
MIT Open Access Articles

The perverse filtration for the hitchin fibration is locally constant

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.4310/PAMQ.2020.v16.n5.a4

Publisher: International Press of Boston

Persistent URL: https://hdl.handle.net/1721.1/135304

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135304
http://creativecommons.org/licenses/by-nc-sa/4.0/


ar
X

iv
:1

80
8.

02
23

5v
1 

 [
m

at
h.

A
G

] 
 7

 A
ug

 2
01

8

THE PERVERSE FILTRATION FOR THE HITCHIN FIBRATION IS

LOCALLY CONSTANT

MARK ANDREA A. DE CATALDO, DAVESH MAULIK.

Abstract. We prove that the perverse Leray filtration for the Hitchin morphism is
locally constant in families, thus providing some evidence towards the validity of the
P = W conjecture due to de Cataldo, Hausel and Migliorini in non Abelian Hodge
theory.
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1. Introduction

Let S be an algebraic variety, and let f : X → Y be an S-morphism of algebraic
varieties. Let F be a constructible complex of rational vector spaces on X. For each
s ∈ S, the vector spaces H•(Xs, Fs) carry the perverse Leray filtrations P fs associated
with the morphism fs : Xs → Ys. It is natural to ask how these filtered vector spaces
(H•(Xs, Fs), P

fs) behave as s varies in S. The main goal of this paper is to provide criteria
(Theorem 3.2.1) for checking local constancy of these filtrations.
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1.1. Perverse filtration for the Hitchin morphism.
Our motivating example arises from perverse filtrations associated to the Hitchin mor-

phism for the moduli space of Higgs bundles for a smooth projective variety. We refer to
§4.1 for more details on what follows.

Let X → S be a smooth projective morphism with connected fibers over a connected
quasi projective variety, and let G be a reductive group. Associated to this family is the
so-called Dolbeault moduli space πD = πD(X /S,G) :MD(X /S,G) → S and the Hitchin
projective S-morphism h = h(X /S,G) :MD(X /S,G) → V(X /S,G), which induces, for
every point s ∈ S, the Hitchin morphism hs = h(Xs, G) :MD(Xs, G) → V(Xs, G).

It follows from non-abelian Hodge theory that the the structural morphism πD is
topologically locally trivial over S. It follows that the intersection cohomology groups
IH•(MD(Xs, G),Q) on the Dolbeault moduli spaces MD(Xs, G), give rise to local sys-
tems IH•

D(X /S,G) on S.

For every s ∈ S, the Hitchin morphism hs induces the perverse Leray filtration P hs

D,⋆(Xs, G)

on the intersection cohomology groups IH•(MD(Xs, G),Q).
It does not seem immediately clear that these perverse Leray filtrations should match-

up and give rise to locally constant subsheaves of the local systems IH•
D(X /S,G) on S. A

priori, the perverse filtrations could jump at special point in S. For example, a priori, one
could have un-expected direct summands in D(V(Xs, G)) in the decomposition theorem
for the Hitchin morphism h(Xs, G) at special points s ∈ S. For a brief discussion, see the
beginning of §3.

In this paper, we prove the following result, which can be viewed as some evidence
towards the validity of the P = W Question and Conjecture, see Question 4.1.7 and
Remark 4.1.8: the weight filtration on the intersection cohomology of the Betti moduli
spaces of a family of projective manifolds gives rise to locally constant sheaves on the base
of the family; if P =W , then the same would be true for the corresponding perverse Leray
filtrations associated with the family of Hitchin morphisms, and this is what the following
theorem asserts.

Theorem 1.1.1. (The perverse Leray filtration is locally constant) The perverse
leray filtration gives rise to locally constant subsheaves:

P h
D,⋆(X /S,G) ⊆ IH•

D(X /S,G). (1)

Theorem 1.1.1 follows at once from Theorem 1.1.2 below, to the effect that specialization
is a filtered isomorphism for the perverse Leray filtrations.

Theorem 1.1.2. Let S be a nonsingular connected curve, let s ∈ S be any point, let ∆ be
a suitably general disk centered at s and let t ∈ ∆ \ {s} be a suitably general point. The
specialization morphism IH•(MD(Xs, G),Q)) → IH•(MD(Xt, G),Q)) is well-defined and

gives a filtered isomorphism for the respective perverse Leray filtrations P hs

D (Xs, G) and

P ht

D (Xt, G). In particular, the dimensions of the graded spaces Gr
Phs
D

⋆ IH•(MD(Xs, G),Q))
are independent of s ∈ S.

Remark 1.1.3. Theorems 1.1.1 and 1.1.2 hold, with the same proof, if we replace the
Dolbeault moduli spaces with their twisted counterparts (cf. Remark 4.1.8) in the cases of
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relative dimension dimX /S = 1 and G = GLn, SLn, PGLn. In these cases the Dolbeault
moduli spaces are integral orbifolds, even nonsingular in the cases G = GLn, SLn.

We may say, informally, that the perverse Leray filtration for the Hitchin morphism
associated with a family of projective manifolds is independent of the members of the
family. In particular, by applying this to curves and their moduli space, we may say that
the perverse Leray filtration on the intersection cohomology of the Dolbeault moduli space
associated with the curve and the reductive group G is independent of the curve.

Theorem 1.1.2 concerning the Hitchin morphism is proved in §4.2 as a corollary to the
more general Theorem 3.2.1, which provides a sufficient condition for when the specializa-
tion morphism is well-defined and is a filtered isomorphism.

1.2. Motivation from Gopakumar-Vafa invariants.
One motivation for this work is to help understand a conjecture on Gopakumar-Vafa

invariants proposed in [MT], following earlier work of Kiem-Li [KL]. In this section, we
briefly sketch this connection.

Let X denote a Calabi-Yau threefold and let β ∈ H2(X,Z) denote a curve class on
X. There are various approaches to defining virtual counts of curves on X in class β –
Gromov-Witten or Pandharipande-Thomas invariants, for example; While these typically
produce an infinite series of invariants, a physics proposal of Gopakumar-Vafa suggests
that they should be governed by finitely many integers determined from the cohomology
of a space of one-dimensional sheaves.

In [MT], the authors suggest a rigorous approach to their proposal using the perverse
filtration as follows. Consider the moduli space Mβ(X) of stable one-dimensional sheaves
on X with support cycle class β and Euler characteristic 1, and let

π :Mβ(X) → Chowβ(X)

denote the Hilbert-Chow morphism to the Chow variety ofX which remembers the support
cycle. 1 Under certain assumptions,Mβ(X) carries a natural perverse sheaf φM associated
to its shifted symplectic structure, and one can study the perverse cohomology sheaves of
its pushforward. More precisely, in [MT], the authors define Gopakumar-Vafa invariants
ng,β of X in class β via the identity

∑

i∈Z

χ(pHi(Rπ∗φM ))yi =
∑

g≥0

ng,β(y
1

2 + y−
1

2 )2g. (2)

Conjecturally, these GV invariants should, after a universal change of variables, agree with
the Gromov-Witten invariants of X in class β. Since the precise relationship is somewhat
intricate, we refer the reader there for details.

In order for this picture to be plausible, it is necessary for GV invariants to be invariant
under deformations of the Calabi-Yau threefold X – indeed such deformation invariance is
built into the intersection-theoretic constructions of GW/PT invariants. One can view the
main theorem of this paper as evidence for this invariance; for example, one consequence
of our main result is the deformation invariance of ng,β for local del Pezzo surfaces. While

1One needs to pass to seminormalizations to define this.
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there is no discussion of the sheaf φM in this paper, one might hope to extend the technique
here to this more general setting.

1.3. Outline.
§2 sets up the notation. More precisely: §2.1 sets up the notation in the context of

the constructible derived category; §2.2 is concerned with the formalism of the vanish-
ing/nearby cycles functors and of the specialization morphism.

§3 deals with the perverse Leray filtration and specialization: §3.1 contains Proposition
3.1.4, which provides a sufficient condition for when perverse truncation and (shifted)
restriction to a Cartier divisor commute; §3.2 contains our main technical result, the
aforementioned Theorem 3.2.1

§4 contains our main application to the Hitchin morphism: §4.1 is a refresher on Dol-
beault and Betti moduli spaces and also proves some preliminary facts needed in the proof,
given in §4.2, of Theorem 1.1.2, which in turn implies Theorem 1.1.1 on the local constancy
of the perverse Leray filtration for the Hitchin morphism over a base.

1.4. Acknowledgements. We thank: Jochen Heinloth, Luca Migliorini, Jörg Schürmann,
Geordie Williamson, Zhiwei Yun for useful suggestions. The first-named author, who is
partially supported by N.S.F. D.M.S. Grant n. 1600515, would like to thank the Freiburg
Research Institute for Advanced Studies for the perfect working conditions; the research
leading to these results has received funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement n. [609305]. The second-named author is supported by NSF FRG
grant DMS 1159265.

2. Notation

2.1. General notation.
By variety, we mean a separated scheme of finite type over the field of complex numbers

C. By point, we mean a closed point. See [d-M-2009] for a quick introduction and for
standard references for many of the concepts and objects in this subsection.

Given a variety Y , we denote by D(Y ) the constructible bounded derived category of
sheaves of rational vector spaces on Y, endowed with the middle perversity t-structure. We
denote derived functors using the un-derived notation, e.g. if f : X → Y is a morphism
of varieties, then the derived direct image (push-forward) functor Rf∗ is denoted by f∗,
etc. Distinguished triangles in D(Y ) are denoted G′ → G→ G′′

 . The full subcategory
of perverse sheaves is denoted by P (Y ). We employ the following standard notation for
the objects associated with this t-structure: the full subcategories pD≤j(Y ) and pD≥j(Y ),

∀j ∈ Z, of D(Y ), and pD[j,k](Y ) := pD≥j(Y ) ∩ pD≤k(Y ), ∀j ≤ k ∈ Z; the truncation
functors pτ≤j : D(Y ) → pD≤j(Y ) and pτ≥j : D(Y ) → pD≥j(Y ); the perverse cohomology
functors pHj : D(Y ) → P (Y ). At times, we drop the space variable Y from the notation.

The following operations preserve constructibility of complexes: ordinary and extraor-
dinary push-forward and pull-backs, hom and tensor product, Verdier duality. The nearby
and vanishing cycle functors also preserves constructibility, with the provision that, when
dealing with these functors, one is working over a disk.
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The k-th (hyper)cohomology groups of Y with coefficients in G ∈ D(Y ) are denoted by
Hk(Y,G). The complex computing this cohomology is denoted by RΓ(Y,G) and it lives
in the bounded derived category D(point) whose objects are complexes of vector spaces
with cohomology given by finite dimensional rational vector spaces.

The filtrations we consider are finite and increasing. For everyG ∈ D(Y ), the t-structure
defines a natural filtered object (RΓ(Y,G), P ), and P is called the perverse filtration.

If a statement is valid for every value of an index, e.g. the degree of a cohomology
group, or the step of a filtration, then we denote such an index by a bullet-point symbol,

or by a star symbol: H•(X,F ), P•,
pτ≤•, P⋆H

•(X,F ), Gr
Pf
⋆ H•(X,F ).

Given G ∈ D(Y ) we have the system of truncation morphisms:

. . . // pτ≤k−1G // pτ≤kG // . . . // G (3)

A morphism G→ G′ in D(Y ) gives rise to a system of morphisms:

pτ≤•G // pτ≤•G
′ (4)

which are compatible with (3) is the evident manner. We say that the system (4) is a
system of compatible morphisms. It gives rise to a morphisms of filtered objects:

(RΓ(Y,G), P )) // (RΓ(Y,G′), P )) in DF (pt), (5)

where DF (−) denotes the filtered derived category [Il-1971].
Recall that P (Y ) is Artinian, so that the Jordan-Holder theorem holds in it. The

constituents of a non-zero perverse sheaf G ∈ P (Y ) are the isomorphisms classes of the
perverse sheaves appearing in the unique and finite collection of non-zero simple perverse
sheaves appearing as the quotients in a Jordan-Holder filtration of G. The constituents
of a non-zero complex G ∈ D(Y ) are defined to be the constituents of all of its non-zero
perverse cohomology sheaves.

In general, we drop decorations (indices, parentheses, space variables, etc.) if it seems
harmless in the context.

In the context of a Cartesian diagram of varieties, we denote parallel arrows by the same
symbol. This should not lead to confusion in expressions like the base change morphism
g∗f∗ → f∗g

∗.
We are going to make heavy use of the nearby/vanishing cycle functors. See §2.2 for

the basic facts.
We are going to use the decomposition theorem for semisimple complexes, i.e. isomor-

phic to direct sums of shifted simple perverse sheaves, due to Mochizuki, Sabbah and
others; see the references in [de-2017].

Theorem 2.1.1. Let f : X → Y be a proper morphism of varieties and let F ∈ D(X) be
semisimple. Then f∗F is semisimple.

2.2. The vanishing and nearby cycles formalism.
Standard references for this section are [De-1972, XIII, XIV] and [Ka-Sh-1990, Ch.

8,10].
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Let S be a nonsingular and connected curve and consider a morphism of varieties:

v = vY : Y → S.

Let s ∈ S and let i : s→ S be the closed embedding; this is what we call the special point.
Objects restricted to s maybe be denoted with a subscript s; e.g. Ys := v−1(s).

In what follows, in Choice 2.2.9, we choose a disk ∆ ⊆ S, centered at s. For the relevance
of this choice to this paper, see Remark 2.2.14.

Let Y∆ := v−1
Y (∆) and let vY∆

:= vY |Y∆
: Y∆ → ∆.

We have the functors i∗, i!, ψ := ψY∆
and φ := φY∆

:

i∗, i!, ψ, φ : D(Y ) → D(Ys), (6)

where ψ is the nearby cycle functor and φ is the vanishing cycle functor.
We have the two, Verdier-dual, canonical distinguished triangle of functors: (we denote

by the same symbol the dual arrows σ)

i∗[−1]
σ // ψ[−1] // φ ///o/o/o , φ // ψ[−1]

σ // i![1] ///o/o/o . (7)

Recall that:

[⋆] ◦ pτ≤• =
pτ≤•−⋆ ◦ [⋆], ditto for pτ≥• and pH•. (8)

Fact 2.2.1. (t-exactness for ψ[−1] and φ) The functors ψ[−1] and φ are exact func-
tors of triangulated categories, are t-exact, and they commute with Verdier duality. In
particular, they commute with the formation of the perverse cohomology sheaves functors
pH• and with the perverse truncation functors pτ≤• and pτ≥•. We thus have the following
canonical identifications:

pτ≤•φ = φ pτ≤•;
pτ≤•ψ[−1] = ψ[−1] pτ≤•; ditto for pτ≥• and pH•. (9)

The following is a key property of the vanishing cycle functor.

Fact 2.2.2. (Vanishing of φ for smooth morphism and lisse sheaves) If vY∆
:

Y∆ → ∆ is smooth and G ∈ D(Y ) has locally constant cohomology sheaves on Y∆, then
φG = 0 ∈ D(Ys). See [De-1972, XIII, 2.1.5]. Note the special case where Y = S and vY
is the identity.

Fact 2.2.3. The composition i∗[−1] → ψ[−1] → i![1] yields a morphism of functors
D(Y ) → D(Ys):

i∗[−1] −→ i![1] (10)

The morphism (10) is an isomorphism when evaluated on a complex G ∈ D(Y ) such
that φG = 0; in this case, we have isomorphisms:

i∗[−1]G
≃ // ψ[−1]G

≃ // i![1]G (11)

The morphism (10) coincides with the morphism obtained via Verdier’s specialization
functor, (cf. [Sc-2003], for example), so that it depends only on the closed embedding
Ys → Y, i.e. it is independent of vY and of the choice of the disk ∆.
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Fact 2.2.4. (Base change diagrams for ψ and φ) Let f : X → Y be an S-morphism
and let vX = vY ◦ f : X → S. The base change morphisms associated with i and f give
rise to morphisms of distinguished triangles of morphisms as follows (cf. [De-1972, XIII,
2.1.7]):

(1)

i∗[−1]f∗
σ ◦f∗

//

��

ψY [−1]f∗ //

��

φY f∗

��

///o/o/o

f∗i
∗[−1]

f∗◦σ
// f∗ψX [−1] // f∗φX ///o/o/o .

(12)

When f is proper, the morphism (12) is an isomorphism.
(2)

φY f∗ //

��

ψY [−1]f∗
σ◦f∗

//

��

i![1]f∗

=

��

///o/o/o

f∗φX // f∗ψY [−1]
f∗◦σ

// f∗i
![1] ///o/o/o ,

(13)

When f is proper, the morphism (13) is an isomorphism.
(3) by combining the (12) with (13), we obtain the following commutative diagram:

i∗[−1]f∗

��

// ψ[−1]f∗ //

��

i![1]f∗

��

f∗i
∗[−1] // f∗ψ[−1] // f∗i

![1].

(14)

Let t ∈ S be another point and, by abuse of notation, denote the closed embedding
t→ S also by t. There is the natural morphism (cf. (10)):

t∗[−1] −→ t![1]. (15)

Fact 2.2.5. Let G ∈ D(Y ) and let t ∈ S be a general point. Then the natural morphism
t∗[−1]G → t![1]G is an isomorphism in D(Yt). To see this, recall (10), and use the van-
ishing of vanishing cycle functor “translated to t” [Sc-2003, Rmk. 4.2.4]. As usual, here
“general” means that it can be chosen to be any point of a suitable Zariski-dense open
subset So ⊆ S that depends on G ∈ D(Y ).

The following follows from the fact that for t general, t∗[−1], t![1] commute with all the
functors involved in the constructions of perverse truncation.

Fact 2.2.6. (t-exactness and t∗, t!) Let G ∈ D(Y ) and let t ∈ S be general. Then we
have:

t∗[−1] pτ≤•G = pτ≤•t
∗[−1]G, t![1] pτ≤•G = pτ≤•t

![1]G, ditto for pτ≥• and pH•. (16)

Fact 2.2.7. What follows is a consequence of Deligne’s generic base change theorem
[De-1976, Thm. 9.1] and of stratification theory; see also the discussion in [d-M-2009b].
Given a finite collection of morphisms vi : Yi → S and complexes Gi ∈ D(Yi), there is a
Zariski-dense open subset So ⊆ S such that the direct images vi∗Gi are lisse, and such that
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their formation commutes with arbitrary base change. By shrinking So if necessary, we
can further assume that the Gi have no constituent supported on fibers of the morphisms
vi over S

o, and that the strata on the Yi, of stratifications with respect to which the Gi are
constructible, map smoothly to S over So (cf. [Sc-2003, Rmk. 4.2.4]). The points t ∈ So

are said to be general for the finite collection {Gi}.

Definition 2.2.8. We say that t ∈ S is general (for the collection of Gi’s) if t ∈ So =
So(G) (cf. Fact 2.2.7).

Choice 2.2.9. Let s ∈ S. Let So ⊆ S be the Zariski-dense open subset of points of the
connected curve S which are general with respect to some finite collection of Gi’s as above.
Let t ∈ So. Choose a disk s, t ∈ ∆ ⊆ S such that ∆∗ := ∆ \ {s} ⊆ So. Chose a pointed

universal covering (∆̃∗, t̃) → (∆∗, t).

Remark 2.2.10. In the special case where vY : Y → S is the identity on S, we have that
i∗, i!, ψ, φ : D(S) → D(s) and that t∗, t! : D(S) → D(t). We have canonical identifications
D(s) = D(pt) = D(t), where pt is just a point, so that all three categories are naturally
equivalent to the bounded derived category of finite dimensional rational vector spaces.
Similarly, in the filtered case: DF (s) = DF (pt) = DF (t).

When vY : Y → S is the identity, we have the following:

Fact 2.2.11. (Fundamental isomorphism) Let things be as in Choice 2.2.9. There are
the natural isomorphisms:

t∗[−1]G
≃ // ψ∆[−1]G

≃ // t![1]G, in D(t) = D(pt) = D(s), (17)

where all three terms are well-defined, up to canonical isomorphism, independently of the
choices, but where the isomorphisms, which depend on the choice of t̃, are uniquely defined
modulo the monodromy action of the fundamental group π1(∆

∗, t). See the fundamental
identity [De-1972, XIV, 1.3.3.1]. Note that (17) is Verdier self-dual.

Fact 2.2.12. (Specialization morphism) Consider, in the special case where f is vY ,
the morphism of distinguished triangles (12). We place ourselves in the set-up of Choice
2.2.9. One would like to specialize cohomology from the special point s ∈ ∆, to the general
point t ∈ ∆∗. This is not always possible, as we now discuss.

Diagram (12) yields the functorial morphism of distinguished triangles in D(pt):

RΓ(s, i∗v∗G)

��

σY∆ // RΓ(s, ψ∆v∗G) = RΓ(Yt, t
∗G)

��

// RΓ(s, φ∆[1]v∗G)

��

///o/o/o

RΓ(Ys, i
∗G)

σ∆ //

sp?
44

✐
✐

✐
✐

✐

RΓ(Ys, ψY∆
G) // RΓ(Ys, φY∆

[1]G) ///o/o/o ,

(18)

where the canonical identification in the middle of the first row stems from Fact 2.2.11 and
the fact that base change is an isomorphism for general t (cf. Fact 2.2.7).

Note that while this identification depends on the choice of the pre-image t̃ ∈ ∆̃∗ of
t ∈ ∆∗, the resulting restriction morphism σY∆

: RΓ(Y∆, G) → RΓ(Yt, G) depends only on

t, and not on the choice t̃: in fact, monodromy acts on the target, but the domain maps
into the invariants.



THE PERVERSE FILTRATION FOR THE HITCHIN FIBRATION IS LOCALLY CONSTANT 9

Let us emphasize an important piece of diagram (18): (note that the middle term below
does not change when we shrink the disk ∆ centered about s)

RΓ(Ys, i
∗G) RΓ(Y∆, G)

restriction to soo restriction to t // RΓ(Yt, t
∗G). (19)

In general, i.e. without any further hypothesis ensuring that the restriction to s is
an isomorphism, there is no resulting natural morphism RΓ(Ys, G) → RΓ(Yt, G). When
restriction to s is an isomorphism, e.g. when vY is proper, then we call the resulting
morphism the specialization morphism:

RΓ(Ys, G)
sp

// RΓ(Yt, G). (20)

Of course, even if vY is not proper, it may happen that there is a well-defined specialization
morphism for some G ∈ D(Y ).

When the specialization morphism is well-defined, we have the distinguished triangle:

v∗i
∗G ≃ i∗v∗G

sp
// ψv∗G // φv∗G ///o/o/o . (21)

Fact 2.2.13. If G ∈ D(S) has locally constant cohomology sheaves, then a specialization
morphism is an isomorphism. This follows at once from Fact 2.2.2.

Remark 2.2.14. The Choice 2.2.9 is harmless for our purposes: in fact, when defined,
the specialization morphism depends only on s and on t ∈ So \ {s}. Note also that the
morphisms (15) are independent of the choice of the disk ∆.

3. Perverse filtration and specialization

If one analyzes the behavior of the perverse filtration in families via the specialization
morphism, there are two issues. First, the specialization morphism is not defined in general
if X is not proper over S, which is the case for families of Dolbeault moduli spaces. The
second issue is that, even when the specialization morphism is defined, as it is in the case
of the Dolbeault moduli spaces, it gives rise to a filtered morphism for the perverse Leray
filtrations. Its failure to be a filtered isomorphism is detected by the filtered cone; however,
in general, this is not the filtered cone associated with the natural morphism of functors
i∗ → ψ (i∗ the pull-back to the special fiber, ψ the nearby fiber functor). This is due to
the fact that perverse truncation does not commute with restriction/pull-back: e.g. when
one has a direct summand supported on the special fiber.

The goal of this section is to prove Theorem 3.2.1 in §3.2, which is a criterion to have a
well-defined specialization morphism which is a filtered isomorphism for the corresponding
perverse filtrations. To this end, in §3.1, we study a bit the relationship between perverse
truncation and restriction to a Cartier divisor.
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3.1. Cartier divisors and partial t-exactness.
The purpose of this section is to prove Proposition 3.1.4, especially equation (30). We

recommend that readers skip this section at a first reading.
The next lemma records some general t-exactness properties related to embeddings of

effective Cartier divisors on varieties.

Lemma 3.1.1. Let ι : T ′ → T be a closed embedding of varieties such that the open
embedding T \T ′ → T is an affine morphism (e.g. T ′ is an effective Weil divisor supporting
an effective Cartier divisor). Then: (we omit the space variables)

(1) The functor ι∗ is right t-exact and the functor ι! is left t-exact, i.e.:

ι∗ : pD≤• → pD≤•, ι! : pD≥• → pD≥•. (22)

(2) The functor ι∗[−1] is left t-exact and the functor ι![1] is right t-exact:

ι∗ : pD≥• → pD≥•−1, ι! : pD≤• → pD≤•+1. (23)

Proof. The inequalities (22) are [Be-Be-De-1982, 4.2.4]), in fact, they are valid for any
immersion. What follows is specific to the situation of the Lemma.

We prove the inequalities (23). Recall that, by [Be-Be-De-1982, 4.1.10.ii], we have: if

G ∈ P (T ), than ι∗G ∈ pD[−1,0]. The desired inequality for ι∗ follows from this fact and
a simple descending induction on •, by using ι∗ of the truncation distinguished triangles
pH•[−•] → pτ≥• →

pτ≥•+1  , and ι∗pH•+1 ∈ pD[−1,0].

Since, for G ∈ P (T ), we have that ι!G ∈ pD[0,1], the proof for ι! is analogous. Alterna-
tively, it can also be deduced from the one for ι∗ by Verdier duality. �

The following lemma is a technical preliminary to Proposition 3.1.4.

Lemma 3.1.2. (Canonical factorization of pτ≤•−1i
∗ → pτ≤•i

∗) Let ι : T ′ → T be
as in Lemma 3.1.1. The natural morphism γ : pτ≤•−1ι

∗ → pτ≤•ι
∗ admits a canonical

factorization:

γ : pτ≤•−1ι
∗ δ // ι∗ pτ≤•

ǫ // pτ≤•ι
∗. (24)

Similarly, for the dual natural morphism pτ≥•+1ι
! pτ≥•ι

! : γ′oo :

pτ≥•+1ι
! ι! pτ≥•

δ′oo pτ≥•ι
! : γ′

ǫ′oo (25)

Proof. We start with the following diagram of distinguished triangles inD(T ′): (the arrows
γ and δ are not part of either distinguished triangle; they are there to help visualize the
situation)

ι∗ pτ≤•
//

ǫ

��

✤

✤

✤

ι∗ //

=

��

ι∗ pτ≥•+1

��

✤

✤

✤

///o/o/o

( pτ≤•−1ι
∗ γ

//

δ
66

❧
❧

❧
❧

❧

) pτ≤•ι
∗ // ι∗ // pτ≥•+1ι

∗ ///o/o/o .

(26)

By the l.h.s. of (23), we have that:

ι∗ pτ≥•+1 : D(T ) → pD≥•(T ′). (27)
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By [Be-Be-De-1982, Prop. 1.1.9, p.23], the diagram (26) can then be completed uniquely
to a morphism of distinguished triangles; this is visualized by means of the dotted arrows.

The conclusion follows from the inequality (27), by taking the long exact sequence
associated with HomD(T ′)(

pτ≤•−1ι
∗,−) applied to the distinguished triangle on the top of

(26): in fact, for every G ∈ D(Y ), we have HomD(T ′)(
pτ≤•−1ι

∗G,−) = 0, when evaluated

at something in pD≥•(T ′).
The proof for ι! is analogous. Alternatively, it can also be deduced from the one for ι∗

by Verdier duality. �

Remark 3.1.3. In view of the l.h.s. inequality in (23), the r.h.s. vertex in (26) satisfies
the inequality ι∗ pτ≥•+1 : D → pD≥•. By taking the long exact sequence of perverse coho-
mology of the top distinguished triangle in (26), the aforementioned inequality yields the
natural isomorphism of functors:

pτ≤•−1ι
∗ pτ≤•

≃ // pτ≤•−1ι
∗. (28)

Proposition 3.1.4. (No constituents on divisors and t-exactness) Let ι : T ′ → T be
as in Lemma 3.1.1. If G ∈ D(T ) has no constituent supported on T ′, then the morphisms
δ (cfr. (24)) are isomorphisms, and we get natural isomorphisms:

pτ≤•−1ι
∗G

δ

≃
// ι∗ pτ≤•G,

pτ≥•−1ι
∗G

≃ // ι∗ pτ≥•G,
pH•−1ι∗G

≃ // ι∗[−1]pH•G.

(29)
The same holds if we replace ι∗ with ι! and (• − 1) with (•+ 1).

Equivalently, we have:

pτ≤•ι
∗[−1]G

δ

≃
// ι∗[−1] pτ≤•G,

pτ≤•ι
![1]G ι![1] pτ≤•G,

δ

≃
oo pH•+1ι!G ι![1]pH•G.

≃oo

(30)

Proof. It is enough to prove (29): the statement for ι! follows by Verdier duality; The
equivalent statements are mere reformulations by means of (9).

It is enough to prove the first statement on the l.h.s. of (29), for the remaining ones
follow formally by consideration of the truncation distinguished triangles.

We have that pτ≤•G ∈ pD≤•, so that, by (22), we have that ι∗ pτ≤•G ∈ pD≤•, and then,
clearly, we have that

ι∗ pτ≤•G = pτ≤•ι
∗ pτ≤•G. (31)

In view of (31) and of (28), and by considering the truncation triangle pτ≤•−1 →
pτ≤• →

pH•[−•] applied to ι∗ pτ≤•G, in order to prove the first equality on the lhs in (29), it is
necessary and sufficient to show that pH•(ι∗ pτ≤•G) = 0.

This can be argued as follows. By taking the long exact sequence of perverse cohomology
of the distinguished triangle ι∗ pτ≤•−1G → ι∗ pτ≤•G → ι∗pH•G[−•]  , we see that it is

necessary and sufficient to show that ι∗pH•G[−•] ∈ pD≤•−1, or, equivalently, that ι∗pH•G ∈
pD≤−1.

By [Be-Be-De-1982, 4.1.10.ii], we have the distinguished triangle pH−1(ι∗pH•G)[1] →
ι∗pH•G → pH0(ι∗pH•G)  and an epimorphism pH•G → pH0(ι∗pH•G). Since G is as-
sumed to not have constituents supported at Ys, we must have pH0(ι∗pH•G) = 0, so
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that ι∗pH•G[−•] ∈ pD≤•−1, as requested. The l.h.s. equality in (29) follows, and we are
done. �

We shall use the following simple lemma, where we employ the notation in §2.2.

Lemma 3.1.5. Let G ∈ D(Y ) be such that φY∆
G = 0. Then no constituent of G is

supported on Ys.

Proof. By chasing the definitions, we see that we may assume that G is perverse. By
using the fact that φ is t-exact, and by an easy induction on the length of a Jordan-
Hölder filtration of G, we see that φG′ = 0 for every constituent G′ of G. The conclusion
follows from the fact that if G′ ∈ D(Y ) is a non-zero complex supported on Ys, then
i∗φG

′ = G′. �

By combining Lemma 3.1.5 with Proposition 3.1.4, we obtain the following

Corollary 3.1.6. Let G ∈ D(Y ) be such that φY∆
G = 0. Then we have a natural isomor-

phism:

δ : pτ≤•i
∗[−1]G

≃
→ i∗[−1] pτ≤•G; similarly, for pτ≥•, and for pH•; ditto, for i![1]. (32)

3.2. Compatibility of the specialization morphism with the perverse filtration.

Theorem 3.2.1. Let f : X → Y be proper morphism, let vY : Y → S be a morphisms
onto a nonsingular connected curve and let F ∈ D(X). Choose s, t ∈ S and a disk ∆ as
in Choice 2.2.9. Assume one of the following conditions:

(i) φF = 0 and vY is proper, or
(ii) φF = 0 and the v∗

pτ≤•f∗F have locally constant cohomology sheaves on S, or
(iii) F is semisimple, φF = 0 and v∗f∗F has locally constant cohomology sheaves on S.

Then the specialization morphism is well-defined and it is a filtered isomorphism for the
respective perverse Leray filtrations:

sp :
(
RΓ(Xs, i

∗F ), P fs
) ≃ //

(
RΓ(Xt, t

∗F ), P ft
)
. (33)

Proof. By applying (14) to the pτ≤•f∗, we obtain the following commutative diagrams:

i∗[−1]v∗
pτ≤•f∗

1 //

3
��

ψ[−1]v∗
pτ≤•f∗

4
��

2 // i![1]v∗
pτ≤•f∗

=5
��

v∗i
∗[−1] pτ≤•f∗

1′ //

sp?
66

♠
♠

♠
♠

♠

v∗ψ[−1] pτ≤•f∗
2′ // v∗i

![1] pτ≤•f∗

(34)

Up to shift: the cones of 1 and 2 coincide with φv∗
pτ≤•f∗; the cones of 1′ and 2′ coincide

with v∗φ
pτ≤•f∗.

Let us prove (i).
In this case, we only need the commutative square on the l.h.s. of (34).
Since v is assumed to be proper, the base change morphisms 3 and 4 are isomorphisms.

In particular, the specialization morphism sp is well-defined and it gives rise to a system
of compatible morphisms.
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The assumption φF = 0, which is common to (i) and (ii), implies, by the t-exactness
of φ and the properness of f , that v∗φ

pτ≤•f∗F = v∗
pτ≤•f∗φF = 0, i.e. that the cone of 1′

is zero, so that so is the cone of 1.
It follows that (i) is a system of compatible isomorphisms and, as such, it gives rise to

an isomorphism in the filtered derived category.
The filtered complex RΓ(Xs, i

∗[−1]F ), P fs) arises in connection with the cohomology
of the compatible system of complexes v∗

pτ≤•f∗i
∗[−1]F ). Similarly, the filtered complex

RΓ(Xt, t
∗[−1]F ), P ft) arises in connection with the cohomology of the compatible system

of complexes v∗
pτ≤•f∗t

∗[−1]F ).
It remains to identify:

(a) v∗i
∗[−1] pτ≤•f∗F with v∗

pτ≤•f∗[−1]i∗F , and
(b) ψ[−1]v∗

pτ≤•f∗F with v∗
pτ≤•f∗t

∗[−1]F .

To achieve (b), we argue as follows. The choice of t general for F, made in Definition
2.2.8, allows us to: replace ψ with t∗ (cf. (17)); use the identification t∗v∗ = v∗t

∗; use the
identification t∗[−1] pτ≤• = pτ≤•t

∗[−1] (cf. 16)); use the identification t∗v∗ = v∗t
∗. Then

(b) follows.
To achieve (a), we argue as follows. We first apply Corollary 3.1.6 to G = f∗F ; the

condition φf∗F = 0 is met in view of the properness of f and of φF = 0. We then apply

proper base change i∗f∗
≃
→ f∗i

∗. Then (a) follows, and (i) is proved.
Let us prove (ii).
As it has been seen above, the assumption φF = 0 implies that the cones of 1′ and 2′

are zero, so that 1′ and 2′ are isomorphisms.
Since we are assuming that the v∗

pτ≤•f∗F have locally constant cohomology sheaves on
∆, we have that the cones of 1 and 2 are zero as well (cf. Fact 2.2.2), so that 1 and 2 are
isomorphisms.

Since the morphism 5 is an isomorphism, all the morphisms in (34) are isomorphisms.
We conclude as in case (i).
Case (iii) is weaker than case (ii); we can also prove it without resorting to the use

of Corollary 3.1.6. The proof is very similar, except that in order to achieve the critical
commutation property (a) via Corollary 3.1.6, we use that: F semisimple implies f∗F
semisimple (cf. the decomposition Theorem 2.1.1); the assumption φF = 0 implies that
no simple summand of f∗F is supported on Ys; the commutation property for a simple,
un-shifted, simple perverse summand P , which we know not to be supported on Ys follows
from [Be-Be-De-1982, 4.10.1], to the effect that i∗[−1]P is perverse.

�

4. The Hitchin morphism and specialization

4.1. The Betti and Dolbeault moduli spaces: the P =W conjecture.
Let X → S be a smooth projective morphism over a variety S and let G be a reductive

group.
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The Betti moduli space MB(X /S,G) (cf. [Si-1994, pp.12-15]) is a complex analytic
space over S. The fiber over a point s ∈ S is the moduli space (a.k.a. the character
variety) MB(Xs, G) of representations of the fundamental group of Xs into G.

The Dolbeault moduli space MD(X /S,G) (cf. [Si-1994, §9, esp. Prop. 9.7]) is quasi-
projective over S; in general, it is not proper over S. The fiber over a point s ∈ S is the
moduli space MD(Xs, G) of principal Higgs bundles of semiharmonic type on Xs for the
group G.

Fact 4.1.1. (Non-Abelian Hodge Theorem) There is a natural S-homeomorphism of
the underlying topological spaces: (cf. [Si-1994, Thm. 9.11, and Lm. 9.14])

Ψ(X /S,G) :MB(X /S,G)
≃ // MD(X /S,G). (35)

To fix ideas, in what follows, we tacitly assume that S and the fibers of the family X /S
are connected; such an assumption is for ease of exposition only; see [Si-1994, pp. 14-15].

Choose any point so ∈ S. The structural morphism πB(X /S,G) : MB(X /S,G) → S
is analytically locally trivial over S, with transition functions with values in the group
of C-scheme automorphisms of the fiber MB(Xso , G); see [Si-1994, Lm 6.2, p.13]. More

precisely: let (S̃, s̃o) → (S, so) be a pointed universal covering space with associated
identification of the deck transformation group with the fundamental group π1(S, so); the
fundamental group acts onMso via C-scheme automorphisms;MB(X /S,G) is constructed

as the quotient of MB(Xso , G) × S̃ under the usual action of the fundamental group
π1(S, so).

Fact 4.1.2. (Local triviality of the Dolbeault moduli space over the base) The
local triviality of the Betti moduli space over the base, coupled with the Non-Abelian Hodge
Theorem S-homeomorphism Ψ (35), implies that the structural morphism πD(X /S,G) :
MD(X /S,G) → S is topologically locally trivial over the base S.

Recall that, for irreducible varieties, the intersection cohomology complexes/groups are
topological invariants, independent of the stratification (cf. [Go-Ma-1983, §4.1]). Note
that [Go-Ma-1983] deals with irreducible analytic varieties; on the other hand, as the
forthcoming Lemma 4.1.3 shows, if we define the intersection complex of a variety as the
direct sum of the intersection complex of its irreducible components, then the topological
invariance of the intersection cohomology complexes/groups is still valid.

In particular, given a topologically locally trivial fibration with fibers varieties, the
intersection cohomology groups of the fibers give rise to locally constant sheaves on the
base.

We thank G. Williamson for suggesting the definition of the set X ′ in the proof of the
following lemma. Our original set X ′ was defined using the notion of local irreducibility
and lead to a more cumbersome proof.

Lemma 4.1.3. (Topological invariance of intersection cohomology for reducible
varieties) Let X and Y be complex analytic set and let g : X ≃ Y be a homeomorphism
of the underlying topological spaces endowed with the classical topology. Then:
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(1) The homeomorphism g induces a natural bijection γ : I ≃ B on the sets of irre-
ducible components of X and Y such that g induces homeomorphisms Xi ≃ Yγ(i),
for every i ∈ I.

(2) Define the intersection complex ICX of a complex analytic set X to be the direct
product of the intersection cohomology complexes of the irreducible components of
X. Then the homeomorphism u induces a natural isomorphism ICX = u∗ICY .

Proof. The case whenX and Y are irreducible is proved by M. Goresky and R. MacPherson
in [Go-Ma-1983]. It is thus clear that it is enough to prove the first statement of the lemma,
which is what we do next, leaving some elementary details to the reader.

Let X ′ (Y ′, resp.) the be open subset of those points of X (Y , resp.) admitting
a classical open neighborhood all of whose points admit a classical open neighborhood
homeomorphic to a Euclidean space of some dimension.

Since X ′ is defined topologically, it is clear that g(X ′) = Y ′.
We have the following inclusions of classical open subsets:

Xsm ⊆ X ′ ⊆ Xo ⊆ X, Xsm
i ⊆ X ′

i ⊆ Xo
i ⊆ Xi,

where Xsm is the set of smooth points of the complex analytic set X, and Xo is the
complement of the union of all intersections Xi ∩Xj , i, j ∈ I, i 6= j, and where −i denotes
intersection with the irreducible component Xi.

The classical open subsets Xsm
i and Xo

i are also Zariski open, irreducible and connected.
The classical open subset X ′

i is connected. The X ′
i are the connected components of X ′.

The homeomorphism g must respect the decomposition of X ′ and Y ′ into their connected
components, so that we obtain the desired bijection γ : I ≃ B. The classical closure of X ′

i
is Xi and since g is a homeomorphism, we must have that g induces a homeomorphism
Xi

∼= Yγ(i). �

Lemma 4.1.3 implies at once the following

Corollary 4.1.4. Let F, S be a varieties, let X be an S-variety, and let τ : X → F × S
be an S-homeomorphism. Then, for every s ∈ S, we have canonical isomorphisms:

(τ∗pr∗F ICF )|Xs
= ICXs

Remark 4.1.5. The definition of intersection cohomology complex for reducible varieties
stemming from Lemma 4.1.3 is reasonable in view of the fact that it satisfies virtually all
the usually properties of the usual intersection cohomology complex for irreducible varieties,
e.g. purity, mixed and pure Hodge structures, Artin vanishing, Lefschetz theorems, relative
hard Lefschetz, Hodge Riemann relations, decomposition theorem. See [d-2012, §4.6], for
example.

The intersection cohomology groups of the fibers of πB(X /S,G) give rise to locally
constant sheaves IH•

B(X /S,G) on S. In view of the homeomorphism Ψ(X /S,G), and of
the topological invariance of intersection cohomology, the same applies to the Dolbeault
picture, and we get locally constant sheaves IH•

D(X /S,G) on S.

Fact 4.1.6. (The Betti weight filtration is locally constant) By the local triviality
of πB(X /S,G) over S, and since the transition automorphisms are compatible with mixed
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Hodge structures in (intersection) cohomology, we see that the weight filtration W for the
mixed Hodge structure for the intersection cohomology of the fibers of πB(X /S,G) gives
rise to locally constant subsheaves W⋆,B(X /S,G) ⊆ IH•

B(X /S,G) on S.

The Dolbeault moduli space is endowed with a natural Gm-action (cf. [Si-1994, p.62,
and p.17]), given by scalar multiplication on the Higgs field.

The reference in this paragraph is [Si-1994, p.20-23], which deals with the case of G =
GLn, suitably adapted to an arbitrary reductive G. The Dolbeault moduli space admits
the Hitchin S-morphism

h(X /S,G) :MD(X /S,G) // V(X /S,G). (36)

Here, V(X /S,G) is the quasi projective S-variety representing the functor (S′ → S) 7→

⊕rkG
i=1H

0(X ′/S′,Symei(G)Ω1
X′/S′), where the positive integers ei are the degrees of the gen-

erators of conjugation-invariant polynomials on the Lie algebra of G. The Hitchin mor-
phism assigns to a G-principal Higgs bundle the symmetric polynomials appearing as the
coefficients of the “characteristic polynomial” of the Higgs field, viewed as sections of the
appropriate sheaf. The Hitchin morphism is proper over S, hence projective over S (the
Dolbeault moduli space is quasi projective over S). Domain and target of the Hitchin
morphism are endowed with a natural Gm-action (cf. [Si-1994, p.62]), which covers the
trivial action on S. The Gm-action on the target is contracting. The Hitchin morphism is
Gm-equivariant.

We observe that the mixed Hodge structure on the intersection cohomology groups of
each Dolbeault moduli space is pure (the starting point is the Gm-equivariance and the
contracting action; then one can imitate the proof of [de-Hai-Li-2017, Lemma 6.1.1 and
references therein, and the proof of Thm 2.4.1]). We do not need this fact, except to point
out that it is in sharp contrast with the expected (known in some cases) non purity of the
corresponding intersection cohomology groups of each Betti moduli space.

Question 4.1.7. (Is P =W in the non-Abelian Hodge theory in arbitrary dimen-
sions?) Let X be a connected smooth projective variety. Then for the weight filtration
WB(X,G), do we have WB,2⋆+1(X,G) = W2⋆(X.G) ⊆ IH•(MB(X,G))? Via the Non

Abelian Hodge Theorem isomorphism Ψ∗, do we have that Ψ∗WB,2⋆(X,G) = P h
D,⋆(X,G),

where P h
D(X,G) is the perverse Leray filtration for the Hitchin morphism (suitably nor-

malized, so that it “starts at zero”)?

Remark 4.1.8. Actually, the P = W conjecture, which is due to M.A. de Cataldo, T.
Hausel and L. Migliorini, is concerned with a twisted version of the Betti/Dolbeault moduli
spaces for curves of genus g ≥ 2. The paper [de-Hau-Mi-2012] proves the validity of the
conjecture in this twisted case when X is a curve and G = GL2, SL2 and PGL2. In
this twisted case over a curve of genus g ≥ 2, the moduli spaces for G = GLn, SLn are
nonsingular, and for G = PGLn they are orbifolds; Theorem 1.1.2 applies to this situation.

In the next section, we prove Theorem 1.1.2, to the effect that the perverse filtration
gives rise to locally constant subsheaves subsheaves P h

D,⋆(X /S,G) ⊆ IH•(X /S,G) on S.
We need the following
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Lemma 4.1.9. Let things be as in Theorem 1.1.2. Let F be the intersection complex of
the Dolbeault moduli space MD(X /S,G). Then

φF = 0, (37)

the specialization morphism is defined and it is an isomorphism:

sp : RΓ(Xs, i
∗F )

≃ // RΓ(Xt, t
∗F ). (38)

Proof. The Betti moduli space is topologically locally trivial over any disk contained in
S. By the Non Abelian Hodge Theorem, the Dolbeault moduli space is also topologically
locally trivial over our disk ∆. Let MD(Xs, G) ×∆ ∼= MD(X∆/∆, G) be any topological
trivialization. Then the intersection complex on MD(X∆/∆, G) is the pull-back of the
intersection complex of MD(Xs, G) via the first projection associated with the chosen
trivialization. Both the conclusions of the lemma follow.

�

4.2. Proof of Theorem 1.1.2 on the Hitchin morphism and specialization.

Proof. We denote the Hitchin morphism (36) simply by h : M → V, we denote the
structural S-morphisms by π : M → S and ρ : V → S. Let ICM be the intersection
complex of the Dolbeault moduli space M .

Our first goal is to verify that we are now in the situation of Theorem 3.2.1.(ii).
We set (X,Y, S, f, v, F ) to be (M,V, S, h, ρ,ICM ).
The requirement φF = 0 is met by Lemma 4.1.9.
As in the proof of Lemma 4.1.9, the intersection complex ICM is, locally over the

nonsingular S, the pull-back from of the intersection complex of a fiber. It follows that
the direct image sheaves R•π∗ICM = IH•

D(X /S,G) are locally constant on S, with stalks
the intersection cohomology groups of the fibers of π :M → S.

By the decomposition theorem [Be-Be-De-1982], applied to the projective h and the
simple perverse sheaf ICM , we have that the truncated pτ≤•h∗ICM are direct summands
of the direct image h∗F . It follows that ρ∗

pτ≤•h∗ICM are direct summands of π∗ICM =
ρ∗h∗ICM in D(S).

By combining the two last paragraphs, we have that the ρ∗
pτ≤•h∗ICM have locally

constant cohomology sheaves.
We can thus apply Theorem 3.2.1.(ii) (or its weaker variant (iii)), the conclusion of

which is that the specialization morphism RΓ(Ms, i
∗ICM ) → RΓ(Mt, t

∗ICM ) is defined
and it is a filtered isomorphism for the respective perverse Leray filtrations.

Since, as it has been observed above, the intersection complex of M restricts to the
intersection complexes of the fibersMs andMt, the first assertion of Theorem 1.1.2 follows.

The second assertion, i.e. the independence of s ∈ S on a connected S, follows easily:
pick any two points s, s′ and a suitably general point t ∈ S. Then apply what we have
proved to the pairs (s, t) and (s′, t). �



18 MARK ANDREA A. DE CATALDO, DAVESH MAULIK.

References

[Be-Be-De-1982] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), 5-171,
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