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network Dynamics of a financial 
ecosystem
Shahar Somin1,2*, Yaniv Altshuler2,3, Goren Gordon1,3, Alex ’Sandy’ Pentland2 & erez Shmueli1

Global financial crises have led to the understanding that classical econometric models are limited 
in comprehending financial markets in extreme conditions, partially since they disregarded complex 
interactions within the system. Consequently, in recent years research efforts have been directed 
towards modeling the structure and dynamics of the underlying networks of financial ecosystems. 
However, difficulties in acquiring fine-grained empirical financial data, due to regulatory limitations, 
intellectual property and privacy control, still hinder the application of network analysis to financial 
markets. In this paper we study the trading of cryptocurrency tokens on top of the Ethereum 
Blockchain, which is the largest publicly available financial data source that has a granularity of 
individual trades and users, and which provides a rare opportunity to analyze and model financial 
behavior in an evolving market from its inception. This quickly developing economy is comprised of 
tens of thousands of different financial assets with an aggregated valuation of more than 500 Billion 
USD and typical daily volume of 30 Billion USD, and manifests highly volatile dynamics when viewed 
using classic market measures. However, by applying network theory methods we demonstrate clear 
structural properties and converging dynamics, indicating that this ecosystem functions as a single 
coherent financial market. These results suggest that a better understanding of traditional markets 
could become possible through the analysis of fine-grained, abundant and publicly available data of 
cryptomarkets.

Classic econometric models were demonstrated to be limited in explaining crowd phenomena such as economic 
cycles and crashes, partially since they do not explicitly account for the complex interactions within the economic 
system. Aiming to achieve a better understanding of such macroscopic effects, recent years have witnessed a ris-
ing interest in the application of network theory for analyzing the underlying networks of economic systems1–10. 
However the general lack of large-scale, fine-grained empirical financial data, due to regulatory limitations, intel-
lectual property restrictions and privacy regulation, still hinders the full exploitation of such techniques for ana-
lyzing complex financial markets.

In this paper we study the complete financial activity of millions of participants in an economy comprising 
of thousands of different financial assets over a period of 2.5 years. To this end, we use the publicly available 
Ethereum blockchain transactional data11. This data encompasses the complete trading activity of 28 Million 
users trading over 11 thousand assets12–14 of aggregated market valuation peeking at 500 Billion USD with a daily 
trading volume of over 30B USD15. In contrast to traditional financial markets, all assets’ transactions over the 
Ethereum Blockchain are permanently recorded and publicly accessible. As a result, the Ethereum Blockchain 
constitutes the world’s largest publicly available financial dataset at an individual trader granularity. This dataset 
grants us for the first time the opportunity to analyze and model a dynamic large scale financial ecosystem, from 
its inception throughout its evolution.

In this work we first demonstrate that the Ethereum financial ecosystem is highly diverse, as manifested by 
the varied designations, wide-ranging lifespans and popularity levels of its traded assets. We then show that this 
market also presents highly volatile dynamics when viewed using classical economic measures. Notwithstanding 
the above-mentioned multi-faceted and erratic nature, we substantiate that this complex ecosystem functions as a 
single market for thousands of types of transactions, when analyzed using network oriented methodologies. The 
latter is established in two complementing aspects — both by applying a static analysis on its underlying networks 
of interactions, affirming they adhere to a robust, well-defined structure, and by applying a dynamical analysis, 
ascertaining it has a characteristic network evolution and convergent dynamics.

More specifically, our static analysis examines the underlying networks of trading interactions by construct-
ing a stroboscopic-like snapshots of the emerging network. We demonstrate that the vast majority of these static 
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networks follow a power-law-like degree distribution, similarly to many real-world networks16–23, ascertaining 
their characteristic structure.

We then analyze the dynamics of the evolution of this ecosystem’s underlying network. We start by analyzing 
γ, the exponent of the degree distribution, assuming it follows a power-law distribution, along time. This analysis 
reveals a remarkably stable dynamics during the last 1.5 years of activity. Unfortunately, a γ-based analysis of 
the first year of financial activity is mostly implausible, mainly due to the small networks’ sizes during this time, 
impeding statistically significant estimates of its value. Given that this year constitutes the establishment stage of 
the Ethereum economy, analyzing its dynamics during this initial period is of great significance.

We therefore propose a new measure which is based on the network’s degree distribution, focusing on its two 
extrema points—the max-connected node and the 1-connected nodes. The new measure is also applicable to 
small sized networks, and as such, it can be used to analyze the dynamics of this extremely complex ecosystem 
throughout the entire examined period, including its establishment stage. We demonstrate that the dynamics 
of the Ethereum economy, as captured by this new measure, can be modeled using an under-damped harmonic 
oscillator, substantiating the equilibration of this economy over time.

These global structural and dynamical patterns indicate that the Ethereum ecosystem acts as a single financial 
market of buyers and sellers, although being comprised of thousands of different, seemingly unrelated or corre-
lated assets. Moreover, these patterns advocate a strong similarity between the Ethereum trading ecosystem and 
traditional financial markets, which are also known to be characterized by power-law degree distributions8,24–27 
and oscillatory dynamics28,29. This similarity suggests that a better understanding of traditional financial markets 
could be achieved through the modeling of the Ethereum economy, where data is ample and fine-grained.

Results
Contrary to the Bitcoin Blockchain30–32 which supports the trading of only a single asset, the Ethereum Blockchain 
is comprised of thousands of diverse assets, where new traded goods are constantly emerging and disappearing, 
forming a highly dynamic and heterogeneous economy. We analyzed 180 million transactions over 2.5 years, 
between April 2016 and January 2019, encompassing the trading of 11940 assets by 28 million different wallets 
(representing the individual trading entities). Our analysis was restricted to active assets, each participating in at 
least 100 trades throughout the analyzed timespan.

Emerging structure. We first demonstrate how heterogeneous the Ethereum economy actually is. The diver-
sity of this financial ecosystem can be observed first and foremost through the variety of traded assets and their 
functionalities, ranging from trading in gold (CrytoGold), to Blockchain-related predictions (Bancor33), to decen-
tralized storage (Filecoin34), and scalable smart contracts platform (EOS35).

Apart from their functionalities, the traded goods also vary in their characteristics. Panel A in Fig. 1 depicts 
assets’ age distribution, where the age of an asset is calculated as the number of days passed between the first and 
last time it was traded. We further evaluate the popularity levels for the traded assets. Specifically, we define the 
selling popularity of an asset as the number of unique traders who ever sold that asset (and analogically define the 
buying popularity of an asset). Panel B and C in Fig. 1 depict the distributions of selling and buying popularities 
among assets. Panel D depicts the distribution of yet another notion of assets’ popularity, the trading volume. We 
note that all three popularity measures present heavy-tailed distributions. These characteristics reflect the diverse 

Figure 1. Marginal (upper panels) and joint (lower panels) distributions of various aspects of the traded 
assets, reflecting the diversity of the Ethereum economy. Panel A depicts assets’ age distribution, panels 
B–D represent the distribution of various popularity measures of assets (selling, buying and trading volume, 
respectively). Panel E–G present the joint distribution of the trading volume against assets age, selling and 
buying popularities correspondingly. Panel H presents the joint distribution of selling and buying popularities. 
All joint distributions are estimated using a bivariate KDE (Kernel Density Estimation). The units in the color-
bar represent the estimations of the corresponding probability density functions by the bivariate KDE.
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nature of this economy, as it comprises the trading of very old assets along with recently minted ones, and popular 
assets along with barely traded ones.

In order to further substantiate the inherent diversity of this financial ecosystem, we analyze the joint distri-
butions of assets’ characteristics. Panel E in Fig. 1 depicts the joint distribution of assets’ age and trading volume. 
It implies that in this ecosystem popularity does not necessarily accumulate with time (age), a rather surprising 
observation since one might expect that old assets would accumulate the highest trading volume during their 
long lifespan. Furthermore, panels F and G depict the joint distribution of trading volume and selling and buying 
popularities, respectively. Panel H manifests the joint distribution of selling and buying popularities of assets. We 
see that the joint distributions of these three different popularity measures depict significant spread, despite the 
intuitive expectation of high correlation between them.

We conclude that the traded assets in this economy have diverse types and functionalities, varied ages, trading 
volume and popularity, yet reside together in a single multi-faceted ecosystem. Our first goal in this paper will be 
to show that despite the inherent heterogeneity of this economy, it has a robust underlying structure. To that end, 
we analyze the Ethereum economy using a network theory perspective. We define the weekly transactions graph 
of the Ethereum economy at time t as follows:

Definition 1. The weekly transactions graph for a given day t, Gt(Vt, Et) is the directed graph constructed from all 
trading transactions over any traded asset, made during the time period [t − 7, t). The set of vertices Vt consists 
of all wallets trading during that period: 

= −V v v t t: { wallet bought or sold any asset during [ 7, )} (1)t

 and the set of edges Et ⊆ Vt × Vt is defined as: 

= −E u v u v t t: {( , ) wallet sold to wallet any asset during [ 7, )} (2)t

Over the examined period of 2.5 years, we construct 1000 such weekly transactions graphs, using daily rolling 
windows, each containing one week of transactional data.

Numerous previous works have shown that degree distributions of complex systems and economic systems 
in particular are often heavy-tailed. Fig. 2 depicts the incoming and outgoing degree distributions of an arbitrary 
weekly transactions graph, suggesting that the degree distribution of weekly snapshots of the Ethereum econ-
omy is heavy tailed, coinciding with such expectations. Consequently, we calculate both incoming and outgoing 
degree distributions for each of the 1000 weekly transactions graphs. We then apply prevalent statistical analysis 
methods36 to evaluate which of four potential heavy-tailed models best fits the examined degree distributions.

In order to guarantee reliable parameters’ estimates, we consider only networks that have at least 50 unique 
node degrees36. The solid line in Fig. 3 (same for all panels) shows the monthly percentage of such eligible net-
works. Out of the 2000 (in and out) examined networks, 76% were found to be eligible. In particular, starting 
from April 2017, alongside with a significant increase in networks’ sizes (see Supplementary Fig. S1 for nodes’ 
temporal dynamics), the vast majority of networks reach the designated threshold of unique incoming and out-
going degrees.

For all eligible networks, we perform a goodness of fit test calculating the Log-Likelihood Ratio (LLR) of the 
different models and the corresponding p-values. Panels A and B in Fig. 3 present the comparison of the trun-
cated power-law to the power-law model for incoming and outgoing degree, respectively, along time. Specifically, 
the dashed line stands for the monthly percentage of networks obtaining a positive LLR, while the bars signify 
the percentage of networks for which this test achieved p-value < 0.1. The results suggest that the truncated 
power-law model better fits the majority of networks compared to the power-law model, due to the positive LLR 
obtained by 99% of all eligible networks, with 48% (63%) of the networks in the in (out)-degree case present sta-
tistically significant results.

This inclination of the degree distributions towards the truncated power-law model led us to continue and 
validate it against other heavy-tailed distributions as well. Panels C and D in Fig. 3 present the LLR of truncated 
power-law and the exponential model, alongside the corresponding p-values, demonstrating a clear dominance 
of the truncated power-law model, with 100% of the eligible networks obtaining positive LLR with p-value < 0.1, 

Figure 2. Incoming and outgoing degree distributions of a weekly transactions graph, generated for the 
week of February 1st, 2018. Both degree distributions are plotted on a log-log scale, with logarithmic binning, 
normalized by bin-width. Both appear to follow a heavy-tailed distribution.
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for both in and out degrees. Panels E and F in Fig. 3 demonstrate the LLR of truncated power-law and the log 
normal model accompanied by the corresponding p-values for both in and out degree distributions along time. 
Once again we observe a strong inclination towards the truncated power-law model with a total of 59% (61%) of 
the positive LLR networks for the in (out)-degree case presenting statistically significant outcome.

We conclude that starting from the second year of data, alongside with meeting the threshold conditions for 
significant statistical analysis, the vast majority of eligible networks presents a good agreement with the truncated 
power-law model, which is favored over alternative long-tailed distributions, with high statistical significance. 
Our findings indicate that despite the high diversity apparent by the Ethereum economy, it manifests a robust 
underlying structure.

Converging dynamics. Aiming to explore and comprehend the dynamics of this diverse financial ecosys-
tem over time, we start by employing several classical economic measures. Fig. 4 depicts the dynamics of several 
intrinsic properties of the ecosystem: number of total traded assets alongside with the number of newly emerged 
assets and vanished ones (Panel A), normalized number of traders (wallets) and transactions (Panel B), top-5 
assets’ (sorted by market valuation) trading volume and their corresponding market valuation (Panel C) and 
the normalized number of buyers and sellers (Panel D). These properties are inspected over daily rolling win-
dows, each containing one week of transactional data, over the examined period of 2.5 years. As can be seen in 
panel A, the number of traded assets increases over time, resulting from the rising interest in Blockchain and 
crypto-economy throughout the examined timespan. Bars in panel A present the dynamic composition of the 
ecosystem, as new assets constantly emerge and others vanish along time. The trading volume, market cap and the 
normalized amounts of traders, transactions, buyers and sellers (panels B-D) manifest high volatility throughout 
the entire period.

Next, we show that despite the apparent volatile dynamics of this economy, applying a network theory prism 
reveals clear converging dynamics. We start by analyzing the number of nodes and edges in the weekly transac-
tions graphs, over time (see Supplementary Fig. S1). We observe a rapid growth in the number of nodes and edges, 
starting from around April 2017. We continue by examining the weekly transactions graphs’ degree distributions 
over time. Specifically, we analyze their γ values — the exponent of the degree distribution, assuming it follows a 
truncated power-law. We apply a Maximum-Likelihood Estimator36 in order to evaluate γ for all corresponding 
truncated power-law distributions. Panels A and B in Fig. 5 depict the dynamics of γin and γout respectively. We 

Figure 3. Networks structure analysis. Presenting the analysis of incoming (left panels) and outgoing degrees 
(right panels) of 1000 weekly networks. The solid line specifies the monthly percentage of weekly networks 
eligible for statistically significant LLR calculations (having over 50 different degrees, same for all panels). The 
dotted line presents the monthly percentage of networks having a positive log-likelihood ratio when comparing 
the truncated power-law model to power-law (panel A, B), to exponential (panels C, D) and to log-normal 
(panels E, F) hypotheses. The bars stand for the monthly percentage of networks whose LLR calculation is 
statistically significant, obtaining p-value < 0.1. The structures of the examined weekly networks present high 
agreement with the truncated power-law model.
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restricted our analysis merely to networks that passed the goodness of fit tests (compared with power-law, expo-
nential and log-normal distributions) and indicated the networks that obtained p-value < 0.1 in all three tests. As 
can be seen from the figure, this analysis depicts stable dynamics of both in and out γ parameters.

Unfortunately, the analysis above seems to provide little insight regarding the dynamics of the economy dur-
ing its first year of activity. More specifically, until April 2017 (depicted by darker patch in Fig. 5), a significant 
amount of the networks is not eligible for γ calculation, and those which are, often present statistically insignifi-
cant results during this stage. This is most probably due to the relatively small size of networks during this period 
(see Panel A in Supplementary Fig. S1). Nevertheless, analyzing the networks’ dynamics during this initial period 
is of great significance since it constitutes the establishment stage of this economy.

We therefore examine a new aspect of the degree distribution, focusing on its extrema points, namely the 
number of 1-connected nodes (i.e number of traders who formed merely one transaction) and the degree of the 
max-connected node. Specifically, for incoming degree we denote by: 

CN v V in deg v CN in deg v{ _ ( ) 1}, argmax _ ( )
(3)

in t in
max

v V

1

t

= ∈ || = =
∈

Figure 4. Dynamics of traditional measures of the Ethereum economy. Solid line in panel A depicts the 
number of traded assets over time. Bars in panel A indicate the number of monthly emerged and vanished 
assets. Specifically, number of emerged assets for a given month stands for the number of assets having their first 
trade during that month (and analogically for monthly vanished assets). Panel B presents the number of traders 
(wallets) and number of transactions over time. Panel C presents top-5 assets’ (sorted by market valuation) 
trading volume and their corresponding averaged market valuation. Panel D depicts the dynamics of weekly 
number of buyers and sellers. Numbers of weekly traders, transactions, buyers and sellers are all normalized by 
the number of distinct assets traded during the corresponding week. All measures are presented at log-scale.

Figure 5. Dynamics of γin and γout, restricted to networks with positive likelihood ratio and p-value < 0.1 when 
comparing the truncated power-law model to power-law, exponential and log-normal models. Both in and 
out γ parameters are stable along time. Statistically significant network dynamics during the first year of data 
(depicted by a darker patch, left side of each plot) are lacking.
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the set of 1-in-connected nodes and the max-in-connected node, respectively. Similarly, for the outgoing degree 
distribution, its extrema points are denoted by: 

= ∈ || = =
∈

CN v V out deg v CN out deg v{ _ ( ) 1}, argmax _ ( )
(4)

out t out
max

v V

1

t

standing for the set of 1-out-connected nodes and the max-out-connected node. We then calculate the ratio 
between the extrema points of each distribution, formally defined by:

Definition 2. Let Gt(Vt, Et) be a weekly transactions graph, the In-Degree Ratio of Gt is defined as follows: 

=R G CN
in deg CN

( ) log ( )
log ( _ ( )) (5)in t

in

in
max

1

 Similarly, the Out-Degree Ratio of a network is defined as: 

R G CN
out deg CN

( ) log ( )
log ( _ ( )) (6)out t

out

out
max

1
=

Note that the ratios Rin and Rout can be viewed as approximations of γin and γout. In particular, given a network Gt, 
with a degree-distribution s.t it’s extrema points are in deg CN_ ( )in

max  and CNin
1 , had there been a pure power-law 

model to fit the in-degree distribution of Gt (and specifically its extrema points), it would have satisfied γin = Rin. 
This is a straightforward derivation from the linear form of the power-law degree distribution: 

γ= ⋅ +p x logx clog ( ) . Unlike the γ estimation procedure, which is guaranteed to be unbiased only for large 
sample sizes36, Rin and Rout can be calculated even on small networks, such as the ones apparent during the initial 
period of the economy.

Panels A, B in Fig. 6 present the dynamics of the ratios Rin and Rout along time. As can be seen from the figure, 
the dynamics of Rin and Rout are characterized by anti-phased oscillations that converge over time. Consequently, 
we model their dynamics over time t using an Under-Damped Harmonic Oscillator: 

( )osc t A e t R( ) sin 1 (7)
t

0
20 ω ζ ϕ= ⋅ ⋅ − + +ω ζ− ⋅ ∞

where A represents the maximal amplitude of the oscillation, ω0 is the resonant frequency of the system, ζ stands 
for the damping ratio, ϕ for the phase of the oscillation and R∞ for the equilibrium state. All parameters’ values 
of both fitted oscillator models are elaborated in Supplementary Table S1 and the residuals plots of both fits are 
displayed in Supplementary Fig. S2.

We chose to model these ratios’ dynamics using an under-damped harmonic oscillator for two reasons. First, 
it is able to capture various evident phenomena, ranging from oscillations, to decay and stabilization. Second, 
the interpretable nature of its parameters is helpful for extracting insights on the dynamics of this ecosystem. 

Figure 6. Dynamics of In-Degree (Rin) and Out-Degree (Rout) Ratios presented in panels A and B respectively. 
Both parameters are fitted by an Under-Damped Harmonic Oscillator, ascertaining the consolidation process 
undergone by the Ethereum economy.
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Specifically, they quantify and ascertain the anti-phased oscillations of Rout and Rin, their different damping ratios, 
and correspondingly their different equilibrium states. A thorough discussion of these insights and hypotheses 
concerning their causes are presented in the Supplementary Material (Supplementary Figs. S4 and S5).

In order to verify that these under-damped oscillations are not a mere side effect of the network’s size, we 
examined the extent to which Rout and Rin are influenced by the number of nodes N. We establish that while N 
seems to influence the damping rate, it does not govern the oscillatory nature itself. The full analysis of the influ-
ence of N on the under-damped oscillatory dynamics of Rout and Rin is presented in Supplementary Fig. S3.

In essence, the oscillatory patterns exhibited by Rout and Rin substantiate our hypothesis that the Ethereum 
economy functions as a single market of buyers and sellers. These patterns also resonate well with known oscil-
latory dynamics of traditional economies, affirming remarkable resemblance between the Ethereum economy 
and traditional markets. Moreover, the dynamics of Rout and Rin, as well as of γ-s, present significant stabilization 
after April 2017. This ascertains the convergence process undergone by the Ethereum financial system during 
the course of the examined 2.5 years, despite the otherwise volatile dynamics evident by traditional economic 
measures.

We conclude by presenting a quantitative analysis of the stability of Rin and Rout over time in comparison to 
some of the previously examined economic measures. Specifically, we analyze the Coefficient of Variation (CV) 
of all these parameters over time, where CV is defined as follows: 

=CV x std x
mean x

( ): ( )
( ) (8)

Fig. 7 displays the Coefficient of Variation of In-Degree and Out-Degree Ratios compared to the CV of the trad-
ing volume and market capitalization. It is evident that the variance of traditional economic measures is an order 
of magnitude higher than the CV of Rin and Rout throughout the entire examined timespan. This substantiates 
and quantifies our hypothesis that network oriented methodology enables a more stable representation of the 
economy compared to traditional market indicators.

Discussion
In this study we analyzed the Ethereum financial ecosystem — the world’s largest publicly available fine-grained 
financial dataset. To the best of our knowledge this study is the first to analyze a complete financial activity of 
thousands of unrelated traded assets carried out by millions of traders over a long period of time. In particular, 
we presented evidence suggesting that the Ethereum ecosystem, despite being highly diverse in its assets’ com-
position, popularity, functionality, lifespan and trading volumes, still follows global structural patterns that are 
similar to many real-world networks4,18,23,37–39. Furthermore, we demonstrated that while this economy appears 
to be highly volatile from various traditional perspectives, it actually demonstrates stabilizing, equilibrating pat-
terns. Specifically, this was achieved by employing a network theory approach, analyzing two different aspects of 

Figure 7. Coefficient of variation dynamics, comparing volatility over time of Out-Degree Ratio (Rout) and In-
Degree Ratio (Rin) to traditional economic measures, such as the top-5 assets’ averaged market valuation and 
their average trading volume. Although both traditional and network-oriented measures present decreasing 
volatility along time, the higher coefficients of variation for the traditional parameters, attest to a less stable 
representation using traditional market indicators.
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the degree distribution—its scale γ and its In-Degree and Out-Degree Ratios, Rin and Rout. We found that while 
γ demonstrates a stationary dynamics, Rin and Rout present an under-damped oscillatory convergent dynamics.

The modeling of the system’s dynamics as an under-damped harmonic oscillator provides several insights 
on the macroscopic characteristics of the system’s evolution. Specifically, the oscillator’s interpretable parame-
ters helped us in quantifying and ascertaining the anti-phased oscillations, the damping rate and the equilib-
rium state of the system. Nevertheless, since the under-damped harmonic oscillator serves as a meta model, it 
is incapable of explaining the causes underlying the observed behavior. This might be resolved by developing a 
generative model that would offer a better understanding of the underlying forces and mechanisms behind the 
observed anti-phased under-damped oscillatory dynamics40,41. The authors intend to pursue this direction in a 
future research.

Notwithstanding, the findings of the present study are substantial from several different aspects. First, they 
establish that this complex ecosystem has in fact an overall converging network dynamics with stable network 
scaling and characteristic evolution, despite the massive endogenous and exogenous forces that constantly act 
upon it. Second, the established oscillatory dynamics alongside the robust underlying structure indicate that this 
ecosystem functions as a single coherent financial market. Third, the identified structural and dynamical patterns 
advocate a strong affinity between the Ethereum trading system and traditional financial markets28,29. This in turn 
suggests that the Ethereum financial economy, which is unique in its availability of fine-grained transactional 
data, can function as a laboratory for comprehending and analyzing complex traditional markets. We hope that 
our present work can inspire further studies in this field.

Methods
Data. In order to preserve anonymity in the Ethereum Blockchain11, personal information is omitted from 
all transactions. A user, represented by their wallet, can participate in the economic activity through an address, 
which is attained by applying Keccak-256 hash function42 on his public key. The Ethereum Blockchain enables 
users to send transactions in order to either send Ether to other wallets, create new Smart Contracts12–14 or invoke 
any of their functions. Since Smart Contracts are scripts residing on the Blockchain as well, they are also assigned 
a unique address. A Smart Contract is called by sending a transaction to its address, which triggers its independ-
ent and automatic execution, in a prescribed manner on every node in the network, according to the data that was 
included in the triggering transaction.

Smart Contracts representing the examined traded assets comply with the ERC20 protocol43 defining the 
manner in which the asset is transferred between wallets and the form in which data within the asset is accessed. 
Among these requirements, is the demand to implement a transfer method, which will be used for transferring 
the relevant asset from one wallet to another. Therefore, each transfer of a asset will be manifested by a wallet 
sending a transaction to its relevant Smart Contract. The transaction will encompass a call to the transfer method 
in its data section, containing the amount being transferred and its recipient wallet. Each such asset transfer 
results in altering the ’asset’s balance’, which is kept and updated in its corresponding Smart Contract’s storage.

We obtain the assets’ transactions (similarly to our previous works24,44) basing on the further requirement 
of the ERC20 protocol, demanding that each call to the transfer method will be followed by sending a Transfer 
event and updating the event’s logs with all relevant information regarding the asset transfer. We therefore call 
an Ethereum full node’s JSON API and fetch all logs matching to the Transfer event structure. Parsing these logs 
result in the following fields per transaction: Contract Address - standing for the address of the Smart Contract 
defining the transferred asset, Value - specifying the amount of the asset being transferred, Sender and Receiver 
addresses, being the wallet addresses of the asset’s seller and buyer, correspondingly.

We have retrieved all assets transactions spreading between February 2016 and January 2019, resulting in 
179, 488, 619 asset trades, performed by 27, 888, 847 unique wallets, trading 11, 900 active asset addresses, 
where an active asset was defined by us as participating in at least 100 trades. The dataset of assets transactions is 
extremely diverse and wide-ranging, resulting in a total of 79, 451 unique asset addresses taking part during the 
examined timespan, with extremely varied characteristics. For instance, the assets differ in their age, their eco-
nomic value, activity volume and number of asset holders, some merely serve as test-runs, others aren’t tradable 
in exchanges yet, and some, according to popular literature, are frauds, all residing next to actual real-world val-
uable assets. The restriction of our analysis to active assets is aiming to focus our analysis to the economy formed 
merely by real-valuable assets.

Graph analysis. In order to perceive the network’s structure and assess the connectivity of its nodes, one 
should examine the network’s degree distribution, considering both in-degree and out-degree, indicating the 
number of incoming and outgoing connections, correspondingly. The degree distribution P(k) signifies the prob-
ability that a randomly selected node has precisely the degree k.

In random networks of the type studied by Erdös and Rényi45, where each edge is present or absent with equal 
probability, the nodes’ degrees follow a Poisson distribution. The degree obtained by most nodes is approximately 
the average degree k of the network. These properties are also manifested in dynamic networks46. In contrast to 
random networks, the nodes’ degrees of social networks (such as the Internet or citation networks) often follow a 
power law distribution16: 

P k k( ) (9)= γ−

The power law degree distribution indicates that there is a non-negligible number of extremely connected 
nodes even though the majority of nodes have small number of connections. Therefore the degree distribution 
has a long right tail of values that are far above the average degree. Power law distributions can be found in many 
real networks, Newman23 summarized several of them, including word frequency, citations, telephone calls, web 
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hits, or the wealth of the richest people. In this work however, we found that the vast majority of examined net-
works are better fitted by a truncated power-law (power-law with cutoff): 

= ⋅γ β− −P k k e( ) (10)k

Truncated power-law fit. We applied a prevalent statistical framework36 for fitting the degree distributions 
to an adequate model. Specifically, we used a maximum-likelihood fitting method for parameters’ estimation and 
employed goodness-of-fit tests based on likelihood ratios in order to compare competing models and evaluate 
which better fits our data. The log likelihood ratio test calculates the likelihood of the given data between two 
competing distributions. The logarithm of this ratio is positive or negative depending on which model presents a 
better fit, or is zero if a tie is obtained. The sign of the LLR is subject to statistical instability and when close to zero, 
the fluctuations can change its sign. In order to establish the statistical significance of the LLR sign, we calculate 
its standard deviation and corresponding p-value, where small p-values( < 0.1) indicate that the established sign 
is a reliable estimate of model compatibility.

Oscillation dynamics. We consider the Ethereum financial ecosystem as a social physical system and thus 
use physical models to analyze it, similarly to29,37,47,48. We hypothesize that it behaves as a dynamical system 
approaching its equilibrium state, which can be modeled as a damped harmonic oscillator.

A harmonic oscillator is a system acted upon by a force negatively proportional to its perturbation from its 
equilibrium state. Physical systems that are modeled in this way are springs and swings. Systems that also expe-
rience a velocity-dependent friction-like force, e.g. air resistance, are modeled by a damped harmonic oscillator. 
The dynamical equation for these models is: 

= − −md x
dt

kx cdx
dt (11)

2

2

where x is the perturbation from equilibrium, m is the mass, k is the spring constant and c is the viscous damping 
coefficient. The resonant frequency of the system is defined as ω = k m/0  and represents the oscillation of an 
undamped system. One can define the damping ratio as ζ = c

mk2
 which represents how strong the damping is, 

compared to the resonant frequency, such that an over-damped system ζ > 1 does not oscillate, but exponentially 
converges to the equilibrium state, whereas an under-damped system ζ < 1 oscillates with a modified frequency 

11 0
2ω ω ζ= −  during its exponential convergence. The case of critically damped system ζ = 1 is an important 

one in physics, but does not relate to the analysis presented below.
Given an under-damped oscillator, the dynamics of the system can be described by the following function: 

( )x t A e t x( ) sin 1 (12)
t

0
20 ω ζ ϕ= ⋅ ⋅ − + +ω ζ−

∞

Here ϕ is the phase of the oscillation and x∞ is the equilibrium state. In this paper, we will use the under-damped 
oscillator in order to model the dynamics of the Ethereum network meta-parameters Rout and Rin and extract the 
parameters of its dynamics.
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