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Robust Adaptive Control Barrier Functions:
An Adaptive & Data-Driven Approach to Safety

(Extended Version)

Brett T. Lopez1, Jean-Jacques E. Slotine2, and Jonathan P. How1

Abstract— A new framework is developed for control of
constrained nonlinear systems with structured parametric un-
certainties. Forward invariance of a safe set is achieved through
online parameter adaptation and data-driven model estimation.
The new adaptive data-driven safety paradigm is merged with
a recent adaptive control algorithm for systems nominally
contracting in closed-loop. This unification is more general
than other safety controllers as closed-loop contraction does
not require the system be invertible or in a particular form.
Additionally, the approach is less expensive than nonlinear
model predictive control as it does not require a full desired
trajectory, but rather only a desired terminal state. The
approach is illustrated on the pitch dynamics of an aircraft
with uncertain nonlinear aerodynamics.

Index Terms— Adaptive control, barrier functions, contrac-
tion analysis, contraction metrics, uncertain systems.

I. INTRODUCTION

State and actuator constraints are often encountered in
real-world systems but systematic feedback controller design
remains challenging. The main difficulty arises from needing
to predict whether the system will remain in the feasi-
ble set when selecting a control input. Repeatedly solving
a constrained finite-horizon optimal control problem (i.e.,
model predictive control) is one way to ensure feasibility, but
solving a nonlinear optimization in real-time can be difficult.
Alternatively, one can avoid trajectory optimization entirely
by constructing safe invariant sets, i.e., a set of states that
guarantee feasibility indefinitely. Through the development
of control barrier functions (CBFs) [1], safe stabilizing
controllers can be synthesized by simply solving a quadratic
program (QP), and has recently been used in several applica-
tions [2]. However, model error can significantly degrade the
performance of these controllers to the extent that safety may
no longer be guaranteed. We develop a general framework
that guarantees safety through parameter adaptation and
online model estimation for uncertain nonlinear systems.

Control barrier functions heavily rely on a model so it
is critical to develop methodologies that maintain safety for
uncertain systems. In [3] the so-called zeroing CBFs were
shown to be Input-to-State stable, a property that was used to
prove a superset of a safe set is forward invariant. The size of
the superset was characterized in [4] by introducing Input-
to-State safety. Stronger safety guarantees can be obtained

1Aerospace Control Laboratory, Massachusetts Institute of Technology,
Cambridge MA, {btlopez,jhow}@mit.edu
2Nonlinear Systems Laboratory, Massachusetts Institute of Technology,
Cambridge MA, jjs@mit.edu

via robust optimization as demonstrated in [5]. Learning-
based methods [6], [7] have been developed to address the
conservatism of the robust strategies, but these can require
extensive offline training to substantially improve the model.
Adaptive CBFs (aCBFs) [8] use ideas from adaptive control
theory to ensure a safe set is forward invariant with online
parameter adaptation. However, aCBFs have a much more
restrictive invariance condition that limits the system to
remain in sublevel sets of the safety set, ultimately leading to
conservative behavior. To address conservatism, [8] limited
parameter adaptation to a region near the boundary of the
safe set. However, the resulting safety controller is not
necessarily Lipschitz and can exhibit closed-loop chattering.

The contributions of this work are threefold. First, robust
aCBFs (RaCBFs) are defined and shown to guarantee safety
for uncertain nonlinear systems. When combined with pa-
rameter adaptation, RaCBFs ensure forward invariance of a
tightened set where the degree of tightening can be selected
based on the desired conservatism. RaCBFs are far less con-
servative than aCBFs and results in a locally Lipschitz safety
controller. Second, RaCBFs are combined with the data-
driven method set membership identification [9] to safely
reduce modeling error and expand the set of allowable states.
This is the first work to utilize both parameter adaptation and
data-driven model estimation within the context of safety-
critical control. And third, RaCBFs are merged with a recent
direct adaptive controller [10] based on the contraction metric
framework [11], [12]. Contraction expresses distance-like
functions differentially rather than explicitly, and the exis-
tence of a metric only requires stabilizability – a far weaker
condition than those needed for feedback linearization or
backstepping – making the unification more general than
existing methods. The approach is demonstrated on the pitch
dynamics of an aircraft with uncertain nonlinear aerodynam-
ics. The system is non-invertible, not in strict-feedback form,
and has non-polynomial dynamics highlighting the generality
of the proposed method.

II. PROBLEM FORMULATION & PRELIMINARIES

Consider the nonlinear system

ẋ = f(x)−∆(x)>θ +B(x)u, (1)

with unknown parameters θ ∈ Rp and known dynamics
∆ : Rn → Rp×n, state x ∈ Rn, control input u ∈ Rm,
nominal dynamics f : Rn → Rn, and control input matrix
B : Rn → Rn×m with columns bi(x) i = 1, . . . ,m. Let Sn+

ar
X

iv
:2

00
3.

10
02

8v
2 

 [
ee

ss
.S

Y
] 

 2
8 

M
ay

 2
02

0



be the set of all n×n symmetric positive definite matrices. A
smooth Riemannian manifoldM is equipped with a smooth
Riemannian metric M : Rn ×R→ Sn+ that defines an inner
product 〈·, ·〉x on the tangent space TxM at every point x.
The metric M(x, t) defines local geometric notions such as
angles, length, and orthogonality. The directional derivative
of metric M(x, t) along vector v is ∂vM =

∑
i
∂M
∂xi

vi. A
parameterized differentiable curve c : [0, 1]→M is a regular
if ∂c

∂s = cs 6= 0 ∀s ∈ [0 1]. Let Υ(p, q) be the family of
curves connecting p, q ∈M, then a geodesic γ : [0 1]→M
is the extremum of the energy functional

γ(s) = arg min
c(s)∈Υ(p,q)

E(c, t) =

∫ 1

0

c>s M(c, t)csds,

where E is the Riemannian energy. If the manifold M is a
complete metric space, such as Rn, n-sphere Sn, or any of
their respective closed subsets, then a geodesic is guaranteed
to exist by the Hopf-Rinow theorem [13]. In the sequel, the
time argument in M(c, t) and E(c, t) is dropped for clarity.

III. ADAPTIVE SAFETY

A. Background

First consider the nominal dynamics of (1), i.e., ∆(x) = 0.
Let a closed convex set C ⊂ Rn be a 0-superlevel set of a
continuously differentiable function h : Rn → R where

C = {x ∈ Rn : h(x) ≥ 0}
∂C = {x ∈ Rn : h(x) = 0}

Int (C) = {x ∈ Rn : h(x) > 0} .

If the nominal dynamics are locally Lipschitz, then given
an initial condition x0, there exists a maximum time interval
I(x0) = [t0, T ) such that x(t) is a unique solution on I(x0).
The following definitions are largely taken from [1], [2].

Definition 1. The set C is forward invariant if for every
x0 ∈ C, x(t) ∈ C for all t ∈ I(x0).

Definition 2. The nominal system is safe with respect to set
C if the set C is forward invariant.

Definition 3. A continuous function α : R → R is an
extended class K∞ function if it is strictly increasing, α(0) =
0, and is defined on the entire real line.

Definition 4. Let C be a 0-superlevel set for a continuously
differentiable function h : Rn → R, then h is a control
barrier function if there exists an extended class K∞ function
α such that

sup
u∈U

[
∂h

∂x
(x) (f(x) +B(x)u)

]
≥ −α(h(x)). (2)

Theorem 1. Let C ⊂ Rn be a 0-superlevel set of a
continuously differentiable function h : Rn → R, if h is
a CBF on C then any locally Lipschitz continuous controller
satisfying (2) renders the set C safe for the nominal system.

B. Adaptive CBFs

Adaptive CBFs (aCBFs) [8] provide a general framework
to guarantee safety through parameter adaptation for systems
with structured uncertainties. The notion of safety for uncer-
tain systems must be extended to a family of safe sets Cθ
parameterized by θ. More precisely, the family of safe sets
are 0-superlevel sets of a continuously differentiable function
ha : Rn × Rp → R. If the uncertain dynamics in (1) are
locally Lipschitz then the definitions of forward invariance
and safety can be directly extended to Cθ.

Definition 5 ([8]). Let Cθ be a family of 0-superlevel sets
parameterized by θ for a continuously differentiable function
ha : Rn × Rp → R, then ha is an adaptive control barrier
function if for all θ

sup
u∈U

[
∂ha
∂x

(x, θ)
(
f(x)−∆(x)>Λ(x, θ) +B(x)u

)]
≥ 0,

(3)
where Λ(x, θ) := θ − Γ

(
∂ha

∂θ (x, θ)
)>

and Γ ∈ Sp+ is a
symmetric positive definite matrix

A controller that satisfies (3) can be combined with an
adaptation law to render the uncertain systems safe with
respect to Cθ [8]. However, (3) makes the level sets of ha
forward invariant so it is a much stricter condition than (2).
More precisely, the distance to the boundary of the safe set
must monotonically increase, i.e., ḣa(x, θ) ≥ 0 for all time
(Fig. 1a). This can lead to extremely conservative behavior
as the system only operates in a set that is monotonically
shrinking. In [8], a modified aCBF was proposed

h̄a(x, θ) =

{
σ2 if ha(x, θ) ≥ σ
σ2 − (ha(x, θ)− σ)2 otherwise,

(4)
which satisfies (3) if ha is a valid aCBF. This modification
expands the set of allowable states but the resulting controller
is not necessarily Lipschitz and can exhibit high-frequency
oscillations in closed-loop, as shown in Example 1.
Example 1. Consider the uncertain system ẋ = −θ+u with
θ > 0 and aCBF ha(x) = x−

¯
x. Let the controller κ be the

solution to κ = arg min 1
2u

2 subject to ˙̄ha(x) ≥ 0. Then

κ =

{
0 if ha(x) ≥ σ
max(0, θ̂) otherwise,

(5)

where θ̂ is the estimate of θ and is modified based on [8]

˙̂
θ =

{
0 if ha(x) ≥ σ
−Γ [ha(x)− σ] ∂ha

∂x otherwise,
(6)

with Γ > 0. For θ̂(0) = θ̂0 ≤ 0 then κ = 0 so the closed-loop
response is xcl(t) = −θ(t−t0)+x0 where xcl(t0) = x0 >

¯
x

and t ≥ t0. From the adaptation law (6), it is easy to see that
˙̂
θ ≥ 0 which will necessarily lead to θ̂ > 0 since ha ≤ σ
until κ > θ. For θ̂ > 0, the closed-loop response becomes

xcl(t) =

{
−θ(t− t0) + x0 if ha(x) ≥ σ
θ̃(t− t′0) + x′0 otherwise,

(7)



where θ̃ := θ̂ − θ and xcl(t
′
0) = x′0. Since θ̃ > 0, (7) will

continuously switch between its two solutions. The control
policy κ must then also switch between 0 and θ̂ based on
(5). Furthermore, κ is not locally Lipschitz continuous and
will exhibit high-frequency oscillations of magnitude θ̂ in
closed-loop.

The intuition behind Example 1 is that chatter arises due
to the barrier condition switching between being trivially
satisfied, i.e., ˙̄ha = 0 ≥ 0 for all u, to satisfied only for a
particular u, i.e., a u so that ˙̄ha ≥ 0. The approach developed
in this work addresses the conservatism of aCBFs and results
in a locally Lipschitz continuous controller.

C. Robust aCBFs

This section will show that a tightened set can be made
forward invariant if the unknown model parameters are
bounded and the parameter adaptation rate is an admissible
(to be defined) symmetric positive definite matrix.

Assumption 1. The unknown parameters θ belong to a
known closed convex set Θ. The parameter estimation error
θ̃ := θ̂ − θ then also belongs to a known closed convex set
Θ̃ and the maximum possible parameter error is ϑ̃.

Let Crθ be a family of superlevel sets parameterized by θ
for a continuously differentiable function hr : Rn×Rp → R

Crθ =

{
x ∈ Rn : hr(x, θ) ≥

1

2
ϑ̃>Γ−1ϑ̃

}
∂Crθ =

{
x ∈ Rn : hr(x, θ) =

1

2
ϑ̃>Γ−1ϑ̃

}
Int (Crθ ) =

{
x ∈ Rn : hr(x, θ) >

1

2
ϑ̃>Γ−1ϑ̃

}
,

where Γ ∈ S p
+ ⊂ S

p
+ is an admissible symmetric positive

definite matrix that will dictate the parameter adaptation
rate. The set Crθ can be viewed as a tightened set with
respect to Cθ, i.e., Crθ ⊂ Cθ, shown in Fig. 1b. One can
select the desired subset Crθ to be made forward invariant a
priori by choosing hr(xr, θr) > 0 for appropriate xr, θr so
hr(xr, θr) = 1

2 ϑ̃
>Γ−1ϑ̃. To reduce conservatism, one can

either 1) have fast parameter adaptation or 2) reduce model
error. The first scenario can lead to well-known undesirable
effects in practice so the second scenario is the most viable,
and will be explored more in Section III-D. (1) is again
assumed to be locally Lipschitz so Definitions 1 and 2 hold.

Definition 6. Let Crθ be a family of superlevel sets pa-
rameterized by θ for a continuously differentiable function
hr : Rn × Rp → R, then hr is a robust adaptive control
barrier function if there exists an extended class K∞ function
α such that for all θ ∈ Θ

sup
u∈U

[
∂hr
∂x

(x, θ)
[
f(x)−∆(x)>Λ(x, θ) +B(x)u

]]
≥ −α

(
hr(x, θ)−

1

2
ϑ̃>Γ−1ϑ̃

)
,

(8)

(a) Safe set with adaptive control
barrier functions (aCBFs).

(b) Safe set with robust adaptive
control barrier functions (RaCBFs).

Fig. 1: Visual comparison of safe sets with adaptive and robust adaptive
control barrier functions. (a): System is restricted to level sets (black dashed
lines) of aCBF ha. (b): System allowed to operate in larger set with RaCBF
hr reducing conservatism.

where Λ(x, θ) := θ − Γ
(
∂hr

∂θ (x, θ)
)>

, ϑ̃ is the maximum
possible parameter error, and Γ ∈ S p

+ ⊂ S
p
+ is an admissible

symmetric positive definite matrix.

The invariance condition (8) is reminiscent of that in (2)
and is less conservative than that in (3) because the system is
allowed to approach the boundary of Crθ . Theorem 2 shows
the existence of a RaCBF, coupled with an adaptation law,
renders the set Crθ forward invariant and hence safe.

Theorem 2. Let Cr
θ̂
⊂ Rn be a superlevel set of a con-

tinuously differentiable function hr : Rn × Rp → R, if hr
is a RaCBF on Cr

θ̂
, then any locally Lipschitz continuous

controller satisfying (8) renders the set Cr
θ̂

safe for the
uncertainty system with adaptation law and adaptation gain

˙̂
θ = Γ∆(x)

(
∂hr
∂x

(x, θ̂)

)>
, λmin(Γ) ≥ ‖ϑ̃‖2

2hr(xr, θr)
,

where ϑ̃ is the maximum possible parameter error,
hr(xr, θr) > 0 can be chosen freely based on the desired
conservatism, and Γ ∈ S p

+ ⊂ S
p
+ is an admissible symmetric

positive definite matrix. Furthermore, the original set Cθ̂ is
also safe for the uncertain system.

Remark 1. The projection operator [14] can be used to
enforce parameter bounds by modifying the above adaptation
law as opposed to capturing them explicitly with hr. This can
simplify the design of hr without forfeiting safety. The proof
is omitted but one can show that a positive semi-definite
term appears in the same composite candidate CBF used in
Theorem 2 when adaptation is temporarily stopped.

Several remarks can be made about Theorem 2. First,
safety is guaranteed for all possible parameter realiza-
tions through adaptation with minimal conservatism. Hence,
RaCBFs expand and improve the adaptive safety paradigm.
Second, the minimum eigenvalue condition for the adaptation
rate depends on the desired conservatism, i.e., the degree of
tightening by choice of hr(xr, θr). For low conservatism,
i.e., a small hr(xr, θr) value, the adaptation rate must be
large so the parameter estimates can change quickly to ensure
forward invariance of Crθ . There is thus a fundamental trade-
off between conservatism and parameter adaptation rate that
must be weighed carefully given the well-known undesirable
effects of high-gain adaptation. Third, the RaCBF condition
in (8) can be used as a safety filter for an existing tracking



controller or as a constraint within an optimization. Section V
will show the latter but with a contraction-based controller.
Lastly, if the adaptation gain must be small (or the maximum
parameter error is large) then RaCBFs can be conservative
albeit not to the same extent as aCBFs. Better performance
can be obtained if the model parameters can be robustly and
accurately estimated. Instead of obtaining a point-estimate
of the parameters, this work will instead identify the set of
possible parameter values.

D. RaCBFs with Set Membership Identification

Set membership identification (SMID) is a model estima-
tion technique that constructs an unfalsified set of model
parameters. SMID was originally developed to identify trans-
fer functions for uncertain linear systems [15], but has been
more recently applied to linear [9], [16] and nonlinear adap-
tive MPC [17]. Assume that the true parameters θ∗ belong to
an initial set of possible parameters Θ0, i.e., θ∗ ∈ Θ0. Given
k state, input, and rate measurements (denoted as x1:k and
so forth), a set Ξ can be constructed such that

Ξ =
{
% : |ẋ1:k − f1:k + ∆>1:k%−B1:ku1:k| ≤ D

}
,

where D can be treated as a tuning parameter that dictates the
conservativeness of SMID. It can also represent a disturbance
or noise bound [9], [17]. The set of possible parameter
values can then be updated via Θj+1 = Θj ∩ Ξ for all
j ≥ 0. In practice, Ξ can be found by solving a linear
program and set intersection can be efficiently done through a
combination of min and max operations. Restricting θ̂ ∈ Θj

then θ̃ ∈ Θ̃j where Θ̃j is the set of possible parameter errors.
The following lemma shows the advantage of performing set
identification over point-estimation techniques.

Lemma 1. Model uncertainty monotonically decreases with
set membership identification, i.e., Θ̃j+1 ⊆ Θ̃j for all j ≥ 0.

Proof. Since θ∗ ∈ Θj+1 then θ∗ ∈ Θj ∩ Ξ which is true if
θ∗ ∈ Θj so Θj+1 ⊆ Θj and Θ̃j+1 ⊆ Θ̃j .

The motivation to combine SMID with RaCBFs is to
enlarge the tightened set Crθ . To do so, one must ensure Crθ
remains forward invariant as the set of model parameters
is updated. In general this is non-trivial to prove since the
maximum possible parameter error is now time varying.
However, Theorem 3 shows that safety is maintained if the
model uncertainty monotonically decreases.

Theorem 3. Let Crθ be a superlevel set of a continuously
differentiable function hr : Rn × Rp → R. If the system is
safe on Crθ then it remains safe if the maximum allowable
model parameter error ϑ̃ monotonically decreases. Moreover,
the tightened set Crθ converges to Cθ monotonically.

Combining RaCBFs and SMID provides a mechanism to
1) modify parameters via adaptation to achieve safety and
2) update the model to reduce uncertainty and conservatism.
Safety is guaranteed even as the model parameters are mod-
ified online, and the system’s performance will only improve
as more data is collected. This adaptive data-driven safety

(a) Geodesic and arbitrary curve
connecting current and desired
state.

(b) Differential CLFs along
geodesic connecting current and
desired state.

Fig. 2: Geodesic and differential CLF visualization. (a): Geodesic (grey)
connecting current x (red) and desired xd (blue) state. (b): Differential
CLFs are integrated along geodesic to achieve exponential convergence.

paradigm can be merged with a stabilizing adaptive controller
for safe reference tracking. To maximize the generality of
the proposed unification, the adaptive controller must be
applicable to a broad class of nonlinear systems.

IV. ADAPTIVE CONTROL WITH CONTRACTION METRICS

Several adaptive control techniques have been proposed
for nonlinear systems, including methods based on feedback
linearization, variable structure, and backstepping (see [14],
[18]). These methods are limited to certain classes of sys-
tems because they rely on explicitly constructing a control
Lyapunov function (CLF) to prove stability. This work will
instead utilize a differential approach based on contraction
analysis that can be applied to a broad class of systems.

A. Contraction Metrics

The nominal differential dynamics of (1) are δ̇x =
A(x, u)δx + B(x)δu where A(x, u) = ∂f

∂x +
∑m
i=1

∂bi
∂x ui.

Contraction analysis searches for a control contraction metric
(CCM) M(x) such that a differential CLF δV = δ>xM(x)δx
satisfies δV̇ ≤ −2λδV for all x. A global CLF can be
obtained by integrating along a geodesic γ(s), illustrated
in Fig. 2, with γ(0) = xd and γ(1) = x where xd and
x are the desired and current state. The Riemannian energy
and tracking error both converge to zero exponentially, i.e.,
Ė ≤ −2λE. Let W (x) = M(x)−1, M(x) is CCM if [12]

B>⊥

(
WA> +AW − Ẇ + 2λW

)
B⊥ � 0 (C1)

∂biW −W
∂bi
∂x

>
− ∂bi
∂x

W = 0 i = 1, . . . ,m (C2)

where B⊥(x) is the annihilator matrix of B(x), i.e., B>⊥B =
0. (C1) ensures the dynamics orthogonal to u are contracting
and is a stabilizability condition. (C2) requires the column
vectors of B(x) form a Killing vector for the dual metric
W (x) leading to simpler controllers [12]. (C1) and (C2) will
be referred to as the strong CCM conditions.

B. Adaptive Control & Contraction

A novel adaptive control method was developed in [10]
for closed-loop contracting systems with extended matched
uncertainties, i.e., ∆(x)>θ ∈ span{B, adfB} were adfB
is the Lie bracket of the vector fields f(x) and B(x).
To stabilize such systems, the parameter-dependent metric
M(x, θ̂) was introduced and must satisfy the strong CCM
conditions for all possible θ̂. This led to the following result.



Theorem 4 ([10]). If a parameter-dependent metric can be
computed for (1) with extended matched uncertainties, then
the closed-loop systems is asymptotically stable with

˙̂
θ = −Γ∆(x)M(x, θ̂)γs(1) (9)

where γs(s) := ∂γ
∂s is the geodesic speed and Γ ∈ Sp+ is a

symmetric positive definite matrix.

Remark 2. For matched uncertainties, the metric is in-
dependent of the unknown parameters θ̂ [10, Lemma 1]
simplifying its computation. Otherwise, sum-of-square or
robust optimization must be utilized to compute M(x, θ̂).

Remark 3. Several modifications can be made to (9) that
improve transients or robustness including the projection
operator discussed in Section III-C (see [10]).

C. Offline Design & Online Computation

A contraction metric is computed offline via sum-of-
square programming for polynomial systems [12] or by
imposing Eqs. (C1) and (C2) at sampled points in the state
space; a process called gridding. Geodesics are computed
online at each time step by solving a nonlinear program
(NLP) with the current state. Geodesics are often guaranteed
to exist by Hopf-Rinow and are less expensive to compute
than solving nonlinear MPC. Given a geodesic γ(s), the Rie-
mannian energy can be interpreted as a CLF so a pointwise
min-norm controller similar to that in [19] can found by
solving the QP

u∗ = arg min
u∈U

1

2
u>u

s.t. γs(1)>M(x, θ̂) ˙̂x− γs(0)>M(xd, θ̂)ẋd ≤ −λE(γ(s), θ̂)

where θ̂ is the current parameter estimate, γs is the geodesic
speed, ˙̂x is (1) but with θ̂, ẋd is the desired dynamics for
desired state xd. The stability constraint imposes Ė ≤ −2λE
where Ė is the first variation of the Riemannian energy,
which has a known form [13], and results in exponential
convergence of the tracking error. It is more general than
the traditional Lyapunov stability as a distance-like function
does not need to computed explicitly. Safety can be directly
embedded in the above QP, resulting in a single optimization
for a safe stabilizing controller.

V. ADAPTIVE & DATA-DRIVEN SAFETY

A safe and stabilizing controller can be computed by uni-
fying RaCBFs, SMID, and adaptive control with contraction.
The individual components of the controller are summarized
below with their respective computational complexity.

1) Compute geodesic (NLP)

γ(s) = arg min
c(s)∈Υ(x,xd)

E(c, θ̂C) =

∫ 1

0

c>s M(c, θ̂C)csds

2) Compute controller (QP & Quadrature)

κ = arg min
u∈U

1

2
u>u+ rε2

s.t. γs(1)>M(x, θ̂C) ˙̂x− γs(0)>M(xd, θ̂C)ẋd

≤ −λE(γ(s), θ̂C) + ε

∂hr
∂x

(x, θ̂B)
[
f(x)−∆(x)>Λ(x, θ̂B) +B(x)u

]
≥ −α

(
hr(x, θ̂B)− 1

2
ϑ̃>Γ−1ϑ̃

)
3) Update parameters (Quadrature)

˙̂
θC = −ΓC∆(x)M(x, θ̂C)γs(1)

˙̂
θB = ΓB∆(x)

(
∂hr
∂x

(x, θ̂B)

)>
4) Update parameter error bounds (LP)

Ξ =
{
% : |ẋ1:k − f1:k + ∆>1:k%−B1:kκ1:k| ≤ D

}
Θj+1 = Θj ∩ Ξ, ϑ̃ = sup

%i,∀i
Θj+1 − inf

%i,∀i
Θj+1

The NLP in Step 1) can be efficiently solved by parame-
terizing geodesics with a set of polynomial basis functions.
We adopt the same strategy as in [20] and utilize the
the Chebychev Pseudospectral method and Clenshaw-Curtis
quadrature to compute a geodesic at each time step. Using
the geodesic computed in Step 1), the QP in Step 2) is
solved to generate a safe and stabilizing controller κ. The
QP is similar to that in [1] but the stability constraint is
replaced with the first variation of the Riemannian energy
[13]. Under the premise that (1) is locally Lipschitz, one can
show that κ is guaranteed to be locally Lipschitz from [1,
Theorem 3] as both the geodesic speed γs and metric M(x)
are also locally Lipschitz from their definitions. Note that ẋd
is the desired dynamics and ˙̂x is (1) but with θ̂C . Step 3)
is simple quadrature and is not computationally expensive.
Note that the parameter adaptation ˙̂

θC for the controller
should be temporarily stopped when the safety constraint
is active to prevent undesirable transients. Otherwise, the
parameter estimates will windup as the tracking error may
increase to ensure safety.

The LP in Step 4) has 2k constraints and is solved 2p
times at every time step for the upper and lower bound
of each parameter. Set intersection is done by taking the
appropriate minimum or maximum of the newest and current
bounds. The complexity of Step 4) can be bounded by either
removing redundant constraints or terminating when ϑ̃ ≤ ε
where ε is a predefined threshold. Step 4) can also be done
outside the control loop since stability and safety do not rely
on real-time updates of the parameter bounds; although real-
time bounds are desirable to quickly eliminate conservatism.
Consequently, non-causal filtering can be used to accurately
estimate ẋ if necessary. Moreover, the right hand side of the
inequality can be replaced by D+E where E is the maximum
estimation error of the rate vector, i.e., | ˙̂x| ≤ E . The proposed
method was tested in MATLAB R2018B with the built-in
solvers without any code optimization on a 1.6GHz Intel



(a) Pitch rate q. (b) Control input u. (c) Barrier function h.

Fig. 3: Comparison of modified aCBFs (4), RaCBFs, and RaCBFs & SMID for desired terminal state xd = [180◦ 0 0]> (Immelmann turn) and maximum
pitch rate qm. (a): Pitch rate tracking where RaCBFs and the modified aCBFs exhibit similar conservatism due to model error. RaCBF & SMID allows
the aircraft to utilize 97.9% of the maximum allowable pitch rate. ‘ (b): Control chatter is observed with the modified aCBFs while RaCBFs generate
continuous control inputs. (c): Safety is maintained but RaCBFs and the modified aCBFs are conservative due to potential model error. RaCBFs & SMID
permit states closer to the boundary of the safe set without losing safety guarantees. For tests k∗q = 0.2, `∗α = −1, ΓB = 20, ΓC = 50, α(r) = 10r,
and D = 0.1.

i5 processor. The NLP was initialized with a linear curve
c(s) = (x− xd)s+ xd at each time step.

VI. ILLUSTRATIVE EXAMPLE

Consider the simplified pitch dynamics of an aircraft [21] θ̇
α̇
q̇

 =

 q
q − L̄(α)

−kqq + M̄(α)

+

 0
0
1

u,
where θ, α, and q are the pitch angle, angle of attack,
and pitch rate. L̄(α) and M̄(α) are the aerodynamic lift
and moment. The system is not feedback linearizable as
the controllability matrix drops rank at L̄′(α) = 0 and
is not in strict-feedback form. Utilizing flat plat theory
[21], the aerodynamics of a high-performance aircraft are
approximately L̄(α) = 0.8sin(2α) and M̄(α) = −`αL̄(α).
The parameters kq and `α are unknown but kq ∈ [0.1 0.8]
and `α ∈ [−3 1]. A metric quadratic in α was synthesized via
gridding for α ∈ [−5◦ 50◦] and q ∈ [−10◦/s 50◦/s]. Note
that L̄′(α) = 0 is in the chosen grid range. The function
hr(q) = qm − q where qm = 50◦/s can be easily shown to
be a valid RaCBF that enforces q ≤ qm.

The desired terminal state xd = [180◦ 0 0]> corresponds
to the first portion of the aerobatic maneuver known as the
Immelmann turn. The vehicle executes a half loop before
executing a half roll (not considered here) resulting in level
flight in the opposite direction. Fig. 3a shows modified
aCBFs and RaCBFs exhibit similar behavior in terms of
conservatism as they do not utilize the maximum allowable
pitch rate. However, modified aCBFs exhibit high-frequency
oscillations due to the chatter in the control input, seen in
Fig. 3b; a result of the formulation as the safety constraint
continuously switches between active and inactive. High-
frequency oscillations are also seen in the barrier function in
Fig. 3c but are absent with RaCBFs. Fig. 3a shows RaCBFs
with SMID results in less conservatism as 97.9% of the
maximum allowable pitch rate is utilized. Moreover, the set
of allowable states is considerably larger as is evident by the
small value of the barrier function in Fig. 3c. The parameter
error bounds, shown in Fig. 4a, were reduced by 63.0% for

(a) Parameter bounds. (b) Computation time.

Fig. 4: Parameter bounds and computation time. (a): Parameter bounds
monotonically approach the true parameter values `∗α and k∗q . (b): Compu-
tation time for the proposed controller is well within real-time constraints.

kq and 90.5% for `α. Fig. 4b shows the computation time
is within real-time constraints and can be easily reduced by
utilizing faster solvers or a lighter programming language.

Now consider the scenario where a full desired trajectory
described by θd = −20◦cos(t) is available. A metric was
synthesized for a new grid range α ∈ [−60◦ 60◦] and q ∈
[−20◦/s 20◦/s]; a metric quadratic in α was again found to be
valid over the grid range. The function hr(q) = 1− (q/qm)2

where qm = 20◦/s is a valid RaCBF that enforces |q| ≤ qm.
The results in Fig. 5 show the same exact behavior as in
Fig. 3: control input chattering occurs with the modified
aCBFs Fig. 5b resulting in high-frequency oscillations in
both the pitch rate Fig. 5a and barrier function Fig. 5c. Chat-
tering does not occur with RaCBFs. Additionally, RaCBFs
with SMID again has the best tracking performance in Fig. 5a
and is the least conservative in Fig. 5c. The parameter
bounds at different time instances are shown in Fig. 6a.
The bounds again monotonically decrease resulting in a
reduction of 16.5% and 77.3% for kq and `α, respectively.
The reduction is less than that in the Immelmann turn due
to the trajectory not sufficiently exciting q relative to L̄(α).
The largest reduction occurred at t = 3s which is when the
barrier function in Fig. 5c becomes less conservative. The
computation time shown in Fig. 6b is comparable to that
in Fig. 4b with the NLP solve time being slightly less as
the linear geodesic initialization is a better initial guess for
small tracking error. This further confirms that the proposed
approach can be run in real-time.



(a) Pitch rate q. (b) Control input u. (c) Barrier function h.

Fig. 5: Comparison of modified aCBFs (4), RaCBFs, and RaCBFs & SMID with a full desired trajectory corresponding to θd = −20◦cos(t). (a): Pitch
rate tracking where RaCBFs and aCBFs exhibit similar conservativeness due to model error. RaCBF & SMID achieves the best performance because model
uncertainty is reduced via online estimation. (b): Control chatter is observed with aCBFs while RaCBFs generate continuous control inputs. (c): Safety
maintained but RaCBFs and aCBFs are conservative due to potential model error. RaCBFs & SMID is the least conservative since model is estimated
online. For tests k∗ = 0.2, `∗α = −1, ΓB = 20, ΓC = 50, α(r) = 10r, and D = 0.1.

(a) Parameter bounds. (b) Computation time.

Fig. 6: Parameter bounds and computation time for desired trajectory. (a):
Parameter bounds monotonically approach the true parameter values `∗α and
k∗q . (b): Computation time for the proposed controller is well within real-
time constraints.

VII. CONCLUSION

This work presented a framework that guarantees safety
for uncertain nonlinear systems through parameter adaptation
and data-driven model estimation. The unification with a
contraction-based adaptive controller allows the approach be
applied to a broad class of systems. Extending to systems
with probabilistic model bounds, non-parametric uncertain-
ties, and external disturbances is future work.

APPENDIX

Proof of Theorem 2. Consider the composite candidate CBF
h = hr(x, θ̂)− 1

2 θ̃
>Γ−1θ̃, where the minimum eigenvalue of

Γ must satisfy λmin(Γ) ≥ ‖ϑ̃‖2
2hr(xr,θr) for any hr(xr, θr) > 0.

Differentiating h with respect to (1),

ḣ = ḣr(x, θ̂)− θ̃>Γ−1 ˙̂
θ

=
∂hr
∂x

[
f(x)−∆(x)>θ +B(x)u

]
+
∂hr

∂θ̂

˙̂
θ − θ̃>Γ−1 ˙̂

θ

Adding and subtracting ∂hr

∂x ∆(x)>
[
θ̂ − Γ

(
∂hr

∂θ̂

)>]
and us-

ing the definition of Λ(x, θ̂),

ḣ =
∂hr
∂x

[
f(x)−∆(x)>Λ(x, θ̂) +B(x)u

]
+
∂hr

∂θ̂

˙̂
θ

− θ̃>Γ−1 ˙̂
θ +

∂hr
∂x

∆(x)>

[
θ̃ − Γ

(
∂hr

∂θ̂

)>]
.

Choosing ˙̂
θ = Γ∆(x)

(
∂hr

∂x

)>
, then

ḣ =
∂hr
∂x

[
f(x)−∆(x)>Λ(x, θ̂) +B(x)u

]
≥ −α

(
hr −

1

2
ϑ̃>Γ−1ϑ̃

)
≥ −α(h),

where the first inequality is obtained via the definition of
a RaCBF and the second by noting |θ̃| ≤ ϑ̃ so h = hr −
1
2 θ̃
>Γ−1θ̃ ≥ hr − 1

2 ϑ̃
>Γ−1ϑ̃. Since h ≥ 0 and hr ≥ h ∀t,

then hr ≥ 1
2 ϑ̃
>Γ−1ϑ̃ ≥ 0 and Crθ is forward invariant.

Proof of Theorem 3. Since the model uncertainty is chang-
ing via estimation, the maximum allowable parameter error
is time varying, i.e., ϑ̃(t). From Lemma 1, Θ̃ monotonically
decreases so ˙̃

ϑ ≤ 0. Let hr be a candidate RaCBF, then
ḣ = ḣr − ϑ̃Γ−1 ˙̃

ϑ ≥ ḣr since ˙̃
ϑ ≤ 0 for all t. Inequality (8)

in Definition 6 is then still satisfied for ˙̃
ϑ ≤ 0. Using the

steps in Theorem 2, the system is safe with respect to Cr
θ̂

.

Moreover, since ˙̃
ϑ ≤ 0 then ϑ̃→ 0 so Cr

θ̂
→ Cθ̂.
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