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Abstract

Nearest-neighbor matching is a popular nonparametric tool to create balance
between treatment and control groups in observational studies. As a prepro-
cessing step before regression, matching reduces the dependence on parametric
modeling assumptions. In current empirical practice, however, the matching
step is often ignored in the calculation of standard errors and confidence inter-
vals. In this article, we show that ignoring the matching step results in asymp-
totically valid standard errors if matching is done without replacement and the
regression model is correctly specified relative to the population regression func-
tion of the outcome variable on the treatment variable and all the covariates
used for matching. However, standard errors that ignore the matching step
are not valid if matching is conducted with replacement or, more crucially, if
the second step regression model is misspecified in the sense indicated above.
Moreover, correct specification of the regression model is not required for con-
sistent estimation of treatment effects with matched data. We show that two
easily implementable alternatives produce approximations to the distribution
of the post-matching estimator that are robust to misspecification. A simula-
tion study and an empirical example demonstrate the empirical relevance of our
results.
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1 Introduction

Matching methods are widely used to create balance between treatment and control groups

in observational studies. Oftentimes, matching is followed by a simple comparison of means

between treated and nontreated (Cochran, 1953; Rubin, 1973; Dehejia and Wahba, 1999).

In other instances, however, matching is used in combination with regression or with other

estimation methods more complex than a simple comparison of means. The combination

of matching in a first step with a second-step regression estimator brings together para-

metric and nonparametric estimation strategies and, as demonstrated in Ho et al. (2007),

reduces the dependence of regression estimates on modeling decisions. Moreover, matching

followed by regression allows the estimation of elaborate models, such as those that include

interaction effects and other parameters that go beyond average treatment effects.

In this article, we develop valid standard error estimates for regression after matching.

The large sample properties of average treatment effect estimators that employ a simple

comparison of mean outcomes between treated and nontreated after matching on covariates

are well understood (see, e.g., Abadie and Imbens, 2006). However, studies that employ re-

gression models after matching usually ignore the matching step when performing inference

on post-matching regression coefficients. We show that this practice is not generally valid

if the second step regression is misspecified in a sense we make precise below. We propose

two easily-implementable and robust-to-misspecfication approaches to the estimation of the

standard errors of regression coefficient estimators in matched samples (with matching done

without replacement). First, we show that standard errors that are clustered at the level

of the matches are valid under misspecification. Second, we show that a nonparametric

block bootstrap that resamples matched pairs or matched sets, as opposed to resampling

individual observations, also yields valid inference under misspecification. Furthermore,

we show that standard errors that ignore the matching step can both underestimate or

overestimate the variation of post-matching estimates. The procedures that we propose in

this article are straightforward to implement with standard statistical software.

We will consider the following setup. Let W be a binary random variable represent-
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ing exposure to the treatment or condition of interest (e.g., smoking), so W = 1 for the

treated, and W = 0 for the nontreated. Y is a random variable representing the outcome

of interest (e.g., forced expiratory volume) and X is a vector of covariates (e.g., gender or

age). We will study the problem of estimating how the treatment affects the outcomes of

the individuals in the treated population (that is, those with W = 1). In particular, we

will analyze the properties of a two-step (first matching, then regression) estimator often

used in empirical practice. This estimation strategy starts with an unmatched sample, S,

from which treated units and their matches are extracted to create a matched sample, S∗.

Matching is done without replacement and on the basis of the values of X. Then, using

data for the matched sample only, the researcher runs a regression of Y on Z, where Z

is a vector of functions of W and X (e.g., individual variables plus interactions). We aim

to obtain valid inferential methods for the coefficients of this regression, possibly under

misspecification. To be precise, by “misspecification” we mean that there is no version of

the conditional expectation of Y given W and X that follows the functional form employed

in the second-step estimator. For example, as explained below, a difference in means be-

tween treated and nontreated in the second step would be “misspecified” if the conditional

expectation of Y given X and W depends on X. To simplify the exposition, here we have

described a setting where Z depends only on the treatment, W , and on the covariates used

in the matching stage, X. Our general framework in Section 2 allows Z to depend on other

covariates not in X.

The intuition behind the results in this article is that, if Y depends on X, then matching

on X creates dependence between the outcomes of treated units and their matches. This

dependence is absorbed by the second-step regression function as long as the regression

function is correctly specified relative to the population regression of Y on W and X.

However, if the second-step regression is misspecified relative to the population regression

of Y on W and X, dependence between treated units and matches remains in the regression

residuals. Ignoring this dependence produces biased inference. Clustered standard errors

and analogous block bootstrap procedures take into account the dependence between the
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outcomes of treated units and their matches, restoring valid inference.

A special case of our setup is that of the standard matching estimator for the average

treatment effect on the treated, which is given by the regression coefficient on treatment

W in a regression of Y on Z = (1,W )′. However, the framework allows for richer analysis,

such as the analysis of linear interaction effects of the treatment with a given covariate,

Z = (1,W,WX ′, X ′)′.

To illustrate the implications of our results, consider the simple case when Z = (1,W )′.

As we mentioned previously, for Z = (1,W )′ the sample regression coefficient on W cor-

responds to the simple matching estimator often employed in applied studies, which is

based on a post-matching comparison of means between treated and nontreated. Under

well-known conditions this estimator is consistent for the average effect of the treatment

on the treated (see, e.g., Abadie and Imbens, 2012), irrespective of the true form of the

expectation of Y given W and X. Notice, however, that even in this simple scenario, our

results imply that regression standard errors that ignore the matching step are not valid

in general. Although the expectation of Y given W is linear because W is binary, a linear

regression of Y on Z = (1,W )′ will be misspecified relative to the regression of Y on W

and X, unless Y is mean-independent of X given W over a set of probability one.

The rest of the article is organized as follows. Section 2 starts with a detailed description

of the setup of our investigation. We then characterize the parameters estimated by the two-

step procedure described above. We show that these parameters are equal to the regression

coefficients in a regression of Y on Z in a population for which the distribution of matching

covariates X in the control group has been modified to coincide with that of the treated.

Under selection on observables, that is, if treatment is as good as random conditional on X,

post-matching regression estimands are equal to the population regression coefficients in

an experiment where the treatment is randomly assigned in a population that has the same

distribution of X as the treated. We next establish consistency with respect to this vector

of parameters, show asymptotic normality, and describe the asymptotic variance of the

post-matching estimator. In Section 3, we discuss different ways of constructing standard
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errors. Based on the results of Section 2, we show that standard errors that ignore the

matching step are not generally valid if the regression model is misspecified in the sense

indicated above, while clustered standard errors or an analogous block bootstrap procedure

yield valid inference. Section 4 presents simulation evidence, which confirms our theoretical

results. Section 5 applies our results to the analysis of the effect of smoking on pulmonary

function. In this application, matching before regression and the use of the robust standard

errors proposed in this article substantially affect empirical findings. Section 6 concludes.

The appendix contains the proofs of our main results. A supplementary appendix

contains proofs of intermediate results and two extensions. In particular, the standard

errors derived in this article are valid for unconditional inference. Alternatively, one could

perform inference conditional on the values of the regressors, X and W , in the sample.

Notice that, in this case, the first step matches are fixed. We discuss this alternative

setting in the supplementary appendix, where we show that, for the conditional case, the

usual regression standard errors are not generally valid, but valid standard errors can be

calculated using the formulas in Abadie et al. (2014). Also, for concreteness and following

the vast majority of applied practice, in the main text of this article we restrict our analysis

to linear regression after matching. In the supplementary appendix we provide an extension

of our result to general M-estimation after matching.

2 Post-Matching Inference

In this section, we discuss the asymptotic distribution of the least squares estimator ob-

tained from a linear regression of Y on Z after matching on observables X.

2.1 Post-Matching Least Squares

Consider a standard binary treatment setting along the lines of Rubin (1974) with potential

outcomes Y (1) and Y (0), of which we only observe Y = Y (W ) for treatment W ∈ {0, 1}.

Let S be a set of observed covariates.

We will assume that the data consist of random samples of treated and nontreated.

This assumption could be easily relaxed, and we adopt it only to simplify the discussion.
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Assumption 1 (Random sampling). S = {(Yi,Wi, Si)}Ni=1 is a pooled sample obtained

from N1 and N0 independent draws from the population distribution of (Y, S) for the treated

(W = 1) and nontreated (W = 0), respectively, so N = N0 +N1.

Consider an (m × 1) vector of covariates X = f(S) ∈ X ⊆ Rm, and let S∗ ⊆ S be

the matched sample generated by matching without replacement each treated unit to M

nontreated units on the basis of their X-values. We will denote J (i) the set of nontreated

units matched to treated unit i. For simplicity, in our notation we omit the dependence

of J (i) on N and M . Often, for matching without replacement, the sets J (i) form the

collection of non-overlapping subsets of {j : Wj = 0}, each of cardinality M , that minimizes

the sum of the matching discrepancies.

N∑
i=1

Wi

∑
j∈J (i)

d(Xi, Xj), (1)

where d : X × X 7→ [0,∞) is a metric. More generally, our conditions do not require a

matching scheme that directly minimizes (1), as long as Assumption 3 and the Lipschitz

conditions in Assumption 4 and Proposition 3 below hold for some metric, d(·, ·), under

the adopted matching scheme.

The matched sample, S∗ =
⋃
Wi=1 ({i} ∪ J (i)), has size n = (M + 1)N1. We use a

double subscript notation to refer to the observations in the matched sample. For instance,

Yn1, . . . , Ynn refers to the values of the outcome variable for the units in S∗, with analogous

notation for other variables. Within the matched sample, observations will be rearranged

so that the first N1 observations are the treated units.

Let Z = g(W,S) be a (k × 1) vector of functions of (W,S), and let β̂ be the vector of

sample regression coefficients obtained from regressing Y on Z in the matched sample,

β̂ = argmin
b∈Rk

1

n

n∑
i=1

(Yni − Z ′nib)2

=

(
1

n

n∑
i=1

ZniZ
′
ni

)−1
1

n

n∑
i=1

ZniYni. (2)

In Section 2.3 we will introduce a set of assumptions under which β̂ exists and is unique

with probability approaching one.
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As we mentioned above, when Z = (1,W )′ the regression coefficient on W in the

matched sample is given by

τ̂ =
1

N1

n∑
i=1

WniYni −
1

MN1

n∑
i=1

(1−Wni)Yni

=
1

N1

N∑
i=1

Wi

(
Yi −

1

M

∑
j∈J (i)

Yj

)
,

which is the usual matching estimator for the average effect of the treatment on the treated.

2.2 Characterization of the Estimand

Before we study the sampling distribution of β̂, we first characterize its population counter-

part, which we will denote by β. That is, our first task is to obtain a precise description of

the nature of the parameters estimated by β̂. Although post-matching regressions are often

used in empirical practice, to the best of our knowledge, the precise nature of post-matching

estimands has not been previously derived.

The goal of matching is to change the distribution of the covariates in the sample

of nontreated units, so that it reproduces the distribution of the covariates among the

treated. In order to do so it is necessary that the support of the matching variables, X, for

the treated is inside the support for the nontreated.

Assumption 2 (Support condition). Let X1 = supp(X|W = 1) and X0 = supp(X|W = 0),

then

X1 ⊆ X0.

We now describe the population distribution targeted by the matched sample, S∗. Let

P (·|W = 1) and P (·|W = 0) be the matching source distributions of (Y, S) from where

the treated and nontreated samples in S are respectively drawn, and let E[·|W = 1]

and E[·|W = 0] be the corresponding expectation operators. For given P (·|W = 1) and

P (·|W = 0) and a given number of matches, M , we define a matching target distribution,

P ∗, over the triple (Y, S,W ), as follows:

P ∗(W = 1) =
1

1 +M
,
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and for each measurable set, A,

P ∗((Y, S) ∈ A|W = 1) = P ((Y, S) ∈ A|W = 1),

and

P ∗((Y, S) ∈ A|W = 0) = E[P ((Y, S) ∈ A|W = 0, X)|W = 1].

That is, in the matching target distribution: (i) treatment is assigned in the same pro-

portion as in the matched sample; (ii) the distribution of (Y, S) among the treated is the

same as in the matching source; (iii) the distribution of (Y, S) among the nontreated is

generated by integrating the conditional distribution of (Y, S) given X and W = 0 over the

distribution of X given W = 1, in the matching source. As a result, under the matching

target distribution, the distribution of X given W = 0 coincides with the distribution of

X given W = 1.

Under regularity conditions stated below, estimation on the matched sample, S∗, asymp-

totically recovers parameters of the matching target distribution, P ∗, in which the treated

and nontreated have the same distribution of X, but possibly different outcome and covari-

ate distributions conditional on X. As a result, comparisons of outcomes between treated

and nontreated in the matched sample, S∗, produce the controlled contrasts of the Oaxaca-

Blinder decomposition (Oaxaca, 1973; Blinder, 1973; and DiNardo et al., 1996). More gen-

erally, under regularity conditions, regression coefficients of Y on Z in the matched sample,

S∗, asymptotically recover the analogous regression coefficients in the target population:

β = argmin
b∈Rk

E∗[(Y − Z ′b)2]

= (E∗[ZZ ′])−1E∗[ZY ]. (3)

Matching methods are often motivated by a selection-on-observables assumption, that

is, by the assumption that treatment assignment is as good as random conditional on

observed covariates. To formalize the assumption of selection on observables and its im-

plications in our framework, consider source populations expressed this time in terms of
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potential outcomes and covariates, Q(·|W = 1) and Q(·|W = 0), which represent the dis-

tributions of (Y (1), Y (0), S) given W = 1 and W = 0, respectively. These distributions

are defined in such a way that P (·|W = 1) and P (·|W = 0) can be obtained by integrating

out Y (0) from Q(·|W = 1) and Y (1) from Q(·|W = 0), respectively. For given Q(·|W = 1)

and Q(·|W = 0), selection on observables means

(Y (1), Y (0), S)|X,W = 1 ∼ (Y (1), Y (0), S)|X,W = 0

almost surely with respect to the distribution of X|W = 1. That is, the joint distribution

of covariates and potential outcomes is independent of treatment assignment conditional

on the matching variables. Because in this article we focus on causal parameters defined

for a population with distribution of the matching variables equal to X|W = 1, for our

purposes it is enough that the selection-on-observables assumption holds for the distribution

of (Y (0), S) only,

(Y (0), S)|X,W = 1 ∼ (Y (0), S)|X,W = 0. (4)

Proposition 1 (Estimand under selection on observables). Suppose that Assumption 2

holds and that β, as defined in Equation (3), exists and is finite. Then if selection on ob-

servables, as defined in Equation (4), holds, the coefficients β are the same as the population

coefficients that would be obtained from a regression of Y on Z in a setting where:

(a) (Y (1), Y (0), S) has distribution Q(·|W = 1),

(b) treatment is randomly assigned with probability 1/(M + 1).

This result formalizes the notion that matching under selection on observables allows

researchers to reproduce an experimental setting under which average treatment effects can

be easily evaluated through a least squares regression of Y on Z. The results in this article,

however, apply to the general estimand β in Equation (3), regardless of the validity of the

selection-on-observables assumption.
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2.3 Consistency and Asymptotic Normality

In this section, we will establish large sample properties of β̂, as N1, N0 → ∞ with N0 ≥

MN1. Throughout this article, we will assume that the sum of matching discrepancies

vanishes quickly enough to allow asymptotic unbiasedness and root-n consistency:

Assumption 3 (Matching discrepancies).

1√
N1

N∑
i=1

Wi

∑
j∈J (i)

d(Xi, Xj)
p−→ 0.

Abadie and Imbens (2012) derive primitive conditions for Assumption 3, which require

N1 = O(N
1/r
0 ) for some r greater than the number of covariates in X (excluding those that

take on a finite number of values). This condition highlights the importance of obtaining

matches from a large reservoir of untreated units, especially when the dimensionality of

X is large. Of course, in concrete empirical settings, the adequacy of matching should

not rely on asymptotic results. Instead, the quality of the matches needs to be evaluated

for each particular sample. Abadie and Imbens (2011) and Imbens and Rubin (2015)

discuss measures of the discrepancy between the distributions of the covariates of treated

and nontreated. For example, the normalized difference in Abadie and Imbens (2011) is

(m1 − m0)/
√

(s2
1 + s2

0)/2, where mw and s2
w are the means and standard deviations of a

covariate (typically, products of/and powers of the components of X) for the units with

W = w.

For any real matrix A, let ‖A‖ =
√

tr(A′A) be the Euclidean norm of A. The next as-

sumption collects regularity conditions on the conditional moments of (Y, Z) given (X,W ).

Assumption 4 (Well-behavedness of conditional expectations). For w = 0, 1, and some

δ > 0,

E[‖Z‖4|W = w,X = x] and E[‖Z(Y − Z ′β)‖2+δ|W = w,X = x]

are uniformly bounded on Xw. Furthermore,

E[ZZ ′|X = x,W = 0], E[ZY |X = x,W = 0] and var(Z(Y − Z ′β)|X = x,W = 0)

are componentwise Lipschitz in x with respect to d(·, ·).
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To ensure the existence of β̂ with probability approaching one as n → 0, we assume

invertibility of the Hessian, H = E∗(ZZ ′). Notice that

H =
E
[
E[ZZ ′|X,W = 1] +ME[ZZ ′|X,W = 0]

∣∣W = 1
]

1 +M
. (5)

Assumption 5 (Linear independence of regressors). H is invertible.

The next proposition establishes the asymptotic distribution of β̂.

Proposition 2 (Asymptotic distribution of the post-matching estimator). Under Assump-

tions 1 to 5,

√
n(β̂ − β)

d−→ N (0, H−1JH−1),

where

J =
var
(
E[Z(Y − Z ′β)|X,W = 1] +ME[Z(Y − Z ′β)|X,W = 0]

∣∣W = 1
)

1 +M

+
E
[
var(Z(Y − Z ′β)|X,W = 1] +Mvar(Z(Y − Z ′β)|X,W = 0)

∣∣W = 1
]

1 +M

and H is as defined in Equation (5).

All proofs are in the appendix.

3 Post-Matching Standard Errors

In the previous section, we established that

√
n(β̂ − β)

d−→ N (0, H−1JH−1)

for the post-matching estimator obtained from a regression of Y on Z within the matched

sample S∗. In this section, our goal is to estimate the asymptotic variance, H−1JH−1.

3.1 Standard Errors Ignoring the Matching Step

Ho et al. (2007) argue that matching can be seen as a preprocessing step, prior to estimation,

so the matching step can be ignored in the calculation of standard errors. Here, we consider
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commonly applied “sandwich” standard error estimates for i.i.d. data (Eicker, 1967; Huber,

1967; White, 1980a,b, 1982). In an i.i.d. setting, sandwich standard errors are valid in large

samples even if the regression is misspecified relative to the conditional expectation of Y

given Z, in which case the population regression parameters are the coefficients of an L2

approximation to the conditional expectation. As we will show, however, the assumption

of i.i.d. data does not apply in matched samples.

Sandwich standard errors can be computed as the square root of the main diagonal of

the matrix Ĥ−1ĴsĤ
−1/n, where

Ĥ =
1

n

n∑
i=1

ZniZ
′
ni (6)

and

Ĵs =
1

n

n∑
i=1

Zni(Yni − Z ′niβ̂)2Z ′ni. (7)

The following proposition derives the probability limit of Ĵs with data from a matched

sample.

Proposition 3 (Convergence of Js). Suppose that Assumptions 1 to 5 hold. Assume also

that E[Z(Y − Z ′β)2Z ′|X = x,W = 0] is Lipschitz on X0 and E[Y 4|X = x,W = w] is

uniformly bounded on Xw for all w = 0, 1. Then, Ĵs
p−→ Js, where

Js =
E
[
E[Z(Y − Z ′β)2Z ′|X,W = 1] +ME[Z(Y − Z ′β)2Z ′|X,W = 0]

∣∣W = 1
]

1 +M
.

Notice that Js = E∗[Z(Y − Z ′β)2Z]. That is, Js is equal to the inner matrix of the

sandwich asymptotic variance when data are i.i.d. with distribution P ∗. However, since

the matched sample S∗ is not an i.i.d. sample from P ∗, Ĵs is not generally consistent for

J . The difference between the limit of the sandwich standard errors Ĥ−1ĴsĤ
−1 and the

actual asymptotic variance H−1JH−1 is given by H−1∆H−1, where

∆ =
−ME

[
Γ0(X)Γ1(X)′ + Γ1(X)Γ0(X)′|W = 1

]
− (M − 1)ME

[
Γ0(X)Γ0(X)′|W = 1

]
M + 1

,

(8)
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and

Γw(x) = E
[
Z(Y − Z ′β)|X = x,W = w

]
,

for w = 0, 1.

Therefore, bias in the estimation of the variance may arise when Γ0(X) 6= 0. The

following example provides a simple instance of this bias.

Example 1: Inconsistency of sandwich standard errors

Assume the sample outcomes are drawn from

Y = τW +X + ε, (9)

where X is a scalar random variable with var(X|W = 1) = σ2
X , and ε has mean zero,

variance σ2
ε , and is independent of W and X. Consider the case where we match the values

of X for N1 treated units to N1 untreated units (M = 1) without replacement. Let j(i)

be the index of the untreated observation that serves as a match for treated observation

i. For simplicity, suppose that X is discrete and all matches are perfect, Xi = Xj(i) for

every treated unit i, so we can ignore potential biases generated by matching discrepancies.

Within the matched sample, S∗, we run a linear regression of Y on Z = (1,W )′ to obtain

the regression coefficient on W ,

τ̂ =
1

N1

N∑
i=1

Wi(Yi − Yj(i)). (10)

τ̂ is the usual matching estimator for the average effect of the treatment on the treated.

Notice that, in the previous expression, Yi−Yj(i) = τ+εi−εj(i), with variance 2σ2
ε . Variation

in X is taken care of through matching. Therefore, all variation in τ̂ comes through the

error term, ε. Because n = 2N1, it follows that

n var(τ̂) = 4σ2
ε .

Consider now the residuals of the ordinary least squares (OLS) regression of Yni on a

constant and Wni in the matched sample:

ε̂ni = Yni − µ̂− τ̂Wni ≈ Xni + εni,
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where µ̂ is the intercept of the sample regression line. For this simple case, the sandwich

variance estimator for τ̂ is

n ṽar(τ̂) =
4

n

n∑
i=1

ε̂2
ni ≈ 4σ2

X + 4σ2
ε .

That is, in this example, sandwich standard errors overestimate the variance of τ̂ because

they do not take into account the dependence generated by matching between the regression

residuals of the treated units and their matches.

Sections 3.2 and 3.3 below discuss variance estimators that adjust for the matching step

by taking into account the dependence of regression errors between treated units and their

matches. For matching with M = 1 and a second-step regression of Y on a constant and

W , the clustered variance estimator of Section 3.2 becomes:

n v̂ar(τ̂) =
2

n

n∑
i=1

(ε̂i − ε̂j(i))2 ≈ 4σ2
ε ,

restoring valid inference. �

The next example shows that ignoring the matching step may result in underestimation

of the variance.

Example 2: Underestimation of the variance

In the same setting as Example 1, assume that data is generated by

Y = τW +X − 2WX + ε. (11)

The post-matching estimator of τ from a regression of Y on (1,W )′ is τ̂ as in Equation (10).

In this case, if all matches are perfect so Xi = Xj(i), we obtain Yi−Yj(i) = τ−2Xi+εi−εj(i).

Therefore,

n var(τ̂) = 8σ2
X + 4σ2

ε .

Least squares regression residuals are

ε̂ni = Yni − µ̂− τ̂Wni ≈ Xi − 2WniXni + εni =

{
−Xni + εni if Wni = 1,

Xni + εni if Wni = 0,
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implying

nṽar(τ̂) =
4

n

n∑
i=1

ε̂2
ni ≈ 4σ2

X + 4σ2
ε ,

for the conventional sandwich variance estimator. Again, the sandwich variance estimator

does not take into account dependencies between sample units induced by matching. In this

example, matching on X induces a negative correlation between the regression residuals

of the treated units and their matches. As a result, the sandwich variance estimator

underestimates the variance of τ̂ . Once again, the clustered variance estimator of Section

3.2 takes into account the correlation between regression error induced by matching, and

produces valid inference,

n v̂ar(τ̂) =
2

n

n∑
i=1

(ε̂i − ε̂j(i))2 ≈ 8σ2
X + 4σ2

ε .

�

Sandwich standard errors would be valid in examples 1 and 2 if the specifications for the

post-matching regressions included the terms containing X in equations (9) and (11), re-

spectively. Indeed, sandwich standard errors are generally valid if the regression is correctly

specified in a specific sense defined in the following result.

Proposition 4 (Validity of sandwich standard errors under correct specification). Assume

that the post-matching regression,

Y = Z ′β + ε,

is correctly specified with respect to the conditional distribution of Y given (Z,X,W ), that is,

E[ε|Z,X,W ] = 0. Then, under the assumptions of Proposition 3, Js = J and the sandwich

variance estimator, Ĥ−1ĴsĤ
−1, is consistent for the asymptotic variance of

√
n(β̂ − β).

Notice, however, that correct specification is precisely the condition under which match-

ing would not be required to obtain a consistent estimator of β, since direct estimation

without matching would be valid. Moreover, a correct specification (in the sense defined

above) of the post-matching regression is not required for consistent estimation of causal
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parameters. For example, under regularity conditions, a simple difference in means between

the treated and a matched sample of untreated units is consistent for the average effect of

the treatment on the treated. Consistent estimators of the variance exist for the simple

difference in means in a matched samples. These variance estimators are different from the

sandwich variance estimator, and do not rely on correct specification of the post-matching

regression (see Abadie and Imbens, 2012).

Finally, Equation (8) implies that the conditions of Proposition 4 can be slightly weak-

ened to require only that the regression function is correctly specified among the non-

treated, in the sense that E[ε|Z,X,W = 0] = 0. This is because for the estimators studied

in this article, matching affects only the distribution of the covariates for the non-treated.

In addition, for the special case M = 1, it is sufficient that the regression function is

correctly specified among the treated, in the sense that E[ε|Z,X,W = 1] = 0.

3.2 Match-Level Clustered Standard Errors

We have shown that sandwich standard errors are not generally valid for the post-matching

least squares estimator. In this section, we will demonstrate that, when matching is done

without replacement, clustered standard errors (Liang and Zeger, 1986; Arellano, 1987)

can be employed to obtain valid estimates of the standard deviation of post-matching

regression coefficients. In particular, we will consider standard errors clustered at the level

of the matched sets.

Consider an estimator of the asymptotic variance of β̂ given by Ĥ−1ĴĤ−1, where Ĥ is

as in Equation (6) and Ĵ is given by the clustered variance formula applied to the matched

sets,

Ĵ =
1

n

n∑
i=1

Wi

(
Zi(Yi − Z ′iβ̂) +

∑
j∈J (i)

Zj(Yj − Z ′jβ̂)
)

×
(
Zi(Yi − Z ′iβ̂) +

∑
j∈J (i)

Zj(Yj − Z ′jβ̂)
)′
.

Clustered standard errors can be readily implemented using standard statistical software.

The next result shows that match-level clustered standard errors are valid in large samples
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for the post-matching estimator (provided matching is done without replacement).

Proposition 5 (Validity of clustered standard errors). Under the assumptions of Proposi-

tion 3 we obtain that

Ĵ
p−→ J.

In particular, the clustered estimator of the variance is consistent, i.e.,

Ĥ−1ĴĤ−1 − nvar(β̂)
p−→ 0.

The intuition behind this result is that matching on covariates makes regression errors

statistically dependent among units in the same matched sets, {i} ∪ J (i), i = 1, . . . , N1.

Standard errors clustered at the level of the matched set take this dependency into account.

3.3 Matched Bootstrap

Proposition 5 shows that clustered standard errors are valid for the asymptotic variance

of the post-matching estimator. In this section, we show that a clustered version of the

nonparametric bootstrap (Efron, 1979) is also valid. This version of the bootstrap relies

on resampling of matched sets instead on individual observations.

Recall that we reordered the observations in our sample, so that the first N1 observations

are the treated. Consider the nonparametric bootstrap that samples treated units together

with their M matches partners from S∗ to obtain

β̂∗ =

(
1

n

n∑
i=1

VniZniZ
′
ni

)−1
1

n

n∑
i=1

VniZniYni

where (Vn1, . . . , VnN1) has a multinomial distribution with parameters (N1, (1/N1, . . . , 1/N1)),

and Vnj = Vni if j > N1 and j ∈ J (i). In this bootstrap procedure, N1 units are drawn

at random with replacement from the N1 treated sample units. Untreated units are drawn

along with their treated match. Effectively, the matched bootstrap samples matched sets

of one treated unit and M untreated units. The next proposition shows validity of the

matched bootstrap.
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Proposition 6 (Validity of the matched bootstrap). Under the assumptions of Proposi-

tion 5, we have that

sup
r∈Rs

∣∣∣P (√n(β̂∗ − β̂) ≤ r
∣∣∣S)− P (N (0, H−1JH−1) ≤ r)

∣∣∣ p−→ 0.

Proposition 6 shows that the bootstrap distribution provides an asymptotically valid

approximation of the limiting distribution of the post-matching estimator, but that does

not necessarily imply that the associated bootstrap variance is an asymptotically valid

estimate of the variance of the estimator.

The formal analysis of the bootstrap variance is complicated by the fact that, in forming

the bootstrap estimate β̂∗, the empirical analog

Ĥ∗ =
1

n

n∑
i=1

VniZniZ
′
ni

of the Hessian H for a given bootstrap draw may be ill-conditioned or non-invertible. In

fact, because the bootstrap may sample the same matched set N1 times, non-invertibility

of the Hessian may happen with positive probability for any sample size. To circumvent

this issue, we fix constants c > 0 and α ∈ (0, 1/2) and consider the alternative bootstrap

estimator

β̃∗ =

{
β̂∗ if ‖Ĥ∗ − Ĥ‖ ≤ c/nα,

β̂ otherwise.

That is, β̃∗ is equal to β̂∗ whenever the bootstrap Hessian, Ĥ∗, is close to the matched

sample Hessian, Ĥ. Otherwise, β̃∗ is equal to the post-matching estimator, β̂. As the

sample size grows, β̃∗ is equal to β̂∗ with probability approaching one.

Proposition 7 (Validity of bootstrap standard errors). Under the assumptions of Propo-

sition 5 and E[‖Z‖8|W = w,X = x] uniformly bounded on Xw, the bootstrap distribution

given by β̃∗ is valid in the sense of Proposition 6, and yields a valid estimate of the asymp-

totic variance of β̂, i.e.

nvar(β̃∗|S)
p−→ H−1JH−1

as n→∞.
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The use of β̃∗ in Proposition 7 is a formal device to make the outcome of each bootstrap

iteration well-defined. For practical purposes, however, bootstrap standard errors based on

β̂∗ will perform well unless the bootstrap Hessians are ill-conditioned. Bootstrap standard

errors based on β̂∗ perform very well in our simulations of Section 4.

It is useful to relate the results in this section, which pertain to matching without re-

placement, to previous results for matching with replacement. In particular, for matching

with replacement Abadie and Imbens (2008) show that the nonparametric bootstrap fails

to consistently estimate the standard error of a simple matching estimator. The consis-

tency results that we obtain in this section is for matching without replacement, and do

not directly extend to matching with replacement. The reason is that matching with re-

placement creates dependencies in the data that are not preserved by resampling matched

sets.

4 Simulations

In this section, we study the performance of the post-matching standard error estimators

from Section 3 in a simulation exercise using two data generating processes (DGPs).

4.1 DGP1: Robustness to Misspecification

Let U(a, b) be the Uniform distribution on [a, b]. We generate data according to

Y = WX + 5X2 + ε,

where X|W = 1 ∼ U(−1, 1), X|W = 0 ∼ U(−1, 2) and ε ∼ N (0, 1). We sample N1 = 50

treated and N0 = 200 nontreated units. We first match treated and untreated units on the

covariates, X, without replacement and with M = 1 match per treated unit. We consider

the following post-matching regression specifications.

Specification 1:

Y = α + τ0W + τ1WX + β1X + ε

Specification 2:

Y = α + τ0W + τ1WX + β1X + β2X
2 + ε
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Specification 2 is correct relative to the conditional expectation E[Y |X,W ], while specifica-

tion 1 is not. Regression estimands can always be seen as L2 approximations to E[Y |W,X],

regardless of the specification adopted for estimation (see, e.g., White, 1980b). For our sim-

ulation results, we will focus on estimators of τ0 and τ1, the regression coefficients on terms

involving W . For the DGP and the two specifications adopted for this simulation, it can

be shown that τ0 = 0 and τ1 = 1 under the matching target distribution.

Table 1: Monte Carlo results for DGP1 (10000 iterations)

(a) Target parameter: coefficient τ0 = 0 on W

average
full sample post-matching standard error

mean std. mean std.
specification of τ̂0 of τ̂0 of τ̂0 of τ̂0 sandwich cluster bootstrap

1 −0.85 0.404 0.00 0.204 0.359 0.197 0.199
2 0.00 0.165 0.00 0.204 0.196 0.196 0.199

(b) Target parameter: coefficient τ1 = 1 on the interaction WX

average
full sample post-matching standard error

mean std. mean std.
specification of τ̂1 of τ̂1 of τ̂1 of τ̂1 sandwich cluster bootstrap

1 −4.00 0.646 0.99 0.358 0.728 0.340 0.348
2 1.00 0.286 1.00 0.356 0.337 0.338 0.346

Table 1 reports the results of the simulation exercise. In a regression that uses the

full sample without matching, the estimates of τ0 and τ1 are biased under misspecification

(specification 1), while they are valid under correct specification (specification 2). Af-

ter matching, both specifications yield valid estimates for τ0 and τ1. However, sandwich

standard error estimates are inflated under misspecification, while average clustered and

matched bootstrap standard errors (with 1000 bootstrap draws) closely approximate the

standard deviation of τ̂0 and τ̂1. Under correct specification (specification 2), all standard

error estimates perform well.
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4.2 DGP2: High Treatment-Effect Heterogeneity

In the simulation in the previous section, sandwich standard errors overestimate the varia-

tion of the post-matching estimator under misspecification. In this section, we present an

example in which sandwich standard errors are too small. We generate data according to

Y = WX + 20WX2 − 10X2 + ε

with ε ∼ N (0, 1) as above. For this data-generating process (DGP2), the conditional

treatment effect is non-linear with

E[Y |W = 1, X]− E[Y |W = 0, X] = X + 20X2.

Sample sizes, matching settings, and regression specifications are as in DGP1. Notice that

both regression specifications are incorrect relative to E[Y |X,W ], as they do not capture

non-linear conditional treatment effects. Like in Section 4.1, regression coefficients represent

the parameters of an L2 approximation to E[Y |W,X] over the distribution of (W,X) in

Proposition 1. Direct calculations yield τ0 = 6.67 and τ1 = 1 for both specifications in the

matching target distribution.

Table 2 presents the results of the simulation exercise for DGP2. The large heterogene-

ity in conditional treatment effects is not captured by either regression specification, and

sandwich standard errors that ignore the matching step underestimate the variation of the

post-matching estimator. In contrast, the average clustered and matched bootstrap (with

1000 bootstrap draws) standard errors proposed in this article closely reflect the variability

of the post-matching estimators.

5 Application

This section reports the results of an empirical application where we look at the effect of

smoking on the pulmonary function of youths. The application is based on data originally

collected in Boston, Massachusetts, by Tager et al. (1979, 1983), and subsequently described

and analyzed in Rosner (1995) and Kahn (2005). The sample contains 654 youth, N1 = 65

who have ever smoked regularly (W = 1) and N0 = 589 who never smoked regularly
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Table 2: Monte Carlo results for DGP2 (10000 iterations)

(a) Target parameter: coefficient τ0 = 6.67 on W

average
full sample post-matching standard error

mean std. mean std.
specification of τ̂0 of τ̂0 of τ̂0 of τ̂0 sandwich cluster bootstrap

1 8.25 0.754 6.55 0.883 0.630 0.869 0.897
2 6.70 0.857 6.55 0.883 0.630 0.869 0.897

(b) Target parameter: coefficient τ1 = 1 on the interaction WX

average
full sample post-matching standard error

mean std. mean std.
specification of τ̂1 of τ̂1 of τ̂1 of τ̂1 sandwich cluster bootstrap

1 11.00 1.209 1.01 1.950 1.330 1.848 1.932
2 1.90 1.877 1.01 1.950 1.330 1.848 1.933

(W = 0). The outcome of interest is the subjects’ forced expiratory volume (Y ), ranging

from 0.791 to 5.793 liters per second (`/sec). In addition, we use data on age (X1, ranging

from 3 to 19 with the youngest ever-smoker aged 9) and gender (X2, with X2 = 1 for males

and X2 = 0 for females).

The use of matching to study the causal effect of smoking is motivated by the likely

confounding effects of age and gender. For instance, while the causal effect of smoking on

respiratory volume is expected to be negative, older children are more likely to smoke and

have a larger respiratory volume, which induces a positive association between smoking

and respiratory volume.

We first match every smoker in the sample to a non-smoker (M = 1), without replace-

ment, based on age (X1) and gender (X2). Within the resulting matched sample of 65

smokers and 65 non-smokers, we run linear regressions with the following specifications:

Specification 1:

Y = α + τ0W + ε.
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Specification 2:

Y = α + τ0W + β1X1 + β2X2 + ε.

Specification 3:

Y = α + τ0W + τ1W (X1 − E[X1]) + τ2W (X2 − E[X2])

+ β1(X1 − E[X1]) + β2(X2 − E[X2]) + ε.

The first specification yields the matching estimator for the average treatment effect τ0 as

the regression coefficient on W , while the second adds linear controls in X1 and X2. The

third specification also includes interaction terms of smoking with age and gender.

Table 3 reports regression estimates of τ0, τ1 and τ2 along with standard errors (re-

gression coefficients on terms not involving W are omitted from the Table 3 for brevity).

Estimates for the first specification demonstrate the problem of confounding in this ap-

plication. Without controlling for age and gender, there is a positive correlation between

smoking and forced expiratory function. After matching on age and gender, the sign of the

regression coefficient on smoking becomes negative. In this specification, the clustered stan-

dard error for the post-matching estimate is considerably smaller than the corresponding

sandwich standard error.

Specification 2 includes linear controls for age and gender. The sign and magnitude

of the least squares estimate of the coefficient on the smoker variable changes substan-

tially between specifications 1 and 2, while the magnitude of the post-matching estimate

stays roughly constant. This result illustrates the higher robustness across specifications

of the post-matching estimator relative to least squares on the unmatched sample (Ho

et al., 2007). When specification 2 is adopted for regression, the sign of the coefficient

on the smoker variable is not affected by matching. Also, for this specification, clustered

and sandwich standard errors are similar. Both findings are consistent with the adopted

regression specification moving closer towards the correct specification of E[Y |W,X1, X2].

In specification 3, which includes interactions between the smoker variable and age

and gender, the use of matching and the use of robust standard errors matters for the
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Table 3: OLS and post-matching estimates for the smoking data set

dependent variable: forced expiratory volume

explanatory variables

smoker smoker×age smoker×male

coeff. std. error coeff. std. error coeff. std. error
sandwich cluster sandwich cluster sandwich cluster

specification 1:

OLS .711 .099
post-matching −.066 .132 .095

specification 2:

OLS −.154 .104
post-matching −.077 .104 .096

specification 3:

OLS .495 .187 −.182 .036 .461 .193
post-matching −.077 .102 .093 −.092 .054 .038 −.021 .249 .212

substantive results of the analysis. First, notice that the coefficient on the interaction

of gender with treatment is large, significant and positive without matching, suggesting

that the effect of smoking is more severe for girls than for boys. After matching, the sign

changes, and the estimated coefficient is small and insignificant. This suggests that the

large interaction finding with OLS for this coefficient is caused by misspecification. Second,

in the post-matching regression we find a negative estimate for the interaction of treatment

with age. With sandwich standard errors, this effect is not significant (at the 5% level).

The robust standard errors proposed in this article are smaller and result in a rejection

of the null hypothesis of a zero interaction coefficient between smoker and age (at the 5%

level).

6 Conclusion

This article establishes valid inference for regression on a sample matched without re-

placement. Standard errors that ignore the matching step are not generally valid if the

regression specification is incorrect relative to the expectation of the outcome conditional

on the treatment and the matching covariates. However, using a correct specification rel-

ative to E[Y |W,X] is not necessary to consistently estimate treatment parameters after
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matching. For example, under selection on observables, simple differences in means in a

matched sample can be used to estimate average treatment effects.

We propose two alternatives–standard errors clustered at the matched set level and an

analogous block bootstrap–that are robust to misspecification and easily implementable

with standard statistical software. A simulation study and an empirical example demon-

strate the usefulness of our results.

To conclude, we outline potential extensions of our results. First, in this article we

discuss only matching without replacement, and the results do not directly carry over to

matching with replacement as in Abadie and Imbens (2006). Matching with replacement

(that is, allowing nontreated units to be used as a match more than once) creates additional

dependencies between matched sets that are not reflected in sandwich standard errors or

in the robust standard errors proposed in this article. While the negative result about

post-matching standard errors extend to matching with replacement (standard errors that

ignore the matching step are not generally valid for matching is done with replacement,

see Abadie and Imbens, 2006), the positive results we describe do not directly apply: Even

when the linear regression is correctly specified, sandwich standard errors do not correctly

capture the variance of the post-matching estimates, since the overlap between matched sets

is not accounted for. Clustered standard errors, as well as the analogous block bootstrap

that samples treated units with all their matching partners, do not provide an immediate

solution since one untreated unit may now be part of multiple such clusters or bootstrap

groups.

In addition, our analysis applies to the case when matching is done directly on the co-

variates, avoiding substantial complications created by the presence of nuisance parameters

in the matching step when matching is done on the estimated propensity score (see Rosen-

baum and Rubin, 1983; Abadie and Imbens, 2016). Finally, our analysis assumes that the

quality of matches is good enough for matching discrepancies not to bias the asymptotic

distribution of the post-matching regression estimator. Post-matching regression adjust-

ments may, in practice, help eliminate the bias as in the bias-corrected matching estimator
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in Abadie and Imbens (2011). These are angles that we do not explore in this article and

interesting avenues for future research.
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Appendix: Proofs

Preliminary lemmas A.1 and A.2 and propositions A.1-A.3 are in a supplementary ap-

pendix.

Proof of Proposition 1. Let EQ(·|W=1) and EQ(·|W=0) be expectation operators forQ(·|W =

1) and Q(·|W = 0). Notice first that for any measurable function q,

EQ(·|W=1)[q(Y (1), S)] = E[q(Y, S)|W = 1] (A.1)

The result holds also replacing W = 1 with W = 0, and after conditioning on X. In

particular,

EQ(·|W=0)[q(Y (0), S)|X] = E[q(Y, S)|X,W = 0]. (A.2)
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The regression coefficient in the population defined by (a), (b) is the minimizer of

1

M + 1
EQ(·|W=1)[(Y (1)− g(1, S)′b)2] +

M

M + 1
EQ(·|W=1)[(Y (0)− g(0, S)′b)2].

Notice that

EQ(·|W=1)[(Y (1)− g(1, S)′b)2] = E[(Y − g(1, S)′b)2|W = 1] = E∗[(Y − Z ′b)2|W = 1],

where the first equality follows from Equation (A.1) and the second equality follows from

the definitions of P ∗(·|W = 1) and Z. Similarly,

EQ(·|W=1)[(Y (0)− g(0, S)′b)2] = EQ(·|W=1)[EQ(·|W=1)[(Y (0)− g(0, S)′b)2|X]]

= EQ(·|W=1)[EQ(·|W=0)[(Y (0)− g(0, S)′b)2|X]] = E[E[(Y − g(W,S)′b)2|X,W = 0]|W = 1]

= E∗[(Y − Z ′b)2|W = 0].

In the last equation, the first equality follows from the law of iterated expectations, the

second equality follows from selection on observables, the third equality follows from (A.2)

and (A.1), and the last equation follows from the definition of P ∗(·|W = 0). Therefore,

1

M + 1
EQ(·|W=1)[(Y (1)− g(1, S)′b)2] +

M

M + 1
EQ(·|W=1)[(Y (0)− g(0, S)′b)2]

=
1

M + 1
E∗[(Y − Z ′b)2|W = 1] +

M

M + 1
E∗[(Y − Z ′b)2|W = 0] = E∗[(Y − Z ′b)2],

which implies the result of the proposition.

Proof of Proposition 2. This proof is based on two lemmas in the supplementary ap-

pendix about the asymptotic distribution of averages in matched samples based on a

martingale representation of matching estimators similar to Abadie and Imbens (2012).

Lemma A.1 establishes convergence in probability, while Lemma A.2 deals with root-n

consistency and asymptotic Normality. By Lemma A.1,

1

n

∑
i∈S∗

ZiZ
′
i

p−→ H.

By Lemma A.2,

Ĥ
√
n
(
β̂ − β

)
=
√
n

(
1

n

∑
i∈S∗

(ZiYi − ZiZ ′iβ)

)
d−→ N (0, J),
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where we note that E[ZY − ZZ ′β|W = 0, X = x] is Lipschitz. Hence,

√
n
(
β̂ − β

)
=

p−→H−1︷︸︸︷
Ĥ−1 Ĥ

√
n

(
1

n

∑
i∈S∗

(ZiYi − ZiZ ′iβ)

)
︸ ︷︷ ︸

d−→N (0,J)

d−→ N (0, H−1JH−1).

Proof of Proposition 3. We have that

Ĵs =
1

n

n∑
i=1

Zi(Yi − Z ′iβ̂)2Z ′i

=
1

n

n∑
i=1

Zi(Yi − Z ′iβ)2Z ′i +
1

n

n∑
i=1

Zi

(
(Yi − Z ′iβ̂)2 − (Yi − Z ′iβ)2

)
Z ′i.

Notice that

1

n

n∑
i=1

Zi

(
(Yi − Z ′iβ̂)2 − (Yi − Z ′iβ)2

)
Z ′i

= (β̂ − β)′

(
1

n

n∑
i=1

Zi(Z
′
iZi)Z

′
i(β̂ + β)− 2

1

n

n∑
i=1

Zi(Z
′
iZi)Yi

)
.

By assumption, the functions

E[‖Z‖4|X = x,W = w] and E[|Y |4|X = x,W = w]

are uniformly bounded on Xw, for w = 0, 1. By Hölder’s Inequality,

E

[∥∥∥∥∥ 1

n

n∑
i=1

ZiZ
′
iZiZ

′
i

∥∥∥∥∥
]

and E

[∥∥∥∥∥ 1

n

n∑
i=1

ZiZ
′
iZiY

′
i

∥∥∥∥∥
]

are thus finite. Then, for ε ∈ (0, 1/2), by Markov’s Inequality, we obtain

1

n

n∑
i=1

Zi((Yi − Z ′iβ̂)2 − (Yi − Z ′iβ)2)Z ′i

= n1/2−ε(β̂ − β)′
(∑n

i=1 Zi(ZiZ
′
i)Z

′
i/n

n1/2−ε (β̂ + β)− 2
∑n

i=1 Zi(ZiZ
′
i)Yi/n

n1/2−ε

)
p−→ 0.

As a result,

Ĵs =
1

n

n∑
i=1

Zi(Yi − Z ′iβ)2Z ′i + op(1),

and the claim follows from Lemma A.1 in the supplementary appendix, which deals with

consistency of averages in matched samples.
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Proof of Proposition 4. Under correct specification, we find that

ΓW (X) = E[Z(Y − Z ′β)|W,X] = E[Zε|W,X]

= E[E[Zε|Z,W,X]|W,X] = E[Z E[ε|Z,W,X]︸ ︷︷ ︸
=0

|W,X] = 0.

Proof of Proposition 5. First, note that

Ĵ=
1

n

∑
Wi=1

(
Zi(Yi−Z ′iβ) +

∑
j∈J (i) Zj(Yj−Z ′jβ)

)(
Zi(Yi−Z ′iβ) +

∑
j∈J (i) Zj(Yj−Z ′jβ)

)′
+oP (1),

where we replace β̂ by β analogous to the proof of Proposition 3. Write

G = Z(Y − Z ′β) Γw(x) = E[Z(Y − Z ′β)|W = w,X = x].

Note that Γ0(x) is Lipschitz on X , and that Gi has uniformly bounded fourth moments.

We decompose

Ĵ =
1

n

∑
Wi=1

(
Gi +

∑
j∈J (i)Gj

)(
Gi +

∑
j∈J (i)Gj

)′
+ oP (1)

=
1

n

∑
Wi=1

(Γ1(Xi) +MΓ0(Xi)) (Γ1(Xi) +MΓ0(Xi))
′ +

1

n

∑
i∈S∗

(Gi−ΓWi
(Xi)) (Gi−ΓWi

(Xi))
′

+
1

n

∑
Wi=1

∑
6̀=`′∈J (i)∪{i}

(G` − ΓW`
(X`))

(
G`′ − ΓW`′

(X`′)
)′

+
1

n

∑
Wi=1

(
(Γ1(Xi) +MΓ0(Xi))

(
Gi − Γ1(Xi) +

∑
j∈J (i)(Gj − Γ0(Xj))

)′
+
(
Gi − Γ1(Xi) +

∑
j∈J (i)(Gj − Γ0(Xi))

)
(Γ1(Xi) +MΓ0(Xj))

′ )+ oP (1).

Here, the oP terms absorb the deviation due to using β̂ instead of β, as well as the matching

discrepancies in the conditional expectations. The first sum is i.i.d. with

1

n

∑
Wi=1

(Γ1(Xi) +MΓ0(Xi)) (Γ1(Xi) +MΓ0(Xi))
′

p−→ E [(Γ1(X) +MΓ0(X))(Γ1(X) +MΓ0(X))′|W = 1]

1 +M

=
var(

E[·|W=1]=0︷ ︸︸ ︷
Γ1(X) +MΓ0(X) |W = 1)

1 +M
,
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while the second is a martingale with

1

n

∑
i∈S∗

(Gi − ΓWi
(Xi)) (Gi − ΓWi

(Xi))
′

p−→ E[var(Z(Y − Z ′β)|W = 1, X) +Mvar(Z(Y − Z ′β)|W = 0, X)|W = 1]

1 +M

by Lemma A.1 in the supplementary appendix, which establishes consistency of averages

in matched samples. Under appropriate reordering of the individual increments, all other

sums can be represented as averages of mean-zero martingale increments. Since the second

moments of the increments are uniformly bounded, they vanish asymptotically.

Proof of Proposition 6. In this proof we invoke Proposition A.2 in the supplementary

appendix, which establishes a general result on the validity of the matched bootstrap for

averages within matched samples. Write

Ĥ∗ =
1

n

n∑
i=1

VniZniZ
′
ni.

Note first that

H−1
√
n(Ĥ∗(β̂∗ − β)− Ĥ(β̂ − β)) = H−1

√
n

(
1

n

n∑
i=1

(Vni − 1)Zni(Yni − Z ′niβ)

)
d−→ N (0, H−1JH−1),

conditional on S, by Proposition A.2. Now,

√
n(β̂∗ − β̂) = (Ĥ∗)−1H(H−1

√
n(Ĥ∗(β̂∗ − β)− Ĥ∗(β̂ − β))

= (Ĥ∗)−1H︸ ︷︷ ︸
p−→I

(H−1
√
n(Ĥ∗(β̂∗ − β)− Ĥ(β̂ − β))) + ((Ĥ∗)−1Ĥ − I)︸ ︷︷ ︸

p−→O

√
n(β̂ − β)

d−→ N (0, H−1JH−1),

conditional on S, where we have used that Ĥ∗ − Ĥ p−→ O conditional on S.

Proof of Proposition 7. First, P (β̃∗ = β̂∗|S) ≥ P (‖Ĥ∗ − Ĥ‖ ≤ c
nα
|S)

p−→ 1 as n→∞.

Indeed, since Z has bounded conditional eighth moments, we also have that E[‖ZZ ′‖4|W =

31



w,X = s] is uniformly bounded inXw. It follows with Proposition A.2 in the supplementary

appendix, which establishes the validity of the matched bootstrap, that

sup
r∈R(dimZ)2

∣∣∣P (
√
n vec(Ĥ∗ − Ĥ) ≤ r|S)− P (N (0,ΣH) ≤ r)

∣∣∣ p−→ 0

as n→∞ and thus in particular P (nα‖Ĥ∗ − Ĥ‖ ≤ c|S)
p−→ 1 for all α ∈ (0, 1/2), c > 0.

Second, since for Ã ∩B = A ∩B generally

|P (A)− P (Ã)| ≤ |P (A ∩B)− P (Ã ∩B)|︸ ︷︷ ︸
=0

+ |P (A ∩Bc)− P (Ã ∩Bc)|︸ ︷︷ ︸
≤P (Bc)

≤ 1− P (B),

for Φ(r) = P (N (0, H−1JH−1) ≤ r) we have specifically that

sup
r∈Rs

∣∣∣P (√n(β̃∗ − β̂) ≤ r
∣∣∣S)− Φ(r)

∣∣∣
≤ sup

r∈Rs

( ∣∣∣P (√n(β̂∗ − β̂) ≤ r
∣∣∣S)− Φ(r)

∣∣∣+
∣∣∣P (√n(β̂∗ − β̂) ≤ r

∣∣∣S)− P (√n(β̃∗ − β̂) ≤ r
∣∣∣S)∣∣∣︸ ︷︷ ︸

≤1−P (β̃∗=β̂∗|S)

)

≤ sup
r∈Rs

∣∣∣P (√n(β̂∗ − β̂) ≤ r
∣∣∣S)− Φ(r)

∣∣∣︸ ︷︷ ︸
p−→0

+ 1− P (β̃∗ = β̂∗|S)︸ ︷︷ ︸
p−→0

p−→ 0.

This shows that this alternative bootstrap is valid in the sense of Proposition 6.

Third, for the bootstrap variance, we find

β̂∗ − β̂ =
(
Ĥ∗
)−1

(
1

n

n∑
i=1

VniZniYni − Ĥ∗β̂

)
=
(
Ĥ∗
)−1 1

n

n∑
i=1

VniZni(Yni − Z ′niβ̂)

= Ĥ−1 1

n

n∑
i=1

VniZni(Yni − Z ′niβ̂)︸ ︷︷ ︸
=∆̂∗

+

((
Ĥ∗
)−1

− Ĥ−1

)
1

n

n∑
i=1

VniZni(Yni − Z ′niβ̂)︸ ︷︷ ︸
=R̂∗

Since 1
n

∑n
i=1 Zni(Yni − Z ′niβ̂) = 0 and thus nvar

(
1
n

∑n
i=1 VniZni(Yni − Z ′niβ̂)

∣∣∣S) = Ĵ ,

nvar
(

∆̂∗
∣∣∣S) = Ĥ−1nvar

(
1

n

n∑
i=1

VniZni(Yni − Z ′niβ̂)

∣∣∣∣∣S
)
Ĥ−1 = Ĥ−1ĴĤ−1 p−→ H−1JH−1,
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which is a valid estimate of the asymptotic variance of β̂. However, the remainder term R̂∗

generally does not have a bounded second moment since Ĥ∗ is badly conditioned for some

bootstrap draws.

To show that β̃∗ yields valid standard errors, we collect a number of preliminary results.

Consider the random variables ∆̂∗ and ∆̃∗ = ∆̂∗1nα‖Ĥ∗−Ĥ‖≤c.
√
n∆̂∗ converges in dis-

tribution to N (0,Σ) with Σ = H−1JH−1, conditional on S, by Proposition A.2. Since

P (∆̃∗ = ∆̂∗|S)
p−→ 1, the same holds true for

√
n∆̃∗ by the above argument. Also, we have

established that

E
(√

n∆̂∗
∣∣∣S) = 0, var

(√
n∆̂∗

∣∣∣S) p−→ Σ

and thus E[n‖∆̂∗‖2|S]
p−→ tr(Σ). Since E[n‖∆̃∗‖2|S] ≤ E[n‖∆̂∗‖2|S], and n‖∆̃∗‖2 and

n‖∆̂∗‖2 have the same weak limit (with expectation tr(Σ)) by the continuous mapping

theorem, E[n‖∆̃∗‖2|S]
p−→ tr(Σ) by Proposition A.3 in the supplementary appendix. Con-

sequently,

E[n‖∆̂∗‖2|S]− E[n‖∆̃∗‖2|S] = P (nα‖Ĥ∗−Ĥ‖ > c|S) E[n‖∆̂∗‖2|nα‖Ĥ∗−Ĥ‖ > c,S]
p−→ 0.

(A.3)

Next, note that for conformable random variables A,B if var(A|S)
p−→ Σ, E[‖B‖2|S]

p−→ 0

then var(A+B|S)
p−→ Σ. Indeed,

|(var(A+B|S)− var(A|S))ij| = |cov(Ai, Bj|S) + cov(Aj, Bi|S) + cov(Bi, Bj|S)|

≤
√

var(Ai|S)
√

var(Bj|S) +
√

var(Aj|S)
√

var(Bi|S) +
√

var(Bi|S)
√

var(Bj|S)
p−→ 0.

Hence, setting A =
√
n∆̂∗ and B =

√
n(β̃∗ − β̂ − ∆̂∗), to establish the desired result

var(
√
n(β̃∗ − β̂)|S)

p−→ H−1JH−1 it suffices to show that

E
[
n‖β̃∗ − β̂ − ∆̂∗‖2

∣∣∣S] p−→ 0 (A.4)

as n→∞.

Towards establishing (A.4), note first that whenever nα‖Ĥ∗ − Ĥ‖ ≤ c then also

‖(Ĥ∗)−1 − Ĥ−1‖ = ‖(Ĥ∗)−1(Ĥ − Ĥ∗)Ĥ−1‖
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≤ ‖(Ĥ∗)−1‖ ‖Ĥ − Ĥ∗‖ ‖Ĥ−1‖ ≤ λ−1
min(Ĥ∗) λ−1

min(Ĥ) ‖Ĥ − Ĥ∗‖ dim(Z)

where

λmin(Ĥ∗) = λmin(Ĥ + Ĥ∗ − Ĥ) = min
‖x‖=1

x′(Ĥ + Ĥ∗ − Ĥ)x

≥ min
‖x‖=1

x′Ĥx+ min
‖x‖=1

x′(Ĥ∗ − Ĥ)x ≥ λmin(Ĥ)− ‖Ĥ∗ − Ĥ‖

and thus

‖(Ĥ∗)−1 − Ĥ−1‖ ≤ (λmin(Ĥ)− ‖Ĥ∗ − Ĥ‖)−1 λ−1
min(Ĥ) ‖Ĥ∗ − Ĥ‖ dim(Z)

≤ (λmin(Ĥ)− cn−α)−1 λ−1
min(Ĥ) cn−α dim(Z). (A.5)

If follows that

E
[
n‖β̃∗ − β̂ − ∆̂∗‖2

∣∣∣S]
= P (nα‖Ĥ∗ − Ĥ‖ ≤ c|S) E[n‖

=β̂∗︷︸︸︷
β̃∗ −β̂ − ∆̂∗‖2|nα‖Ĥ∗ − Ĥ‖ ≤ c,S]

+ P (nα‖Ĥ∗ − Ĥ‖ > c|S) E[n‖ β̃∗︸︷︷︸
=β̂

−β̂ − ∆̂∗‖2|nα‖Ĥ∗ − Ĥ‖ > c,S]

= P (nα‖Ĥ∗ − Ĥ‖ ≤ c|S) E[n

≤‖(Ĥ∗)−1−Ĥ−1‖2‖ 1
n

∑n
i=1 VniZni(Yni−Z′niβ̂)‖2︷ ︸︸ ︷

‖R̂∗‖2 |nα‖Ĥ∗ − Ĥ‖ ≤ c,S]

+ P (nα‖Ĥ∗ − Ĥ‖ > c|S) E[n‖∆̂∗‖2|nα‖Ĥ∗ − Ĥ‖ > c,S]

(A.5)

≤ (λmin(Ĥ)︸ ︷︷ ︸
p−→λmin(H)>0

−cn−α)−1 λ−1
min(Ĥ) cn−α dim(Z)

P (nα‖Ĥ∗ − Ĥ‖ ≤ c|S) E[‖n−1/2
∑n

i=1VniZni(Yni − Z
′
niβ̂)‖2|nα‖Ĥ∗ − Ĥ‖ ≤ c,S]︸ ︷︷ ︸

≤E[‖ 1√
n

∑n
i=1 VniZni(Yni−Z′niβ̂)‖2|S]=tr(Ĵ)

p−→tr(J)

+ P (nα‖Ĥ∗ − Ĥ‖ > c|S) E[n‖∆̂∗‖2|nα‖Ĥ∗ − Ĥ‖ > c,S]︸ ︷︷ ︸
(A.3)
p−→ 0

p−→ 0.

Hence, var(
√
n(β̃∗ − β̂)|S) and var(

√
n∆̂∗|S) have the same probability limit H−1JH−1,

which is also the asymptotic variance of β̂.
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