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FOURIER TRANSFORM AS A TRIANGULAR MATRIX

G. LUSZTIG

Abstract. Let V be a finite dimensional vector space over the field with two
elements with a given nondegenerate symplectic form. Let [V ] be the vector
space of complex valued functions on V , and let [V ]Z be the subgroup of [V ]
consisting of integer valued functions. We show that there exists a Z-basis of
[V ]Z consisting of characteristic functions of certain isotropic subspaces of V
and such that the matrix of the Fourier transform from [V ] to [V ] with respect
to this basis is triangular. We show that this is a special case of a result which
holds for any two-sided cell in a Weyl group.

Introduction

0.1. Let V be a vector space of finite even dimension D = 2d ≥ 0 over the field F2

with 2 elements with a fixed nondegenerate symplectic form (, ) : V ×V → F2. Let
[V ] be the C-vector space of functions V → C and let [V ]Z be the subgroup of [V ]
consisting of the functions V → Z. For f ∈ [V ] the Fourier transform Φ(f) ∈ [V ]
is defined by Φ(f)(x) = 2−d

∑
y∈V (−1)(x,y)f(y). Now Φ : [V ] → [V ] is a linear

involution whose trace is 2−d
∑

x∈V 1 = 2d. Hence Φ has 2D−1 + 2d−1 eigenvalues

equal to 1 and 2D−1−2d−1 eigenvalues equal to −1. Here is one of our main results.

Theorem 0.2. There exists a Z-basis β of [V ]Z consisting of characteristic func-
tions of certain explicit isotropic subspaces of V such that the matrix of Φ : [V ] →
[V ] with respect to β is upper triangular (with diagonal entries ±1) for a suitable
order on β.

Assume for example that D = 2. For x ∈ V let fx ∈ [V ] be the function
whose value at y ∈ V is 1 if y = x and 0 if y �= x. Let β be the Z-basis of VZ

consisting of f ′
0 = f0 and of f ′

x = f0 + fx for x ∈ V − {0}. We have Φ(f ′
0) =

−f ′
0 + (1/2)

∑
x∈V −{0} f

′
x and Φ(f ′

x) = f ′
x for x ∈ V − {0}. Thus, the matrix

of Φ : [V ] → [V ] with respect to β is upper triangular (with diagonal entries
−1, 1, 1, 1).

The proof of the theorem is given in §1; we take β to be the new basis F(V ) of
[V ] defined in [Lus20]. In §2 we compute explicitly the signs ±1 appearing in the
theorem for this β. In §3 we give some tables for β = F(V ). In §4 we show that
F(V ) has a certain dihedral symmetry which was not apparent in [Lus20]. In §5 we
show that the theorem is a special case of a result which applies to any two-sided
cell in an irreducible Weyl group.

0.3. Notation. For a, b in Z we set [a, b] = {z ∈ Z; a ≤ z ≤ b}. For a finite set Y
let |Y | be the cardinal of Y .
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1. Proof of Theorem 0.2

1.1. When D ≥ 2 we fix a subset {ei; i ∈ [1, D + 1]} ⊂ V such that for i �= j in
[1, D + 1] we have (ei, ej) = 1 if i − j = ±1 mod D + 1, (ei, ej) = 0 if i − j �=
±1 mod D + 1. (Such a subset exists and is unique up to the action of some
isometry of (, ).) We say that this subset is a circular basis of V . We must have
e1 + e2 + · · · + eD+1 = 0 and any D elements of {ei; i ∈ [1, D + 1]} form a basis
of V . For any I ⊂ [1, D + 1] let eI =

∑
i∈I ei ∈ V . When D ≥ 2 (resp. D ≥ 4) we

denote by V ′ (resp. V ′′) an F2-vector space with a nondegenerate symplectic form
(, ). When D ≥ 4 (resp. D ≥ 6) we assume that V ′ (resp. V ′′) has a given circular
basis {e′i; i ∈ [1, D − 1]} (resp. {e′′i ; i ∈ [1, D − 3]}).

When D ≥ 2, for any i ∈ [1, D+1] there is a unique linear map τi : V
′ → V such

that τi = 0 for D = 2, while for D ≥ 4, the sequence τi(e
′
1), τi(e

′
2), . . . , τi(e

′
D−1) is:

e1, e2, . . . , ei−2, ei−1 + ei + ei+1, ei+2, ei+3, . . . , eD, eD+1 (if 1 < i ≤ D),
e3, e4, . . . , eD, eD+1 + e1 + e2 if i = 1,
e2, e3, . . . , eD−1, eD + eD+1 + e1 if i = D + 1.
This map is injective and compatible with (, ). Similarly, when D ≥ 4, for any

i ∈ [1, D− 1] there is a unique linear map τ ′i : V
′′ → V ′ such that τ ′i = 0 for D = 4,

while for D ≥ 6, the sequence τ ′i(e
′′
1), τ

′
i(e

′′
2), . . . , τ

′
i(e

′′
D−3) is:

e′1, e
′
2, . . . , e

′
i−2, e

′
i−1 + e′i + e′i+1, e

′
i+2, e

′
i+3, . . . , e

′
D−2, e

′
D−1 (if 1 < i ≤ D − 2),

e′3, e
′
4, . . . , e

′
D−2, e

′
D−1 + e′1 + e′2 if i = 1,

e′2, e
′
3, . . . , e

′
D−3, e

′
D−2 + e′D−1 + e′1 if i = D − 1.

This map is injective and compatible with (, ). Note that
(a) if D ≥ 2, then τi(V

′) is a complement of the line F2ei in {x ∈ V ; (x, ei) = 0}.
Assuming that D ≥ 4 and i ∈ [1, D − 2], we show:
(b) τD+1τ

′
i = τjτ

′
D−1 where j = i+ 1 if 1 < i ≤ D − 2 and j = i if i = 1.

If D = 4 the result is trivial. Assume now that D ≥ 6. Assume first that
1 < i ≤ D − 2. Both sequences

(τD+1τ
′
i(e

′′
1), τD+1τ

′
i(e

′′
2), . . . , τD+1τ

′
i(e

′′
D−3))

(τi+1τ
′
D−1(e

′′
1), τi+1τ

′
D−1(e

′′
2), . . . , τi+1τ

′
D−1(e

′′
D−3))

are equal to

(e2, e3, . . . , ei−1, ei + ei+1 + ei+2, ei+3, ei+4, . . . , eD−1, eD + eD+1 + e1)

if 1 < i < D − 2 and to

(e2, e3, . . . , eD−3, eD−2 + eD−1 + eD + eD+1 + e1)

if i = D − 2. Next we assume that i = 1. Both sequences

(τD+1τ
′
i(e

′′
1), τD+1τ

′
i(e

′′
2), . . . , τD+1τ

′
i(e

′′
D−3))

(τiτ
′
D−1(e

′′
1), τiτ

′
D−1(e

′′
2), . . . , τiτ

′
D−1(e

′′
D−3))

are equal to

(e4, e5, . . . , eD−2, eD + eD+1 + e1 + e2 + e3).

This proves (b).
In the setup of (b) we show that for a subspace E′′ ⊂ V ′′ we have

(c) τD+1(τ
′
i(E

′′)⊕ F2e
′
i)⊕ F2eD+1 = τj(τ

′
D−1(E

′′)⊕ F2e
′
D−1)⊕ F2ej .

Using (b) it is enough to show that

F2τD+1(e
′
i)⊕ F2eD+1 = F2τj(e

′
D−1)⊕ F2ej
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or that

F2ei+1 ⊕ F2eD+1 = F2eD+1 ⊕ F2ei+1

if i > 1 and

F2e2 ⊕ F2eD+1 = F2(eD+1 + e1 + e2) + F2e1

if i = 1. This is clear.

1.2. If D ≥ 2, for any k ∈ [0, d] let Ek be the subspace of V with basis
{e[1,D], e[2,D−1], . . . , e[k,D+1−k]}.
When D = 0 we set E0 = 0 ⊂ V . If D ≥ 4 and k ∈ [0, d − 1] let E′

k be the
subspace of V ′ with basis

{e′[1,D−2], e
′
[2,D−3], . . . , e

′
[k,D−1−k]}

where for any I ′ ⊂ [1, D − 1] we set e′I′ =
∑

i∈I′ e′i ∈ V ′. When D = 2 we set
E′ = 0 ⊂ V ′.

Following [Lus20], we define a collection F(V ) of subspaces of V by induction
on D. If D = 0, F(V ) consists of the subspace {0}. If D ≥ 2, a subspace E of V
is in F(V ) if either

(i) there exists i ∈ [1, D] and E′ ∈ F(V ′) such that E = τi(E
′)⊕ F2ei, or

(ii) there exists k ∈ [0, d] such that E = Ek.
We now define a collection F ′(V ) of subspaces of V by induction on D. If D = 0,
F ′(V ) consists of the subspace {0}. If D ≥ 2, a subspace E of V is in F ′(V ) if
either E = 0 or if

(iii) there exists i ∈ [1, D + 1] and E′ ∈ F(V ′) such that E = τi(E
′)⊕ F2ei.

Lemma 1.3. We have F(V ) = F ′(V ).

We argue by induction on D. If D = 0 the result is obvious. Assume that D ≥ 2.
We show that

(a) F ′(V ) ⊂ F(V ).
Let E ∈ F ′(V ). If E = 0 then clearly E ∈ F(V ). Thus we can assume that

E = τi(E
′)⊕ F2ei for some i ∈ [1, D + 1] and some E′ ∈ F ′(V ). By the induction

hypothesis we have E′ ∈ F(V ). If i ∈ [1, D] then by definition we have E ∈ F(V ).
Thus we can assume that i = D + 1. If E′ = 0 then E = F2eD+1 = F2e[1,D] =
E1 ∈ F(V ). Thus we can assume that E′ �= 0 so that D ≥ 4. Since E′ ∈ F(V ′) we
have E′ = τ ′h(E

′′)⊕ F2e
′
h for some h ∈ [1, D − 2] and some E′′ ∈ F(V ′′). Thus we

have

E = τD+1(τ
′
h(E

′′)⊕ F2e
′
h)⊕ F2eD+1 = τh′(E1)⊕ F2eh′

where E1 = τ ′D−1(E
′′) ⊕ F2eD−1 (we have used 1.1(c)); here h′ = h + 1 if h > 1

and h′ = h if h = 1. By the definition of F ′(V ′) we have E1 ∈ F ′(V ′) hence
E1 ∈ F(V ′), by the induction hypothesis. It follows that τh′(E1)⊕ F2eh′ ∈ F(V ),
so that E ∈ F(V ). This proves (a).

We show that
(b) F(V ) ⊂ F ′(V ).

Let E ∈ F(V ). Assume first that E = Ek for some k ∈ [1, d]. From the definition we
have Ek = τD+1(E

′
k−1)⊕ F2eD+1. We have E′

k−1 ∈ F(V ′) hence by the induction
hypothesis we have E′

k−1 ∈ F ′(V ′) and using the definition we have Ek ∈ F ′(V ).
If E = E0 then E = 0 so that again E ∈ F(V ). Next we assume that E is not
of the form Ek with k ∈ [0, d]. We can find i ∈ [1, D] and E′ ∈ F(V ′) such that
E = τi(E

′) ⊕ F2ei. By the induction hypothesis we have E′ ∈ F ′(V ′). From the
definition we have E ∈ F ′(V ). This proves (b).
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1.4. For any subset X ⊂ V let ψX ∈ [V ] be the function such that ψX(x) = 1 if
x ∈ X, ψX(x) = 0 if x ∈ V −X. According to [Lus20],

(a) {ψE ;E ∈ F(V )} is a Z-basis of [V ]Z.
Using Lemma 1.3, we deduce:

(b) {ψE ;E ∈ F ′(V )} is a Z-basis of [V ]Z.
We will no longer distinguish between F(V ) and F ′(V ).

1.5. Assume that D ≥ 2. Let [V ′], Φ′ : [V ′] → [V ′] be the analogues of [V ],Φ :
[V ] → [V ] when V is replaced by V ′. For X ′ ⊂ V ′ let ψ′

X′ ∈ [V ′] be the function
such that ψ′

X′(y) = 1 if y ∈ X ′, ψ′
X′(x) = 0 if y ∈ V ′ −X ′.

For i ∈ [1, D+1] there is a unique linear map zi : [V
′] → [V ] such that zi(ψ

′
y) =

ψτi(y) + ψτi(y)+ei for all y ∈ V ′. If E′ is a subspace of V ′ we have zi(ψ
′
E′) =

ψτi(E′)⊕F2ei . We show:
(a) For f ∈ [V ′] we have Φ(zi(f)) = zi(Φ

′(f)).
We can assume that f = ψ′

y with y ∈ V ′. We have

zi(Φ
′(f)) = 2−d+1

∑
y1∈V ′

(−1)(y,y1)zi(ψ
′
y1
)

= 2−d+1
∑

y1∈V ′

(−1)(y,y1)(ψτi(y1) + ψτi(y1)+ei),

Φ(zi(f)) = Φ(ψτi(y) + ψτi(y)+ei) = 2−d
∑
x∈V

((−1)(τi(y),x) + (−1)(τi(y)+ei,x))ψx

= 2−d+1
∑

x∈V ;(ei,x)=0

(−1)(τi(y),x)ψx.

In the last sum x can be written uniquely as x = τi(y1) + cei with y1 ∈ V ′, c ∈ F2.
Thus

Φ(zi(f)) = 2−d+1
∑

y1∈V ′,c∈F2

(−1)(τi(y),τi(y1)+ce1)ψτi(y1)+cei

which is equal to zi(Φ
′(f)). This proves (a).

For E ∈ F(V ) we write
(b) Φ(ψE) =

∑
E1∈F(V ) cE,E1

ψE1

with cE,E1
∈ C are uniquely determined. (We use 1.4(b).)

Lemma 1.6. Let E ∈ F(V ), E1 ∈ F(V ) be such that cE,E1
�= 0. Then either

E1 = E or |E1| > |E|.

We argue by induction on D. If D = 0 the result is obvious. Assume now that
D ≥ 2. If E = 0, the result is obvious since for any E1 ∈ F(V ) we have either E1 =
E or |E1| > |E|. Assume now that E �= 0. We can find i ∈ [1, D+1] and E′ ∈ F(V ′)
such that E = τi(E

′) ⊕ F2ẽi. Recall from 1.5 that zi(ψ
′
E′) = ψτi(E′)⊕F2ei = ψE .

By the induction hypothesis we have

Φ′(ψ′
E′) = c′E′,E′ψ′

E′ +
∑

E′
1∈F(V ′);|E′

1|>|E′|
c′E′,E′

1
ψ′
E′

1
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with c′E′,E′ ∈ C, c′E′,E′
1
∈ C. Applying zi and using 1.5(a) we deduce

Φ(zi(ψ
′
E′)) = cE′,E′zi(ψ

′
E′) +

∑
E′

1∈F(V ′);|E′
1|>|E′|

c′E′,E′
1
zi(ψ

′
E′

1
)

= cE′,E′ψE

∑
E′

1∈F(V ′);|E′
1|>|E′|

c′E′,E′
1
ψτi(E′

1)⊕F2ei

and the result follows in this case since for E′
1 in the last sum we have

|τi(E′
1)⊕ F2ei| = |E′

1|+ 1 > |E′|+ 1 = |E|.
This completes the proof of the lemma.

1.7. We prove Theorem 0.2. By results of [Lus20], the basis 1.4(b) of [V ] is a Z-
basis of [V ]Z. By 1.6, the matrix of Φ with respect to the basis 1.4(b) is upper
triangular for a suitable order on the basis. The diagonal entries of this matrix are
necessarily ±1 since Φ2 = 1. This completes the proof.

2. Sign computation

2.1. Let E ∈ F(V ). According to [Lus20] there is a unique basis bE of E which
consists of vectors of the form eI with I of the form [a, b] with a ≤ b in [1, D]. Let
nE be the number of vectors eI ∈ bE such that |I| is even.

For k, k′ in [0, d] let Fk(V ) (resp. Fk′
(V )) be the set of all E ∈ F(V ) such that

dim(E) = k (resp. nE = k′); let Fk′

k (V ) = Fk(V ) ∩ Fk′
(V ).

If E ∈ F(V ) we denote by E! the subspace of E spanned by the vectors eI ∈ bE
such that |I| is odd; we have E! ∈ F0(V ). We have the following result.

(a) Let E ∈ F0
d−k(V ) where k ∈ [0, d] and let M(E) = {E ∈ F(V );E! = E}.

Then M(E) consists of k + 1 subspaces E = E(0) ⊂ E(1) ⊂ . . . ⊂ E(k); we have
E(t) ∈ F t

d−k+t(V ) for t ∈ [0, k]. We argue by induction on D. If D = 0 the
result is obvious. Assume now that D ≥ 2. If E = 0 then k = d and M(E) =
{E0, E1, . . . , Ed} (see 1.2) and the result is obvious. Assume now that E �= 0.
We can find i ∈ [1, D] and E′ ∈ F(V ′) such that E = τi(E

′) ⊕ F2ei. We have
E′ ∈ F0

d−1−k so that by the induction hypothesis M(E′) consists of k+1 subspaces

E′ = E′(0) ⊂ E′(1) ⊂ . . . ⊂ E′(k) and we have E′(t) ∈ F t
d−1−k+t(V

′) for t ∈ [0, k].
For t ∈ [0, k] we set E(t) = τi(E

′(t))⊕F2ei; we have E = E(0) ⊂ E(1) ⊂ . . . ⊂ E(k)
and E(t) ∈ F t

d−k+t(V
′), E(t)! = E. Thus {E(0),E(1), . . . ,E(k)} ⊂ M(E). Now let

E ∈ M(E). Since ei ∈ E we have ei ∈ E and, using [Lus20, 1.3(f)], we see that
there exists E′ ∈ F(V ′) such that E = τi(E

′)⊕F2ei. From the definitions we have
E′ ∈ M(E′) so that E′ = E′(t) for some t ∈ [0, k] and E = E(t) for some t ∈ [0, k].
This proves (a).

From (a) we see that there is a unique involution κ : F(V ) → F(V ) such that
for any E ∈ F0

d−k(V ) we have κ(E(t)) = E(k − t) for t ∈ [0, k]. This involution
restricts to a bijection

(b) F t(V )
∼−→ Fd−t(V )

for any t ∈ [0, d].
The following equality follows from [Lus20, 1.27(a)]:

(c) |Fk(V )| =
(
D+1
d−k

)
for k ∈ [0, d].

Using (b),(c) we deduce

(d) |Fk(V )| =
(
D+1
k

)
for k ∈ [0, d].
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2.2. For any integerN we set δ(N) = (−1)N(N+1)/2. We have the following identity:

(a)
∑

k∈[0,d] δ(d− k)
(
D+1
k

)
= 2d.

We prove (a) by induction on D. If D = 0 the result is obvious. Assume now
that D ≥ 2. We must show that(
2d+ 1

d

)
−
(
2d+ 1

d− 1

)
−
(
2d+ 1

d− 2

)
+

(
2d+ 1

d− 3

)
+

(
2d+ 1

d− 4

)
−
(
2d+ 1

d− 5

)
− · · · = 2d

or that

(

(
2d

d

)
+

(
2d

d− 1

)
)− (

(
2d

d− 1

)
+

(
2d

d− 2

)
)− (

(
2d

d− 2

)
+

(
2d

d− 3

)
)

+ (

(
2d

d− 3

)
+

(
2d

d− 4

)
) + (

(
2d

d− 4

)
+

(
2d

d− 5

)
)− (

(
2d

d− 5

)
+

(
2d

d− 6

)
)− . . .

= 2d

or that (
2d

d

)
− 2

(
2d

d− 2

)
+ 2

(
2d

d− 4

)
− 2

(
2d

d− 6

)
+ · · · = 2d

or that

(

(
2d− 1

d

)
+

(
2d− 1

d− 1

)
)− 2(

(
2d− 1

d− 2

)
+

(
2d− 1

d− 3

)
)

+ 2(

(
2d− 1

d− 4

)
+

(
2d− 1

d− 5

)
)− · · · = 2d

or that

2

(
2d− 1

d− 1

)
− 2

(
2d− 1

d− 2

)
− 2

(
2d− 1

d− 3

)
+ 2

(
2d− 1

d− 4

)
+ 2

(
2d− 1

d− 5

)
− · · · = 2d.

But this is known from the induction hypothesis. This proves (a).

2.3. The following result describes the diagonal entries of the upper triangular
matrix in 1.7.

Proposition 2.4. Let E ∈ F(V ) and let cE,E be as in 1.5(b). We have cE,E =
δ(d− dimE).

We argue by induction on D. If D = 0 the result is obvious. Assume now that
D ≥ 2. Assume first that E �= 0. We can find i ∈ [1, D + 1] and E′ ∈ F(V ′) such
that E = τi(E

′)⊕F2ẽi. By the proof of 1.6 we have cE,E = c′E′,E′ (notation of 1.6).

The proposition applies to c′E′,E′ by the induction hypothesis. The desired result

for E follows since d− dimE = d− 1 − dimE′. We now assume that E = 0. The
trace of Φ is equal to

∑
E1∈F(V ) cE1,E1

and on the other hand is equal to 2d (see

0.1). Thus we have
∑

E1∈F(V ) cE1,E1
= 2d. In the last sum all terms with E1 �= 0

are already known. Hence the term with E1 = 0 is determined by the last equality.
Thus to prove the proposition it is enough to verify the identity∑

E1∈F(V )

δ(d− dimE1) = 2d

or equivalently ∑
k∈[0,d]

|Fk(V )|δ(d− k) = 2d.

This follows from 2.1(d), 2.2(a). This completes the proof.
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3. Tables

3.1. In this section we assume that D ≥ 2. Let E ∈ F(V ). Recall that the basis
bE consists of certain vectors eI where I is of the form [a, b] with a ≤ b in [1, D].
We have eI = eI′ where I ′ ⊂ [1, D + 1] is defined by I ′ = I if |I| is odd and
I ′ = [1, D + 1] − I if I is even. Note that |I ′| is always odd. Now E is completely
described by the list of all subsets I ′ defined as above. In the following three
sections we describe each E ∈ F(V ) as a list of such I ′ assuming that D is 2, 4
or 6. (This list is more symmetric than the corresponding list of the I which is
given in [Lus20].) In each of these tables each horizontal line represents the various
E(0),E(1), . . . ,E(k) with a fixed E ∈ F0(V ) as in 2.1. For example the second line
< 1 >,< 1, 512 > in 3.3 represents two subspaces in F(V ); one spanned by e1 and
the other spanned by e1 and e5 + e1 + e2.

3.2. The table for D = 2.
∅, < 3 >
< 1 >
< 2 >.

3.3. The table for D = 4.
∅, < 5 >,< 5, 451 >
< 1 >,< 1, 512 >
< 2 >,< 2, 5 >
< 3 >,< 3, 5 >
< 4 >,< 4, 345 >
< 1, 3 >
< 1, 4 >
< 2, 4 >
< 2, 123 >
< 3, 234 >.

3.4. The table for D = 6.
∅, < 7 >,< 7, 671 >,< 7, 671, 56712 >
< 1 >,< 1, 712 >,< 1, 712, 67123 >
< 2 >,< 2, 7 >,< 2, 7, 67123 >
< 3 >,< 3, 7 >,< 3, 7, 671 >
< 4 >,< 4, 7 >,< 4, 7, 671 >
< 5 >,< 5, 7 >,< 5, 7, 45671 >
< 6 >,< 6, 567 >,< 6, 567, 45671 >
< 1, 3 >,< 1, 3, 71234 >
< 1, 4 >,< 1, 4, 712 >
< 1, 5 >,< 1, 5, 712 >
< 1, 6 >,< 1, 6, 56712 >
< 2, 4 >,< 2, 4, 7 >
< 2, 5 >,< 2, 5, 7 >
< 2, 6 >,< 2, 6, 567 >
< 3, 5 >,< 3, 5, 7 >
< 3, 6 >,< 3, 6, 567 >
< 4, 6 >,< 4, 6, 34567 >
< 2, 123 >,< 2, 123, 71234 >
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< 3, 234 >,< 3, 7, 234 >
< 4, 345 >,< 4, 7, 345 >
< 5, 456 >,< 5, 456, 34567 >
< 1, 3, 5 >
< 1, 3, 6 >
< 1, 4, 6 >
< 2, 4, 6 >
< 1, 4, 345 >
< 1, 5, 456 >
< 2, 5, 123 >
< 2, 5, 456 >
< 2, 6, 123 >
< 3, 6, 234 >
< 2, 4, 12345 >
< 3, 5, 23456 >
< 3, 234, 12345 >
< 4, 345, 23456 >.

4. Dihedral symmetry

4.1. There is a unique linear map R : V → V such that if D = 0 we have R = 0
while if D ≥ 2, R(e1), R(e2), . . . , R(eD+1) is e2, e3, . . . , eD+1, e1. If D ≥ 2, there
is a unique linear map R′ : V ′ → V ′ such that if D = 2 we have R′ = 0 while if
D ≥ 4, R′(e′1), R

′(e′2), . . . , R
′(e′D−1) is e

′
2, e

′
3, . . . , e

′
D−1, e

′
1. From the definitions we

see that if D ≥ 2, i ∈ [1, D + 1] we have
(a) Rτi = τi+1R

′ : V ′ → V if i ∈ [1, D], Rτi = τ1 : V ′ → V if i = D + 1.

4.2. Let E ∈ F(V ). We show:
(a) R(E) ∈ F(V ).
We argue by induction on D. If D = 0 the result is obvious. Assume that D ≥ 2.

If E = 0 we have R(E) = 0 and the result is clear. Assume now that E �= 0. We
can find i ∈ [1, D + 1] and E′ ∈ F(V ′) such that E = τi(E

′) ⊕ F2ei. Applying
R we deduce R(E) = Rτi(E

′) ⊕ F2ei+1 if i ∈ [1, D], R(E) = Rτi(E
′) ⊕ F2e1 if

i = D + 1. Using 4.1(a) we deduce R(E) = τi+1R
′(E′) ⊕ F2ei+1 if i ∈ [1, D],

R(E) = τ1(E
′)⊕F2e1 if i = D+ 1. By the induction hypothesis we have R′(E′) ∈

F(V ′). It follows that R(E) ∈ F(V ), as required.

4.3. There is a unique linear map S : V → V such that if D = 0 we have S = 0,
while if D ≥ 2 we have S(ei) = eD+1−i if i ∈ [1, D], S(eD+1) = eD+1. If D ≥ 2,
there is a unique linear map S′ : V ′ → V ′ such that if D = 2 we have S′ = 0 while
if D ≥ 4 we have S′(ei) = eD−1−i if i ∈ [1, D − 2], S′(eD−1) = eD−1. From the
definitions we see that if D ≥ 2, i ∈ [1, D + 1] we have

(a) Sτi = τD+1−iS
′ : V ′ → V if i ∈ [1, D], Sτi = τiS

′ : V ′ → V if i = D + 1.

4.4. Let E ∈ F(V ). We show:
(a) S(E) ∈ F(V ).
We argue by induction on D. If D = 0 the result is obvious. Assume that D ≥ 2.

If E = 0 we have S(E) = 0 and the result is clear. Assume now that E �= 0. We
can find i ∈ [1, D + 1] and E′ ∈ F(V ′) such that E = τi(E

′) ⊕ F2ei. Applying
S we deduce S(E) = Sτi(E

′) ⊕ F2eD+1−i if i ∈ [1, D], S(E) = Sτi(E
′) ⊕ F2ei if

i = D + 1. Using 4.3(a) we deduce S(E) = τD+1−iS
′(E′)⊕ F2eD+1−i if i ∈ [1, D],
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S(E) = τiS
′(E′)⊕F2ei if i = D+1. By the induction hypothesis we have S′(E′) ∈

F(V ′). It follows that S(E) ∈ F(V ), as required.

4.5. Assume that D ≥ 2. Let Sp(V ) be the group of automorphisms of V, (, ). Let
Δ be the subgroup of Sp(V ) generated by R,S (a dihedral group of order 2(D+1)).
From 4.2(a), 4.4(a) we see that the Δ-action on V induces a Δ-action on [V ] which
keeps stable the basis F(V ).

4.6. We now restate the definition of F(V ) in 3.2 in more invariant terms. (In this
definition the dihedral symmetry in 4.5 is obvious.)

When D ≥ 2, we consider a connected graph with D+1 vertices and D+1 edges
such that any vertex touches exactly two edges (this is a graph of affine type AD).
Let Γ be the set of vertices and let Λ be the set of edges. We assume that we are
given an imbedding Γ ⊂ V such that for γ1 �= γ2 in Γ we have (γ1, γ2) = 1 if γ1, γ2
are joined by an edge and (γ1, γ2) = 0 if γ1, γ2 are not joined by an edge. We then
say that (Γ,Λ) is an un-numbered circular basis (or u.c.b.) of V . Note that a u.c.b.
exists; in particular the circular basis {ei; i ∈ [1, D + 1]} in 1.1 can be viewed as a
u.c.b. in which Γ = {ei; i ∈ [1, D + 1]} and ei, ej are joined whenever i − j = ±1
mod D + 1.

When D ≥ 4 we assume that V ′ in 1.1 has a given u.c.b. with set of vertices Γ′

and set of edges Λ′. When D ≥ 4 for any γ′ ∈ Γ′, γ ∈ Γ there is a unique linear map
τ̃ = τ̃γ′,γ : V ′ → V compatible with the symplectic forms and such that, setting
[γ] = {γ} � {γ1 ∈ Γ; (γ1, γ) = 1} ⊂ Γ, we have τ̃ (γ′) =

∑̃
γ∈[γ] γ̃ and τ̃ restricts to

a bijection Γ′ − {γ′} ∼−→ Γ− [γ]. This map is injective.
We now define a collection F ′′(V ) of subspaces of V by induction on D. If D = 0,

F ′′(V ) consists of the subspace {0}. If D = 2, F ′′(V ) consists of the subspaces of
V of dimension 0 or 1. If D ≥ 4, a subspace E of V is in F ′′(V ) if either E = 0 or
if there exists γ′ ∈ Γ′, γ ∈ Γ and E′ ∈ F ′′(V ′) such that E = τ̃γ′,γ(E

′)⊕ F2γ. We
show:

(a) If D ≥ 2 and the u.c.b. of V is numbered as in 1.1 so that F(V ) is defined,
we have F ′′(V ) = F(V ).

We argue by induction on D. If D = 2 the result is obvious. Assume now that
D ≥ 4. We can assume that the u.c.b. of V ′ is numbered as in 1.1. For i ∈ [1, D+1]
we have

τi = τ̃i−1,i if 2 ≤ i ≤ D,
τi = τ̃D−1,1 if i = 1,
τi = τ̃D−1,D+1 if i = D + 1.
Using this and the induction hypothesis we see that F(V ) ⊂ F ′′(V ). If i ∈

[1, D − 1] and j ∈ [1, D + 1] then for some s ≥ 0, τ̃i,j is of the form Rsτ̃i,j′ where
τ̃i,j′ is as in one of the three equalities above and R is as in 4.1. Using this, together
with 4.2(a) and the induction hypothesis we see that F ′′(V ) ⊂ F(V ). This proves
(a).

5. Cells in Weyl groups

5.1. For any finite group Γ, let M(Γ) be the set consisting of pairs (x, ρ) where
x ∈ Γ and ρ is an irreducible representation over C of the centralizer of x; these
pairs are taken up to Γ-conjugacy; let C[M(Γ)] be the C-vector space with basis
M(Γ) and let AΓ : C[M(Γ)] → C[M(Γ)] be the “non-abelian Fourier transform”
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(as in [Lus79]). Let Z[M(Γ)] be the free abelian subgroup of C[M(Γ)] with basis
M(Γ).

5.2. In this section we fix an irreducible Weyl group W and a family c of irreducible
representations of W (in the sense of [Lus79]). This is the same as fixing a two-
sided cell of W . To c we associate a finite group Gc as in [Lus79], [Lus84]. Let

B̃c be the “new basis” of C[M(Gc)] defined in [Lus20]. (It is actually a Z-basis
of Z[M(Gc)].) This basis is in canonical bijection with M(Gc), see [Lus20]. Let
̂(x, ρ) be the element of B̃c corresponding to (x, ρ) ∈ M(Gc). We write F for the
non-abelian Fourier transform AGc

. We have the following result.

Theorem 5.3. The matrix of the non-abelian Fourier transform F : C[M(Gc)] →
C[M(Gc)] with respect to the new basis B̃c is upper triangular for a suitable order

on B̃c.

From the theorem we see that there is a well defined function B̃c → {1,−1}
(called the sign function) whose value at ̂(x, ρ) ∈ B̃c is the diagonal entry of the

matrix of F at the place indexed by ̂(x, ρ). (We use that F 2 = 1.)
In the case where W is of classical type, the theorem follows from Theorem 0.2

and its proof. In the remainder of this section we assume that W is of exceptional
type. In this case, Gc is a symmetric group Sn in n letters where n ∈ [1, 5]. If n is 1
or 2 the result is immediate. The case where n ∈ [3, 5] is considered in 5.4-5.6. We
shall use the notation of [Lus84] for the elements of M(Gc). Let θ, i, ζ be a fixed
primitive root of 1 (in C) of order 3, 4, 5 respectively.

5.4. In this subsection we assume that Gc = S3. We partition the new basis B̃c in
three pieces (1)-(3) as follows:

(1) ̂(1, 1)

(2) ̂(1, r)

(3) ̂(1, ε), ̂(g2, 1), ̂(g2, ε), ̂(g3, 1), ̂(g3, θ), ̂(g3, θ2).

Then
(a) F applied to an element in the n-th piece is ± that element plus a Q-linear

combination of elements in m-th pieces with m > n.
We have

F (̂(1, r))

= F ((1, 1) + (1, r)) = (1, 1)/2 + (1, r) + (1, ε)/2 + (g2, 1)/2 + (g2, ε)/2

= ((g2, ε)/2 + (1, r)/2 + (1, 1)/2) + ((1, ε)/2 + (1, r) + (1, 1)/2) + ((g2, 1)/2

+ (1, r)/2 + (1, 1)/2)− ((1, r) + (1, 1))

= ̂(g2, ε)/2 + ̂(1, ε)/2 + ̂(g2, 1)/2− ̂(1, r).
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The formula for F (̂(1, 1)) is as follows. If W is of type G2 then

F (̂(1, 1)) = F (1, 1)

= (1, 1)/6 + (1, r)/3 + (1, ε)/6 + (g2, 1)/2 + (g2, ε)/2 + (g3, 1)/3

+ (g3, θ)/3 + (g3, θ
2)/3

= ((g3, θ)/3 + (g2, 1)/3 + (1, 1)/3) + ((g3, θ
2)/3 + (g2, 1)/3 + (1, 1)/3)

+ ((g3, 1)/3 + (g2, 1)/3 + (1, 1)/3) + ((g2, ε)/2 + (1, r)/2 + (1, 1)/2) + ((1, ε)/6

+ (1, r)/3 + (1, 1)/6)− ((g2, 1)/2 + (1, r)/2 + (1, 1)/2)− (1, 1)

= ̂(g3, θ)/3 + ̂(g3, θ2)/3 + ̂(g3, 1)/3 + ̂(g2, ε)/2 + ̂(1, ε)/6− ̂(g2, 1)/2− ̂(1, 1).

If W is of type E6, E7 or E8 then

F (̂(1, 1)) = F (1, 1)

= (1, 1)/6 + (1, r)/3 + (1, ε)/6 + (g2, 1)/2 + (g2, ε)/2 + (g3, 1)/3

+ (g3, θ)/3 + (g3, θ
2)/3

= ((g3, θ)/3 + (g2, ε)/3 + (1, 1)/3) + ((g3, θ
2)/3 + (g2, ε)/3 + (1, 1)/3)

+ ((g3, 1)/3 + (g2, 1)/3 + (1, 1)/3)− ((g2, ε)/6 + (1, r)/6 + (1, 1)/6) + ((1, ε)/6

+ (1, r)/3 + (1, 1)/6) + ((g2, 1)/6 + (1, r)/6 + (1, 1)/6)− (1, 1)

= ̂(g3, θ)/3 + ̂(g3, θ2)/3 + ̂(g3, 1)/3− ̂(g2, ε)/6 + ̂(1, ε)/6 + ̂(g2, 1)/6− ̂(1, 1).

We see that the matrix of F in the new basis is upper triangular. This proves 5.3
in our case.

(b) The sign function on B̃c is constant on each piece; its value on the piece
(1),(2),(3) is −1,−1, 1 respectively.

5.5. In this subsection we assume that Gc = S4 so that W is of type F4. We

partition the new basis B̃c in five pieces (1)-(5) as follows:

(1) ̂(1, 1)

(2) ̂(1, λ1)

(3) ̂(1, σ)

(4) ̂(1, λ2), ̂(g2, 1), ̂(g′2, 1),
̂(g2, ε′′), ̂(g2, ε′)

̂(g3, 1), ̂(g4, 1) ̂(g′2, ε
′′), ̂(g′2, ε

′), ̂(g′2, r),
̂(g4,−1), ̂(1, λ3), ̂(g2, ε), ̂(g′2, ε),

̂(g3, θ), ̂(g3, θ2),̂(g4, i), ̂(g4,−i).(5)

Then
(a) F applied to an element in the n-th piece is ± that element plus a Q-linear

combination of elements in m-th pieces with m > n.
We see that the matrix of F in the new basis is upper triangular. This proves

5.3 in our case.
(b) The sign function on B̃c is constant on each piece; its value on the piece

(1),(2),(3),(4),(5) is 1,−1, 1,−1, 1 respectively.
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5.6. In this subsection we assume that Gc = S5 so that W is of type E8. We

partition the new basis B̃c in eight pieces (1)-(8) as follows:

(1) ̂(g5, ζ)

(2) ̂(1, 1)

(3) ̂(1, λ1)

(4) ̂(1, ν)

(5) ̂(1, ν′)

(6) ̂(1, λ2), ̂(g2, 1), ̂(g2,−1)

(7) ̂(1, λ3), ̂(g2, r), ̂(g3, 1), ̂(g′2, 1),
̂(g2,−r), ̂(g′2, r),

̂(g3, θ), ̂(g3, θ2)

̂(g′2, ε
′′), ̂(g6, 1), ̂(g2, ε), ̂(g3, ε), ̂(g4, 1), ̂(g5, 1), ̂(g′2, ε

′), ̂(g4,−1),

̂(g6,−1), ̂(g6, θ), ̂(g6, θ2), ̂(1, λ4), ̂(g2,−ε), ̂(g3, εθ), ̂(g3, εθ2), ̂(g′2, ε),

̂(g6,−θ), ̂(g6,−θ2),̂(g4, i), ̂(g4,−i), ̂(g5, ζ2), ̂(g5, ζ3), ̂(g5, ζ4).(8)

Then
(a) F applied to an element in the n-th piece is ± that element plus a R-linear

combination of elements in m-th pieces with m > n.
(If n ≥ 2 we can replace R by Q in (a). If n = 1 the coefficients in the linear

combination can involve the golden ratio.) We see that the matrix of F in the new
basis is upper triangular. This proves 5.3 in our case.

(b) The sign function on B̃c is constant on each piece; its value on the piece
(1),(2),(3),(4),(5),(6),(7),(8) is −1,−1, 1, 1, 1,−1,−1, 1 respectively.

We now give some indication of how (a) can be verified. Let H be the hyperplane
in C[M(S5)] consisting of all sums

∑
(x,ρ)∈M(S5)

ax,ρ(x, ρ) where ax,ρ ∈ C satisfy

the equation

ag5,ζ + ag5,ζ4 = ag5,ζ2 + ag5,ζ3 .

One can check that F (H) = H. Moreover one can check that ̂(x, ρ) ∈ H for any

(x, ρ) in M(S5) other than ̂(g5, ζ). It follows that to verify (a) we can assume that
n ≥ 2. In that case the proof of (a) is similar to that of 1.6; the role of zi in
1.6 is now played by the maps sH,H′ in [Lus20, 3.1]; the commutation of zi with
Fourier transform (see 1.5(a)) is replaced by the commutation of sH,H′ with the non-
abelian Fourier transform (see [Lus20, 3.1(b),(e)]). A similar argument (except for
the reduction to the case n ≥ 2 which is not needed in this case) applies to the proof
of 5.5(a). The proof of (b) is similar to that of 2.4; we use an induction hypothesis
where S5 is replaced by S4, S3 × S2, S3, S2 × S2 or S2. Using the known equality
tr(F,C[M5]) = 13, we see that the values of the sign function on the elements not
covered by the induction hypothesis (that is those in the pieces (1),(2)) have sum
equal to −2. It follows that both these values are −1. A similar argument applies
to the proof of 5.5(b) (in this case the only element not covered by the induction
hypothesis is that in piece (1)).
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