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LOGARITHMIC INEQUALITIES UNDER A SYMMETRIC

POLYNOMIAL DOMINANCE ORDER
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(Communicated by Walter Van Assche)

Abstract. We consider a dominance order on positive vectors induced by the
elementary symmetric polynomials. Under this dominance order we provide
conditions that yield simple proofs of several monotonicity questions. Notably,
our approach yields a quick (4 line) proof of the so-called “sum-of-squared-
logarithms” inequality conjectured in (B̂ırsan, Neff, and Lankeit, J. Inequalities
and Applications (2013); P. Neff, Y. Nakatsukasa, and A. Fischle; SIMAX, 35,

2014). This inequality has been the subject of several recent articles, and only
recently it received a full proof, albeit via a more elaborate complex-analytic
approach. We provide an elementary proof, which, moreover, extends to yield
simple proofs of both old and new inequalities for Rényi entropy, subentropy,
and quantum Rényi entropy.

1. Introduction

Let x be a real vector with n components. Let ek denote the k-th elementary
symmetric polynomial defined by

ek(x) :=
∑

1≤i1<···<ik≤n

k∏
j=1

xij .

For nonnegative vectors x, y in R
n
+, we consider the dominance order ≺E induced

by the elementary symmetric polynomials. More precisely, we say x ≺E y if

(1.1) ek(x) ≤ ek(y), k = 1, . . . , n− 1, and en(x) = en(y).

If the last equality is just an inequality en(x) ≤ en(y), we write x �E y. We
consider functions that are monotonic under the partial order ≺E . Specifically, we
say a function F : Rn

+ → R is E-monotone if

(1.2) x ≺E y =⇒ F (x) ≤ F (y).

This paper is motivated by a body of recent papers that study E-monotonicity of
a specific function: the so-called “sum-of-squared-logarithms” Ln(x)=

∑n
i=1(log xi)

2.
Indeed, Ln(x) has been the focus of several works [3, 9, 10, 12], wherein the key
open question was establishing its E-monotonicity. The works [3, 9, 12] establish
E-monotonicity for n = 2, 3, 4; the authors of [10] also highlighted the powerful
implications of the general case towards solving certain nonconvex optimization
problems to global optimality. Only very recently, a full solution was obtained via
a complex analysis [4, 8]. While preparing this paper, it was brought to our no-
tice [7] that [14] has obtained a characterization of E-monotone functions via the
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theory of Pick functions.1 Our work offers a complementary, and in our view, per-
haps the simplest perspective, which yields a short (4 line) proof of E-monotonicity
of Ln as a byproduct.

2. E-monotonicity

We introduce now our elementary approach, which leads to a short proof of the
E-monotonicity of Ln as well as similar results for related entropy and subentropy
inequalities of [5]. Our proof technique should generalize to monotonicity induced
by other symmetric polynomials (e.g., Schur polynomials); we leave such an explo-
ration to the interested reader.

Our main result is the following simple, albeit powerful sufficient condition:

Proposition 2.1. Let ψ be a real-valued function admitting the representation

ψ(s) =

∫ a

0

log(t+ s)dμ(t) or ψ(s) =

∫ a

0

log(1 + ts)dμ(t),

where a > 0, s ≥ 0, and μ is a nonnegative measure. Then,
∑n

i=1 ψ(xi) is E-
monotone.

Proof. Recall first the generating functions for elementary symmetric polynomials∑n

k=0
tkek(x) =

∏n

i=1
(1 + txi),∑n

k=0
tken−k(x) =

∏n

i=1
(t+ xi).

Let x, y ∈ R
n
+, and suppose x �E y. Then using the above generating function

representation under this hypothesis we immediately obtain∏n

i=1
(1 + txi) ≤

∏n

i=1
(1 + tyi) ∀t ≥ 0,(2.1)

∏n

i=1
(t+ xi) ≤

∏n

i=1
(t+ yi) ∀t ≥ 0.(2.2)

Taking logarithms, multiplying by dμ(t), and integrating, it then follows that

n∑
i=1

∫ a

0

log(1 + txi)dμ(t) ≤
n∑

i=1

∫ a

0

log(1 + tyi)dμ(t)

=⇒ F (x) =
∑

i
ψ(xi) ≤

∑
i
ψ(yi) = F (y).

Similarly, with (2.2) we again obtain F (x) =
∑

i ψ(xi) ≤
∑

i ψ(yi) = F (y). �

Remark. Observe that the E-monotonicity relation is weaker than the usual ma-

jorization order. Indeed, if x ≺ y (i.e.,
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i for 1 ≤ k < n, and

xT 1 = yT 1), then ek(x) ≥ ek(y) because ek is Schur-concave [6].

1E-monotonicity of Ln has additional interesting history. P. Neff offered a reward of one ounce
of fine gold for its proof, a conjecture that he also announced on the MathOverflow platform [8].
Shortly thereafter, the first full proof was sketched by L. Borisov using contour integration [8].

Approximately two weeks after Borisov’s proof, Šilhavý independently characterized E-monotone
functions [7]. His results are based on the theory of Pick functions, a natural and elegant ap-
proach to study E-monotonicity, which was foreshadowed in the remarkable work of Josza and
Mitchison [5].
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2.1. Proof of the SSLI. As an immediate corollary to Proposition 2.1 we obtain
the announced E-monotonicity of Ln(x) =

∑n
i=1(log xi)

2.

Corollary 2.2. Let x, y ∈ R
n
+ such that x ≺E y. Then, Ln(x) ≤ Ln(y).

Proof. The key is to rewrite (log x)2 so that Proposition 2.1 applies. We notice
that

(2.3) (log x)2 =

∫ ∞

0

[log(1 + tx) + log(t+ x)− 2 log(x(1 + t))]
dt

t
.

Using the integrand of (2.3) with inequalities (2.1), (2.2) and the assumption
en(x) = en(y) (whereby

∑
i log(rxi) =

∑
i log(ryi) for r > 0), we thus obtain∑

i
log(1+ txi)(t+xi)− log

(
(1+ t)2xi

)
≤

∑
i
log(1+ tyi)(t+ yi)− log

(
(1+ t)2yi

)
.

Integrating this inequality under dμ(t) = dt
t and using (2.3) the claim follows. �

2.2. Entropy. Now we consider application of Proposition 2.1 to obtain entropy
inequalities. Recall that for a probability vector x (i.e., x lies in the unit simplex),
the Rényi entropy of order α, where α ≥ 0 and α 
= 1, is defined as

(2.4) Hα(x) :=
1

1− α
log

(∑n

i=1
xα
i

)
.

The limiting value limα→1 Hα yields the usual (Shannon) entropy −
∑

i xi log xi.

Theorem 2.3. Suppose x and y lie in the unit simplex. Then,

x ≺E y =⇒ Hα(x) ≤ Hα(y) for α ∈ [0, 2].

Proof. Since log is monotonic, to analyze E-monotonicity of Hα, it suffices to con-
sider the following three special cases:∑n

i=1
xα
i ≤

∑n

i=1
yαi if 0 < α < 1 and e1(x) = e1(y),(2.5a)

∑n

i=1
xα
i ≥

∑n

i=1
yαi if 1 < α < 2 and e1(x) = e1(y),(2.5b)

−
∑n

i=1
xi log xi ≤ −

∑n

i=1
yi log yi and e1(x) = e1(y).(2.5c)

For 0 < α < 1 and s ≥ 0, we notice the integral representation (see also [13, Ch. 8])

(2.6) sα =
α sin(απ)

π

∫ ∞

0

log(1 + ts)t−α−1dt.

Given (2.6), an application of Proposition 2.1 immediately yields (2.5a).
For (2.5b), we notice a different representation (notice the extra ts term):

(2.7) sα =
α sin(απ)

π

∫ ∞

0

(log(1 + ts)− ts) t−α−1dt.

This integral converges for 1 < α < 2 and s ≥ 0. Since x ≺E y and we assumed
e1(x) = e1(y), it follows that

∑
i

(
log(1+ txi)− txi

)
≤

∑
i

(
log(1+ tyi)− tyi

)
. Thus,

using (2.7) and noting that sin(απ) < 0 for 1 < α < 2, we obtain (2.5b).
To obtain (2.5c) we apply a limiting argument to (2.5b). In particular, recall

that

lim
α→1

xα
i − xi

α− 1
= xi log xi,

so that upon using
∑

i xi =
∑

i yi in (2.5b), dividing by α− 1, and taking limits as
α → 1, we obtain (2.5c). �
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2.3. Inequalities for positive definite matrices. We note below some inequali-
ties on (Hermitian) positive definite matrices that follow from the above discussion.
We write A > 0 to indicate that A is positive definite. We extend the definition (1.1)
to such matrices in the usual way. In particular, let A,B > 0. We say

(2.8) A ≺E B ⇐⇒ λ(A) ≺E λ(B),

where λ(·) denotes the vector of eigenvalues. Recalling that ek(λ(A)) = tr(∧kA),
where ∧ is the exterior product [1, Ch. 1], we obtain the following result.

Proposition 2.4. Let A,B be positive definite matrices. Then,

tr(∧kA) ≤ tr(∧kB) for k = 1, . . . , n =⇒ log det(I +A) ≤ log det(I +B).

Remark. A classic result in eigenvalue majorization states that if log λ(A)≺ log λ(B)
(the usual dominance order), then we have log det(I +A) ≤ log det(I +B). Propo-
sition 2.4 presents an alternative condition that implies the same determinantal
inequality.

Let us now state two other notable consequences of the order (2.8). To that end,
we recall the Riemannian distance on the manifold of positive definite matrices (see,
e.g., [2, Ch. 6]) as well as the S-divergence [15]:

δR(A,B) := ‖logB−1/2AB−1/2‖F,(2.9)

δS(A,B) := log det
(
A+B

2

)
− 1

2 log det(AB).(2.10)

Proposition 2.5. If A,B,C > 0 and AC−1 ≺E BC−1, then

δR(A,C) ≤ δR(B,C),(2.11)

δS(A,C) ≤ δS(B,C).(2.12)

Proof. Inequality (2.11) (for C = I) was also noted in [4, 11]. It follows readily
from Corollary 2.2 once we use definition (2.9) and observe that

δ2R(A,C) = ‖logC−1/2AC−1/2‖2F =
∑n

i=1
(log λi(AC−1))2.

To obtain inequality (2.12), first observe that

det(A+ C) = det(C) det(I +AC−1) = det(C)
∏n

i=1
(1 + λi(AC−1)).

Thus, we have

δS(A,C) = log det(C) + log
∏n

i=1

1+λi(AC−1)
2 − 1

2 log det(AC)

≤ log det(C) + log
∏n

i=1

1+λi(BC−1)
2 − 1

2 log det(AC)

= log det
(
B+C

2

)
− 1

2 log det(BC)

= δS(B,C),

where the inequality holds due to the hypothesis λ(A) ≺E λ(B), which is also used
to conclude the second equality by using det(A) = det(B). �
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2.4. Quantum entropy. The entropy inequalities (2.5a)-(2.5c) also extend to
their counterparts in quantum information theory. Specifically, recall that the
quantum Rényi entropy of order α ∈ (0, 1) ∪ (1,∞) is given by

(2.13) Hα(X) :=
1

1− α
log

tr(Xα)

trX
,

where X is positive definite; moreover, one typically assumes the normalization
trX = 1. Using an argument of the same form as used to prove Theorem 2.3
we can obtain the following result for the Rényi entropy; we omit the details for
brevity.

Theorem 2.6. Let X and Y be positive definite matrices with unit trace. Then,

X ≺E Y =⇒ Hα(X) ≤ Hα(Y ) for α ∈ [0, 2].

3. Subentropy

Next, we briefly discuss an important extension, namely, E-monotonicity of
subentropy, a quantity that has found use in physics [5]. Formally,

(3.1) Q(x1, . . . , xn) := −
n∑

i=1

xn
i∏

j �=i(xi − xj)
log xi,

defines a natural entropy-like quantity that characterizes a quantum state with
eigenvalues x1, . . . , xn (thus x ≥ 0 and e1(x) = 1). A main result in the work [5] is
the following monotonicity theorem for subentropy (rephrased in our notation):

Theorem 3.1 ([5]). If x �E y and e1(x) = e1(y) = 1, then Q(x) ≤ Q(y).

Josza and Mitchison [5] prove Theorem 3.1 by appealing to an argument based
on contour integration. We note below how a key identity derived by Josza and
Mitchison already implies this theorem. Instead of the logarithmic representation
of Proposition 2.1, the key idea is to consider the representation

(3.2) ψ(x1, . . . , xn) =

∫ ∞

0

h
(∏n

i=1
(t+ xi)

)
dμ(t),

where h is any monotonically increasing function and μ is a nonnegative measure.
Clearly, if x �E y, then h(

∏
i(t+ xi)) ≤ h(

∏
i(t+ yi)), whereby ψ(x) ≤ ψ(y).

Therefore, to prove Q(x) ≤ Q(y), we just need to find a function h such that
Q can be expressed as (3.2). Such a representation was already obtained in [5],
wherein it is shown that for x > 0 such that e1(x) = 1, we have

(3.3) Q(x1, . . . , xn) = −
∫ ∞

0

[ tn∏n
j=1(t+ xj)

− t

1 + t

]
dt.

Thus, using h(s) = −1/s and dμ(t) = tndt, and adding −t
1+t to ensure convergence

(the constraint e1(x) = e1(y) is needed to cancel out the effect of this term), we
obtain Q(x) ≤ Q(y) whenever x �E y and e1(x) = e1(y).

A similar argument yields the following inequality, which is otherwise not obvi-
ous:

x ≺E y =⇒
n∑

i=1

(−1)i+1xα
i∏

j �=i(xi − xj)
≥

n∑
i=1

(−1)i+1yαi∏
j �=i(yi − yj)

for 0 < α < 1.(3.4)
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Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2012. Theory and
applications. MR2978140
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