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SUMMARY
Sharing data across research groups is an essential driver of biomedical research. While interactive query-
answering systems for biomedical databases aim to facilitate the sharing of aggregate insights without
divulging sensitive individual-level data, query answers can still leak private information about the individuals
in the database. Here, we draw upon recent advances in differential privacy to introduce query-answering
mechanisms that provably maximize the utility (e.g., accuracy) of the system while achieving formal privacy
guarantees. We demonstrate our accuracy improvement over existing approaches for a range of use cases,
including cohort discovery, variant lookup, and association testing. Our new theoretical results extend the
proof of optimality of the underlyingmechanism, previously known only for count queries with symmetric util-
ity functions, to more general utility functions needed for key biomedical research workflows. Our work pre-
sents a path toward interactive biomedical databases that achieve the optimal privacy-utility trade-offs
permitted by the theory of differential privacy.
INTRODUCTION

The fast accumulation of biomedical datasets around the globe,

including personal genomes andmedical records, hold immense

potential to advance biology and medicine. However, most of

these data are held in isolated data repositories (e.g., different

hospitals or biobanks); sharing these data across repositories

is often infeasible due to data privacy concerns. A pressing chal-

lenge is to develop systems that allow researchers to jointly

leverage large data collections across multiple sites, in order to

gain more accurate and refined biomedical insights crucial to

realizing the vision of personalized health.

In response to this need, several large-scale databases in both

the medical and genomics communities have developed interac-

tive query-answering systems in order to allow external re-

searchers and clinicians to utilize their databases in a limited

and controlled fashion (Lemke et al., 2010; Saeed et al., 2011;

Weber et al., 2009; Lowe et al., 2009; Murphy et al., 2011; Fiume

et al., 2019). For example, medical data repositories, such as i2b2

and STRIDE (Lowe et al., 2009; Murphy et al., 2011), allow re-

searchers designing clinical studies to query how many patients

in the database satisfy a given set of criteria prior to requesting

data access or recruiting patients, a workflow commonly known

as cohort discovery. In addition, recently emerginggenomic ‘‘bea-

con’’ services (Fiume et al., 2019) allow users to query whether or
408 Cell Systems 10, 408–416, May 20, 2020 ª 2020 The Author(s). P
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not a given genetic variant is observed in the database, aworkflow

we refer to as variant lookup. TheBeaconproject by the global alli-

ance for genomics and health (GA4GH) (Global Alliance for Geno-

mics and Health, 2016) has helped launch a network of over 100

beacons to date around theworld (Fiume et al., 2019). These inter-

active systems are poised to play a key role in driving data-sharing

efforts in the biomedical community.

Yet, despite the limited scope of allowed queries and the fact

that only aggregate-level information is shared, query-answering

systems can still leak sensitive information about the underlying

individuals (Homer et al., 2008; Vinterbo et al., 2012; Shringarpure

and Bustamante, 2015; Raisaro et al., 2017). One could, for

example, ask for the number of 25-year-old females on a certain

medication who do not have a particular disease. If the answer re-

turned is zero, we know that any 25-year-old female in the data-

basewho is on thatmedication has that disease, a fact the patient

might wish to keep private. Moreover, given access to an individ-

ual’s genotype, a small number of queries to a beacon server

would be sufficient to reveal whether the individual is included in

the database (Raisaro et al., 2017; Shringarpure and Bustamante,

2015). This information could potentially be detrimental to the in-

dividual if the underlying cohort represents a group of individuals

with sensitive characteristics (e.g., a rare medical condition).

To address these privacy concerns, existing systems and

studies have attempted to improve individual privacy in query-
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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answering systems by perturbing query results with a small

amount of noise in order to reduce sensitivity to the underlying in-

dividuals (Murphy and Chueh, 2002; Raisaro et al., 2017; Wieland

et al., 2008). However, these efforts either lack rigorous theoretical

guarantees of privacy or introduce an excessive amount of noise

into the system, limiting their effectiveness in practice. For

instance, i2b2 and STRIDE add truncated Gaussian noise to the

number of subjects matching a given filter without consideration

of formal models of privacy. Recent studies (Raisaro et al.,

2019; Vinterboet al., 2012) haveproposedapplying the theoretical

framework of differential privacy (Dwork et al., 2006, 2015) to

cohort discovery (see Method Details). As we demonstrate in

ourwork, existingmethods perturb the resultsmore than is neces-

sary to achieve a desired level of privacy. For beacon servers,

although real-world systems are yet to adopt a standard protocol

to remedy privacy risks, Raisaro et al. (2017) have explored poten-

tial attacks onbeacon servers andprovided a set of risk-mitigation

strategies. Unfortunately, their techniques are based on a simpli-

fied model of genotype distribution, which make them vulnerable

to sophisticated attacks that exploit the data patterns not

captured by the model (e.g., deviations from Hardy-Weinberg

equilibrium), as we describe in our results.

Here, we build upon recent advances in differential privacy (DP)

to introduce query-answering systems with formal privacy gua-

rantees, while ensuring that the query results are as accurate as

theoretically possible. We focus on three types of queries: (1)

cohort discovery, (2) variant lookup, and (3) chi-squared associa-

tion tests built upon count queries. We empirically demonstrate

the accuracy improvements of our proposed DP mechanisms

for each query type. Furthermore, we provide case studies on

how our optimal DP mechanisms could be used to enable data

sharing with privacy, following the real-world workflows in pub-

lished studies for cohort discovery and variant lookup. We also

newly illustrate how a user’s ability to choose a prior belief over

the true answer can further boost the accuracy of the query results

in our DP framework, without incurring additional privacy cost. To

aid the reader’s understanding,weprovide additional background

and define key vocabulary of our work in the Primer (Box 1) and

Glossary (Box 2), respectively.

Our methods leverage the truncated a-geometric mechanism

(a-TGM), previously developed for a limited class of count queries

ina theoretical context (Ghoshetal., 2012), toobtainadifferentially

private result for each query type. Our key theoretical advances

include showing that a-TGM, combined with a post-processing

stepperformedby the user, provablymaximizes the expectedutil-

ity (encompassing accuracy) of the system for a broad range of

user-defined notions of utility in both cohort discovery and variant

lookup workflows. Notably, the optimality of a-TGM was previ-

ously known for onlycountquerieswith symmetric utility functions,

which are insufficient for workflows we typically encounter in

biomedical databases (Vinterbo et al., 2012). We newly extend

this result to a more general class of utility functions, including

asymmetric functions, thereby answering anopenquestionposed

in the original publication of a-TGM (Ghosh et al., 2012). Asym-

metric utility is a desirable notion in cohort discovery applications,

where overestimation is often more desirable than underestima-

tion (Vinterboet al., 2012).Moreover, our generalized notionof util-

ity newly enabled us to prove the optimality of our DPmechanism

for variant lookup queries. Our work shows how one can leverage
the theory of DP to protect the privacy of individuals in biomedical

query-answering systems, while simultaneously maximizing the

benefits of data sharing for science.

RESULTS

Overview of Our System
Here, we describe the overall workflow of our optimal DP mecha-

nism for biomedical database queries (Figure 1). Suppose the

database D consists of data from n individuals, d1;.; dn. First,

the user chooses a desired privacy level, denoted by e, and a

query. For both cohort discovery and variant lookup scenarios,

the query can be represented using a predicate s,which evaluates

to true (1) or false (0) for each individual di in the database, indi-

cating whether he or she matches the desired criteria for the

cohort or has a variant of interest. The user is interested in

x : =
Pn

i =1sðdiÞ for cohort discovery and 1fx>0g for variant

lookup, where 1f,g is the indicator function. The user submits

ðe; sÞ to the database server. Next, the server releases a differen-

tially private statistic ~x of x to the user, using the truncated a-geo-

metric mechanism (with a = expð�eÞ; see Method Details). Then,

the user chooses a prior distribution pðxÞ over the true count x,

representing his or her belief about the underlying data distribu-

tion, and a loss function [ðx;yÞ, representing how undesirable ob-

taining a query result y is, given x, where y˛f0;.; ng for cohort

discovery and y˛f0; 1g for variant lookup. Based on the chosen

p and [, the user maps ~x to the optimal choice of y, which the

user interprets as the answer to their query. We refer to this final

step as local post-processing by the user, which can be per-

formed an arbitrary number of times for different choices of p

and [, without affecting privacy guarantees. Our scheme satisfies

e-DP and provably minimizes (maximizes) the expected loss (util-

ity) of the query result among all stochastic mechanisms that

achieve e-DP, for both cohort discovery and variant lookup sce-

narios. Amore thorough description of ourmechanisms, including

theoretical analyses of their optimality, are provided in Method

Details.

Regarding the computational cost of our system, the overhead

for the server is negligible as it randomly samples one additional

number per query. Communication is identical to the underlying

system without DP, except for the inclusion of a privacy param-

eter e in the query. Local post-processing by the user takes

Oðn2Þ time per query for a database of size n in general; however,

the structure of loss functions in our application scenarios can be

exploited to reduce the complexity to OðnlogðnÞÞ for cohort dis-
covery andOðnÞ for variant lookup (Method Details). Using these

optimizations, which are incorporated into our software, we

achieve post-processing times of less than a second for both

query types on a standard laptop computer, even when n is a

million. Thus, our methods incur a minimal computational over-

head overall compared to query-answering systems without DP.

Differentially Private Cohort Discovery with Maximum
Utility
We first evaluated the utility of our proposed approach for cohort

discovery. For baseline, we compared our approach to the expo-

nential mechanism proposed by Vinterbo et al., 2012, and the

Laplace mechanism used in the MedCo framework of Raisaro

et al., 2019. Note that the exponential mechanism takes a utility
Cell Systems 10, 408–416, May 20, 2020 409



Box 1. Primer

Query-answering systems for biomedical databases can allow researchers to obtain aggregate insights from the data without ac-

cessing sensitive individual-level data, thus broadening the scientific impact of these data resources. For example, large-scale

patient registries that allow users to see how many patients in the database meet certain criteria can facilitate the design of

research studies, such as clinical trials. Similarly, genomic data repositories that allow users to retrieve information about specific

genetic variants can help researchers tap into insights offered from larger or more diverse datasets. However, these systems do

not ensure adequate protection of privacy in general for the individuals in the database, as it is often possible to construct a set of

queries that reveal information about a specific individual.

In this work, we are interested in designing query-answering systems with rigorous privacy guarantees based on the theoretical

framework of DP. The idea behind DP is that, if we have a dataset fromwhichwewant to release some statistic, it should be difficult

to tell the difference between the statistic calculated on our dataset and the statistic calculated on a dataset that differs from ours

by exactly one individual. DP achieves this property by adding a controlled amount of statistical noise to the shared data in such a

way that it ensures the statistical impact of any particular individual in the database is smaller than the desired level.

To use DP mechanisms in practice, one needs to balance the trade-off between privacy and utility. Note that adding less noise to

the data is better in terms of ensuring the usefulness of the system, yet adding more noise leads to increased levels of privacy. This

trade-off can be formalized through a utility function that quantifies how useful or desirable a particular perturbed query result is,

given the true query result. The overall effectiveness of the system can then be measured by its expected utility at a given privacy

level, which averages the utility function over different true query results as well as over the randomness in the DP mechanism.

Building upon recent results in DP, our work introduces optimal DPmechanisms that provably maximize the expected utility of the

system for answering key types of biomedical database queries, including count queries for determining the size of a potential

study cohort in a medical database (referred to as cohort discovery) and membership queries for finding out whether a genetic

variant is included in a genomic database (variant lookup).
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function as input, which we set to the negative of the loss func-

tion used in our mechanism. This linear mapping is motivated by

the existing theory showing that exponential mechanism approx-

imately maximizes the expected utility (McSherry and Talwar,

2007), which corresponds to minimizing the expected loss in

our setting. In addition, because neither the exponential nor

the Laplace mechanisms have a notion of prior distribution

over the true count, we set our prior distribution to uniform, which

represents a neutral prior.

As expected, our approach achieves the lowest expected loss

across all values of privacy parameter e for both symmetric and

asymmetric loss of functions (Figure 2). In fact, our theoretical re-

sults suggest any mechanism that achieves e-DP cannot

perform better than our approach on an average in both symmet-

ric and asymmetric settings (Method Details). Comparing the

probability distribution over the query result, we see that our
Box 2. Glossary

e-DP A theoretical notion of privacy, which stat

conditioned on the underlying database,

two databases that differ by exactly one

parameter, where smaller values of e giv

Utility (loss) function A function that quantifies how desirable

work, this function takes the true query re

outputs a real number.

Prior distribution Probability distribution over a random va

the underlying distribution from which th

over the true query result.

Cohort discovery Theworkflow of determining howmany in

a study.

Variant lookup The workflow of determining whether a g

database.
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approach results in a more concentrated probability mass near

the true count. It is worth noting that, with asymmetric loss, the

mode of the distribution over the query result does not align

with the true count, which is a result of the skewness of the

loss function.

The fact that our margin of improvement over the Laplace

mechanism is smaller than that over the exponential mechanism

can be attributed to the fact that the Laplacian distribution, from

which the perturbed count is sampled in the Laplace mecha-

nism, closely approximates the geometric distribution used in

our approach, which could be viewed as a discrete version of

the Laplacian distribution. However, the Laplace mechanism is

unable to tailor its answer to the user’s desired notion of utility

(captured by the loss function) or prior belief over the data, re-

sulting in a greater loss in utility in more sophisticated settings.

For example, our experiments with asymmetric loss shows that
es that the probability of observing a certain outcome of the system,

does not differ by more than a multiplicative factor of expðeÞ for any
individual. Non-negative real number e is referred to as the privacy

e stronger guarantees of privacy.

(undesirable) a certain outcome of the system is to the user. In this

sult and a perturbed query result (from aDPmechanism) as input and

riable, which is typically unobserved, expressing one’s belief about

e variable is sampled. In this work, this term refers to the distribution

dividuals in a given databasemeet the desired criteria for inclusion in

enetic variant of interest is observed in a given (subset of the)



Figure 1. Workflow of Our Optimal Differential Privacy Mechanisms for Biomedical Queries

Given a count or membership query from the user, the database returns a differentially private count of individuals matching the query using the generic truncated

a-geometric mechanism (Ghosh et al., 2012). The user locally transforms the result based on his or her chosen generic prior belief over the true count and a utility

function. As we showed, the final result provably maximizes expected utility over all differential privacy mechanisms with the same privacy level.
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the Laplace mechanism resorts to a suboptimal output distribu-

tion centered around the true count, leading to a more

pronounced performance difference between our approach

and the Laplace mechanism compared with the symmetric

case (Figures 2B and 2C).

A key aspect of our approach is that it allows the user to incor-

porate his or her belief about the underlying data distribution. For

example, if a user is interested in the number of individuals with a

disease that is known to be extremely rare, then it would be desir-

able to takeadvantageof thisprior knowledgeabout thedisease to

further improve the accuracy of the query result, rather than

assuming that every possible answer is equally likely (uniform

prior). Todemonstrate thiscapability,weperformedanexperiment

where the query distribution is concentrated on small numbers

(e.g., <5 out of 1,000). We then evaluated the expected loss of

our mechanism based on different choices of prior distributions

of varying skewness, ranging from uniform to one that is highly

skewed toward the low counts (Figure S1). Our results show

that, indeed, adopting a prior distribution that is better aligned

with the true result further reduces theexpected lossofour system.

Differentially Private Variant Lookup with Maximum
Utility
Variant lookup queries are becoming increasingly relevant for the

biomedical community given the growing number of genomic

beacon servers. Previously proposed privacy risk-mitigation

strategies for beacons (Raisaro et al., 2017) have aspects that

are reminiscent of DP (e.g., the notion of privacy budget), yet

their privacy guarantees were based upon a simplified statistical

model of genotype distributions in a population. As a result, the
proposed strategies do not necessarily provide protection

against attacks that take advantage of data patterns that lie

outside of themodel. For example, based on the 1,000 Genomes

Project dataset (2015), we observed that selectively targeting

genetic variants that deviate from Hardy-Weinberg equilibrium

can lead to greater leakage of private information than captured

by the previously proposed privacy budget accounting scheme

(Raisaro et al., 2017) (Figure S2). Thus, theoretical frameworks,

such as DP offer a valuable, more thorough alternative to miti-

gating privacy risks in beacon servers.

Our theoretical results enabled us to design an optimal DP

mechanism for variant lookup queries that maximizes a user-

defined notion of utility for any desired privacy level (Method De-

tails). In our experiments, we consider two types of loss functions

shown in Figure 3. Linear loss puts a linearly increasing penalty

on answering that the variant is not found as its true count in

the database grows (i.e., [ðc; 0Þ= c for c>0). Uniform loss equally

penalizes all incorrect query answers regardless of how many

times the query variant was observed in the database. In both

cases, to additionally penalize false positive findings, the penalty

for answering that the variant is found in the database when it is

not (i.e., [ð0;1Þ) can be set to a higher value than one, which con-

trols the desired balance between false positive and false nega-

tive findings. Note that our framework allows users to choose

their own loss function as long as it satisfies a straightforward

assumption that the wrong answer is not preferred to the correct

answer (Method Details).

To construct a realistic prior distribution on the true count x,

we leverage the allele frequency (AF) breakdown of real-world

variant lookup queries submitted to the ExAC browser
Cell Systems 10, 408–416, May 20, 2020 411
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Figure 2. Our Approach Improves the Utility of Medical Cohort Discovery with Differential Privacy

We compared the performance of our optimal DP mechanism for count queries to the exponential (Vinterbo et al., 2012) and Laplace (Raisaro et al., 2019)

mechanisms for different choices of loss functions (rows). We considered the following parameter settings for Vinterbo et al. (2012)’s loss function described in

Method Details: (A) a� =a+ = b� = b+ = 1; (B) a� =a+ =1, b� = 1, and b+ = 3; and (C) a� =a+ = 0:5, b� = 1, and b+ = 3. In each row, the subfigures show the shape

of loss function (left), expected loss over a range of privacy parameters e (center), and a sample probability distribution over the private query result, with a true

count of 50 and e= 0:2 (right). We used the uniform prior for our mechanism. Overall, our approach reduces the expected loss while maintaining the same level of

privacy. See also Figure S1.
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(Karczewski et al., 2017) over a period of 12 weeks, provided by

Raisaro et al. (2017) (Figure 3A). Assuming a uniform distribution

within each AF category defined by Raisaro et al. (2017), we

transformed the prior over AF into a prior over the number of in-

dividuals in the database with the query variant, which we used

both in our optimal mechanism and for averaging the results over

the real-world query distribution.

We compared our approach to standard DP techniques,

including the exponential and the Laplace mechanisms. For

the exponential mechanism, we set the utility to be the negative

of our loss function and release a binary answer directly based

on the true count x of the query variant. For the Laplace mecha-

nism, we first use it to obtain a privacy-preserving count ~x of x,

then apply a threshold 1f~x>0g to obtain a binary answer. Both

these approaches represent a straightforward application of

the existing techniques.

Our results show a significant improvement in utility over exist-

ing mechanisms across a range of privacy parameters e, with

respect to linear loss (Figure 3B). In the case of uniform loss,

our expected loss minimization problem reduces tominimization
412 Cell Systems 10, 408–416, May 20, 2020
of the overall error probability of the system, since the loss func-

tion evaluates to one for the incorrect answer and zero for the

correct answer in all cases. Under this setting, our mechanism

also achieves smaller error probabilities compared to the exist-

ing DP techniques (Figure 3C).

Differentially Private Association Tests with Improved
Accuracy
Count queries used in cohort discovery represent a fundamental

operation that can enable a range of downstream analyses in a

privacy-preserving manner, including association tests and his-

togram visualizations. Given that our optimal DP framework im-

proves the accuracy of count queries while achieving the same

level of privacy, it is expected that these improvements will

also translate into accuracy improvements in downstream tasks.

Here, we set out to empirically demonstrate this idea using the c2

association test as an example, which is a foundational tech-

nique for testing independence between pairs of categorical var-

iables (e.g., clinical, genomic, and demographic characteristics

of individuals).



A B C Figure 3. Our Approach Improves the Utility

of Genomic Variant Lookup with Differential

Privacy

Using the allele frequency distribution of variant

lookup queries submitted to the ExAC database

(Raisaro et al., 2017) as our prior distribution (A), we

evaluated the expected loss of our optimal differ-

ential privacy mechanism for variant lookup with

two different loss functions shown in tables: (B)

linear loss, which employs a linearly increasing

penalty for negatively answering the query as the

number of observations in the database grows and

an increased penalty for false positives parame-

terized by l, and (C) uniform loss, where any error

that results in a flipped query result incurs the same

amount of penalty, in which case the expected loss

can be interpreted as error probability. Overall, our

approach achieves the lowest expected loss

compared to existing differential privacy mech-

anisms.
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To this end, we generated a large collection of sample 2-by-2

contingency tables with varying degrees of dependence between

the two binary variables (one represented by the rows and the

other by the columns). Assuming these tables as ground truth,

we then obtained a differentially private version of each table by

separately invoking differential private count query on each of

the four cells with privacy parameter e. (Note that due to the par-

allel composition property of differential privacy (Method Details),

this overall procedure satisfies e-DP, instead of 4e.) We then

computed the c2 association statistic based on both the true table

and the perturbed table for comparison. As expected, we

observed that the differentially private c2 statistics calculated

based on our optimal mechanism more accurately matched the

ground truth as opposed to other baselinemechanisms (Figure 4),

though the Laplace mechanism achieves comparable perfor-

mance due to its similarity to our mechanism under symmetric

linear loss we adopted in this experiment. These results illustrate

the broad impact of our approach beyond cohort discovery and

variant lookupworkflows. It would be interesting to see how these

count query-based approaches compare to other DP mecha-

nisms tailored for chi-squared tests (Uhlerop et al., 2013) and

whether one can design an optimal mechanism for calculating

chi-squared statistics based on our techniques.

Case Studies
Here, we provide case studies that illustrate how our DP mech-

anisms could be used to enhance privacy in key data-sharing

workflows in biomedicine.

First, to demonstrate cohort discovery with privacy, we follow

the study of Kullo et al. (2016), which investigated the effective-

ness of genetic risk score (GRS) in improving health-related

outcomes associated with coronary heart disease (CHD). Kullo

et al. (2016) set out to recruit study participants in theMayoClinic

Biobank who meet the following criteria: ‘‘age 45–65 years, non-

HispanicWhite ethnicity, no history of atherosclerotic cardiovas-

cular disease, not on statins, at intermediate risk for CHD (10

year CHD risk 5%–20%), and residents of Olmsted County Min-

nesota.’’ In addition, the study required at least a hundred sub-

jects in both high GRS (odds ratio R1.1) and low-GRS (<1.1)

groups in order to achieve sufficient power in statistical analysis.
Fortunately, 2,026 subjects in the biobank met the inclusion

criteria, and Kullo et al. (2016) were able to enroll 216 subjects

(�100 in each GRS group) through targeted recruitment. This

study led to an important finding that the patient’s knowledge

of GRS can bring tangible improvements to their physiological

health—in this case a reduction in low-density lipoprotein

cholesterol (LDL-C) levels, a key biomarker of CHD risk.

Our methods enable the design of query-answering systems

that allow researchers like Kullo et al. (2016) to determine whether

a sufficient number of individuals in a database meet the desired

inclusion criteria, while protecting the privacy of individuals. Note

that, given the potentially specific nature of inclusion criteria,

answering arbitrary queries without anymeasures for privacy pro-

tection could leak sensitive information about the individuals; for

example, in the above scenario, one may infer that a specific indi-

vidual has a high GRS for CHD by carefully designing the queries.

In Table 1, we report differentially private query results returned by

our mechanism for different values of the true count. For large

counts such as 2,000 (representative of Kullo et al. (2016)’s sce-

nario), even a small value of privacy parameter (e = 0:05) leads

to a highly accurate result (e.g., 1,998). Smaller counts require

more noise to be added for privacy in general, but the results are

still accurate enough for the user to make informed decisions.

For instance, when the true count is 100, a perturbed query result

of 88 (e = 0:05)would giveKullo et al. (2016) enough information to

consider broadening the inclusion criteria or finding other patient

registries in order to recruit enough participants.

To illustrate the variant lookup workflow, we consider a recent

study by Velmeshev et al. (2019), which explored cell-type-spe-

cific gene expression patterns in autism spectrumdisorder (ASD)

patients. In an effort to identify genetic determinants that under-

lie pathological changes in gene expression, Velmeshev et al.

(2019) performed whole exome sequencing of the ASD patients

and reported high-confidence variants with a likely role in the dis-

ease, leveraging a series of stringent filters (e.g., low AF in exist-

ing databases). Despite the fact that many of these variants were

located in genes with known association with ASD, a deeper un-

derstanding of their functional impact on ASD remains elusive.

One approach to gaining further insight into a set of poorly un-

derstood variants is to look up their previous occurrences (if
Cell Systems 10, 408–416, May 20, 2020 413
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Our Approach Figure 4. Our Approach Improves the Accu-

racy of Chi-Squared Association Tests with

DP

We simulated datasets each including 1,000 paired

observations of two binary random variables with

varying strengths of association. We considered a

differentially private (DP) scheme for releasing the

chi-squared association statistic between the two

variables for each dataset, where we use DP count

queries to construct a 2 3 2 contingency table,

based on which the statistic is computed as post-

processing. The subfigures show the agreement

between the DP statistics and the ground truth for

different choices of DP count query mechanisms.

We optimized our mechanismwith respect to uniform prior and a symmetric linear loss function. Our approach achieves the best accuracy overall, comparable to

the Laplace mechanism yet considerably more accurate than the exponential mechanism.
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any) in other databases, in order to transfer existing knowledge

or to prioritize further analysis. For instance, in the case of Velme-

shev et al. (2019), one may be interested in finding out whether

any of the identified variants have been previously observed in

a large-scale biobank of ASD patients (e.g., SPARK; SPARK

Consortium, 2018). However, answering such type of queries

in an unrestricted fashion does not respect the privacy of individ-

uals in the database, because a small set of queries could reveal

whether someone is in the database, thus disclosing his or her

disease status.

Our DP mechanism allows researchers to obtain answers to

variant lookup queries while protecting the privacy of individuals.

To illustrate, we queried the top ASD variants reported by Velme-

shev et al. (2019) against the ClinVar database (Landrum et al.,

2020) tocheckwhetheror not eachvariant haspreviouslybeenan-

notated by experts to be pathogenic. Table 2 shows example

query results returned by our differentially private variant lookup

mechanism (e= 0:2 for each query), along with the number of

expert assessments in ClinVar thatmarked each variant as patho-

genic. Overall, our mechanism faithfully returned the majority of

query results (11 out of 17); note that some amount of error is

necessary in order to achieveDP. Analogous to the cohort discov-

ery setting, our results are more accurate for variants that have

more occurrences in the database, which reveal less information

about a specific individual. Based on these results, onemay prior-
Table 1. Our Approach Leads to Informative and Privacy-

Preserving Query Results for Cohort Discovery

Enrollment Criteria

True

Count

Differentially

Private Count
Proceed

with Study?

(Count R 200)e = 0.2 e = 0.05

Age 45–65, non-hispanic

white, no history of CHD,

not on statins, 10-year

CHD risk 5%–20%, and

lives in Olmsted County

Minnesota

2,000 1,999 1,998 yes

1,000 998 991 yes

500 495 444 yes

250 246 214 yes

100 98 73 no

Example output of our optimal mechanism for a range of possible true

query results in the cohort discovery workflow of Kullo et al. (2016). Our

results accurately inform the user whether the available sample size ex-

ceeds the desired threshold of 200, while achieving DP. We used uniform

prior and asymmetric loss function of Vinterbo et al. (2012) with b+ = 2

and b� =a+ =a� = 1. CHD, coronary heart disease.
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itize the variantswith a positive query response in follow-up exper-

iments. Although the ClinVar database in this example can be

queried without restriction in practice, we envision that an analo-

gous workflow will be useful for querying variants against a

growing number of disease-specific databases that are consid-

ered more sensitive.

DISCUSSION

A key aspect of our mechanisms is that they allow the user to

decide their own desired definitions of utility function and prior

distribution to obtain a query result that is optimal with respect

to their chosen definitions. Although our mechanisms support

a broad class of utility functions and prior distributions

(enabled by our generalized proof of optimality), we expect

the example choices in our experiments to be reasonable op-

tions for many scenarios. Specifically, we suggest Vinterbo

et al. (2012)’s parametric loss function (Figure 2) and uniform

or parametric decay prior (Figure S1) for cohort discovery;

and linear or uniform loss function and empirical query distri-

bution as prior for variant lookup (Figure 3). In addition, the

user may benefit from an interactive resource that allows

them to easily explore the consequence of different choices

of these components, similar to the one provided by Vinterbo

et al. (2012) for their parametric loss function. It is worth noting

that, unlike Vinterbo et al. (2012)’s proposal, our mechanisms

allow the user to try out any number of utility and prior distri-

bution without incurring additional privacy cost, due to the fact

these components are needed only during local post-process-

ing of the query result.

Given the optimality of our schemes, our results illustrate the

theoretical boundaries of leveraging DP for privacy risk mitiga-

tion in biomedical query-answering systems. Nevertheless,

due to the stringent nature of DP, the smallest possible error

probabilities for beacons achieved by our optimal mechanism

could still be too high for real-world systems to endure without

significantly restricting their use. This potential limitation may

be attributed to the fact that the queries submitted to beacons

are highly skewed toward rare variants, which are also the

most sensitive data from the perspective of DP, thus inflating

the overall error probability. Our optimality proofs suggest that

in order to surmount this challenge, we will require fundamental

shifts in theory to expand the scope of DP to allow more permis-

sive frameworks that remain useful in practical scenarios.



Table 2. Our Approach Leads to Informative and Privacy-Preserving Query Results for Variant Lookup

Query Variant # of Occurrences in

Clinical Database

Differentially Private Lookup

Result (e = 0.2)Genomic Position Gene Translation Impact

chr2:166054637 SCN1A NA 7 yes*

chr22:40350018 ADSL missense 5 yes*

chr19:12655693 MAN2B1 NA 4 yes*

chr22:18918421 PRODH missense 3 yes*

chr6:156871638 ARID1B stop gain 2 yes*

chr4:6301815 WFS1 missense 2 no

chr22:18918380 PRODH missense 2 yes*

chr20:5302677 PROKR2 missense 1 no

chr20:5302677 PROKR2 missense 1 no

chr19:13298946 CACNA1A missense 0 no*

chr6:156778581 ARID1B missense 0 no*

chr11:6632354 DCHS1 missense 0 no*

chr8:99832630 VPS13B missense 0 no*

chr11:6632354 DCHS1 missense 0 yes

chr16:29813701 PRRT2 missense 0 yes

chr9:6604646 GLDC missense 0 no*

chr12:2585485 CACNA1C missense 0 yes

Example output of our variant lookup mechanism for testing whether the putative autism-associated variants reported by Velmeshev et al. (2019) have

previously been labeled pathogenic in the ClinVar database. Our mechanism correctly responds to 11 out of 17 queries (marked by asterisks), notably

with increased accuracy for those with higher occurrence in the database. We used Raisaro et al.’s variant query distribution (Raisaro et al., 2017) as

prior and linear loss with l=2 (see Figure 4).
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Another solution may be hybrid systems that combine DP with

traditional access control procedures to allow the sharing of

highly sensitive query results based on trust, while securing

and facilitating other types of queries that are more amenable

to DP. In particular, our DP techniques achieve high accuracy

for count query results that are sufficiently large (e.g., greater

than 50) and membership queries for which the underlying count

is similarly large; both cases will become increasingly common

as biomedical databases grow in size.

There are several interesting methodological directions that

merit further research. It may be possible to design optimal DP

mechanisms for more complex tasks beyond count and mem-

bership queries, including emerging applications of DP in feder-

ated machine learning (Abadi et al., 2016). We also plan to

explore better ways to address the setting where each user sub-

mits a potentially large number of queries; although current work

considers each query independently, one could exploit the

structure of common biomedical queries to develop more effec-

tive methods to compose multiple queries, such that the overall

privacy cost is smaller than that obtained by general-purpose

composition techniques (Kairouz et al., 2017). Lastly, in line

with the work of Raisaro et al. (2019), we need further efforts to

incorporate DP mechanisms into federated systems that enable

collaborative analysis across a group of entities with isolated da-

tasets, who are unable to directly pool the data due to regulatory

constraints or conflicting interests (e.g., Cho et al., 2018; Hie

et al., 2018). Together, these efforts will help us bring cutting-

edge advances in DP to real-world biomedical data-sharing plat-

forms in order to empower researchers while enhancing protec-

tion for individuals.
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METHOD DETAILS

Review of Differential Privacy
Differential privacy (DP) (Dwork et al., 2006, 2015) is a theoretical framework for sharing aggregate-level information about a dataset

while limiting the leakage of private information about individuals in the dataset. The idea behind differential privacy is that, if we have

a dataset from which we want to release some statistic, it should be difficult to tell the difference between the statistic calculated on

our dataset and the statistic calculated on a dataset that differs from ours by exactly one individual. Differential privacy achieves this

property by adding a controlled amount of statistical noise to the shared data in such away that it ensures the statistical impact of any

particular individual in the database is smaller than the desired level. Originally developed in cryptography, the theory of differential

privacy has found many applications and theoretical connections in diverse domains, including population genetics (Simmons et al.,

2016), privacy-preserving machine learning (Abadi et al., 2016), robust statistics (Dwork et al., 2015), and quantum computing (Aar-

onson and Rothblum, 2019), and has recently been adopted to protect private individuals in real-world systems, e.g., by Google and

the United States Census Bureau (Machanavajjhala et al., 2017).

More formally, assume that we have a dataset, denoted X, and we want to release some statistic, denoted fðXÞ, that has been

calculated on our data set. This statistic, however, may not preserve the privacy of the individuals in X. As such, we will instead

release a perturbed statistic, denoted FðXÞ, which approximates fðXÞ while still achieving a certain level of privacy. This level of pri-

vacy is measured by a parameter e>0, where the closer to zero e is, the more privacy is retained. The goal is that, for every pair ðX;X0Þ
of ‘‘neighboring’’ datasets (i.e., X and X0 are of the same size and differ by exactly one individual), we have that for any possible

outcome y in the image of F,

PðFðXÞ= yÞ%expðeÞ,PðFðX 0Þ= yÞ
Any F that satisfies this property is said to be e-differentially private. Intuitively, this property ensures that it is statistically hard to

distinguish FðXÞ from FðX0Þ, thereby ensuring that no one individual loses too much privacy when FðXÞ is released.

One can extend this framework to protect multiple queries using the following composition properties: Given a sequence of k sta-

tistics F = ðF1;.;FkÞwhere each statistic Fi is ei-differentially private, the overall algorithm F is
Pk

i = 1ei-differentially private (sequential

composition). When each of the statistics in F is computed based on a disjoint subset of the individuals in the dataset, F is

maxi˛f1;.;kgei-differentially private (parallel composition). More advanced composition techniques with tighter privacy bounds on

the overall mechanism have been proposed (Kairouz et al., 2017). These tools enable database owners to assign a privacy ‘‘budget’’

to each individual user and keep track of the combined privacy level e throughout the user’s interaction with the database, which

reflects how much private information is revealed to the user overall.

Previous Methods for Cohort Discovery and Variant Lookup with Privacy
Key use cases of biomedical query-answering systems include cohort discovery and variant lookup. In cohort discovery, clinical

researchers ask howmany patients in themedical record databasemeet a certain condition. This information can help researchers

to design studies and assess their feasibility without having to obtain sensitive patient data first. In variant lookup, researchers or

physicians ask whether a given genetic variant is observed in the individuals in the database. This query can facilitate the matching

of patients with similar genetic determinants of disease across different hospitals, or improve the phenotypic characterization of
Cell Systems 10, 408–416.e1–e9, May 20, 2020 e1
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genetic variants of interest. Here we review existing proposals for mitigating privacy risks associated with these two types of

queries.

Cohort discovery with privacy

Existing cohort discovery systems such as i2b2 and STRIDE (Lowe et al., 2009; Murphy et al., 2011) use approaches to protecting

privacy that give no real privacy guarantees, whereby they release perturbed counts for some users instead of raw counts. Both of

thesemethods work by adding truncated Gaussian noise to the query results, which unfortunately do not provide formal privacy gua-

rantees. In order to remedy this issue, Vinterbo et al. (2012) suggested a method to produce differentially private answers to count

queries. Although their work was not the first attempt to use differential privacy in a medical research context, it is the first we are

aware of to do so as a way to improve medical count queries (Vu and Slavkovic, 2009; Gardner et al., 2013; Dankar and El

Emam, 2013; Jiang et al., 2013).

We briefly review the approach of Vinterbo et al. (2012) here. In a nutshell, the authors assume that there is a database consisting of

n patients, and they want to know the number of people in that database meeting a certain condition. To accomplish this goal, they

introduce a loss function [ defined by

[ ðx; yÞ=
�
b+ ðy � xÞa+ if yRx;
b�ðx � yÞa� otherwise;

(Equation 1)

where a+ ;a�;b+ ; b� are parameters given by the user, y is an integer in the range ½rmin; rmax� to be released by the mechanism, and x

is the true count. This loss function measures the loss of approximating x with y.

Note that [ has sensitivity (i.e., maximum change caused by substituting a single individual) D[ = maxðb+ ;b�Þ. Therefore, if we

define a random function Xu such that, for a given value x, PðXuðxÞ= yÞ is proportional to expf�u[ðx; yÞg for all integers y˛ ½rmin;

rmax�, then Xu is 2D[u-differentially private. This approach is commonly known as the exponential mechanism (McSherry and Talwar,

2007). Given the above parameters and e, Vinterbo et al.’s mechanism (Vinterbo et al 2012) returns an estimate of x given by XuðxÞ,
where u = e=ð2D[Þ. Note that this result is e-differentially private by the standard analysis of the exponential mechanism (McSherry

and Talwar, 2007), though amore thorough analysis can show that this is not a tight bound on e, which we provide in a later section of

Method Details.

A recently proposed framework called MedCo (Raisaro et al., 2019) allows multiple hospitals to collectively answer cohort discov-

ery queries without sharing the underlying databases. MedCo uses the Laplacemechanism to achieve e-differential privacy, whereby

the system adds noise from the Laplacian distribution with scale parameter 1=e to the true count, rounds it to the nearest integer, then

releases the result to the user. Unlike Vinterbo et al.’s approach, this framework does not allow users to choose their own notion of

utility; instead, it approximately corresponds to a loss with b+ = b� and a+ = a� = 1.

Variant lookup with privacy

Shringarpure andBustamante (2015)were the first todemonstrate amembership inferenceattackongenomicbeaconservices,which

we refer to as the SB attack. In their attack scenario, it is assumed that the attacker has access to (a subset of) the target individual’s

genotypes. The attacker repeatedly queries the beaconwith the individual’s data to inferwhether or not the individual is included in the

database. More precisely, the likelihood ratio over the query responses between the case where the database includes the individual

and the case where it does not is used to statistically test whether the individual is indeed in the database. Depending on how rare the

queried variants are, it has been shown that a small number of queries are sufficient for the SB attack to succeed.

Recently, Raisaro et al. (2017) further explored this privacy threat for emerging beacon services, and proposed a set of risk miti-

gation strategies, which include: (i) only answering yeswhen the query variant is observed at least twice; (ii) answering incorrectly with

probability e for rare variants; and (iii) keeping track of the cumulative likelihood ratio in the SB attack for each individual and suppress-

ing a user once a threshold has been reached. However, these strategies were specifically designed for and analyzed based on the

SB attack, which assumes certain properties about the data distribution, e.g., that every variant satisfies Hardy-Weinberg equilib-

rium. As a result, although Raisaro et al.’s strategies are reasonable first steps, they do not guard against more sophisticated attacks

that exploit data patterns not captured by the underlying model (Figure S2). Differential privacy techniques, on the other hand, are

agnostic to how the individual-level data is distributed and thus enable more rigorous guarantees of privacy.

Our Approach: Utility-Maximizing Differential Privacy Mechanisms
We introduce differential privacy (DP) mechanisms for cohort discovery and variant lookup problems that achieve provably optimal

trade-offs between privacy and utility. Our approaches build upon the truncated a-geometricmechanism for the count query problem

(Ghosh et al., 2012), which is well-studied in a theoretical context.

Count queries for cohort discovery

Here, we briefly describe previous work (Ghosh et al., 2012) and then turn to our generalizations of it.

a-geometric mechanism. Let x˛f0gWZ+ be the true result of a count query. The a-geometric mechanism (for a˛ð0;1Þ) takes x as

input and releases a perturbed value y = x +D˛Z, where

PðD= dÞ=1� a

1+a
ajdj:

This mechanism achieves lnð1=aÞ-differential privacy, because changing a single database entry changes x by at most one; the likeli-

hood of any observed value of y differs by at most a multiplicative factor of 1=a= elnð1=aÞ for neighboring x and x0 that differ by one.
e2 Cell Systems 10, 408–416.e1–e9, May 20, 2020
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Truncated a-geometric mechanism (a-TGM).Now consider a mechanism that takes the output y from the a-geometric mechanism

and truncates it to the range of possible results for a count query given a database of n entries to release z = minfmaxf0;yg;ng. This is
called the truncated a-geometric mechanism. Due to the post-processing property of differential privacy, which states that any addi-

tional computation on differentially private statistics does not cause additional privacy loss, this mechanism is also lnð1=aÞ-differen-
tially private.

Optimality of a-TGM for count queries with symmetric utility. Let [ðx; yÞ be a loss function that captures the disutility (i.e., how un-

desirable an outcome is to the user) of releasing a result y when the true result of the count query is x.We are interested finding a e-DP

mechanism that maximizes (minimizes) the expected utility (disutility) for any given e. Note that we can parameterize the DP mech-

anism by the conditional probability distribution qðyjxÞ. Formally, the utility-maximization problem is given by

minimizeqðyjxÞ Ex�pðxÞ
�
Ey�qðyjxÞ½[ ðx; yÞ �

�
s:t: a,qðyjxÞ%qðyjx0Þ;cy; x; x0 : jx � x0j= 1

where a= e�e and pðxÞ denotes the prior belief over the true count x˛f0;.;ng.
The following theorem summarizes the main result of Ghosh et al. (2012):

Theorem 1. (Ghosh et al., 2012; adapted). Given any prior belief pðxÞ and a symmetric loss function [ðx; yÞ= fðjx � yjÞ for a mono-

tonically increasing f, a utility-maximizing e-DP mechanism for the count query problem is obtained by applying a ðp; [Þ-dependent
post-processing to the output of expð� eÞ-TGM.

This is a striking result in that the core component of the optimal mechanism (i.e., a-TGM) is agnostic to the user’s chosen prior

distribution and loss function. This theorem suggests that given a desired privacy level e, the user can obtain a generic query

response from the database based on the a-TGM and locally apply post-processing to obtain a tailored response that is provably

optimal in terms of utility among all e-DPmechanisms for this task. Furthermore, this scheme allows the user to locally try out different

choices of p and [ without consuming additional privacy budget (which roughly corresponds to the number of queries a user is

permitted). Thus, the theoretical results of Ghosh et al. (2012) immediately provide an improved DP mechanism for cohort discovery

compared to existing proposals (Vinterbo et al., 2012; Raisaro et al., 2019).

The optimal post-processing step is given by minimizing the expected loss under the posterior belief over the true count, condi-

tioned on the output of the a-TGM. Formally, let qTGMðzjx;a;nÞ be the conditional output distribution of a-TGM for a true count x

based on a dataset of size n. Conditioned on the value of z, the posterior belief over x can be expressed as:

qðxjz;p;a; nÞfpðxÞqTGMðzjx;a;nÞ:
Next, define a map T : ½n�1½n� as

Tðz;p; [ ;a;nÞ= argmin
y

X
x

qðxjz;p;a;nÞ[ ðx; yÞ; (Equation 2)

which represents the loss-minimizing guess for x conditioned on z. Finally, the e-DP query response with maximum expected utility

with respect to ðp; [Þ is given by Tðz;p;[;expð�eÞ;nÞ, where z is the output of the expð�eÞ-TGM.

Our contribution: extending the optimality of a-TGM to more general utility functions. A key limitation of Ghosh et al.’s scheme

(Ghosh et al., 2012) is that Theorem 1 applies to only loss functions that are symmetric around the true query result. It has been pre-

viously noted that asymmetric utility functions are useful in cohort discovery (Vinterbo et al., 2012). For example, overestimating the

amount of resources required to perform a clinical study due to overestimating the number of individuals who can be enrolled is more

favorable than underestimating it only to encounter a resource bottleneck during the study.

To this end, we newly generalize Theorem 1 to amore general class of utility functions, notably including both symmetric and asym-

metric functions, thereby broadly enabling the use of a-TGM for cohort discovery applications. In fact, Ghosh et al. posed the case of

asymmetric utility as an open question in their publication (Ghosh et al., 2012), which we resolve in our work. Note that we generalize

the utility even further to allow a different choice of utility for every possible value of the true count x, a result that wewill return to in the

following section on variant lookup. Our generalized theorem is as follows.

Theorem 2.Given any prior belief pðxÞ and a loss function [ðx; yÞ= fxðy � xÞ, where fx is quasiconvex and attains its minimum at zero

for all x, a utility-maximizing e-DPmechanism for the count query problem is obtained by applying a ðp; [Þ-dependent post-processing
to the output of expð�eÞ-TGM.

The proof is included in the next section. Note that the ðp;[Þ-dependent post-processing step is identical to the scheme we pre-

viously described for the symmetric case, except with expanded support for a broader range of loss functions the user can

choose from.

Proof of Theorem 2: optimality of truncated a-geometric mechanism for count query with more general loss functions. Here, we

answer the open question posed in Ghosh et al. (2012) about the optimality of a-geometric mechanism for asymmetric loss functions

in the affirmative. In addition, we further generalize this result to loss functions that are separately defined for each possible value of

the true count.

We first provide a sketch of the original proof. Ghosh et al. formulates the problem of finding the optimal differential privacy mech-

anism as a linear program (LP), whose objective to beminimized is the expected loss of themechanismwith respect to the given prior

and loss function, and the constraints ensure that the chosen mechanism is valid (i.e. based on proper probability distributions) and

satisfies e-differential privacy. They introduce a combinatorial object called the ‘‘signature’’ S of the mechanism, which succinctly
Cell Systems 10, 408–416.e1–e9, May 20, 2020 e3
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characterizes the set of LP constraints that are bound (tightly satisfied) at the given solution. Ghosh et al. (2012) then fully characterize

the signature of optimal solutions, then show that, given a post-processing step (i.e. remap), truncated a-geometric mechanism

(a-TGM) can be transformed into amechanism that has an identical signature as the optimal solution. Finally, they complete the proof

of optimality by showing that the set of binding constraints captured by the optimal signature is large enough for the solution to be

unique, which implies the equivalence of the optimal solution and a-TGM with optimal remap. We refer the readers to the original

paper for details of this proof.

The only step in the original proof that relies on the properties of the loss function is in the following lemma. Thus, it is sufficient to

prove that this lemma holds for more general loss functions.

Lemma (Ghosh et al., 2012; Lemma 5.5). For every user u with a full-support prior and a strictly legal loss function, every optimal

direct mechanism for u has a unimodal signature.

Note that full-support prior refers to prior distribution with nonzero probability mass everywhere. Ghosh et al. define (strictly) legal

loss function [ði; jÞ for input i˛f0;.;ng and output j˛f0;.;ng as a (strictly) monotone increasing function that depends only on ji� jj.
A count query mechanism is parametrized by a matrix X whose elements xij for i; j˛f0;.; ng represent the probability of releasing a

count j given the true count i. A directmechanism refers to a mechanism for which identity remap is the optimal remap for minimizing

expected loss (i.e. it is optimal to take the output ‘‘at face value’’).

SignatureS of a count query mechanismwith privacy parameter a (as in a-TGM) is defined by a n-by-ðn+ 1Þmatrix, whose element

sij˛f[;Y;S;0g is determined as

sij =

8>><
>>:

[ if xij; xði + 1Þj>0 and xði + 1Þj =axij;
Y if xij; xði + 1Þj>0 and xði + 1Þj = xij

�
a;

S if xij; xði + 1Þj>0 and axij<xði + 1Þj<xij
�
a;

0 if xij = xði + 1Þj = 0;

for i˛f0;.;n� 1g and j˛f0;.;ng. A signature is called unimodal, if each row begins with some number of Y entries (possibly none),

followed by zero or one S entries, followed by some number of [ entries (possibly none).

Below we prove that the above lemma still holds even if we expand the scope of legal loss functions to those that can be repre-

sented using a pair of monotone increasing functions [
ðiÞ
%; [

ðiÞ
R : f0gWZ+1R for every i˛f0;.;ng, whose values coincide at zero (i.e.,

[
ðiÞ
%ð0Þ = [

ðiÞ
Rð0Þ), and

[ ði; jÞ=
(
[ ðiÞ
Rði � jÞ iRj;

[ ðiÞ
%ðj � iÞ i%j:

In other words, this expanded class of loss functions include any function that monotonically increases in value as we change the

output j in either direction starting from the true count i, without requiring that it is (i) symmetric ([
ðiÞ
% = [

ðiÞ
R) or (ii) identically shaped

for different values of i (ci, [
ðiÞ
R = [R and [

ðiÞ
% = [% for some [R;[%). Note that for the proof of the above lemma it is acceptable to assume

strict monotonicity of loss functions; Ghosh et al. presents a limiting argument to discharge this assumption later in their proof, which

applies analogously to our generalized loss function.

Lemma. For every user u with a full-support prior and a loss function who is legal by our generalized definition, every optimal direct

mechanism for u has a unimodal signature.

The proof of the above lemma using our generalized definition of legal loss function is as follows. Given a full-support prior p_ 0

and strictly legal loss function [= fð[ðiÞ%; [
ðiÞ
RÞgni = 0 for a database of size n, let X be an optimal direct mechanism with signature S. As in

the original proof, we want to show that S is unimodal. In order to prove this, it suffices to show that there is no row h and columns k<

m such that shk˛fS;[g and shm˛fS;Yg.
Assume there exist such h, k, and m. We first show that k<h<m by deriving contradiction from h%k or hRm. Assume h% k (the

m%h case follows an analogous argument). The facts that shk˛fS;[g and shm˛fS;Yg imply the following inequalities:

axhk<xðh+ 1Þk%
xhk
a

and axhm%xðh+ 1Þm<
xhm
a

:

Following the same argument given in the original proof, this means that we can find a small l>0 such that defining a revised mech-

anism X0 where x0 im = ð1� lÞxim and x0 ik = xik + lxim for all i˛f0;1;.;hg, while keeping the remaining entries the same as X, results in a

feasible mechanism for the given problem. Note that the difference in expected loss between the two mechanisms is given as

LðX0Þ � LðXÞ=
Xh

i = 0
lpiximð[ ði; kÞ � [ ði;mÞÞ

Given that h%k and the initial assumption k<m, we have

[ ði; kÞ � [ ði;mÞ= [ ðiÞ
%ðk � iÞ � [ ðiÞ

%ðm� iÞ<0
for all 0%i%h, using the strict monotonicity of [

ðiÞ
%. Thus, X0 achieves a strictly lower expected loss than X (given l>0 and p_ 0), which

is a contradiction. An analogous line of reasoning, which instead involvesmoving the probability mass in rows i˛fh+ 1;.;ng of X and

the monotonicity of [
ðiÞ
R, shows contradiction for hRm. Thus, k<h<m.
e4 Cell Systems 10, 408–416.e1–e9, May 20, 2020
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Another implication of the above result is that for any tuple ðh0; k0;m0Þwhere k0<m0, and h0%k0 or h0Rm0, either sh0k0 =Y or sh0m0 = [ .

We now use this fact to derive contradiction for the casewhere k<h<m. Our assumption states that shk˛fS;[g and shm˛fS;Yg. Applying
the above logic to tuples ðh; k; hÞ and ðh;h;mÞ, we obtain that shh =[ from the former tuple, and shh =Y from the latter tuple, which

together gives a contradiction. Thus, all possible values of h result in a contradiction, proving the original statement of the lemma. ∎
Membership queries for variant lookup

We newly show that a-TGM can be used to obtain an optimal DP mechanism for the variant lookup problem.

Our optimal differential privacy mechanism for variant lookup based on a-TGM. Formally, the problem can be described as follows.

Let X be a dataset of n individuals represented asX = ðx1;.;xnÞ˛Xn. Given a user-provided predicate q : X1f0;1g, we definemem-

bership query as the task of calculating

fqðXÞ= 1

(Xn

i = 1

qðxiÞ>0
)
;

where 1f,g denotes the indicator function. Our goal is to answer queries of this form while preserving the privacy of individuals. Here

wewill restrict our attention to stochasticmechanisms that consider the total count c=
Pn

i = 1qðxiÞ as input and probabilistically output

a binary answer for the query. However, analogous to the results of Ghosh et al. (2012) for count query, it can be shown this restriction

is without loss of generality; i.e., our mechanism is optimal even among mechanisms that may depend on more fine-grain data pat-

terns other than the count.

Akin to the count query setting, in order to quantify the usefulness of different DP mechanisms for membership queries, we intro-

duce a loss function [ðc;bÞ, representing how undesirable it is to output an answer b˛f0; 1g given a true count c˛f0;.;ng, as well as a

prior belief pðcÞ over the true count.

Our main result. The following theorem summarizes our main result that the optimal DPmechanism for membership queries, which

achieves the minimum expected loss with respect to a particular choice of p and [, is obtained by a generic application of a-TGM

followed by a local post-processing step by the user; only the latter step depends on p and [.

Theorem 3. Given any prior belief pðcÞ and a loss function [ðc;bÞ satisfying [ð0; 0Þ%[ð0;1Þ and [ðc; 0ÞR[ðc; 1Þ for c> 0, a utility-

maximizing e-DP mechanism for the membership query problem is obtained by applying a ðp; [Þ-dependent post-processing step

to the output of expð�eÞ-TGM.

The proof is provided in the next section. The optimal post-processing step of the above theorem proceeds as follows. Given a

specific choice of p and [, the user first transforms [ into the corresponding loss function [0 in the count query setting as

[ 0ðc; yÞ=
�
[ ðc; 0Þ if y = 0;
[ ðc; 1Þ if y>0;

(Equation 3)

for c;y˛f0;.;ng. Let z be the output of expð�eÞ-TGM returned by the database. The user uses ðp; [0Þ to obtain the loss-minimizing

guess for the count, which is given by Tðz;p; [0; expð�eÞ; nÞ (see Equation 2). Finally, the user thresholds this number to obtain a binary

answer for the membership query, given by 1fTðz;p; [0; expð�eÞ;n Þ>0 g. Note that the application of a-TGM using our transformed

loss [0 is known to be optimal only given our generalized notion of utility we achieved in the previous section (Theorem 2); [0ðc; yÞ
cannot be expressed as a monotonically increasing fðjc� yjÞ as required by Theorem 1, nor is it sufficient to drop only the symmetry

assumption and consider quasiconvex fðc� yÞ with minimum at zero—we require the flexibility to set a different loss function

fcðc� yÞ for each value of c.

Proof of Theorem 3: optimality of truncated a-geometric mechanism for membership query. Let c˛f0;.;ng be the number of in-

dividuals in a database matching the predicate of a given membership query (e.g. presence of a genetic variant). Let pðcÞ be a user-

defined prior belief over c, and [ðc;bÞ be a user-defined loss function representing the disutility of receiving a membership query

result b˛f0; 1g when the true count is c. As stated in the theorem, assume [ satisfies [ð0; 0Þ%[ð0;1Þ and [ðc;0ÞR[ðc;1Þ for c> 0.

The expected loss minimization problem for e-differentially private membership query, parameterized by a conditional probability

distribution qðbjcÞ, can be expressed as follows.

minimizeqðbjcÞ Ec�pðcÞ
�
Eb�qðbjcÞ½[ ðc;bÞ �

�
s:t: qðbjcÞ%ee,qðbjc0Þ;cb; c; c0 : jc� c0j= 1

(Equation 4)

We want to show that an optimal solution qðbjcÞ for the above problem is given by the expð�eÞ-TGM with a ðp;[Þ-dependent post-
processing.

Now consider a transformed loss function [0, defined as

[ 0ðc; yÞ=
�
[ ðc; 0Þ if y = 0;
[ ðc; 1Þ if y>0;

for c; y˛f0; .; ng. First, note that this loss function satisfies the conditions of Theorem 2; for each value of c, we have that

[0ðiÞðy � iÞ : = [0ði; yÞ is monotone increasing in both directions from zero, given our initial assumptions about [. Therefore, we can

invoke Theorem 2 using ðp; [0Þ to obtain that there is a ðp;[0Þ-dependent post-processing T such that, given the output z of a differ-

entially private release of the true count c based on the expð�eÞ-TGM, TðzÞ represents the output of an optimal e-DP scheme that is an

optimal solution to the following count query problem.
Cell Systems 10, 408–416.e1–e9, May 20, 2020 e5
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minimizeq0 ðyjcÞ Ec�pðcÞ
�
Ey�q0 ðyjcÞ½[ 0ðc; yÞ � �

s:t: q0ðyjcÞ%ee,q0ðyjc0Þ;cy; c; c0 : jc� c0j= 1
(Equation 5)

We next prove that the problems Equation 4 and 5 are in fact interchangeable. First, note that any feasible solution q0 of Equation 5,

can be mapped to a feasible solution q of Equation 4 by setting

qð0jcÞ :=q0ð0jcÞ
qð1jcÞ :=

Xn

y = 1

q0ðyjcÞ;

which is equivalent to post-processing y as b = 1fy>0g. If y is e-DP, then we have that b is also e-DP, which implies feasibility of the

mapped q. Furthermore, because [0ðc; yÞ= [ðc;1Þ for all y>0, we have that

Eb�qðbjcÞ½[ ðc;bÞ�= Ey�q0 ðyjcÞ½[ 0ðc; yÞ� (Equation 6)

for our construction of q based on q0. Therefore, for any feasible solution of Equation 5, a corresponding solution exists for Equation 4

that achieves the same objective value.

Next, we consider the reverse direction. Given any feasible solution q of Equation 4, let q0 be a solution for Equation 5 constructed

as follows:

q0ð0jcÞ :=qð0jcÞ;

q0ðyjcÞ := 1

n
qð1jcÞ;cy˛f1;.;ng:

This is akin to post-processing b by setting y = 0 if b = 0, and y � Unifðf1;.; ngÞ if b = 1. Therefore, if b is e-DP then y is also e-DP,

proving that the above q0 is a feasible solution for Equation 5. Because qð1jcÞ=Pn
y =1q

0ðyjcÞ by construction, Equation 6 still holds.

This proves that for any feasible solution for Equation 4, there exists a feasible solution for Equation 5 with the same objective value.

Now putting the two directions together, we have that an optimal solution for Equation 5, represented by TðzÞ, can be post-pro-

cessed as 1fTðzÞ>0 g to obtain an optimal solution for Equation 4. This is because, if we assume a better solution for Equation 4 ex-

ists, then we can map it to Equation 5 to obtain a better solution than TðzÞ, which is a contradiction. Note that 1fTðzÞ>0 g can be

viewed as a post-processing of the expð�eÞ-TGM output z, where T depends on the user-provided p and [. This concludes the proof

of the theorem. ∎

Implementation Details
Although our proposed mechanisms incur a negligible computational overhead on the database server (random sampling of one

additional number per query from a geometric distribution), the local post-processing by the user naı̈vely takes Oðn2Þ for a database

of size n (see Equation 2), which can be burdensome for large n. Fortunately, both our use cases (cohort discovery and variant lookup)

are based on loss functions with a special structure that allows more efficient computation.

First, in cohort discovery workflows, we are primarily interested in a loss function that can be expressed in terms of the difference

between the true count and the perturbed count. In other words, the summation term of Equation 2 can be expressed as a convo-

lution operation between the two functions q and [, as follows:X
x

qðxjz;p;a;nÞ[ ðy � xÞ:

Since both x and y are discrete, we can use the standard fast Fourier transform (FFT)-based convolution algorithm to compute this

expression for all values of y in OðnlogðnÞÞ time, a significant reduction from Oðn2Þ.
Second, in the case of variant lookup, Equation 2 uses a transformed loss function which is identical for any y>0 (Equation 3). Thus,

the OðnÞ-time summation over x need to be performed for only two values of y (0 and 1), resulting in an overall complexity of OðnÞ
instead of Oðn2Þ.

Optimal Choice of Privacy Parameter for Exponential Mechanisms
In this section, we show that the standard application of exponential mechanism to count queries is suboptimal in terms of the pri-

vacy-utility trade-off and provide our modified algorithm for choosing the optimal privacy parameter. Recall that, given a loss function

[ðx; yÞ for true count x and perturbed result y, exponential mechanism samples y =XuðxÞ according to probability proportional to

expf�u[ðx; yÞg with privacy parameter u. Standard analysis shows that this mechanism is 2D[u-differentially private, where D[ de-

notes the sensitivity of the function [. In the analysis below, we consider the loss function defined in Equation 1 introduced by Vinterbo

et al. (2012).

Here, we follow the intuition that the larger the privacy parameter u in the exponential mechanism, the more accuracy is achieved.

The question then becomeswhether we can choose a largeru than that given by the standard analysis of the exponential mechanism

while still guaranteeing privacy. Specifically, we search for a larger u that still ensures e-differential privacy. From the standard
e6 Cell Systems 10, 408–416.e1–e9, May 20, 2020
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exponential mechanism, we know that if u%e=ð2D[Þ, then Xu is e-differentially private. Moreover, it is easy to check that Xu is not

e-differentially private if uRe=D[. Therefore, we perform a binary search on the interval
h

e
2D[;

e
D[

i
to find the largest u such that Xu

is e-differentially private.

Formally, we choose a parameter k (which dictates how long the binary search continues) and use a binary search to find the largest

u in the set �
e

2D[
;
ðk + 1Þe
2kD[

;.;
ð2k � 1Þe
2kD[

;
e

D[

�
;

such that Xu is e-differentially private.

This procedure would requires us to check, for a given u, if Xu is e-differentially private. Naı̈vely, this means checking

PðXuðxÞ= yÞ%expðeÞPðXuðx + 1Þ= yÞ
and

PðXuðxÞ= yÞ%expðeÞPðXuðx � 1Þ= yÞ
for each y and x.

However, this naı̈ve method suffers from overwhelming computational burden. Given the range of possible outcomes of our expo-

nential algorithm, y˛½rmin; rmax�, we are able to show that it suffices to check

PðXuðrminÞ= rminÞ%expðeÞPðXuðrmin + 1Þ= rminÞ
and

PðXuðrmaxÞ= rmaxÞ%expðeÞPðXuðrmax � 1Þ= rmaxÞ:
This result allows us to greatly speed up the computation, thereby making our method run in minimal time.

Algorithm 1 Our optimized exponential mechanism for count queries

Require: x;e;a�;a+ ;b+ ;b�; rmax; rmin;k

Ensure: e-differential privacy

S=

��
1+

i

k

�
e

2D[

�
i˛f0;.;kg

= fu0;.;ukg

for i = 0;.; k do

Xi =Xui

end for

For i = 0;.; k do

ai =
PðXiðrmaxÞ= rmaxÞ

PðXiðrmax � 1Þ= rmaxÞ
bi =
PðXiðrminÞ= rminÞ

PðXiðrmin + 1Þ= rminÞ
ci =maxfai;big
end for

Let i0 be the largest i so that ci%expðeÞ (found by binary search)

return Xi0 ðxÞ
To prove this algorithm is differentially private, we first need to prove the following:

Theorem 4. Let a+ ;a�˛½0; 1�, b+>0, b�>0 and

[ ðx; yÞ=
�
b+ ðy � xÞa+ if yRx;
b�ðx � yÞa� otherwise:

Let XuðxÞ be a random variable defined such that PðXuðxÞ= yÞ is proportional to expð�u[ðx; yÞÞ for all integers x˛½rmin; rmax� and y˛
½0;n�. Then we have that, if

1. u%min

�
e
b+
; e
b�

�
= e

D[,

2. PðXuðrmaxÞ = rmaxÞ%expðeÞPðXuðrmax � 1Þ = rmaxÞ, and
3. PðXuðrminÞ = rminÞ%expðeÞPðXuðrmin + 1Þ = rminÞ,
Cell Systems 10, 408–416.e1–e9, May 20, 2020 e7
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then XuðxÞ is e-differentially private.P

Proof of Theorem 4. Let Zx = rmax

y = rmin
expð�u[ðx;yÞÞ. By definition, we have

PðXuðxÞ= yÞ= expð�u[ ðx; yÞÞ
Zx

:

For a given y, we are interested in PðXuðxÞ= yÞ
PðXuðx0Þ= yÞ and

PðXuðx0Þ= yÞ
PðXuðxÞ= yÞ where x0 = x + 1. There are three cases to consider: (i) xRrmax, (ii) x< rmin,

and (iii) x˛½rmin; rmax � 1�.
First, let x<rmin. Then Zx<Zx+ 1, which implies

PðXuðx + 1Þ= yÞ
PðXuðxÞ= yÞ = expð�ub+ ððy � x � 1Þa+ � ðy � xÞa+ ÞÞ Zx

Zx+ 1
%expðub+ ððy � xÞa+ � ðy � x � 1Þa+ ÞÞ:
Since a+%1, y� x > y� x�1R0, we see that ðy � xÞa+ � ðy � x � 1Þa+ %1. Thus, the above ratio is at most expðub+ Þ%expðeÞ as
desired. On the other hand, consider

PðXuðxÞ= yÞ
PðXuðx + 1Þ= yÞ= expð�ub+ ððy � xÞa+ � ðy � x � 1Þa+ ÞÞZx +1

Zx

:

Note that expð�ub+ ððy � xÞa+ � ðy � x � 1Þa+ ÞÞ%1, thus the above ratio is less than Zx=Zx + 1. Since [ has sensitivity bounded by

maxfb�;b+ g, we have Zx=Zx + 1%expðeÞ, which gives us

PðXuðxÞ= yÞ
PðXuðx + 1Þ= yÞ%expðeÞ:

Following an analogous argument, when xRrmax we have that PðXuðxÞ= yÞ
PðXuðx+ 1Þ= yÞ%expðeÞ and PðXuðx+ 1Þ= yÞ

PðXuðxÞ= yÞ %expðeÞ.
Finally, we consider the case when rmin%x<rmax. Note that

Zx + 1 =Zx � expð�u[ ðx; rmaxÞÞ+ expð�u[ ðx + 1; rminÞÞ
=Zx � expð�ub+ ðrmax � xÞa+ Þ+ expð�ub�ðx � rmin + 1Þa� Þ:
If yRx, then [ðx;yÞ>[ðx + 1;yÞ. In this case, given u% e

D[, we get

PðXuðxÞ= y Þ
PðXuðx + 1Þ= y Þ= expðuð[ ðx + 1; yÞ � [ ðx; yÞ Þ ÞZx + 1

Zx

%
Zx + 1

Zx

%expðeÞ:

On the other hand, if y>x, then expðuð[ðx + 1; yÞ� [ðx; yÞÞÞ%expðub+ Þ. The equality holds when y = x + 1. Note that

expð�ub+ ðrmax � xÞa+ Þ is increasing in x, while expð�ub�ðx � rmin + 1Þa� Þ is decreasing in x. Thus, letting

LðxÞ= � expð�ub+ ðrmax � xÞa+ Þ+ expð�ub�ðx � rmin + 1Þa� Þ;
there exists x0˛ðrmin; rmaxÞ, where LðxÞ%0 if xRx0 and LðxÞ>0 if x<x0.

Thus, if xRx0, we have
Zx +1

Zx
%1, which implies

PðXuðxÞ= yÞ
PðXuðx + 1Þ= yÞ%expðub+ Þ

Zx + 1

Zx

%expðub+ Þ%expðeÞ:

If x<x0, then Zx<Zx +1, so ZxRZrmin
. Therefore,

Zx +1

Zx

= 1+
�expð�ub+ ðrmax � xÞa+Þ+ expð�ub�ðx � rmin + 1Þa� Þ

Zx

%1+
�expð�ub+ ðrmax � rminÞa+Þ+ expð�ub�ðrmin � rmin + 1Þa� Þ

Zrmin

=
PðXuðrminÞ= rmin Þ

PðXuðrmin + 1Þ= rmin Þ%expðeÞ;

which completes the proof that PðXuðxÞ= yÞ%expðeÞPðXuðx + 1Þ= yÞ for all x and y. A symmetric argument shows that

PðXuðx + 1Þ= yÞ%expðeÞPðXuðxÞ= yÞ for all x and y. Thus, Xu is e-differentially private. ∎
Corollary 4.1. Our modified exponential mechanism for count queries (Algorithm 1) is e-differentially private. (A Python implemen-

tation of this method is available at: https://github.com/seanken/DP_count.)
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Furthermore, if we fix k and letue be theu parameter chosen by Algorithm 1, then becauseueR
e

2D[
, we have the following corollary

which shows that our optimization improves the utility of the exponential mechanism.

Corollary 4.2. For any given e and c,

Pð[ ðx;Xue
ðxÞÞ%cÞRP

�
[

�
x;X e

2D[
ðxÞ

�
%c

�
:

DATA AND CODE AVAILABILITY

AMATLAB implementation of our DPmechanisms and scripts for reproducing our results are available at: https://github.com/hhcho/

priv-query.
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