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Abstract

The Robinson-Schensted (R-S) correspondence and its many variations lie at the
combinatorial heart of many facts from representation theory and symmetric func-
tion theorv. They provide concrete bijective proofs of results that were often originally
obtained in much more algebraic or abstract ways. Most of these results can be viewed
as counting Hasse walks in certain partially ordered sets. Stanley was able to derive
many enumerative results on the class of differential posets (of which Young’s lattice
is a member) using a highly algebraic approach which converted certain enumerative
problems to (solvable) partial differential equations. Fomin (independently) defined
essentially the same class of graphs and constructed a generalization of the R-S cor-
respondence to differential posets. We show how Fomin’s construction can be used
to unify many of the R-S variants, including Knuth’s generalization to semi-standard
tableaux, the skew algorithms of Sagan and Stanley, the oscillating algorithms of
Sundaram, and the oscillating Knuth algorithm of Gessel. It allows one to view all
these variants as natural constructions.

Besides Young’s lattice, the other interesting example of a differential poset is the
Fibonacci lattice. We use Fomin’s methods to construct a R-S type bijection and
prove some of its properties. In particular, we are able to give an equivalent insertion
algorithm and an analogue of the Greene-Kleitman-Fomin correspondence for turning
a permutation into a poset.

Sequentially differential posets are a more general class of posets which include
the differential posets as a special case. There are many more interesting examples
of sequentially differential posets, but the enumeration of their Hasse walks i1s more
complicated. By generalizing Fomin’s construction, we are able to give bijective proofs
of Stanley’s results and derive some new results as well.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Applied Mathematics
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Chapter 1

The Original R-S Correspondence

This chapter contains background material for those unfamiliar with the Robinson-
Schensted correspondences. Many readers may prefer to skip this section and just
consult it as necessary to understand my taste in notation. My choices of notation
and presentation have been lifted (sometimes almost verbatim) from several of my
predecessors, especially B. Sagan [SS], R. P. Stanley [Stal], J. R. Stembridge [Ste],

and S. Sundaram [Sun].

1.1 Partitions and shapes

We begin by defining objects which are ubiquitous in the subject.

Definition 1.1.1 A partition ) is a sequence of nonnegative integers
A= (A1, 22,43, )

such that:
1. The terms are weakly decreasing, i.e., Ay > Ay > A3 > ...

2. Only a finite number of the terms are nonzero.
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Figure 1-1: The Young diagram for 4221

The nonzero terms are called the parts of A\. We keep track of the multiplicity of

each part via

77?;()\) = #{_} Z 1: /\J’ = Z}

The number of parts is called the length of A and is written £(A). The sum of the

parts is called the weight. and we write

Al=>" N
1>1

The unique partition of weight 0 is denoted by @. If the weight of A is n. then we say

A

=nor Akl n.

A is a partition of n and write

Example 1.1.%2 In practice, one suppresses the commas and trailing zeroes in a
partition, and even removes the parentheses. With such a convention the partitions
of 5 are

5, 41, 32, 311, 221, 2111, 11111

Geometrically one can view a partition as a left-justified array of dots or empty
boxes. The former are called Ferrers diagrams and the latter Young diagrams.

See Figure 1-1. More technically, we have the following definition.

Definition 1.1.3 The diagram or shape of a partition A is the set

Dy={(i.j)eZ*:1<i<lN),1<;< N}
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We must think of Z? as being ordered so that the positive axes point downward and
to the right (as with matrices) in order for this to agree with our current pictures;
the usual coordinate geometry convention is to let the positive axes point upwards

and to the right.

We will often blur the distinction between a partition and its shape; the notation
r € A should be taken to mean x € D). We call each empty box in this representation

of a shape a cell.

Definition 1.1.4 The conjugate of a partition A is the partition X' = (A}, A;,...)

whose diagram is given by
Dy ={(i.j) € I*: (j,i) € Dr}

In other words. the diagram of A’ is obtained from that of A by exchanging the rows

and columns. Algebraically it may be characterized by
71'1'(’\[) =\ - A1+1

The conjugate of the partition A = 4221 in Figure 1-1 is A = 4311.

Definition 1.1.5 We may define a partial order C on partitions by x C A if and
only if D, C D,. Equivalently,

pCA = <\ vV 1>1.

This partial order is easily seen to be a distributive lattice, Y, which we will call

Young’s Lattice and which will play a significant role in what follows.
Definivion 1.1.6 If u C A. we let A/u denote the set-theoretic difference

D\D, ={(,J) €*: 1 <i<lN),pi <j <A}
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l

Figure 1-2: The skew shape 443/32

and call A/p a skew diagram or a skew shape. Equivalently we may define a skew
shape as a convex set in the in the poset Z? (where we view the ordering of Z? as in
Definition 1.1.3. The notion of weight and conjugate are extended to skew shapes in

the natural way:

A/l = Al = |p]

(Mp) = X/u

Definition 1.1.7 The skew shape A/u is called a horizontal strip if no two cells

share the same column. and a vertical strip if no two cells share the same row.

Definition 1.1.8 Let \/u be a skew shape. A tableau T of shape A/u is an order
preserving map

T: Dy, I*

i.e., an assignment of positive integers to the cells of A which is weakly increasing
along the columns (from left to right) and down the rows. We define the weight or

type of a tableau to be the sequence
lU(T) :.(nh ng,ng,.. )

where n; is the number of cells of A/p assigned to the integer : by 7. Equivalently,
we may consider T to be a multichain in Young’s lattice, i.e., a weakly increasing
sequence of shapes

p=XCANC...CI=)

by simply filling each skew shape A'/Ai~! with the integer i. We write sh(T) = \/p.
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Example 1.1.9 The tableaux

2
T = 11214
1121412
4| 4

corresponds to the sequence of shapes

DC IC C - J

J

Sometimes tableaux are written by just aligning the numbers and omitting the sur-
i‘bunding boxes. We do this when the context suggests it might improve the readabil-

ity. With this convention. the tableau in Example 1.1.9 is written

2
T = 1 2 4
I 2 2
4 4

We shall be particularly interested in some special kinds of tableaux.

Definition 1.1.10 A tableaux T is said to be column-strict or semi-standard
or generalized if it is strictly increasing along the columns. When the tableaux is
viewed as a multichain, this says exactly that each A{/A=! is a horizontal strip. T is
called standard if it has type (1,1,...,1), i.e., if all the entries are distinct (so we
may take them to be the numbers 1,2,...,|T|). When viewed as a multichain, this
says exactly that each \!/A*~! is a single cell; hence, it represents a saturated chain
in Y. The sets of generalized and standard tableaux will be denoted ST(A/u) and

GT(M ), respectively.
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Example 1.1.11 The column-strict tableau

T =

corresponds to the sequence of shapes

0 ¢ [ c L] c 1] ¢

While the standard tableau

T - 1 {314
216
5
corresponds to the saturated chain
] C Ll c | C L[] c N [ 1] C

We will be interested in counting the number of chains in Young’s lattice which

satisfy certain conditions. The next two definitions count the special tableaux we

just defined.

Definition 1.1.12 fV# := #{standard tableaux T of shape \/u}

Definition 1.1.13 The generating function for column-strict tableaux of a given

shape is called the Schur function. For convenience we take an infinite set of

variables {x.,r2,...}. We have

syplriag.. )= Y. (aPap ...

TeGT () u)
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where ny is the number of elements of T equal to k£ (as in the definition of type

above).

It turns out that these Schur functions are symmetric and that {s) : A - n} forms
an orthogonal basis for the space A of symmetric functions, with respect to a natural
scalar product. Since symmetric functions are not the main focus of our discussion,
we refer the reader to [Mac] for more information about symmetric functions and
their connections with representation theory.

Next we define permutation-like objects.

Definition 1.1.14 A biword. 7, is a sequence of vertical pairs of positive integers

. z'_l l:z z"k
Jv oJ2 .- Jk

with iy < iy € ... < ir. We denote the top and bottom lines of = by = 1125...2
and # = jij3...jx. We will consider three types of biwords. Partial permutations
of n have no entries greater than n, and within each line the entries are distinct.
Permutations of n are partial permutations with top line 1,2,...,n. Finally,n x n
matrix words have no entries greater than n with the pairs arranged lexicograph-

ically: i, = 7,4, implies j, < j,41. The sets of partial permutations, permutations,

and n x n matrix words will be denoted PS,, S,, and MAT(n), respectively.

Example 1.1.15 An example of each of these when n = 5:

7r—124 1 2 3 45 1112 2 4 4 4
4 2 3 4 2 5 31 1 3325 155

Sometimes the top row # of a permutation is suppressed, and we just write 7 = 42531
1 2 3 4 5
4 2 5 3 1
matrix words and n x n matrices M = (m;,) with nonnegative integral entries given

to mean 7 = . Note that there is a bijective correspondence between

by m;, is the number of times the pair (J’) appears in .
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Example 1.1.16 The matrix corresponding to the matrix word above is

M=

O = OO
SO o —~O
OO DO I
OO O OO
SN - O

1.2 The basic algorithm via insertion

The basic Robinson-Schensted algorithm is a bijection between permutations and

pairs of standard tableaux of the same shape. More precisely, we have the following

Theorem 1.2.1 Fix an integer n. There is a bijection between permutations in S,
and pairs of standard Young tableaux (P, @) of the same shape A, where A runs over

all partitions of n:

r &2 (PQ)

The usual approach to the R-S algorithm is through repeated use of a process
called insertion. To insert a number a into a given tableaux T, we look in the top
row of T for the least number which is greater than a, call it 5. We replace (“bump”)
b with a in the top row, and view b as living temporarily in the crack between the
two rows. Now proceed with b and the second row in exactly the same way; i.e., if ¢
is the least number in the second row bigger than, then b bumps c, and we view c as
temporarily homeless between rows two and three. Eventually, and this can happen
even in the first step, the homeless number will be greater than all the others in
the row below it, and we place it at the end of this row, terminating the insertion

procedure. An example follows forthwith.
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Example 1.2.2 Suppose we insert 4 into the tableau

I3 5
2 7

6 9

8

We get (showing the intermediate steps)

1 3 75 13 4 13 4 1 3 4
27 2 %7 2 5 2 5
6 9 6 9 6 9 6 7
8 8 8 8 9

The last tableau on the right is the result of this insertion.

If we start with a permutation 7 viewed as a biword, we proceed as follows. Initialize
the tableaux P and Q to be empty. Successively insert the elements of # from left to
right into the tableaux P. At the ith step, when the bumping process ceases, a new
cell will have been added to P; add a cell to @ in the corresponding position, and
put the value i inside it. Hence, at each step, P and Q have the same shape, and @

records the order in which cells were added to P. An example follows forthwith.
Example 1.2.3 If we apply the above to the permutation

1 2 3
3 1 4

[

5
5
We get the following sequence of tableaux:

P 0
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It is easy to see from this definition of R-S that we have a bijection. At each stage, we
know by looking at the highest entry of @ which cell was added to P. We can then
reverse the bumping procedure from the element, say ¢ in that cell. Now ¢ must have
been bumped by the greatest element smaller than ¢ in the row above it, say b. So we
replace b with ¢, and view b as temporarily homeless between rows. Then we repeat
this, allowing b to unbump the greatest element smaller than b in the row above.
Eventually, we force an element out the top of the tableau, say a, which must have
been the element we originally inserted into P. Meanwhile, by undoing each stage of
the bumping process, we have restored P to its condition before a was inserted.

By counting the items on each side of this bijection we obtain

Corollary 1.2.4
fo = n! (1.1)

AFn

1.3 Properties of the correspondence

The Robinson-Schensted correspondence has many important properties which are
not immediately obvious from the above description. We defer proofs until later (2.7
when we have built up the machinery of Fomin’s approach. The reader who wishes
to see how these results are derived from the insertion algorithm is urged to consult
Sagan’s excellent, readable account [Sag].

Schensted was originally interested in studying increasing and decreasing subse-

quences in a permutation. After a definition, we give Schensted’s original main result.

Definition 1.3.1 Suppose the permutation 7 has bottom row #* = wyws - -- w,. An



1.3. PROPERTIES OF THE CORRESPONDENCE 19

increasing subsequence of = is
w, < wp, < - <wg, (1.2)

where
N<ig< - - ij
j is called the length of the subsequence. One defines decreasing subsequences analo-

gously, by replacing <™ with “>" in (1.2) above.

Theorem 1.3.2 (Schensted) Let = &5 (P,Q). The length of the longest

increasing subsequence of 7 equals the length of the first row of P, and the length of

the longest decreasing subsequence of 7 equals the length of the first column of P.

Checking this against our Example 1.2.3, we find that the longest increasing subse-
quence is 1.2, 5 of length 3. and the longest decreasing subsequences are 3,1 and 4,2

of length 2. Correspondingly. P’s first row is length 3, and its first column is length

2.

The algorithm behaves surprisingly well with respect to inverses.

Theorem 1.3.3 ([Sciil]) If
n (PO

then

&S (QP)

The reader is invited to check that this works for Example 1.2.3, i.e that

R-S 1 3 5 1 2 35
>

N =
Do
— o
Qo W=
r
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By Theorem 1.3.3 when we restrict the correspondence to permutations which are

involutions, we insist that P = (), yielding

Corollary 1.3.4 Let Inuv, denote the set of involutions of S, (i.e., all permutations
o such that o=0"1). Then we have a bijection between permutations in Inv, and

standard tableau of shape A, where A runs over all partitions of n:

Example 1.3.5 The reader is invited to check that

I 23 4 5 6 R-§ 112]4
3 )
1 5 3 6 2 4 3 |6
5
Counting these gives us an analogue of (1.1).
Corollary 1.3.6
3" fa = [Inv,| (1.3)

AFn

Theorem 1.3.7 (Schiitzenberger) Let 7 be an involution in S, and assume that

Then the number of fixed points of 7 is equal to the number of columns of P of odd

length.

In Example 1.3.5 our involution had two fixed points (1 and 3), and column lengths

3.2, 1.



Chapter 2

Fomin’s approach to Schensted

In this chapter we outline S. V. Fomin’s approach to the Robinson-Schensted corre-
spondence, which is in many ways more natural and general than the usual bumping
procedure. It provides a pictorial way of looking at things that is often helpful in un-
derstanding certain properties, some of which are difficult to show from the bumping
description. Fomin's results apply not only to Young’s lattice but to an entire class of
posets called Differential Posets or Y-graphs. These were discovered by Fomin in his
development of the theorv we present here, and independently by Stanley in a quite
different context. In [Stal] Stanley was able to derive many enumerative results in-
volving walks or chains in a differential poset by constructing an algebra of operators
on the poset. The (formal) solution of certain partial differential equations involving
these operators vielded generating functions counting such walks. Stanley’s results
are powerful but entirely algebraic. Fomin’s approach gives bijective proofs of some
of Stanley’s results.

Our exposition largely follows that of Fomin [Fom2], but we have followed Stanley
and others in certain places. In particular, Fomin’s “graded graph” is our “graded

poset”, and his “Y-graph” is (essentially) our “differential poset™.



22 CHAPTER 2. FOMIN’S APPROACH TO SCHENSTED

2.1 Differential Posets

Much of this section follows Stanley's original paper [Stal] almost verbatim.

In general if P is any graded poset, then we let p denote its rank function, i.e., if
r & P then p(z) is the length [ of the longest chain z9 < 1 < -+- < x; = z in P with
top element z. Write

P, ={x € P:p(x)=1}
So P=PywP & P,w-.. (disjoint union).

Definition 2.1.1 Let » be a positive integer. A poset P is called r-differential if it

satisfies the following three conditions:
(D1) P is locally finite, graded. and has a 0 element.

(D2) If 2 # y in P and there are exactly k elements of P which are covered by both

2 and vy, then there are exactly k elements of P which cover both z and y.

(D3) If + € P and x covers exactly k elements of P, then x is covered by exactly

k + r elements of P.
When r = 1. we will sometimes omit the » in r-differential.
Property (D2) is essentially a modularity condition.

Proposition 2.1.2 ([Stal]) If P is a poset satisfying (D1) and (D2), then for z # y

in P the integer k£ of (D2) is equal to zero or one.

Proof: Suppose the contrarv. Let z and y be elements of minimal rank for which
k > L. Then « and y both cover elements x; # y; of P. But z; and y; are elements

of smaller rank with & > 1, a contradiction. O

For a lattice L satisfying (D1), condition (D2) is equivalent to L being modular (See,
e.g., [Bir, Theorem 16, p. 41]).
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Figure 2-1: Y has the property (D3)

The prototypical example of a differential poset is Young’s lattice Y. Property
(D1) is clear. Since Y is distributive, being the lattice of finite order ideals of the
poset N2 it is modular. Property (D3) may be seen geometrically. Suppose the
partition A has d rows of distinct length. One obtains all the d shapes which cover
that of A by deleting one square from each row which has a strictly smaller row below
it. To get the d + 1 shapes which cover A, one adds a square to any row which has
a strictly larger row above it, including the first length 0 row. See Figure 2-1, where
A = 43321, and the squares which can be deleted or added are indicated with — and
+, respectively. In fact. it is not much harder to show that Y™ is r-differential [Stal,

Cor. 1.4].

2.2 Fibonacci Differential Posets

First we give Stanley’s definition [Stal, Def. 5.2] almost verbatim.

Definition 2.2.1 Let » be a positive integer. Let A, be an alphabet of r + 1 letters.
We will regard the letters as consisting of the number 1 with r different “colors,”
denoted 14,1,,...,1,, together with the number 2. Thus A, = {1;,12,...,1,,2}.
Let A: denote the free monoid generated by A,, i.e., A; consists of all finite words

aj.as,...,ax (including the empty word @) of elements of A,.
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Figure 2-2: The Fibonacci Lattice Z(1)

Define a poset Z(r) as follows. As a set, Z(r) coincides with A>. If w € Z(r),

then define w’ to be covered by w in Z(r) if either:

(a) w' is obtained from w by changing a 2 to some 1;, provided that the only letters

to the left of this 2 are also 2’s, or
(b) w' is obtained from w by deleting the first letter of the form 1,.

This defines the cover relations in Z(r), and hence by transitivity a partial ordering

of Z(r). We call Z(r) the Fibonacci r-differential poset.
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Geometrically, one can think of Z(r) as being built up inductively in the following
manner. Start with a single element which will be the 0 of the poset P. Add the
elements 17, 15,...,1, above it, to yield the rank 1 elements. Now reflect P about the
rank one element. which in this case places exactly one element (tbe reflection of 0)
at level two, and label that element by prepending the letter 2. Then add elements
1,1; by prepending each of 1;,1,,....1, to each the rank 1 elements. In general, once
Py has been constructed, we construct P ;yq) as follows. First reflect F;_,;, and
prepend the letter 2 to each element at level ¢ + 1; this insures that condition (D2)
will continue to be satisfied. Then add elements above each of the elements of P; by
appending in turn 1y.1s... ., 1,: this insures that (D3) will continue to bhe satisfied.
This process of reflection extension, due to D. Wagner, actually applies more
generally to any partial r-differenticl poset, i.e. a poset which is r-differential up
to a certain rank n. Any such poset may be truncated at the nth level, and then
the above process applied to yield a full-fledged r-differential poset. In particular,
one can truncate Y" at any level and the rebuild it by reflection extension, yielding
a large collection of non-isomorphic posets. This is one reason to suspect that the
classification of all r-differential posets may not have a reasonable answer. See [Stal,

p- 957ff] for more information.

2.3 Growths

In any graded poset, if y covers z (i.e., z < y and p(y) = p(z) + 1) we will sometimes

write “r < y”.

Definition 2.3.1 Let P and Q be graded posets. A map g : P — @ is called a

growth if it preserves the relation < :

<y —g(z) < g(y)
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Not every order preserving map is a growth, and not every growth is one-to-one.
Example 2.3.2

(1) The rank function p: P — Z is a growth.

(2) A multichain in P is a growth from Z to P.

(8) The composition of two growths is a growth.

Definition 2.3.3 Let g : P — Q be any growth, and p : @ — Z be the rank function

of Q. By composing these we get a new growth called the modulus of g and written

lgl : P— 1

We will be concerned primarily with growths on skew shapes.

Definition 2.3.4 If S is a skew diagram (i.e., a finite convex subset of Z?), then a
growth on § is called two-dimensional. For a skew diagram S we define the upper

and lower boundaries of S by

9HS) = {(z.y) €S : (x+ 1L,y +1) €5}

07(S) ={(z,y)€S: (z~1y—1) ¢S5}

There are two important caveats associated with this seemingly innocuous definition.
First, although a skew diagram is the same thing as a skew shape, we will view our
skew diagrams with the usual coordinate geometry orientation rather than the matrix
one, i.e., upside down (cf. Def 1.1.3). Second, we view the preimage of the growth as
the vertices of the diagram, rather than the cells (cp. Definition 1.1.8 of “tableau”).
We will reserve the cells for other (related) uses. Since we will be using skew shapes

and skew diagrams in completely different ways, no confusion should result.
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Example 2.3.5 In the skew diagram below, the growth ¢ : S — Z is given by
g{x) = #cells marked with an X which are below and to the left of v. The image of

g on a vertex v of 5 is given just slightly below and to the left of v.

0 1 2
X
0 1 1 2
X
0 0 0 1 1
X
0 0 0 0

The above example reflects a general class of two-dimensional growths; the cells
marked with an X cannot share a row or column of S since then we could find a
pair of adjacent vertices whose ¢ values differed by at least two. A prototypical

examnple is

0 1 2

X1 X

0 0 0

where the right edge of the diagram is disallowed in the definition of “growth”.

Definition 2.3.6 A generalized permutation is a finite set of cells in the skew diagram
S which do not share any row or column. Other commonly used terms include

nontaking rook placement or permutation with restricted positions.

Our previous definitions of “permutation” and “partial permutation” are examples of
generalized permutations for the skew shape S being a n x n square of cells. For an
elementary enumerative approach to nontaking rooks we refer the interested reader

to [Stal].
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The two-dimensional growth above is really the modulus of the following (more
interesting) growth. Fcr a fixed skew diagram S, let C(S) denote the set of cells
of S. The collection of all subsets of C(S) ordered by inclusion forms a poset B(S)
(isomorphic to a boolean algebra cn the number of cells of S). Let G(S) denote the
collection of all generalized permutations on the cells of S considered as a subposet
of B(S). G(S) has rank function p(c) = the number of cells in 0. Hence, we can

consider the growth given by
g(v) = {cells in the generalized permutation which are below and to the left of v}

Example 2.3.7 If we give the marked cells in the example above distinguished labels,

then we have:

0 B AB
A
0 B Bl  BC
B
0 ) 0 C C
C
0 [l 0

2.4 Permutations to posets to partitions

We can turn any generalized permutation o on the cells of a skew diagram S into a
poset in a natural way as follows. If the coordinates of the cells are given by (21,71)

and (72, 2). then

(1. 1) € (i2.J2) <= 41 <1 and j; < Jo.
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//O
AP O/O\O>\O/O
o

431 332

Figure 2-3: Two posets and their partitions

In other words, a cell is bigger if it is above and to the right of another in S. In Exam-
ple 2.3.7, for instance. the partial order is simply “A covers B”. Next, we turn a poset
into a partition via the following theorem, due independently to C. Greene [Grel]

and Fomin [Foml].

Theorem 2.4.1 Let P be any finite poset. For k a positive integer, set cx(P) (resp.
ar(P)) to be the size of the largest number of elements which is the union of k
chains (resp. antichains) of P. Now, let A\(P) = cx(P) — ck—1(P) and pi(P) =
ar(P) — ar_1(P). Then \(P) = (A, A2, A3,...) and u = (g1, p2, i3, . . .) are partitions,

and g is the conjugate of A.

The interested reader may find a proof of this in either of the references cited above.
Two examples of posets with eight elements and their corresponding partitions are

given in Figure 2-3.

Definition 2.4.2 If o is a generalized permutation of the cells of a skew diagram S,
then we let A\(o) be the partition given by the above theorem applied to o (regarded

as a poset in the way described above).
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f ;1’ 2 g . We represent 7 as a generalized
ell skew shape

Example 2.4.3 Let 7 =

2
7
-C

v

1
2
permutation of the n-cell by n » as follows:

X

X

The element JZ appears in the ith column and the jth row as read from the lower left
hand corner of the diagram, as per our convention. We compute A(c) by inspection

to be (3,2,1.1).

We can extend the above example in a natural way to obtain a two-dimensional

growth on S¢,.

Example 2.4.4 In the above example we take define a growth g as follows. For each
vertex of v of S, let C(v) denote the set of cells of S below and to the left of v (as we
did in Example 2.3.7). If we restrict out attention to those cells which are in 7 and

take the poset corresponding to this generalized permutation, then we get a map

v AMC(v)N )
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which is a two dimensional growth g : S — Y:

of 1 o 21| 22| 32[ 321 3211
ol 1 X 1 11 21| 31| 32| 321
ol 1 T T R x21 2 221
ol 1 1 I X11 T o1 22
0 1 T 11 11 11 Xu 71
0 1 1 11 11 11 11 X11
0 X D ] 1 1 T 1 ]
X

What is particularly interesting about this growth is to consider its restriction to
the upper boundary 9%(Sq,). The top edge T and the right edge R can each be

interpreted as a saturated chain in Y from @ to (3,2,1,1), i.e., as a standard tableau.

We have
R=1 316 T:l 215
214 3|4
5 6
7 7

This is the same pair of tableaux we would have obtained by applying the bumping

algorithm of Section 1.2 to the permutation .
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got gn

Joo J10

Figure 2-4: Close up of the growth around one cell
2.5 Semimodular growth

We would like to characterize those two-dimensional growths which come from a

generalized permutation.

Definition 2.5.1 A two-dimensional growth g : S+ Z is called semimodular if the
values of g on the vertices of any cell, say goo. go1, g0, 911 (see Figure 2-4) satisfy
the following inequality:

goo + g1 2 go1 + g1o (2.1)

When the inequality is strict. we call the cell in question an atom of g.

Example 2.3.5 shows a semimodular growth with the atoms marked with X’s. This

will be our typographic convention in many of the figures to follow.

Lemma 2.5.2 Any semimodular growth g : S — Z is uniquely determined by its
restriction to the lower boundary g¢|,- s and by a generalized permutation of the cells

of S, which is the set of atoms for g.

Proof: The reader is encouraged to experiment with a couple of examples similar
to the ones given above prior to (or instead of) trying to follow the technicalities we
now present.

Given the semimodular growth g. mark the cells which are atoms with the symbol

X. What can a semimodular growth look like locally? Consider the values of g at the
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vertices of a cell as in Figure 2-4. If ¢;; = goo =: a, then all four values are the same:

(2.2)

If g11 = goo + 2 := a + 2. then the other two vertices must be a + 1 by definition of

growth:

a+1 a+2

a a+1

(2.3)

The only remaining case is g1, = goo + 1 := a + 1. Here the definition of growth

allows four possibilites:

a (1+].

a a
(2.4)

a+1] a+1

a a
(2.5)

a a+l

a a+1

(2.6)
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a+ 1 a+1] (not allowed)

a a+1

The last possibility is eliminated by the definiton of semimodular, but the first
three are all possible. Now notice that in the five total allowed possible cell config-
urations that the values goo. go1, g10 determine gy;, except for the ambiguous case
when all three values are the same and g¢;; can be either @ or a + 1. But in this case
we only need to know whether the cell is an atom and the value of ¢;; is completely
determined. Hence, given the restriction of g to 7(S) and a generalized permutation,
we can extend the growth inductively cell by cell. On the other hand, any semimod-
ular growth g naturally determines a set of atoms and its restriction to 9=(5). We
claim that this set of atoms must always be a generalized permutation. For if two
atoms shared a row of S. then the first must occur at a cell of type (2.4). Now as we
proceed along the row. the value of ggo will continue to be strictly less than go; since
we eliminated the only case above which allows ggo to increase while go; remains the
same. When we reach the next atom, we find that we still have this strict inequality

along the left edge of the cell, which means our cell would have to look like

a+1 a+2

X

a a

contradicting the growth condition on g. =
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Example 2.5.3 Take the modulus of the growth in Example 2.4.4. we get the semi-

modular growth:

0 I 7 3 1 5 6 7
0 1 X1 2 3 1 5 3
0 1 I 2 3 Xs 1 5
0 l 1 2 X‘2 2 3 4
0 1 I 2 3 2 xz 3
0 1 ] 3 2 2 2 X2
0 Xo 0 1 T 1 T 1
0 0 0 Xo 0 0 0 0

In this case the lower boundary is trivial.
As consequences of the lemma we have the following.

Corollary 2.5.4 A semimodular growth ¢g : S — Z whose restriction to 97(S) is
zero is given simply by a generalized permutation o of the cells of S. In this case we

write g = g,.

By re-examining the figures in the proof above, we see that we can extend down as

well as up.

Porism 2.5.5 Any semimodular growth g : S — Z is uniquely determined by its

restriction to the upper boundary g|,+(sy and by a generalized permutation of the
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cells of S, which is the set of atoms for g.

2.6 Growths in differential posets

It turns out that differential posets have exactly the right structure to extend growths
nicely from either boundary of a skew diagram. In order to do this we first look at
what can happen locally as we attempt to extend a growth up or down.

Let g : S — P be a growth in any differential poset P. Consider the value of g at
the four vertices of a cell as in Figure 2-4. If we attempt to compute the value of goo

given the other three vertices, we have several cases:
Case 1: |goi| < |g10]- This forces goo = go1 and g1 = gio by the definition of growth.
Case 2: |g10] < |go1|. This forces goo = g10 and g11 = go1 as in case 1.

Case 3: |go1| = |g10] but gor # g10. By modularity (D2) of P, g;; determines goo and

vice-versa.

Case 4: g0y = g0 := + € P. This is the interesting case. Set Ct(z) = {y €
P:az< yland C~(x) = {y € P:y < z}. By axiom (D3) C*(z) has one
more element than C'~(r), so there is not a bijection between these sets. But
there almost is. In fact, we can construct a bijection ®, between C*(z) and
C-(z) U {z}. Now set ®,(x) = z. If we are extending down from gi; we set
goo = ®.(g11). This is well-defined since g1; must be something which covers or
equals z. In fact, the growth will be semi-modular at this cell; for in the generic
case. |goo] + 1 = |go1] = lgn| = 1. If g11 = z, then all four vertices will have the

same value. Finally, if + < ¢1; and ®.(¢11) = r, then we have

lgoo| + lg11] > 1g01] + |g10]

and the cell is an atom of the semimodular growth |g|.
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To extend a growth upwards we will examine the same four cases. The first three
are the same. In case 4 we find that our correspondence @ gives a well-defined answer
as long as goo # o I gou = . then €2'(goo) could be either & or a certain element
of ("*(r). To decide hetween these we need an extra niece of information, which is
whether or not the cell in question contains an X. i.e., whether it should be an atom

of the semimodular growth |g|.

Definition 2.6.1 Let P be a differential poset. At each r € P define a corre-
spoudence ® as in case | above. We call the collection ® := {®, : + € P} an
R-correspondence. A growth ¢ : S — P is said to be compatible with the R-
correspondence if at cach cell such that goy = g10, we have goo = ®,,,(g11). We

call such a g a ®-grouwth.

An R-correspondence is defined in a purely local way, and a differential poset will

have many different ones.

Example 2.6.2 Consider the element r = (2,1) of Young’s lattice Y. One possibility

for the R-correspondence ¢ around this element is given by:

O, : (2.1.1) (1.1) (2,2)— (2,1) (3.1) — (2)

Another is

O, (2.1.1) = (2) (2,2) = (1.1) (3,1)—(2,1)

Example 2.6.3 While not essential for our extensions to work, it is convenient to
have a coherent way to define an R-correspondence over all of Y. One way to do this

is as follows; see Figure 2-1 on page 23. If u < A and \; = p; + 1. then set

G,: A —v

where v agrees with u except v;_; = g;_; — 1 if ¢ > 1. In terms of Young diagrams

we are saying that if in going from A to u we delete a square in some row, then we
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next delete in the row above (when possible). So if A and g differ in the first row

‘e

Lo = 1), then ®,(\) = u. It is easy to see that the sequence v thus defined is
a partition, so this map is well-defined. It coincides with the second correspondence

given in Example 2.6.2 above.

Lemma 2.6.4 Let P be a differential poset and S a skew shape. Any growth g* :
d%(S) — P on the upper boundary of S can be extended uniquely to a ®-growth on

all of S. Furthermore. |¢g| will be semimodular.

Proof: Using the cases listed above, we extend our growth cell by cell from the top
down and from right to left. Semimodularity is clear in cases 1-3 (in fact, we have

lg00] + |g11] = lgo1| + |910]). and in case 4 we have shown semimodularity above. O

Example 2.6.5 Suppose we start with the following growth on the upper boundary
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of S¢-.

The reader should attempt to extend the growth using the four cases listed above,
with the R-correspondence given in Example 2.6.3. With a bit of practice one can
do this quite quickly. One hint is to notice that whenever go: # ¢10, then one just
fills in ggo with the meet (or greatest lower bound) of go and gio; this takes care of
cases 1-3. Case 4 requires a bit more attention, but it also easy. For example, the

first vertex one fills in above is

32 321
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since the decrease in row 4 implies the next decrease in row 3. The solution is given
in Example 2.4.4. Note that the atoms of the modulus of this growth occur when the

initial decrease is in the top row and (consequently) the three lower values coincide.
What about extensions from the lower boundary? We have:

Lemma 2.6.6 Let P be a differential poset, S a skew shape, and o a generalized
permutation of the cells of S. Any growth g~ : 87(5) — P on the lower boundary
of S can be extended uniquely to a ®-growth on all of S. in such a way that |g| is

semimodular with the atoms of g being the cells in o.

Proof: Again we use cases 1-4 above. this time to extend cell by cell from the
bottom up and from left to right. So given goo, go1, 910 surrounding a cell C, we
want a canonical way to decide the value of g;;. Cases 1-3 are clear. In case 4 (where
Joi = g1o := 2 € P) we use our R-correspondence as follows. If goo # x, then we set

g1 := ®7(goo). If goo = x, then we have two subcases.
Case 4.1: C ¢ 0. Then set g1 = goo, so all four vertices around C are equal to z.

Case 4.2: C € 0. By definition, ®;!(goo) consists of a two element set {z,y} where

T < y. So we set g1 = y.

It is clear that this extension is well defined and uniquely determined. |g| is semi-
modular because in cases 1-3 and 4.1 we have |goo| + |g11] = |901] + |g10]; in case 4.2,

we get |goo| + |g11] = |go1| + |g10] + 1. Hence, the atoms of g are the cells of . 0

We are now in a position to state Fomin’s main result.

Theorem 2.6.7 (Fomin) Let P be a differential poset and S any skew diagram. Fix
an R-correspondence ® on S. We have a bijection between growths g* : 9%(S) — P
and pairs (¢~,c) where ¢~ : 97(S) — P, and o is a generalized permutation on S.

Each of these is also associated with a uniquely defined two-dimensional ®-growth
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g : S — P, whose restriction to d%¥(S) and 9(S5) is g% and ¢g~. respectively, and

whose modulus [g| is the semimodular growth whose atoms are o.

Proof: The two preceeding lemmas vield an algorithmic way to construct g from

either g% or (g7.0). a

The power of this general result will become clear as we exploit it and extend it in

the later chapters. First we present a few simple applications.

Example 2.6.8 Let P be any differential poset and suppose that the skew diagram
S has the same lower border as the square shape S¢,: see Figure 2-5. Let the lengths
of the segments which make up 9%(S) be given by the numbers a;,az,..., a2 as
shown. Then a growth g* on the upper boundary of S is exactly a walk in (the Hasse
diagram of) P starting at 0. going up by a; steps, then down by a, steps, ...down
by ayi steps, ending at 0. Using Theorem 2.6.7 with g~ = 0 we obtain a bijection
between such walks and generalized permutations o of the cells of S. The latter may
be counted via elementary sieve methods; see [Sta3, Section 2.4] for more information.
In particular, when S = S¢,., we get a bijection between pairs of saturated chains in
P which go from 0 to the same z € P, and permutations in S,,. We have already

seen a special case of this in Examples 2.4.4 and 2.6.5 above.

Actually, when we originally introduced the growth g given in Example 2.4.4, we
determined g(v) by looking below and to the left of v rather than by building it up
locally according to Lemma 2.6.6. The reader may want to check that following the
procedure given by the lemma does agree witli the result we obtained in the first
place. That these two procedures vield the same result for Y is not at all obvious; we
have relegated the proof to Appendix A so as not to interrupt the flow of the main
discussion. Further applications and consequences of this theory will form the basis

for most of the rest of this thesis.
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a

az

3

aj

A2)k-1

Q2

Figure 2-5: A partition-like skew diagram
2.7 Elementary proofs of basic properties

In this section we derive most of the properties which we stated without proof in

Section 1.3.

One important property of these algorithms which is much easter to see via Fomin’s

methods is Theorem 1.3.3: If

then

Proof: Replacing = with 7~! corresponds to interchanging the rows and columns of

our skew diagram (Sg, in this case), i.e., transposing the diagram. In this case it is
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clear that the entire correspondence is transposed, switching P and Q. m]

The corollaries then follow as before.
Schiitzenberger's Theorem 1.3.7, that for an involution the number of fixed points

equals the number of odd length columns, is also quite easy to show.

Example 2.7.1 The correspondence

1 23 4 5 6 R-S, 1124
: 2
1 53 6 4 3 |6
5
is represented by the picture below.
0 1 2 21 31 311 321
X 311
0 1 2 21 21 211
X 31
0 1 1 2 2 21
X 21
0 1 1 2 2 21
X 2
0 1 1 1 1 2
X !
) 1 1 1 1 |
X 0
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Proof: First of all, since 7 is an involution, the entire growth is symmetric about the
main diagonal of Sg,. We claim in fact that at each shape along the main diagonal
the number of fixed points so far is equal to the number of columns of odd length
in the shape. Call these shapes i, u2,...,s. In the example above, these shapes
are 0. 1,1, 2, 2, 211. 321; and fixed points occur in the first and third columns. As
we proceed along the diagonal, one of three things happens. If the cell C' between
i and p;41 contains an X, then g,4; and g, differ by a cell in the first row. This
means that g;4; has exactly one more column than g;, and it is of length 1. In this
case, the cell is a fixed point of the involution. Otherwise, there is one X in C’s row,
and another in ("'s column. which are the only ones we have to worry about as we
proceed from p; to piy;. If the X's are placed (symmetrically) above and to the right
of C'. then all the vertices of C' are identical and g; = piy1. Finally, if the X's are
placed (svmmetrically) below and to the left of C, then let A be the shape on the
other two vertices of the cell. If A and g; differ in row &, then (using the standard
R-correspondence) p,4; and A differ in row k£ + 1. This leaves the number of odd
length columns unchanged, since one column will increase by one to length k, and

another by one to length k + 1. Hence, by induction, we obtain the theorem. 0O



Chapter 3

Skew tableaux

In this chapter we discuss how the methods of Fomin may be applied to explain
certain algorithms of Sagan and Stanley for skew tableaux [SS]. The search for
these algorithms was originally inspired by some of the enumerative results of [Stal],
which Stanley had obtained algebraically rather than bijectively. Sagan and Stanley’s
bijections are based on a generalized bumping procedure. Basically, they define two
notions of insertion, the usual one, which they call “external”, and a new one, which
they call “internal”. We bypass this description, however, and use the machinery we

have built up in Chapter 2 to obtain their results.

3.1 The fundamental algorithm
Recall that PS, denotes the set of partial permutations on n. We have a similar
notion for tableaux.

Definition 3.1.1 A tableaux of shape A/pu is called partialif its elements are distinct
(but not necessarily the numbers 1,2,...,n). Let PT(\/u) denote the set of all partial

tableaux of shape A/pu.

The basic result of [SS] follows. In the following, “&” denotes “disjoint union”.

Also, recall the notation # and # for the top and bottom lines of a biword (see

45
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Definition 1.1.14).
Theorem 3.1.2 Let n be a fixed positive integer and « a fixed partition (not neces-
sarily of n). Then there is a map

(7, T,U) «— (P, Q)

defined below which is a bijection between = € PS,, with T,U € PT(a/p) such that
FWTl =7wlU = {1.2...., n}, on the one hand, and P,Q € ST(A/a) such that

A/a F n, on the other.

Example 3.1.3 This is the same example Sagan and Stanley give in their paper [SS,

p. 165], but we reinterpret it using Fomin's approach. Let n = 5, @ = (2,2,1),

102 4
T4 o2 3
T=_1 | and U=
15 3
1 5
Then we get
2 |
P = 213 and Q= 1]4
4 2
1 3
5 5




3.1. THE FUNDAMENTAL ALGORITHM 47

In the picture below, P is the right edge, @ the upper edge, T the left edge, and U

the lower edge. The partial permutation is represented by X’s, as usual.

221 321 3221 32211 4221] 42211

ol 3T 321 322 422 4921

211 211 311 321 421] 4211

Proof: All the hard work has already been done, and this is just a simple application
of Theorem 2.6.7. The skew tableaux P and @ represent the growth on the upper
boundary, while T and [ represent the lower boundary and = represents the atoms
of the semimodular growth |g|. The condition that # & T = # W U = {1,2,...,n}

insures that the tableaux on the upper boundary are standard, and vice-versa. O

The enumerative corollary of the above is

Corollary 3.1.4 Let n be a fixed positive integer and « be a fixed partition. Then

n 2
Z ,%/a = Z (Z) k! fj/u .
afub n—k

\Vobkn k=0

These results reduce to the original Robinson-Schensted results when a = 0.
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e
[0°7]

3.2 Inverting permutations and tableaux

Sagan and Stanley originally gave a somewhat lengthy proof that their algorithm
enjoys an analogue of Theorem 1.3.3 by showing how to mimic their insertion proce-
dure with the original Robinson-Schensted correspondence, then applying the original

inverting theorem. They obtained:

Theorem 3.2.1 If (7. T.07) « (P.Q) by skew Robinson-Schensted then
(=2 U, T) — (Q.P).

Proof: From our standpoint. the theorem is alimost obvious. Just transpose the skew

diagram Sqp. a

In particular, if we restrict to the case where # = 7~ and T = U we get

Corollary 3.2.2 If r is an involution then we have a bijection
(. T) — P

between 7 € PS, with T € PT(a/) such that # W T = {1,2,...,n}, on the one
hand, and P € ST(\/a) such that A/a F n, on the other.

Corollary 3.2.3 Let n be a fixed positive integer and « be a fixed partition. Then

Z e = Sn‘_‘ (z) Inv(k) Z kfa/u

Nokn k=0 afut n—
where Inv(k) denotes the number of involutions in Sk.

We also have an analogue of Schiitzenberger’s Theorem 1.3.7, as Sagan and Stanley

noted. It follows immediately by reconsidering the proof of 1.3.7 given on page 44.
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Porism 3.2.4 In the bijection of Corollary 3.2.2 we always have the number of odd-
length columns of A equals the number of odd-length columns of x plus the number

of fixed points of 7. We write
fix(w) + odd(p) = odd()).

In particular, one can restrict the bijection to the case where 7 is fixed point free and

A and g have no odd-length columns to obtain a few more identities, given in [SS].

3.3 Iterated skew maps

Sagan and Stanley have also an iterated version of their bijection, which they used to
give a bijective proof of an identity from [Stal]. It turns out that this version is also
easier to understand via Fomin's approach, which will allow us to generalize it later

to the case of sequentially differential posets.

Definition 3.3.1 A weighted permutation 7 is a permutation in which a nonnegative
integer k has been associated to each ; € m. We write wt (;) = ¢*. The weight of
the permutation is given by wt(7) = [] wt (;) where the product is over all pairs in

7. If wt (;) = ¢*. we write the term as (j:k) ), omitting the symbol (%) if k = 0.

Example 3.3.2 Let
1 2 3 4 5
T=54) 920 4 1M 3@-

4.2.0

Then wt(7) = ¢*¢?¢°¢"¢* = ¢'°.

We also give a partition » the weight ¢!, and to a pair (7, v) the product wt(r) wt(v).
To a pair (P, Q) of standard tableaux of shape A/u we assign the weight wt(P, Q) =

¢"!. Sagan and Stanley’s theorem is as follows:
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Theorem 3.3.3 There is a weight preserving bijection
(7.v) — (P,Q)

between pairs 7 € S, with » a partition and pairs P,Q € ST(A/u), where A\/pu b n.

Proof: Suppose we start with the pair (P, Q) := (P°, Q°). By the skew map (The-
orem 3.1.2), we can associate a triple (7, T,U) which we relabel as (7(®), P!, Q). At
the kth step apply the skew map to the pair (P*~1, Q*-1) to obtain (x7(*~1, P¥ QF).
At each stage we obtain a partial permutation (which may be empty). Set A*/A*+! to
be the shape of P*. The process terminates when A\¥ = A**! =y which it must even-
tuallv since the A’s are decreasing. The partial permutations will fit together to give a
weighted permutation. since at each stage we have #VwP* = #(PwQ* = {1,2,...,n}.
We can also view the bijection as starting from the pair (7, v), starting with the growth
on J7(S¢q,) being identically v and the partial permutation of highest weight in =.
We then use the resulting upper border as the lower border in the next iteration,
along with the terms of 7 of next highest weight. When we finally use up the terms
of weight 0 in 7. we are done.

Why do the weights work properly? The example below should make it clear.
Consider the bijection going forward from (7, v) to (P, Q). If the term (].(ik)> €,
then it contributes one cell to A\¥/A**1 (as part of 7(*)); then at each stage afterwards,
it also contributes a cell to AX*/A**! (1 <t < k), because of its affect on the lower
border. Since the weight of (P,Q) depends only on g = A!, the terms of 7(% (cor-
rectly) contribute nothing to the weight of (P,Q). Hence, |\'| = |v| + wt(7) which

says exactly that the bijection is weight preserving. (]
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Example 3.3.4 Let

1 2 3 4 5 d
T = 3(3) 5 4(1) 1(1) 9 an

S

We obtain
2
P= and Q:
5
1
3| 4
via
2| 32 32 32 32 32 39
29 32 32 32 32 32 32
22 32 32 32 32 32 39
2o 22 22 22 22 22 929
29 22 22 22 22 22 99

8]
N
b
)
N
o
N
o)
Q)
N
)
D)
[ ]
N
w
o)
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331 331] 331| 431 441} 441 441] 4411} 5411 5421| 5422] 5522

X

331 3311 331 431} 441 441 441| 4411 4411 4421 4422] 5422

331 331 331 331 431} 431 431] 4311} 4311] 4411| 4421] 5421

2o 33 33| 33| 43| 43| 43 431| 431| 441| 442 542

X
32 33 33 B3] 3] 43| a3 431 431[ 441 442 442

3233 33 33 33 33 33 331 331 431 441 441

The enumerative consequence of this theorem is

Corollary 3.3.5

1
S S s et = ———— T - )
k.on (»\/ul'n '\/‘) ! / l_t/(l_q)n q
wEk

Proof: Consider the coefficient of t"/n! on each side. On the left we have pairs
(P.Q) with P.Q € SYT(\ p), with each pair weighted by the factor ¢¥l. On the
right. the product counts partitions v with weight g"!, and the other factor counts
permutations © € S, where each term is allowed a nonnegative weight ¢*. By the

theorem above. these are in bijective correspondence with one another. o

It is clear that this iterated algorithm also enjoys the property that inverting the
permutation interchanges the two tableaux. If = is weighted then 7~! is the weighted

permutation defined by

l ] -
(j(k)> eEnr <7i}‘~)) en 1.

We call = an involution when 7~! = 7. Sagan and Stanley then obtain the following

corollaries.
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Corollary 3.3.6 If = is a weighted involution, then the mapping of Theorem 3.3.3

restricts to a weight preserving bijection

(m,v) «— P

between © € S, with v a partition, and P € ST(\/u) with A/ + n.

Corollary 3.3.7

2 .
> ( > f,\/“) ¢"1"/n! = exp (1 iq * 2(1t_q2)) IIa-¢).

k.n AfpkFn N
Wk k

Corollary 3.3.8 In the bijection of Corollary 3.3.6 we always have

fix(m) + 20dd(v) = odd(x) + odd(A) .

Proof: Using the notation of Theorem 3.3.3, apply Porism 3.2.4 to each iteration of

the skew algorithm, to get
odd(AF) = fix(x®)) + odd(A\*~2).

Summing over all k£ and cancelling terms which occur on each side of the equation,

we obtain:

0dd(A\%) 4 odd(A!) = fix(7) + 20dd(v),

which is equivalent to the corollary. a
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3.4 A rectangular skew algorithm

In order for the iterated algorithm to work properly, the partitions on the upper-left
and bottom-right corners of Sq, must be the same. (This is, after all, the intersection
of the upper and lower boundaries.) But in general there is no reason this must be
the case; i.e., the skew tableaux P and @ may have different (inner) shapes. The

following are from [SS. Section 5.

Theorem 3.4.1 Let n and m be fixed integers and let o and 3 be fixed partitions

(where |a] need not cqual |3]). Then there is a bijection
(7. T,.U) — (P, Q)

between partial permutations = with T' € PT(a/p), U € PT(3/u), such that
fWT ={1,2,....n}, #wl’ = {1,2,....m}, on the one hand, and P € ST(A/f),Q €
ST (A a), such that A/ 3 F n.A/a F m, on the other.

Example 3.4.2 Let n =4+.m =3, = (2,1),a = (5,1),8 = (3,1). Our picture is

51 52 53 531

11 42 43 431

31 32 42 43

si— 32 32| 33
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which says that

———
| SV SN}
—

B, [T :31)H T2, [T

Corollary 3.4.3 Let n. m be fixed integers and «, 3 fixed partitions. Then

Z f,\/;.?f,\/a = Z (Z) (TZ) k! Z fa/ufﬁ/u .

A/BFn k>0 afp b n—k
AMatm - BluF m—k

The following corollary interpolates between Corollary 1.2.4 and 1.3.6. It is also a

special case of [Stal, Thm. 3.7].

Corollary 3.4.4 Let n and m be fixed integers. Then

Yo ffae = (;)m!lnv(n —m).

AFbn
a bk n—m

A interpretation of the above formula in terms of symmetric group characters is given
in [SS].

One fact which Sagan and Stanley were unable to generalize to the skew case was
Schensted’s Theorem 1.3.2 that the length of the longest increasing subsequence of
the permutation is the length of the first row of the output tableaux. In general, the
length of the first row of P depends nontrivialy on m, T, and U. The following result

seems to be new.

Theorem 3.4.5 Assume that (z.T.U) «— (P,Q) by skew Robinson-Schensted.
Let the first row of T be given by cells labeled t;,12,...,t,, and the first row of U
by w1, uz,....u,. We can conveniently view these in our diagram by marking X’s up
the left side of S¢, at heights ¢, (1 < k <) and along the bottom of S¢, at places

up (1 <k <j). View this extended diagram as a poset as usual (things higher and
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to the right are greater). except also consider ¢tx < t; and ux < u, for k < I. For a
shape v write R;(v) for the length of the first row of v, and let M be the maximum

length of a chain in the above poset. Then we have

Ri(A) = Ry(p) + M.

Example 3.4.6 In the example below, g = 21 and A = 64111. One should mark X’s
on the left side at heights four and seven, and along the bottom side in the second and

fifth spots. The maximum length of a chain in this extended poset has four elements.

42 43 431 441 541 5411 54111| 64111

32 , 6411
32 éll
32 x 5311
22 531

29 431
29 421

21 21 31 31 31 41 42 42

Proof: Inthe Schensted-Fomin algorithm (with the usual R-correspondence), a shape
increases in the first row when there is an X in the cell; see Equation 2.4. Suppose

that the vertex v is the smallest one above and to the right of the two cells A and B of
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the generalized permutation. If A < B, then each cell increases the first row by one,
for a total increase of two. If, on the other hand, A and B are incomparable, then
each one will increase the first row by one, but the total effect will not be cumulative.
Instead v will grow somewhere other than the first row.

So to find the final shape of A, one starts with g and finds the longest chain of

first row increases. using increases both along the side of S¢, and inside. m]
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Chapter 4

Knuth Analogues and Oscillating

Tableaux

4.1 A Knuth analogue

Knuth was able to extend the original Robinson-Schensted algorithm to tableaux with
repetitions [Knu]. More precisely, he exhibited a bijection between n x n matrix words
and pairs of semi-standard tableaux of the same shape. A natural question to ask is
how this fits with Fomin’s approach. It turns out that we can fit this generalization
nicely into Fomin's picture for Young’s lattice. Unfortunately, our method does not
seem to work in an arbitrary differential poset. It is not clear what the analogue of
a “horizontal strip” is even for the Young-Fibonacci lattice Z(1). Nonetheless, we
are able to simplify and render more pictorial the description of many algorithms for

Young’s lattice.

Definition 4.1.1 Recall the notations MAT(n) for the set of n x n matrix words and
GT(A) for the set of generalized or semi-standard tableaux of shape A. If T' € GT(}),
let the content of T'. denoted cont T, be the multiset of integers which is mapped

to the cells of A. So if w(T) = (ny,n2,na3,...) is the weight of T, then contT =

59
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1,272 37 ..}, Similarly, we can call the multiset of elements which appear in the
PP

top (resp. bottom) line of a matrix word the contents of % (resp. 7).

Theorem 4.1.2 (Knuth) There is a bijection between 7 € MAT(n) and pairs of

semi-standard tableaux P.Q € GT(\) such that cont # = cont P and cont # = cont Q.

The usual proof of this is the same as the proof for the standard case. The insertion
algorithm goes through essentially unchanged, with elements bumping only those

elements which are strictly greater.

1 11
4 4 4
7 in the cells of a square skew diagram as

ot W
Ut W
—

g. We can represent

W
(SR

Example 4.1.3 Let n =5 and 7 =

2

1

But this is no longer a generalized permutation of Sg¢s. To fix this, we introduce the
minimum number of horizontal and vertical dividers necessary to view each element

of 7 as being in its own row and column. Summing the integers in a given row tells
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us how many dividers we need in that row, and similarly for columns. We obtain:

X

X

Now we can perform the usual algorithm to get a pair of standard Young tableaux
as the top boundary of the our refined square. It turns out that these tableaux always

increase by a horizontal strip where we put the dividers. In the diagram below, if the
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value of the growth at a vertex is the empty tableaux, we have just left it blank.

1 2 3 31 41 51] 511] 321} 531

X
1 2 3] 31] 41| 41] 411} 421} 431
X
1 2 31 31 31] 31| 311} 321} 331
X
1 2 2l 21 21| 21 211} 221} 321

1 1 1 11 11 11| 1111 211} 311

1 1 1 111 21 31

1 1 1 1y 21 21

In terms of our original diagram we have simply

3 31 31 521 531

2

3 31 31 321 331

1 1 21 31

1 1
2 2
1 1
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So we get that applying the algorithm to 7 yields the pair of semi-standard tableaux

le 2131515 ’ Q=1 1(1({3]3
3144 21415
4 4

Conversely, suppose we start with P and (). Then each integer : appears in each
tableaux in a horizontal strip. Suppose that P has weight w(T') = (n1,n2,ns,...).
Then we split the ith row of cells into n; rows of cells, by placing n; — 1 dividers.
We can assign a shape to each vertex on this refined boundary by the rule that cells
in a horizontal strip get built up from left to right. Similarly, split the columns up
according to . This gives us our refined square skew diagram. We can then use the
normal reverse algorithm to get a permutation, which we view as a matrix word by
taking out the dividers. Readers familiar with the algorithm will notice that this is
essentially the relabeling scheme one can use to mimic the Knuth analogue with the

original version.
To show that this works in general, we need only the following lemma.

Lemma 4.1.4 In the usual Schensted-Fomin algorithm, let u*, u**!,..., 4’ be con-

secutive shapes growing along the top side of Sg,, and let the partial permutation

1+l J‘ . See Figure 4-1. If

below these be given by
Wi Wigr v Wy

W, W < ... < wj,

then the shapes i’ and p' differ by a horizontal strip and the cells are added sequen-

tially in p', pt1, ..., 4’ from left to right.

Proof: The proof hinges on the fact we have relegated to Appendix A, that the
global description of a shape in terms of looking at the cells below and to the left of

the vertex in question. as given in Section 2.4, coincides with the local description.
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Figure 4-1: Increasing subsequences and horizontal strips
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Suppose that g* and p**! differ in the I/th part, i.e.,

T L. ST I TS IO B
This means exactly that by adding the term uﬁk to the permutation (viewed as a
poset), that we did not increase the maximum cardinality of a union of s chains for
s < [, but that we did increase that for a union of [ chains. Now, if w; < wg41,
then clearly the maximum cardinality of a union of [ chains must be one greater than
before, since we can just add the new element to a chain system which attained the
maximum for pryq. It is also possible that we have allowed the maximum to increase
for some s < [. But in either case. we must have that yr4o and piy4; differ in the sth
part for some s < [. Now by induction, we find that as long as the permutation is
increasing, the shapes we get grow by the cells of a horizontal strip from left to right.

O

We can now begin to combine options in useful ways. If we combine the skew
algorithm with the Knuth analogue, we get a Knuth version of the skew analogue
which coincides with Sagan and Stanley’s. We can also iterate this skew Knuth
version. See [SS. Section 6] for the statements of these theorems, whose proofs are

essentially immediate by drawing the appropriate Fomin picture.

4.2 Oscillating tableaux

Oscillating tableaux also fit into Fomin’s picture in a nice way. Our source for much

of the following material is S. Sundaram’s thesis [Sun].

Definition 4.2.1 An oscillating or up-down tableau of length k is a sequence of

shapes
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such that any two shapes differ by exactly one cell. We define _\F"f = {all oscillating
tableaux of length k& from shape A to shape u}, and ,\f[f = [/\Ffl If A =0, then we

omit the first subscript.

Example 4.2.2
S2 = (0,1,11,21,2,21,31,3,2,21)

is one possible oscillating tableau of shape (2,1) and length 9.
The following bijection seems to be originally due to R. P. Stanley.

Proposition 4.2.3 There is a bijection between fixed point free involutions of Ss;

and F:J.

Proof: The right hand side counts the number of fixed point free involutions of Sa;.
Stanley’s original bijection involved viewing such an involution as the number of ways
of pairing 25 points on a line segment with arcs, i.e. a matching of 2j vertices. Then
by labeling the vertices in a certain way and using Schensted insertion and jeu de
taquin, a bijection may be constructed. Our approach involves looking at the main

diagonal of our skew diagram Sg,.

Example 4.2.4 This is the same example given in [Sun, Example 8.4]. A fixed point
free involution is represented by marking X’s in the cells of S¢, symmetrically about

the main diagonal, so it is determined by the cells below the main diagonal. Suppose
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our involution is o = é i ; ; 2 g ; ? 1% 1;). Then we have the picture
X
X
X
X
X
X
X
X
X
X
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which becomes

X

Now we define a growth on this triangular shape (call it Tr,) as follows. Change ori-
entations 30 that going up and left is considered positive; note that in this orientation
Tr, is a skew diagram. Set each vertex on the lower boundary to have value @. Now

use the standard method to compute the value of the growth on the cells along the
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diagonal. We get:

1S

The shapes we obtain are the conjugates of those obtained by Sundaram, but other-

wise the algorithm is equivalent.

Why do we always get an oscillating tableau? Since the permutation is symmetric,
as we proceed along the diagonal we either gain an X on our left or we lose one below.
Since it is fixed point free. these two cases cannot coincide. Hence, the sequence along

the diagonal is always an oscillating tableaux.
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To reverse the bijection we proceed as follows. We fill in =ach vertex of the

subdiagonal with the smaller of the two tableau above it. In our example this gives:

0
1
X
o 0
0
3 1
3 2
X
o[ 2
A 2
X
2
X
1
X

Now we just use the normal backwards algorithm to fill in the other vertices. Since
the intersection of upper and lower boundary of this shape has the value §, the lower
boundary must end up identically §. The atoms of this growth will give us the fixed

point free involution. .

The envmerative consequence is

Corollary 4.2.5
fi =2 -1

where (27 — 1)!! denotes the product of all odd positive integeis < (25 — 1).
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71

To construct a skew oscillating bijection, we only need allow our lower boundary to

be nontrivial.

Example 4.2.6 Suppose we start with the oscillating tableaux

a PP =(21,22.32,42,41,411,311,31,32,31,21).

Putting these shapes aleng the diagonal and using Fomin’s algorithm we obtain

21
31 21
32| 31} 21
X
31 31 21} 21
311 31 31 21} 21
411 311} 31} 31 211 21
411 41} 31 3 3 2 2
421 41} 41} 31 3 3 2 2
X
32y 321 31 31p 31 3 3 2 2
X
221 221 221 21} 211 21 2 2 2 2
21 21 21 21 11 11 11 1 1 1 1

Hence, 51 P} corresponds with the following partial fixed point free involution o and

pair of tableaux of shape (2,1)/(1)

D W
w O

o0
[ SV e]

Noll (V]
—
[em)

._.
P o
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where the barred numbers 7,1 indicate the dual ordering on the set {1,2,...,10}, so
10 < 9 < .-+ < 1. The reason we need this dual ordering is that we have reoriented
the horizontal axis to point to the left for the purposes of our growth, but for our

permutation it still points to the right.

Proposition 4.2.7 Fix a shape a. There is a bijection between oscillating tableaux
P e .,,F'azj and triples (o.7,U) where o is a partial fixed point free involution, and
T,U € PT(a/u) such that Tw i wU = {1,2,...,25}, where u ranges over all shapes
D a. The elements of {' (but not those of T') are taken with the dual order on

(1.2....,2j}.

Proof: We proceed as in the example above. Because the tableaux is oscillating,
we get a symmetric partial permutation and we get that the entries of T and U are
disjoint sets, the former corresponding to increases and the latter to decreases. The
partition g which we get in the bottom right corner is determined by P, but in general
- different P will give different . Conversely, we may start with a triple satisfying the

above conditions and obtain an oscillating tableau P. O

The enumerative corollary is

Corollary 4.2.8 Fix a shape a. Then

-~

~2 J 2] . r2
NAEDY 5 | (2= 1)! > L

=1 G/M"';J—')
Example 4.2.9 The above bijection is really more general: there is no need for the
oscillating tableaux to begin and end at the same shape o, and then the number of

steps need not be even. If we erase the bottom row in the example above, we get
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P € 5 F3 and

—

5 Ut
[l 4]

on
G130 (V]
[SV]
NeRE

Thus we get the more general

Theorem 4.2.10 Fix shapes o and 8. There is a bijection between oscillating
tableaux P € gF* and triples (0,T,U) where o is a partial fixed point free invo-
lution, and T € PT(a/p),U € PT(B/u) such that Tw#wU = {1,2,... ,27}, where
p ranges over all shapes 2 a. The elements of U (but not those of T') are taken with

the dual order on {1,2..... 25}

Corollary 4.2.11 Fix shapes a and 3. Then

. Lkl /1 L
ofs =2 (‘,i)(ﬁ = DY farutsiu

=1 \*“

where the sum is over all i such that o/u t a,B/pt bwitha +b =k —21.

Note that to make these bijections work, one has to use different orderings for the
involutions and the growth. If we use our usual convention for permutations, then
we have to grow up and to the left. We could also have stood all the diagrams in
this section on their sides, used our usual convention for growth, but reversed one of
the orders when we marked the cells of the permutation. We will adopt this latter

convention sometimes in what follows.

4.3 More oscillating tableaux

In her investigation of properies of Berele’s algorithm for symplectic tableaux, Sun-
daram derives a number of bijections involving oscillating tableaux. It turns out that
several of these can be combined into one nice pictorial interpretation which we now

present.
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Proposition 4.3.1 There is a bijection between oscillating tableaux in F’: and pairs
(¢.17) where o is a partial fixed point free involution, and U € ST (), with # W U =
{1,2....,k}. Hence.

=,

, k
b= (|ll|>(2r - DN bk (k=2r).

Proposition 4.3.2 There is a bijection between oscillating tableaux in F’: and pairs
(L.L7) where U/ € ST(y), L € PT(3), 3" is even,and LW U = {1,2,...,k}. Hence,
rk k B ru
.f,u = Z f f *

3r(k=]ul) |ﬂ|

3 even
We need one more definition to state the third result.

Definition 4.3.3 A lattice permutation w is finite sequence of positive integers
wywsy - - - wy, such that, as one reads the word from left to right, the integer ¢ always
occurs at least as many times as the integer ¢ + 1. The weight of w is the the vector

(in fact a partition) a = (a;.g,....) where a; := the number of times 7 occurs in w.
Example 4.3.4 The lattice permutation w = 1211324213142 has weight /5.4,2,2).

Proposition 4.3.5 There is a bijection between oscillating tableaux in F': and pairs
(Q,T\/.(3)) where Q € ST(A),AF k, 3 is a shape with even columns, and T),,(f) is
a lattice permutation of weight 3 which fits the skew shape A/p. Hence,

=X Y s

Ak BF{k—{ul)

B'even

where ¢} ; = |{lattice permuations of shape A/u and weight 8}|.

Example 4.3.6 This is the same example given by Sundaram to illustrate this bi-

jections, re-interpreted pictorially. Actually, we always get shapes conjugate to those
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in her original example. This time our growth proceeds up and to the right, and we
view our permutation in the dual order, greater elements being below and to the right

(the usual matrix convention).

L 1 11 21 31 32 42
1 2 21 31 41 42 421 422 432 532
1 2 21 31 41 42 421 422 432 532
1 2 21 31 X31 41 411 421 431 531
1 2 21 31 31 41 411 421 431 X431
1 2 21 31 31 X31 311 321 331 331
1 X 1 2 3 3 3 31 32 33 33
] 1 2 X 2 2 2 21 22 32 32
1 1 2 2 2 2 21 22 32 32
1 1 2 2 2 2 21 22 32 32
1 1 2 2 2 2 21 22 32 32

X




76 CHAPTER 4. KNUTH ANALOGUES AND OSCILLATING TABLEAUX

We start with the oscillating tableaux
S8y =(0,1,2,21,31,3,2,21,22,32,31).

In our picture this is represented by the diagonal from the upper left corner to

the lower right one. By the first proposition 5(120,1,1) maps to the pair (o,U) given by

3 4
10 6

[T (V)
o Ov

6 10 11819
43’U_

In our picture o is marked with X’s and U is the partial tableau we get along the
bottom edge of the square. That this correspondence is bijective in general is clear by
Fomin: we can either work from the diagonal downwards to get o (which is symmetric
about this diagonal) and [~ or the other way around. In fact, Proposition 4.3.1 is just
a special case of Theorem 4.2.10.

By the second proposition this maps to (L,U) where

0 4 opy_l1]8]9

o
N
(S2]

L =

Here. all we are doing is replacing o with the the even-columned (rowed, in our
picture) tableaux to which it corresponds bijectively. We can place it nicely in our
picture above the top row of Sqio as shown. It may be computed most easily by the
procedure of Section 2.4. which turns the chains in o below and to the left of a vertex
into a shape. Note that L and U fit together so that when one increases, the other is

stable.
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By the third proposition 5(119,1.1) maps to the pair (Q,7/.(8)) where

2] . . . :
Q=L 12141519 snd1y0201) = 3|4
30609 EFRE
718 BE

In our picture Q is the standard tableau we get across the top edge, and Ty/,(B) is
obtained by relabeling the partial tableau P we get on the right side in the following

way.

-1
oD

115
619

Since 3’ = (4,2). o may be thought of as a unicn of two chains, “A” of length 4, and
“B” of length 2. We label the elements of each chain in order, and use these labels

for the corresponding growth of P. Our diagram becomes:
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L 1 11 21 31 32 42
1 2 21 31 41 42 421 422 432 532
1 2 21 31 41 42 421 422 432 532

B.
1 2 21 31 31 41 411 421 431 531
A,
1 2 21 31 31 41 411 421 431 431
A,
1 2 21 31 31 31 311 321 331 331
B.
1 1 2 3 3 3 31 32 33 33
A,
1 1 2 2 2 2 21 22 32 32
1 1 2 2 2 2 21 22 32 32
1 1 2 2 2 2 21 22 32 32
i 1 2 2 2 2 21 22 32 32
A
1 1 1 1 1 1 11 21 31 31
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Now at each increase along the right side we use the label associated with the element

of o in that row. In other words we relabel P thusly:

73 | 84

P =

1 | 52
61 | 92

Although our picture is essentially a proof of the bijection given in the first two
propositions, it is not immediately clear that Proposition 4.3.5 is a bijection. But
the correspondence in the forward direction is easy to see from the picture. In fact,
a pictorial proof along these lines would be very interesting, since it would probably

give a nice proof of the Littlewood-Richardson Rule.

4.4 A Knuth oscillating correspondence

An interesting and, until recently, unsolved problem is to come up with a Knuth
analogue of the Robinson-Schensted correspondence for oscillating tableaux. The
enumerative results of this section were first obtained by I. Gessel [Ges]. Gessel gen-
eralized Stanley’s original approach by using operators, corresponding to symmetric
functions. which move up or down by horizontal (or vertical) strips. He then used
certain generating function techniques and symmetric function identities to obtain re-
sults somewhat more general than those we give here. Almost as an afterthought, he
supplied a Robinson-Schensted-Knuth bijection based on insertion. We arrived at the
(slightly more general) algorithm presented here independently of Gessel’s bijection,

using instead the approach of Fomin.

Definition 4.4.1 An oscillating semistandard tableau of length 2k is a sequence
of shapes

,S2k:=(,\=,u°C;L1Dp2C...Cp2k—12pk=,u)
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where the shapes alternately increase and decrease (weakly) and any two shapes differ

by a horizontal strip. \We define

\Guluy, dy, ugy dy, ... ug, di) = {all oscillating semistandard tableaux of length 2k
from shape A to shape g which alternately go up by horizontal strips of size u;

and down by horizontal strips of size d;}

and \§.,(uy,dy.uy, doy ... we di) i= \Gulug, dy, ug, da, . .. ug, di)|. If A = 0, then we

omit the first subscript.

Definition 4.4.2 Let )/ be a symmetric & x k matrix. We define modified row- and

column-sum vectors, which stop summing at the main diagonal, as follows. Set

(M) = Za”, 1i(M) = Za,,.

J=1 j=i

Now set p(M) = (p1(AM)....,pe(M)) and (M) = (m(M),...,w%(M)).

Theorem 4.4.3 Fix a positive integer k. There is a bijection between tableaux
R € Golur, dy, uz,ds. . . .. ug. di) and symmetric £ X k matrices M with nonnegative

integer entries where p(M) = (dy,...,dk) and v(M) = (u1,...,ux).

Example 4.4.4 Suppose we start with the matrix

001 1 0 1)
000020
10010 3
M = ,
1 01000
02000 O
\1 0 3 0 0 0/
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which can also be thought of as a matrix word

(1 )

2 3 4
5 1 1

o
—
w o
w o
w o

3 3 3 3 4 3
4 6 6 6 3 2

D —

L1l
=3 4

then p(AM) = (0,0,1,2,2,4) and (M) = (3,2,4,0,0,0). We have the following

diagram:
3
3 32
3 32 522
2 31 521 521
1 3 1 42 42 42
1 2 1 4 4 4 4
1 3

and we read off the oscillating semistandard tableau along the diagonal:

R = (0,3,3.32,32,522,521,521,42,42,4,4,0)

which lies in G¢(3,0,2,0,4,1,0,2,0,2,0,4). If we start with M or o we can construct
R also by simply looking at the chains of o below and to the left of a vertex (as
in Section 2.4). To go the other way, we need to refine this diagram as we did in

Example 4.1.3. We omit the details.

Note that the original oscillating bijection used only the vertices on the diagonal,
whereas here we use both the diagonal and the subdiagonal of our shape. Fixed

points were not allowed since they would have been invisible to the original one, but
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here we can allow them without difficulty. We can also allow cells in o to occur both
below and to the left of a diagonal cell at the same time, whereas before this was also
forbidden. This may help explain why other attempts to construct a Knuth analogue

ran into trouble.

Proof: By the above example. O

Corollary 4.4.5

N d d -1
Zg@(ul.(ll ..... weo di )Pyt oyt = H (1 —-ay,) .
1<i<j<k

We can easily combine this with our method for constructing skew algorithms to

obtain

Theorem 4.4.6 Fix a positive integer k. There is a bijection between tableaux
Re ‘\G'@(ul. di g, dy. ... k. dy) and triples (o, T, U) where o represents a symmetric
k x k matrix with nonnegative integer entries, I' € GT(A\/v),U € GT(p/v), and v is

allowed to vary.

Example 4.4.7 We can use Example 4.4.4 above to construct one example. Simply
truncating the left column and bottom row off our picture we obtain a bijection

between

R =(3.32,32,522,521,521,42,42,4)
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and the triple (0. T.U). where

(

Q
I
v O O o ©

\

But not every example will have such a form, since in general T and U may have

1
0
0
1
0

1
0

1
1

0
0

0

8V

0
0
0

r[v=

o

o

o

more than one part. For a more interesting example we start with

R = (21,32,31,421,42,42,22.32.31.51, 31),

which we represent initially as

21

31

421

32

31

51

31
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We refine it as usual and compute the interior to get

(S
[V

21! 32

11 21 31} 311} 321] 421

23 31 32 42 42

X
1 2 3| 31y 32 32 32
X
1 2 21 21 221 221 221 32

1 l 1 11 21 211 21 31| 41} 51

wi:ich we rewrite more compactly as

21 32

11 31 421

1 3 42 42
1 2 22 22 32
1 1 21 21 31 51
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Hence, R «— (0, T,U) where

q
1l
O -0
co~oo
cCOoO O —
coo o~
oo oo
~
Il
(-
Il

Corollary 4.4.8
Sosdulwnidis e d)atylt gyt = Ysaul)suly) T (1= zayy)™

where s/, (x) := sy (21 02,00 T) is the Schur function in k variables.

Proof: The only difference from the corollary above is that we need generating func-
tions for the skew semistandard tableaux T,U/. By definition, these are the Schur

functions (see <ection 1.1). ]
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Chapter 5

Fibonacci Differential Posets

5.1 The Fibonacci Differential Poset

Much of the discussion in the preceeding chapters is valid for any differential poset. It
is interesting to consider how the theory works for the other standard example Z(1),

which we defined in Section 2.2.

87
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0) : —
Example 5.1.1 Let 7 = : ; ;‘ ? g : ? g We have the following dia-
grarm:
T T 2 12 221 221 212l 2211|221l

1 11 21 21 211 1211} 2211 21211211211

1 11 21 21 211 211} 1211 11211} 21211

1 Il 2] 20 211 211 1211 1211 2211
1 11 21 21 211 211 X211 211 221
1 X 1 11 11 21 71 21 21 22
1 1 X 1 1 2 2 2 2 12]
1 1 ] I 3 2 2 2 x 2
X ) ) ) 1 1 1 1 1

X

We use the natural R-correspondence ® (see Section 2.6) on Z(1) defined as follows.
Each x € Z(1) is covered by a exactly one element which begins with 1, namely 1z.
We set ®,(1x) = x. For every other element 2= covering = we set ®.(2z) = z. If we
view Z(1) geometrically as the “reflection-extension” of a point (see Section 2.2), then
we are mapping the reflected part back to its reflection around r and the extended
part to z. In practice. this R-correspondence is incredibly easy to compute with for
the following reason. Suppose as usual that the values of our growth around a cell

C are given by goo. go1- g10- g1~ and that |g00] < |go1l = lg10l < |g11]- Then whether
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go1 = gio or not, we obtain g;; from goo by prepending a 2. The only time we prepend
a | is when the C' is marked with an X. So = corresponds with the following pair

(P.Q) of paths in Z(1):
P=(0.1,2,12,22,.221,2211,21211, 211211, 221211)

Q = (0,1.11,21,121.221,2211,21211, 22211, 221211)

One question which immediately presents itself is if there is some way to represent
a path which is more convenient than writing it all out. Young’s lattice had the
advantage that such a path could be represented canonically as a standard tableau,

and any standard tableau represents exactly one path. Here we are less fortunate.

Example 5.1.2 We can represent an element of Z(1) typographically as a sort of
Young diagram as follows. Each “2” corresponds to two boxes stacked on top of
one another, each *1” to a single box, and we proceed from left to right. With this

convention. the shapes in @@ above are:

Q=(®,D,D:,HU,EF1'1,FPH,FF]ﬁ,FH:l-n,|:Hq—n,FH-Hﬂ)

S0 it would be natural to to try represent the above pair of paths as

p_|1]9 2 Cg-|5]8 3

One can do this, but there are several disadvantages compared with the tableaux we
get for Young’s lattice. While each element in the top row must be greater than the
one below it, there are no other obvious rules governing what numberings are allowed

for a given shape. But in general, a numbering which follows the obvious rule will
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not correspond with a path in Z(1). For example, the “tableau”

T =

does not represent a path because 2212 does not cover 2211 in Z(1).

Another way to represent paths in Z(1) is discussed in the next section.

5.2 An insertion algorithm

The following insertion algorithm gives the same results as Fomin’s method.
Suppose we wish to insert the nunber a into a given “partial tableau™ T of shape
r. We first compare a to the value t; of the leftmost square in the bottom row of T.
If @ > ¢t,. then add a cell to the left of ¢; and put the value a inside, terminating the
algorithm (our new tableaux has shape lz). If < t;, then place a in the cell directly
above t,, bumping any clement b which may be in that cell. If the cell is empty, we
are done. Otherwise. we continue (inductively) by comparing b to the element t; to

the right of ¢; in the bottom row.

Example 5.2.1 If we insert 8 into the partial tableau

we get

Note that unlike in the original R-S algorithm, the number a may bump elements b
in the second row which are larger or smaller than a. The algorithm can terminate in
two ways. Suppose the shape r of T has : initial 2’s, i.e., ¢ = 2'w for some word w;
let £y, ..., tipq (resp. up.o. ... w.41) denote the first i +1 elements in the bottom (resp.
top) row, and set wp := a. Then if u;, < t;j4 for all 0 < j < 1, each u; will bump

w,+1 to the right one place until finally u; comes to rest on top of t;11. In this case,
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the shape z' of our new tableau 7" is 2'*'w. Otherwise, let q be the least j such that
u, > t,41. Then the algorithm terminates with u, forming a new column in between
t, and t;1,, and the shape of T becomes z’ = 2712!~Jw. In either case, a’ covers z in

Z(1).

U 1 23 456 789
Example 5.2.2 Suppose we again start with 7 = 9 5 4918 6 7 33
in Example 5.1.1. We have the following sequence of insertions:
(4] 4] 1[4 1
2] [12) 2] odsiz2] togslz2] Lo 4]2]
6] [1 T]6]1 3[7] [1]
olsTs402] [olsfsi4]2] ([ol8f6]s]4]2].

Notice that the shapes we get correspond exactly to the path @ from before. As
in the Schensted case. we can think of the path Q as a “recording tableau” for the

sequence of shapes we get by successive insertions. Our final tableau

P=

9

on
(@)
(S}
KN
[ o)

represents the path P from before, but there seems (so far) to be no easy way to

translate P into its equivalent path.

Definition 5.2.3 From now on when we need to distinguish between the two ways
of representing a path as a “tableau”, we shall call the ones from Example 5.1.2,
where we just number the elements of a shape z in the same order as they occur
in the path, “path-tableaux™. The ones from Example 5.2.2, which simply have to
satisfy the requirement that elements decreases along the bottom row and up each
column, we will call “tableaux”. There are no requirements on the top row elements
with respect to one another. In fact, these are tableaux in the proper sense of the

word. being order preserving maps from a shape z to Z+. We just consider the order
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on r € Z(1) to be given by (5. 1) < (k. 1) if £ < j and (j,1) < (J.2) for all j. Here
(1.7) denotes the cell of .+ in the /th row (from the left) and the jth column (from
the bottom). The advantage tableaux have over path-tableaux is that we can easily
write down all the legitimate tableaux of a given shape. Let ZT'(x) (resp. PZT(z))

denote the set of all tableaux (resp. path-tableaux) of shape z. Set =, := |ZT(r)].
The most naive form of our insertion algorithm is the following

Proposition 5.2.4 There is a bijection between 7 € S, and pairs (P.Q) where

PeZTl(r), Qe PZT(r). and || = n. We write FeRsS (P.Q).

Proof: First note that the insertion procedure defined above always gives us a le-
gitimate tableau. As clements are inserted. they are bumped across the top of P as
long as they are smaller than the elements beneath them. As soon as they become
bigger. they fall between two elementsin the bottom row and form their own columns.
Hence, our output is always a tableau in the sense of the above definition.

We claim that the algorithm given above is invertible. At the kth stage, the path-
tableau () tells us which was the cell most recently created in our tableaux P of shape
x. If the cell was added in the top row (and, say, the 1th column), then z must have
the form 2%w for some word w in 1's and 2’s. (See the remarks after Example 5.2.1.)
Then each v, in the top row will bump u,_; backwards, until the leftmost u is bumped
out of the tableau. This must have been the element which was originally inserted,
and we now have our P._;. If the cell was added in the bottom row (and, say, the
ith column), then the element ¢, inside it must be smaller than ¢;_; and Pi has shape
2= for some w. Hence. we bump u,_; with ¢;, and continue bumping as before
along the top row until the leftmost « is bumped out of the tableau, yielding the

originally inserted element and Py_;. a

Corollary 5.2.5
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5.3 Involutions

One property the above algorithm shares with the usual Robinson-Schensted algo-

rithm is the following

Theorem 5.3.1 If r FB5S (P.Q), then 71 FeRSS (Q, P).

Proof: This will be an immediate consequence of Lemma 5.4.4, in which we will
prove the bumping algorithm is equivalent to the one derived from Fomin’s method.

a

We pause a minute to unravel the meaning of the above theorem. If we treat P and ¢
as representing paths. then the theorem is clear. In terms of our insertion algorithm,
P € ZT(z) and Q € PZT(x). but their roles are reversed when we replace = with
7—!. What this says is that any path from @ to z in Z(1) may be written in either
form. If we obtained (P.Q) via the algorithm applied to w, then we can get each
represented in the other form by applying the algorithm to 7~'. If we start with just
sav P € ZT(r) and want to represent it as an element of PZT(r), we may choose
any Q € PZT(z), work backwards to get a permutation o, then apply the algorithm
to 07! to get Q,-1 € PZT(x) which represents the same path as our original P.

We have the usual

Corollary 5.3.2 Restriction of the above correspondence to involutions of S, gives

a uijection with tableaux in ZT'(z) where |z| = n. Hence,

Y = =1Inv(n).

jz|=n

Example 5.3.3 If we apply our algorithm to the involution

3 456 789
9 41 6 8 7 3’

Ot
[ SV ()
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we get the following sequence of tableau

o
p—
Y=
[=>)
p—

2] [4
5

BRBALR

1] H 1] 7] [1]
6ls5f4f2) [ols]6]l5l4f2] |ol8]6]5]1412].

»

w

<7

The cycle decomposition for o is (93)(87)(6)(51)(4)(2), which corresponds exactly to

our P! This serendipitous occurrance is not an accident.

- . . F-R-S
Theorem 5.3.4 Let o € S, be an involution, and assume ¢ ——= P e ZT(z).
Then P represents the cvele decomposition of o in the obvious manner; to wit, the

elements in each column of P form a cycle in o.

Proof: This follows from the key Lemima 5.4.3, which we prove in the next section.

]

5.4 A global description

Definition 5.4.1 Let 7 be a generalized permutation of the cells of a S¢,, and let
v be a any vertex. Define an element G(v) € Z(1) recursively as follows. Start with
the empty word §. If w is the word constructed so far, let R {(resp. C) be the cell of
7 in the highest-occuring row (resp. column). If R = C, append a 1 to the end of
w: if R # C, append a 2. Now delete the cells R,C from =, and repeat the whole
process. When all cells of = have been deleted, the process terminates (this can take

at most n steps). We set (i(v) to be the last word we obtain.

Example 5.4.2 The growth which we defined locally in Example 5.1.1, is also an

example of a growth of this type, as the interested reader can easily check.
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In fact, this global description of growth always coincides with the local one. This
is analogous to the situation for Young’s lattice, where we could describe a growth

either way (see Sections 2.4 and 2.6).

Lemma 5.4.3 Let m be a generalized permutation of the cells of a Sg¢,, and let
g: Sq, — Z(1) be the growth corresponding to = (with the usual R-correspondence

on Z(1)). Then g(v) = G(v) for every v € S¢n.

Proof: The reader is encouraged to experiment with a couple of examples similar to
the ones given above prior to (or instead of) trying to follow the technicalities we now
present. We proceed inductively. Let C' be any cell of Sq,, and let the the vertices of

(' be given labeled as below:

Now supposing the result is true for all vertices to the left of and below d, we will

show it holds also for d. We have several cases.

Case 1: Suppose cells in © occur to the left and below the cell C. Then in the
definition of G{d) these celis will be the cells R and C and they will not be
equal. Hence, G(d) = 2G(a). On the other hand, the situation forces |ga| <
|9s] = |ge| < |gal. so by the remark after Example 5.1.1 we have g(d) = 2g(a).
Hence, G(a) = g(a) implies G(d) = g(d).

Case 2: Suppose there is a cell in 7 below C, but not one to the left of C. Then
clearly G(c) = G(d) since they both see the same generalized permutation below
and to the left: G(a) = G(b) for the same reason. Hence, g(a) = g(b) by the
induction hypothesis, so g(c) = g(d) by the workings of the local algorithm.
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The symmetrical case where there is a cell in 7 to the left of C' but not below

is treated the same way.

Case 3: (' € 7. Since 7 is a generalized permutation, this means that there are no
cells of m below or to the left of C. Hence, g(a) = g(b) = g(c¢) and G(a) = G(b) =
G'(c). Now in the definition of G(d) the cells R and C will coincide, and then
afterwards the situation will be the same as that for G(a); hence G(d) = 1G(a).
But our R-correspondence for Z(1) says exactly that when C € 7, g(d) = lg(a).
Hence. G(a) = g(a) implies G(d) = g(d).

Case 4: Cells in # occur only above or to the right of C. Then clearly g(a) = g(b) =
g(c) = g(d) and (i(a) = (G(b) = G(c) = G(d). Hence. G(d) = g(d).

We are now in a position to prove that our insertion algorithm agrees with Fomin’s

method.

Lemma 5.4.4 Suppose that = FeRsS (P,Q), where P € ZT(x), Q € PZT(z)
via the insertion algorithm. Then (P, Q) represents the same pair of paths (P,Q)

that we get via Fomin's method.

Proof: This is best seen by referring to an example, which the reader is encouraged
to do. The gory details follow. We first show that @ = (. Suppose the paths agree
up to the k — Ist stage. Let (k) = a. Suppose the shape z of Q- has ¢ initial
2's. i.e.. £ = 2w for some word w: let tq,...,t41 (resp. ui....,u;+;) denote the first
! + 1 elements in the bottom (resp. top) row, and set ug := a. Then if u; < tj4, for
all 0 < j < ¢, each u, will bump u,4; to the right one place until finally u; comes to
rest on top of ¢,4;. In this case. the shape z’ of our new tableau T” is 2'*'w. But the
global description of Fomin’s algorithm says exactly the same thing; for as a replaces

u; as the rightmost cell. it forces each u; to pair up with t;4, instead of t;. In the
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other case, let ¢ be the least j such that u; > t,+1. Then the algorithm terminates
with u, forming a new column in between ¢, and t;4,, and the shape of T’ becomes
r' = 212i=7w. The global description again agrees, since u; will pair up with #;4,
only while u; < t,41. u, then becomes an unpaired element, and causes a 1 to be

added between the jth and j + 1st columns of x. (]

Theorem 5.3.1 now follows by using Fomin’s approach and merely transposing the

diagram. Theorem 35.3.4 has the following proof:

Proof: (Of Theorem 5.3.4). We use the global description of G(v) at each v along
the upwards diagonal of Sq,. Because o is symmetric about this diagonal, in the
definition of G(n) each cell in o will always pair up with its image. Hence, fixed
points of o will contribute columns of height 1 in P and two-cycles will contribute

columns of height 2. The theorem follows. a

Skew and oscillating versions of this algorithm can also be constructed, and in
terms of Fomin's approach one sees immediately how to do so. Skewing means al-
lowing the lower boundary of Sq, to be nontrivial, and oscillating means looking at
tableau along a diagonal. However, Z(1) seems to lack a Knuth version of its algo-
rithm. In the first place. it is unclear what the analogue of a horizontal strip should
be. If one attempts instead to generalize the insertion algorithm to matrix words by
allowing elements to bump themselves, one finds that correspondence is no longer a

bijection [Ker].
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Chapter 6

Sequentially Differential Posets

In this section we extend certain results to the class of sequentially differential posets,
first defined by Stanley in [Sta2]. Unlike differential posets, which seem to include
only two interesting classes of examples (Y" and Z(r)), sequentially differential posets
include many interesting examples. But the enumeration of paths becomes signifi-
cantly harder and the results do not have the same nice formulation we get in the

differential case.

6.1 Definitions and example

Most of the following is straight out of [Sta2].

Definition 6.1.1 Let r = (ro,71,...,) be an infinite sequence of integers. A poset
P is called r-differential if it satisfies conditions (D1) and (D2) of Definition 2.1.1 as

well as

(D3') if z € P, and x covers exactly k elements of P, then z is covered by exactly

Lk + r; elements of P.

For differential posets we required that the difference between the number of elements

covering z and covered by r was a constant function over all of P. Now we let it vary

99
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from rank to rank.

Example 6.1.2 The following are some examples of sequentially differential posets.
(a) An n-element chain (ro =1,r,=0for1 <:<n—-2,r,_; =—1).

(b) The boolean algebra B, of rank n (ri=n—2:,0 <17 < n).

(c) A product ('} of n 3-element chains C5 (r; =n —1,0 <1 < 2n).

(d) The lattice L,(¢) of subspaces of an n-dimensional vector space over the finite

field Fy (nm=1+¢+ - +¢""'=(14+g+---+¢7),0<i<n)

(e) If Pisr-differential and finite of rank n, then the dual P* is (=7, —7n_1,..., —T0)-

differential.

There are many other examples.

6.2 Enumerative results

Definition 6.2.1 For a fixed poset P let a(m — n) denote the number of saturated

chains from P, tc P,.

The following theorem was discovered and proved by Stanley using the algebraic
machinery of U and D operators. We are able to give a much simpler proof based on

Fomin’s ideas.

Theorem 6.2.2 Let P be an r-differential poset. Then

a(0 = n) = ZHr,,(w‘m)

w m
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where w ranges over all involutions wyw,---w, in S,, m ranges over all weak ez-
cedances of w (i.e.. w, > m), and n(m,w) is the number of integers j satisfying

J < mand w; < wy,.

Example 6.2.3 When n = 3 we have four involutions, which may be represented
in the following diagrams. In each diagram, the weak excedances, which are simply
the cells of the involution above or on the diagonal, are marked by the letter R. The
following number is the corresponding value of n(w, m), which is simply the number
of cells in the involution which are below and to the left of our cell. The other cells

of the involution are marked simply with the letter X.

R2 R2 R1 RO

RO A RO X

Hence. we conclude that a(0 — n) = roriry + rory + rory + 3.

We need to generalize somewhat the machinery of Section 2.6. Recall that an R-
correspondence ® was a collection of maps {®, : z € P}, with &, : C*(z)U{z} —
C~(x)U{x}. These maps were meant to be “almost-bijections”, in that we could
define a growth uniquely up to one choice, which we indicated by marking an X in a
cell of our skew diagram. Had we been considering r-differential posets at the time,
each of these maps would have been bijections except for r elements covering z and
our growths would have been uniquely defined up to marking one of the numbers
{1.2,....r} in appropriate cells. More precisely, write C*(z) = R(z) W E(z), where
#R(x) = #C~(2) and #E(2) = r. We define ®, to be a bijection between R{x) and
C~(x), and set

®.(y)=1, VyeE()U{z}.
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The same argument as before shows that these cells will still form a generalized
permutation. Next, because we carry out our construction locally, there is no reason

that wve have to have the same r for each r € P.

Definition 6.2.4 Let P be an r-differential poset, and assume that each r, > 0. An
R-correspondence ¢ is a collection of maps {®, : z € P}, with @, : C*(z)U{z} —

C'~(x)U{x} which satis{y the following conditions:

(1) ¢.(2) ==.
(2) If © € P,. then there are exactly r; elements y;,ys... ., yr, € Ct(x) satisfying
<I>x(y,~) = ..

3) &, : CHa)N\{vi.y2e--.. yr } — C~(z) is a bijection.

It is not hard to think of ways to generalize this definition for the case where some
of the r,’s can be negative, but it does not seem to work well with the simple proofs

which follow.

Definition 6.2.5 A weighted generalized permutation & on a skew diagram S
is a generalized permutation of S, each of whose cells is assigned an integer (called

the weight).
The following theorem is proven analogously to Theorem 2.6.7.

Theorem 6.2.6 Let P be an r-differential poset with each r, > 0 and S any skew
diagram. Fix an R-correspondence ® on P. Then we have a bijection between growths
gt : 9Y(S) — P and pairs (g~.5) where g- : 97(5) — P, and & is a weighted
generalized permutation on S. with weight function 7(C) = the number of cells in ¢

below and to the left of o.

Proof: The only interesting detail is the description of the weight function. By

definition of the R-correspondence, our growth is determined except at cells C' € o.
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The number of choices at such a cell C' is determined by the rank of the element ggo,

which is n(C). a
Now we can make quick work of Theorem 6.2.2.

Proof: (of Theorem 6.2.2). Since we are interested in saturated chains from 0, we
get in the above theorem that g~ = 0, and o must be a permutation. Since we are
interested in chains but not pairs of chains, we restrict to the case where g% consists
of the same chain along the top and right edges, which forces o to be an involution.
Since the entire diagram must be symmetric about the upwards diagonal, we only are
allowed the choices given by our weights on (say) those cells above or on the diagonal.
The values at the other cells are then determined. Each saturated path corresponds

with one weighting of one involution o. Hence. we obtain

a(0 —n) = ZHTW(WJTL)'

This give a simple bijective proof in the case where all the r,’s are nonnegative. It is
easy to see from the machinery of differential posets [Sta2] that the answer in general
must be a polynomial in the r;’s. Hence, the polynomial we determined in the special

case of all r,’s being nonnegative must hold for general r;’s. a

Next we consider a kind of oscillating analogue, and give a simple bijective proof
of another of Stanley’s results. Consider a word w = w(U, D) = wjw;--- w; in the
letters I/ and D. We wish to count the number of Hasse walks 0 = 29, 21,...,21 ==

with the cover relations v,_; < r, or z; < z;_1, specified by w.

Definition 6.2.7 Fix a poset P and x,y € P. Consider a word w = w(U,D) =
wiwy -+ - wy in the letters [” and D. Let s(x = y) denote the number of Hasse walks
from 2 to y, with the cover relations z;_y < z; or z; < z;_;, specified by w; i.e.,

2,1 < z;ifw, = U and 2; < 2,21 if w; = D. When we omit w and just write
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Z(x — y). we mean the number of saturated chains from v to y (i.e., w = U™ or D").

In particular,

a(m —n) = Z s(x—y).
T€EPm
yE€EFn

Note that ¢(0 — z) is often denoted (particularly by Stanley) e(a) (the number of
linear “extensions™ to ).

Example 6.2.8 If «w = ('/UDUDDU and r = 0, then (0 % y) is the number of
Hasse walks 0 = v < vy < 0y > r3<Ty>T5> 6 < Ty =Y.

Clearly (0 & 2) = 0 except under the following conditions.

Definition 6.2.9 Fix » € P. We call the word w = w(U, D) a valid x-word if the
following conditions hold:

(a) For all 1 <7 < /. the number of D’s among wy,....w, does not exceed the

number of { s.

(b) The difference between the number of U's and the number of D’s in w is the

rank p(x) of x.

Theorem 6.2.10 Let P be an r-differential poset, and let z € P. Let w = w(U, D) =
wywy -+ wy be a valid r-word. Let S = {i : w, = D}. For each i € S, let d, be the
number of D’s in w to the left of or including w;, and let u, be the number of U’s in

w to the left of or including w;. Set f; = u, — d;. Then

:‘(f)ﬁ).l')=S(0—>x)H(ro+r1+~-+rf.). (6.1)
€S
Example 6.2.11 Let « = UUDUUDDUUD. Then S = {4,7,8,11}, and we

easily compute fy = 2. f- = 3. fs = 2. f1; = 3. If p(z) = 3, then

A

(05 0) =20 = 2)(ro+ 1 +12)2(ro + 11 + 12+ 73)°.
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Proof: First assume that each r, > 0. Let S be given as {sy,....s4}. Construct a
skew diagram F'. by letting the 7th row of F' (counting from the top) consist of f,, +:
cells. Then F will be a sort of upside-down Young diagram. Any Hasse walk counted
by the left hand side of (6.1) may be represented by a growth ¢* on 9%(F), where
the upper left corner takes the value 0, and the lower right corner takes the value .

In the preceeding example. we would have the following diagram for F':

By the usual process. gt is in bijective correspondence with a pair (¢~,5), where g~
is a growth on the lower boundary of F, and & is a weighted generalized permutation
on S, with usual weight function n(C'). Since, g* is never constant, each column of F
must contain a cell of & or else there is nontrivial growth across the bottom edge of F’
in that column. Now since the left edge of F' must be identically 0. g~ is determined
simply the nontrivial growth along the bottom edge of F', which can be thought of as
a saturated chain from 0 to z. This accounts for the ¢(0 — z) part of the right hand
side.

Next. we need to count the number of weighted generalized permutation on & on
S with usual weight function p(C). In the first row, we have a choice of f;, +1 cells,
and picking the jth column will give weight r;_,. Hence, we have (ro + --- + ry, )
total choices. In the ith row, our previous choices have eliminated ¢ — 1 columns, so

we have f,, +1 — (i — 1) = f,, + 1 choices left. The weights work exactly as they did
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in the first columu: picking the jth allowed column will give weight r,_; (since the
disallowed column all have cell in & above the row under consideration. Hence, the
total number of weighted generalized permutation is given by [T,es(ro+71+---+7y,).
(6.1) follows. The extension to the case where some r;’s may be negative proceeds as

before. 0

Corollary 6.2.12 Let P be an r-differential poset. Then

a0 »n—0)= z‘ 5(0 5 r)?

-

T€EP,
n—1
= Z H Po(w,m) = H(TO + r+--- +rz)-
weS, mew i=0

Proof: The first equality is just the definition. The latter two are the case w =
D" (ie., the skew diagram F is square) in the above theorem. Compare also

Theorem 6.2.2. O

6.3 Iterated skew maps

An open question in [Sta2] was to come up with a more explicit formula for a(n —
n + k) along the lines of Theorem 6.2.2. Using an analogue of Sagan and Stanley’s
skew iterated algorithm (Section 3.3), we give such an explicit formula, which will be

the restriction to the case of involutions of a more general iterated bijection.

Definition 6.3.1 Let ~#(k — n + k — k) denote the number of closed Hasse walks
of length 2n on a poset P which start and end at the same element of level &, going

up to level n + & by a saturated chain and returning. In terms of our earlier notation
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we have:

khk—n+hk—k)= Y elz>x)
J.'EPk

where w = U" D",

Definition 6.3.2 A doubly-weighted generalized permutation & on a skew
diagram S is a generalized permutation of S, each of whose cells is assigned two
integer. The first integer we will call the “g-weight”; it keeps track of which iteration
of the skew algorithm we are on, and is defined exactly as in Definition 3.3.1. The
second weight (the “r-weight”) keeps track of what level we are currently at in the
poset. This is the notion used earlier in this chapter. Although we have used the
same terminology for both of these ideas, they will coexist peacefully in the results

to follow.

The following r-weight function will be the analogue of the weight function 7 we used

before.

Definition 6.3.3 Fix a cell (""" of g-weight ¢ in the doubly-weighted generalized
permutation @, and fix » € P. Let ©2% denote the set of cells of & which have

weight at least u. Set

B(w.CY ) = #)Y € below and to the left of C

+#Y € 22" helow or to the left of C', counted with multiplicity

+ Z wi(Y)—t—1

Yeu2t+2)

+|l/|

By “counted with multiplicity” we mean that if the cell Y is both below and to
the left of C' that we count it twice. The third summand is equivalent to #Y €
D242 4 Y ¢ p(2t42) o
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Example 6.3.4 Let || = 4 and let

o 23 4 5
Y= 33 5 40 (1) 9o

as in Example 3.3.4. We may represent @ by the following diagram:

(0)

C

—_—
- .
~—

(1)

X

Then 8(w,C,v) =0+ 4+ 2+ 4 = 10. This is the same weighted permutation that
appeared in Example 3.3.4. The reader may want to refer back to this example and
note that the value of the growth on the lower corners of the corresponding cell had
rank 10. One can also check that this works for the other cells in w, i.e., that 8 is
exactly the right function to determine the rank that occurs just below a cell in an

iterated growth.

Theorem 6.3.5 Let P be an r-differential poset. Then

dowlhk - n+k ok =3 (Z II rg(w‘c_l,)q“’t(w)) q"! (6.2)

k>0 veEP \ w Cew

where «w ranges cver all ¢-weighted permutations.
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Proof: One just mimics the proof of Theorem 3.3.3, but now that our poset is

sequentially differential. we have to count the r-weight of each term of our ¢-weighted

permutation separately using the weight function 6.

Restricting to the case of symmetric growths we obtain:

Corollary 6.3.6 Let P be an r-differential poset. Then

Z a(k - n+k)g* = Z (Z H To(w,c.u)‘lwt(w)) g

k>0 veP \ v Cew

where w ranges over all ¢-weighted involutions.

]
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Appendix A

The equivalence of the approaches

for Young’s lattice

A.1 Introduction

In this chapter we show that for Young’s lattice Y the two methods we gave of defining
a growth, the “global™ approach of Section 2.4 and the local approach of Section 2.6,
are equivalent. Our proof closely follows that of Fomin [Fom2, Section 6], and we
have preserved most of his notation. In light of the following extension of Schensted’s
original theorem on the length of the longest increasing (decreasing) subsequence
of a permutation by Curtis Greene, this will imply that Fomin’s approach, in the
particular case of Y with the usual R-correspondence, is identical with the usual R-S
algorithm (via insertion).

Theorem A.1.1 ([Grel]) Let &% (S.T) where S and T are of shape . For

each k < n, let ai(7) = denote the length of the longest subsequence of  which has
no increasing subsequences of length £ + 1. (It can be shown easily that any such

sequence is obtained by taking the union of k decreasing subsequences.) Similarly,

111
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define ci(m) to be the length of the longest subsequence consisting of k ascending

subsequences. Then

c(m) = M+A+--+ X
ar(m) = M +A 4+

where ' denotes the conjugate partition to A as usual.

A.2 Posets to Partitions

First we recall the basic theorem of Section 2.4.

Theorem A.2.1 Let P be any finite poset. For £ a positive integer, set cx(P) (resp.
ar(P)) to be the size of the largest number of elements which is the union of &
chains (resp. antichains) of P. Now, let A\i(P) = e {P) — ck-1(P) and ux(P) =
ai(P)—ax-1(P). Then N(P) = (A1, Ag, Az, ...) and u = (pq, o, it3. . . .) are partitions,

and g is the conjugate of A.
We will also need the following result, which is proven in Fomin’s earlier paper [Fom1].

Lemima A.2.2 Let ¢ be an extremal (maximal or minimal) element of a finite poset

P. Then M P\{e}) C A(P).

Hence. it is clear that the global definition of growth actually is a growth.

Definition A.2.3 Let w = (w;,ws,...,w) be a system of disjoint chains in the

finite poset P. For each nonnegative integer s define a functional H,(w) by

H (w) = Z (#w; — s).

1<i<k
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\\4

Figure A-1: The functional Hs(w) viewed inside A(P)

For fixed k, if w is a maximal system of chains, then Hy(w) = ¢t — sk (see Figure A-1).
For fixed s, the functional H, is maximized when & is chosen so that cell (£, s) lies at
the boundary of the diagram A(P). A system of chains w in P may be regarded as
a collection of edges in the Hasse diagram H of P. If we temporarily disregard the
order. we may treat H as an undirected graph, and w as simply a collection of edges
in H. Now, if p is any path in H, it makes sense to take the symmetric difference
w' = w A p. It may or may not be the case that w A p can be regarded as a system
of chains of P. Some schematic examples of this appear in Figure A-2, where w is
always the three vertical solid line segments, and p is the path indicated by the bold
and dashed segments. Note that while we always start with w having 3 chains, that
w' may consist of more or fewer chains. In the figure, example a has a 4 chain w’, and
example d has a 2 chain w'. We have the following “Ford-Fulkerson” type theorem

which guarantees the existence of maximal chain systems.

Theorem A.2.4 ([Fom1]) Fix s € N. If H,(w) < max H, then there exists a path
p and a chain system w’ such that v’ = w A p and H,(w) < Hy(w').
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Figure A-2: Replacing a chain system with another via a path

The above theorem will be the main tool used in proving the equivalence of the local
and global approaches. Note that in general the chain system w' need not have the
same number of chains as w. If they do, we have the following Lemma, which is

illustrated by Figure A-2.

Lemma A.2.5 In the situation of Theorem A.2.4, if the chain systems w and w’
have the same number of chains, then either w and w’ have the same set of maximal

elements or they have the same set of minimal elements.

A.3 Adding successive extremal elements

Let ¢; and e; be extremal elements of P. Define Ao = A P\{e1,e2}), An =
A(P\{e1}), Ao = A(P\{e2}), A1 = A(P). By Lemma A.2.2, we have that Ao C
A1 C A and Ago € Ao C A1p. We think of these partitions as representing the
growth at the four corners of a cell of some skew diagram, as in Figure A-3. If
Ao1 # Ao, then Agg and A;; must be the meet and join (respectively) of Ag; and Ao,
simply because they form a growth on the corners of the cell. This agrees with our
local determination of the growth. The harder case is Agy = Ao, for which we need
the following theorem. This will tell us how adding two successive extremal elements

to a poset affects the associated partition.
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AOI A11

A00 ’\IO

Figure A-3: Close up of the growth around one cell

Theorem A.3.1 Assume \g; = Ajg in the situation above. Let A = (X 4,Y4) denote

the cell Ao1/Aoo and B = (Xpg,Yps) denote the cell Aj1/Aos.

Case 1: If e; and e, are extremal elements of different types (i.e., one is maximal

and the other minimal) then 2g = x4 0or zp = x4 + 1.

Case 2: If e; and e, are extremal elements of the same type (i.e., both maximal or

both minimal), then x5 < z 4.

See Figure A-4, where the shaded regions indicate the allowed position of the cell B

relative to A.

Example A.3.2 Consider the two posets in Figure A-5. Both are obtained by adding
two extremal elements to the same five-element poset, but in the first one these
elements are of different types. in the second, both are maximal. The corresponding
partitions are Moo = 32, Ao1 = Ajo = 33 in both cases; but A;; = 43 in the first case,

A11 = 331 in the second.

Proof: Let cx = cx(P\{e1,e2}) and ax = ax(P\{e1,e2}) (as in the theorem at the
beginning of this appendix). So ¢, counts the sum of the first k parts of Ago. We
consider Case 1 and proceed by contradiction. If the conclusion is false, then we have

one of the following two equations:

Yy <ya, Tp>zTa+l (A.1)
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Case 1 Case 2
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Figure A-4: Allowable positions for the cell B

O
O_‘m
O
O
@)

Q Q
O/ O/

[{]
N

Figure A-5: Examples of extremal elements added to a five-element poset
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Yp > Ya, ITB<7Ta (A.2)

We examine each subcase in turn. In subcase A.1, we have that ¢,, does not increase
upon adding either €, or ez, but does increase when we add both of them. Hence,
there exists a system w of yg chains in P\{ej,e,} which covers ¢,; — 1 elements, and
to which we may add the elements e; and e; to get a system of yg chains covering
¢y + 1 elements. Now. set s = rp — 2, 50 s is 1 less than the length of the ypth
row of A\go. By Theorem A.2.4, we can construct a system of k chains w’ satisfying
H,(w') > H,(w). Now. k cannot be yg — 1, because even for a maximal system with
yg — 1 chains the value of Hj is at most H (w). If k¥ = yp, then by Lemma A.2.5,
w and w' have either the same set of maximal elements or the same set of minimal
elements; but either way we can then enlarge the system w’ by adding either e; or €3,
contradicting our assumption that ¢,, does not increase upon adding either e; or ez.
Similarly, we eliminate the case k = yg + 1; even if yg + 1 = y.4, the value of H, on
a maximal system of k& chains does not exceed H,(w).

In subcase A.2, we have that a,, does not change by adding either e, or e;
singly, but does while adding both together. Hence, there exists an antichain system
s = (81.....5z,) which covers a;, — 1, and to which we may add the elements e, and
€ to get a system of antichains which covers a;,+1 elements. Let A = (A;,..., Azp)
be a maximal system of xg antichains for P\{e;,e2}. Without loss of generality, we

may assume that the antichains in s are ordered so that
pi€s. p €S, p<pi=t<)
and that the same is true for the system A. Now set
siVA={ves:Jwedi:v>wJ{we Adi:Ives; w20},

siNA,={ves:TweAd :v<wlJ{wedi:ves :wl v}
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Note that any vertex in P\{e;.e2} is comparable with at least one element of s; and at
least one element of A,. It is not difficult to show that both (s;V Aj.... 5.,V Azg),
and (sy A Ay, ....8.45 A A;,) are antichain systems, which we denote by J and M
respectively. Further. ./ and M are disjoint, and their union contains all the elements
in sJ.A. Hence. one of the constructed systems is maximal. But if J is maximal,
then we can add whichever of ¢; or e; is maximal to J to get a larger system; if M
is maximal, then adding the minimal e; will enlarge it. This contradicts our initial
assumption that a system of rp antichains does not change when we add just one of
the e, s,

Case 2 is handled similarly to Case 1, subcase 1, where we set s = 1 4. O

At last. we are in a position to show the main result.

Theorem A.3.3 Let o be a generalized permutation of the cells of a skew diagram
S. For each vertex of v of S. let C(v) denote the set of cells of S below and to the
left of v (as we did in Example 2.3.7 and Example 2.4.4.). If we restrict out attention
to those cells which are in = and take the poset corresponding to this generalized

permutation. then we get a map

v A(C(v) N

which is a two dimensional growth G : § — Y. We may also define a growth
g : S — Y by extending locally from the (trivial) lower boundary of S using the usual

R-correspondence of Example 2.6.3. Then these two growths are identical on S.

Proof: Let the values of the growth G around a fixed cell C be given as in Figure A-3.
We need the show that these elements satisfy the local conditions for growth, i.e., that
the value of Aj; depends only on the values of the other three corners, and gives the

same answer as our local construction. As we remarked above, the case Aoy # Aro is



A.3. ADDING SUCCESSIVE EXTREMAL ELEMENTS 119

trivial. since then the others corners are determined as the meet and join just because
both ¢ and G are growths. First we examine the case where A\g; = Ao # Ago. In
this case. there must be a cell in o both directly below C, which we call e,, and one
directly to the left of C'. which we call e;. €; and e; are both maximal elements of
o regarded as a poset (ordering up and to the right). Now we apply Theorem A.3.1,
Case 2, to get that v < x4, where A and B are, as before, the cells corresponding
to adding one ¢,. then the other.

Next, we take the dual order on the poset o, i.e., we consider one cell to be
bigger than another if it is below and to the right of that cell. By Theorem A.2.1,
this corresponds to taking the transpose of all our diagrams. But now e; and e;
are extremal elements of different types. Let A’ = (X, Y}) denote the cell Ay, /Ag0
and B’ = (Xg, ¥5) denote the cell A{;/A;;. By Theorem A.3.1, Case 1, we get that
X5 =X/ or X =X/ + |. But conjugating a partition simply interchanges the two
coordinates, so this condition translates to Yg = Y4 or Y = Y4 + 1. Combining this
with the condition g < 4. we get that the growth G is determined locally according
the the standard R-correspondence on Y.

The only other case to consider is when Ag; = Ao = Ago. In this case, there can be
no cells in o either below (" or to the left of C. If C € o, then clearly C may be taken
as extending the longest chain of a maximal chain system for Ago; hence, A1y and oo
differ by a cell in the top row. This agrees with the standard R-correspondence. If
C & o, then all the )\,;’s are images of the same poset, so they are all the same, which

agrees with the standard R-correspondence. This finishes the proof. o
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