed Flow TOFlowSPMC

Fig. 11: Qualitative results on super-resolution. Close-up views are shown on the top left of each result. The differences are
clearer when zoomed-in.

To better understand how many input frames are suf�-
cient for super-resolution, we also trained our TOFlow with
different number of input frames, as shown in Table 7. There
is a big improvement when switching from 3-frame to 5-
frame, and the improvement becomes minor when further
switching to 7-frame. Therefore, 5 or 7 frames should be
enough for super-resolution.

Besides, the down-sampling kernels (also known as point-
spread function) that is used to create the low-resolution im-
ages may also affect the performance super-resolution (Liao
et al 2015). To evaluate how down-sampling kernels affect
the performance of our algorithm, we evaluated on three dif-
ferent kernels: cubic kernel, box down-sampling kernel, and

Gaussian kernel with variance equals 2 pixels), and Table 6
shows the result. There is 1 dB drops in PSNR when switch-
ing to box kernels, and another 1 dB drops when switch-
ing to Gaussian kernels. This is because that down-sampling
kernels remove high-frequency aliasing in low-resolution in-
put images, which makes the super-resolution harder. In this
work, in most of experiments, we just follow the convention
of previous multi-frame supersolution setup (Liu and Sun
2011; Tao et al 2017) which creates low-resolution images
through bicubic interpolation with no blur kernels. How-
ever, the results with blur kernels are also interesting, as it is
closer the actual formation of low resolution images when
captured by cameras.
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Input Methods Vimeo-SR BayesSR

PSNR SSIM PSNR SSIM

Full Clip DeepSR � � 22.69 0.7746
BayesSR � � 24.32 0.8486

1 Frame Bicubic 29.79 0.9036 22.02 0.7203

7 Frames

DeepSR 25.55 0.8498 21.85 0.7535
BayesSR 24.64 0.8205 21.95 0.7369
SMPC 32.70 0.9380 21.84 0.7990
Fixed Flow 31.81 0.9288 22.85 0.7655

TOFlow 33.08 0.9417 23.54 0.8070

Table 5: Results on video super-resolution. Each clip in
Vimeo-SR contains 7 frames, and each clip in BayesSR
contains 30�50 frames.

Cubic Kernel Box Kernel Gaussian Kernel

PSNR SSIM PSNR SSIM PSNR SSIM

33.08 0.9417 32.08 0.9372 31.15 0.9314

Table 6: Results of TOFlow on video super-resolution when
different downsampling kernels are used for building the
dataset.

3 Frames 5 Frames 7 Frames

PSNR SSIM PSNR SSIM PSNR SSIM

32.66 0.9375 33.04 0.9415 33.08 0.9417

Table 7: Video super-resolution results with a different num-
ber of input frames.

In all the experiments, we train and evaluate our network
on an NVIDIA Titan X GPU. For an input clip with resolu-
tion 256�448, our network takes about 200ms for interpo-
lation and 400ms for denoising or super-resolution (the in-
put resolution to the super-resolution network is 64� 112),
where the �ow module takes 18 ms for each estimated mo-
tion �eld.

6.4 Flows Learned from Different Disks

We now compare and contrast the �ow learned from dif-
ferent tasks to understand if learning �ow in such a task-
oriented fashion is necessary.

We did an ablation study by replacing the �ow estima-
tion network in our model by a �ow network trained on a
different task (Figure 13 and Table 8). There is a signi�cant
drop in the performance when we use a �ow network that is
not trained on that task. For example, with the �ow network
trained on deblocking or super-resolution, the performance

Tasks trained on Tasks evaluated on

Denoising Deblocking SR

Denoising 29.01 36.13 31.30
Deblocking 24.23 36.92 31.86
Super-resolution 24.04 31.86 33.08

Fixed Flow 28.38 36.52 31.81
EpicFlow 26.98 30.09 28.05

Table 8: PSNR for applying TOFlow trained on one task
to different tasks. There is a signi�cant performance drops
when using different �ow representation.

of the denoising algorithm drops by 5dB, and there are no-
ticeable noises in the images (the �rst column of Figure 13).
There are also ringing artifacts when we apply the �ow net-
work trained on super-resolution for deblocking (Figure 13
row 2, col 2). Therefore, our task-oriented �ow network is
indeed tailored to a speci�c task. Besides, in all these three
tasks, Fixed Flow performs better than TOFlow if trained
and tested on different tasks, but worse than TOFlow if
trained and tested on the same task. This suggests joint train-
ing improves the performance of a �ow network on one task,
but decreases its performance on the others.

Figure 12 contrasts the motion �elds learned from dif-
ferent tasks: the �ow �eld for interpolation is very smooth,
even on the occlusion boundaries, while the �ow �eld for
super-resolution has arti�cial movements along the texture
edges. This indicates that the network may learn to encode
different information that is useful for different tasks in the
learned motion �elds.

6.5 Accuracy of Retrained Flow

As we shown in the Figure 1, tailoring a motion estimation
network to a speci�c task will reduce the accuracy of esti-
mated �ow. To illustrate that is the case, we evaluated the
�ow estimation accuracy on Sintel Flow Dataset by Butler
et al (2012b). Three variance of �ow estimation network are
tried: 1) pre-trained �ow network on Flying Chair dataset, 2)
Fine-tuned network on denoising, 3) Fine-tuned network on
super-resolution. All the �ne-tuned networks are �ne-tuned
on Vimeo-90K dataset. As shown in Table 9, the accuracy of
TOFlow is much worse than either EpicFlow (Revaud et al
2015) or Fixed Flow3, but as shown in Table 2, 4, and 5,
TOFlow outperforms Fixed Flow on speci�c tasks. This is
consistent with the intuition that TOFlow is a motion repre-
sentations that do not match the actual object movement, but
lead to better video processing results.

3 The EPE of Fixed Flow on Sintel dataset is different from EPE of
SpyNet (Ranjan and Black 2017) reported on Sintel website, as it is
trained differently from SpyNet as we mentioned before.
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Fig. 12: Visualization of motion �elds for different tasks.
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Fig. 13: Applying TOFlow trained on one task to different
tasks.

Methods TOFlow TOFlow Fixed Epic
Denoising SR Flow Flow

All 16.638 16.586 14.120 4.115
Matched 11.961 11.851 9.322 1.360
Unmatched 54.724 55.137 53.117 26.595

Table 9: End-point-error (EPE) of estimated �ow �elds on
the Sintel dataset. We evaluate TOFlow (trained on two
different tasks), as well as Fixed Flow and EpicFlow Revaud
et al (2015). Follow the convention, we reported errors over
full images, matched regions, and unmatched regions.

6.6 Different Flow Estimation Network Structure

Our task-oriented video processing pipeline is not limited
to one �ow estimation network structure, although in all
previous experiments, we use SpyNet by Ranjan and Black
(2017) as �ow estimation sub-network because its memory
ef�ciency. To demonstrate the generalization ability of our
framework, we also tried on FlowNetC (Fischer et al 2015)
structure, and evaluated on video denoising, deblocking,
and super-resolution. Because FlowNetC has larger memory
consumption, we only estimate �ow at 256x192 resolution
and upsample it to the target resolution, and its performance
is therefore worse than the network using SpyNet, as shown
in Table 10. Still, in all these three tasks, TOFlow outper-
forms than Fixed Flow. This demonstrates the generaliza-
tion ability of TOFlow framework to other �ow estimation
networks.

Methods Denoising Deblocking Super-resolution

PSNR SSIM PSNR SSIM PSNR SSIM

Fixed Flow 24.685 0.8297 36.028 0.9672 31.834 0.9291
TOFlow 24.689 0.8374 36.496 0.9700 33.010 0.9411

Table 10: Results of TOFlow on three different tasks, using
FlowNetC (Fischer et al 2015) as the motion estimation
module.

7 Conclusion

In this work, we propose a novel video processing model
that exploits task-oriented motion cues. Traditional video
processing algorithms normally consist of two steps: motion
estimation and video processing based on estimated motion
�elds. However, a genetic motion for all tasks might be sub-
optimal and the accurate motion estimation would be neither
necessary nor suf�cient for these tasks. Our self-supervised
framework bypasses this dif�culty by modeling motion sig-
nals in the loop. To evaluate our algorithm, we also cre-
ate a new dataset, Vimeo-90K, for video processing. Exten-
sive experiments on temporal frame interpolation, video de-
noising/deblocking, and video super-resolution demonstrate
demonstrate the effectiveness of task-oriented �ow.
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Appendices

Additional qualitative results. We show additional results
on the following benchmarks: Vimeo interpolation bench-
mark (Figure 14), Vimeo denoising benchmark (Figure 15
for RGB videos, and Figure 16 for grayscale videos), Vimeo
deblocking benchmark (Figure 17), and Vimeo super-resolution
benchmark (Figure 18). We randomly select testing images
from test datasets. Differences between different algorithms
are more clearer when zoomed in.

Flow estimation module. We used SpyNet (Ranjan and
Black 2017) as our �ow estimation module. It consists of
four sub-networks with the same network structure, but each
sub-network has an independent set of parameters. Each
sub-network consists of �ve sets of 7�7 convolutional (with
zero padding), batch normalization and ReLU layers. The
number of channels after each convolutional layer is 32, 64,
32, 16, and 2. The input motion to the �rst network is a zero
motion �eld.

Image processing module. We use slight different struc-
tures in the image processing module for different tasks. For

temporal frame interpolation both with and without masks,
we build a residual network that consists of an averaging
network and a residual network. The averaging network sim-
ply averages the two transformed frames (from frame 1 and
frame 3). The residual network also takes the two trans-
formed frames as input, but calculates the difference be-
tween the actual second frame and the average of two trans-
formed frames through a convolutional network consists of
three convolutional layers, each of which is followed by a
ReLU layer. The kernel sizes of three layers are 9�9, 1�1,
and 1�1 (with zero padding), and the numbers of output
channels are 64, 64, and 3. The �nal output is the summa-
tion of the output of the averaging network and the residual
network.

For video denoising/deblocking, the image processing
module uses the same six-layer convolutional structure (three
convolutional layers and three ReLU layers) as interpola-
tion, but without the residual structure. We have also tried
the residual structure for denoising/deblocking, but there is
no signi�cant improvement.

For video super-resolution, the image processing mod-
ule consists of four pairs of convolutional layers and ReLU
layers. The kernel sizes for these four layers are 9�9, 9�9,
1�1, and 1�1 (with zero padding), and the numbers of out-
put channels are 64, 64, 64, and 3.

Mask network. Similar to our �ow estimation module, our
mask estimation network is also a four-level convolutional
neural network pyramid as in Figure 4. Each level consists
of the same sub-network structure with �ve sets of 7�7
convolutional (with zero padding), batch normalization and
ReLU layers, but an independent set of parameters (output
channels are 32, 64, 32, 16, and 2). For the �rst level, the
input to the network is a concatenation of two estimated
optical �ow �elds (four channels after concatenation), and
the output is a concatenation of two estimated masks (one
channel per mask). From the second level, the input to the
network switch to a concatenation of, �rst, two estimated
optical �ow �elds at that resolution, and second, bilinear-
upsampled masks from the previous level (the resolution is
twice of the previous level). In this way, the �rst level mask
network estimates a rough mask, and the rest re�nes high
frequency details of the mask.

We use cycle consistencies to obtain the ground truth
occlusion mask for pre-training the mask network. For two
consecutive frames I1 and I2, we calculate the forward �ow
v12 and the backward �ow v21 using the pre-trained �ow
network. Then, for each pixel p in image I1, we �rst map
it to I2 using v12 and then map it back to I1 using v21. If it
maps to a different point rather to p (up to an error threshold
of two pixels), then this point is considered to be occluded.
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EpicFlow AdaConv SepConv Fixed Flow TOFlow Ground Truth

Fig. 14: Qualitative results on video interpolation. Samples are randomly selected from the Vimeo interpolation benchmark.
The differences between different algorithms are clear only when zoomed in.
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Input Fixed Flow TOFlow Ground Truth

Fig. 15: Qualitative results on RGB video denoising. Samples are randomly selected from the Vimeo denoising benchmark.
The differences between different algorithms are clear only when zoomed in.
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Input V-BM4D TOFlow Ground Truth

Fig. 16: Qualitative results on grayscale video denoising. Samples are randomly selected from the Vimeo denoising
benchmark. The differences between different algorithms are clear only when zoomed in.
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Input V-BM4D TOFlow Ground Truth

Fig. 17: Qualitative results on video deblocking. Samples are randomly selected from the Vimeo deblocking benchmark. The
differences between different algorithms are clear only when zoomed in.
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Bicubic DeepSR Fixed Flow TOFlow Ground Truth

Fig. 18: Qualitative results on video super-resolution. Samples are randomly selected from the Vimeo super-resolution
benchmark. The differences between different algorithms are clear only when zoomed in. DeepSR was originally trained
on 30�50 images, but evaluated on 7 frames in this experiment, so there are some artifacts.


	1 Introduction
	2 Related Work
	3 Tasks

