
MIT Open Access Articles

Planning with Uncertain Specifications (PUnS)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1109/LRA.2020.2977217

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/135354

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135354
http://creativecommons.org/licenses/by-nc-sa/4.0/


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020 1

Planning with Uncertain Specifications (PUnS)
Ankit Shah1, Shen Li2, Julie Shah3

Abstract—Reward engineering is crucial to high performance
in reinforcement learning systems. Prior research into reward
design has largely focused on Markovian functions representing
the reward. While there has been research into expressing non-
Markov rewards as linear temporal logic (LTL) formulas, this
has focused on task specifications directly defined by the user.
However, in many real-world applications, task specifications are
ambiguous, and can only be expressed as a belief over LTL
formulas. In this paper, we introduce planning with uncertain
specifications (PUnS), a novel formulation that addresses the
challenge posed by non-Markovian specifications expressed as
beliefs over LTL formulas. We present four criteria that capture
the semantics of satisfying a belief over specifications for different
applications, and analyze the qualitative implications of these
criteria within a synthetic domain. We demonstrate the existence
of an equivalent Markov decision process (MDP) for any instance
of PUnS. Finally, we demonstrate our approach on the real-world
task of setting a dinner table automatically with a robot that
inferred task specifications from human demonstrations.

Index Terms—AI-Based Methods, Learning from Demonstra-
tions

I. INTRODUCTION

Consider the task of setting a dinner table. It involves
placing the appropriate serving utensils and cutlery according
to the dishes being served. It might also require placing objects
in a particular partial order either due to the fact that they
are stacked on top of each other, or due to certain social
conventions. Linear temporal logic (LTL) provides an expres-
sive grammar for capturing these non-Markovian constraints.
Incorporating LTL formulas as specifications for reinforcement
learning ([1], [2], [3]) extends the possibility of applying
reinforcement learning algorithms to complex non-Markovian
tasks.

However, formalizing sound and complete specifications as
an LTL formula is non-trivial. Thus it is desirable to infer
specifications through demonstrations ([4], [5], [6]), or natural
language instructions [7] provided by domain experts. Further
some works also elicit specifications from multiple experts

Manuscript received: September, 10, 2019; Revised December, 30, 2019;
Accepted February, 8, 2020 .

This paper was recommended for publication by Editor Dongheui Lee upon
evaluation of the Associate Editor and Reviewers’ comments.

1Ankit Shah is a PhD candidate at the Computer Science and Artifi-
cial Intelligence Laboratory at the Massachusetts Institute of Technology.
ajshah@mit.edu

2Shen Li is a PhD student Computer Science and Artificial Intelligence Lab-
oratory at the Massachusetts Institute of Technology. shenli@mit.edu

3Julie Shah is an associate professor at the Massachusetts Institute of
Technology

c© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works

[8]. However these sources of specifications are inherently
ambiguous or potentially contradictory. For example, while
learning the dinner table-setting task from demonstrations, if
the learner only observes the teacher place the dishes before
the cutlery, this could be purely coincidental or it could be
a social convention. An ideal learner would simultaneously
consider both these hypotheses while performing the task. Or
in case of eliciting preferences from multiple experts, two
culinary experts might have strong but differing opinions about
the same. Thus in a general setting, the task specifications
cannot be stated as a single LTL formula, but as a belief over
multiple LTL formulas ([4], [5]).

In this paper, we introduce a novel problem formulation for
planning with uncertain specifications (PUnS), which allows
task specifications to be expressed as a distribution over
multiple LTL formulas. We identify four evaluation criteria
that capture the semantics of satisfying a belief over LTL
formulas and analyze the nature of the task executions they
entail. Finally, we demonstrate that an instance of PUnS
is equivalent to a reward machine ([9], [10]), therefore an
equivalent MDP formulation exists for all instances of PUnS.

II. RELATED WORK

Prior research into reinforcement learning has indicated
great promise in sequential decision-making tasks, with break-
throughs in handling large-dimensional state spaces such as
Atari games [11], continuous action spaces ([12], [13]), sparse
rewards ([14], [15]), and all of these challenges in combination
[16]. These were made possible due to the synergy between
off-policy training methods and the expressive power of neural
networks. This body of work has largely focused on algorithms
for reinforcement learning rather than the source of task spec-
ifications; however, reward engineering is crucial to achieving
high performance, and is particularly difficult in complex tasks
where the user’s intent can only be represented as a collection
of preferences [8] or a belief over logical formulas inferred
from demonstrations [4].

Reward design according to user intent has primarily been
studied in the context of Markovian reward functions. Singh
et al. [17] first defined the problem of optimal reward design
with respect to a distribution of target environments. Ratner et
al. [18] and Hadfield-Menell et al. [19] defined inverse reward
design as the problem of inferring the true desiderata of a task
from proxy reward functions provided by users for a set of task
environments. Sadigh et al. [20] developed a model to utilize
binary preferences over executions as a means of inferring the
true reward. Regan and Boutillier [21] proposed algorithms
for computation of robust policies that satisfy the minimax
regret criterion. However, all of these works only allow for



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

Markovian reward functions; our proposed framework handles
uncertain, non-Markovian specification expressed as a belief
over LTL formulas.

LTL is an expressive language for representing non-
Markovian properties. There has been considerable interest in
enabling LTL formulas to be used as planning problem spec-
ifications, with applications in symbolic planning ([8],[22],
[23]) and hybrid controller synthesis [24]. There has also been
growing interest in the incorporation of LTL specifications
into reinforcement learning. Aksaray et al. [1] proposed using
temporal logic variants with quantitative semantics as the
reward function. Littman et al. [2] compiled an LTL formula
into a specification MDP with binary rewards and introduced
geometric-LTL, a bounded time variant of LTL where the
time horizon is sampled from a geometric distribution. Toro
Icarte et al. [3] proposed LPOPL, an algorithm leveraging
progressions and multi-task learning, to compute policies to
satisfy any co-safe LTL [25] specification. Lacerda et al. [26]
also developed planners that resulted in maximal completion of
tasks for unsatisfiable specifications for co-safe LTL formulas.
Within the domain of symbolic planning, expressing task
objectives, constraints, and preferences using a set of LTL
formulas was introduced with PDDL 3.0 [27] for the fifth
International Planning Competition (IPC-5) [28]. Baier et al.
[29] proposed a symbolic planner based capable of handling
temporally extended preferences defined in PDDL 3.0, while
the algorithm developed by Camacho et al. [23] is also capable
of handling non-deterministic planning domains. However,
while these works consider LTL specifications directly defined
by the user, our framework considers the problem of planning
with a belief over LTL formulas as the task specification.

Prior research into expressing non-Markov reward func-
tions for planning under uncertainty has also explored the
relationship between reward functions, formal languages and
their finite state machine representations. Bacchus et al. [30]
defined temporally extended reward functions (TERF) over
a set of past-tense LTL formulas, and demonstrated the ex-
istence of an MDP equivalent to the non-Markov planning
problem. In recent work, Camacho et al. [10] explored the
relationship between formal languages and reward machines
defined by Toro Icarte et al. [9]. They demonstrated that goal
specifications written in multiple formal languages can be
translated into equivalent reward machines, while the reverse
transformation was not always possible. Further Camacho et
al. [31] proposed a reward shaping to improve the convergence
of reinforcement learning algorithms while planning for sparse
rewards generated by a reward machine. We demonstrate that
the MDP reformulation of an instance of the PUnS problem
is an instance of a reward machine.

III. PRELIMINARIES

A. Linear Temporal Logic

Linear temporal logic (LTL), introduced by Pnueli [32],
provides an expressive grammar for describing temporal be-
haviors. An LTL formula is composed of atomic propositions
(discrete time sequences of Boolean literals) and both logical
and temporal operators, and is interpreted over traces [ααα] of

the set of propositions, ααα . The notation [ααα], t |= ϕ indicates
that ϕ holds at time t. The trace [ααα] satisfies ϕ (denoted as
[ααα] |= ϕ) iff [ααα],0 |= ϕ . The minimal syntax of LTL can be
described as follows:

ϕ ::= p | ¬ϕ1 | ϕ1∨ϕ2 | Xϕ1 | ϕ1Uϕ2 (1)

p is an atomic proposition, and ϕ1 and ϕ2 represent valid
LTL formulas. The operator X is read as “next” and Xϕ1
evaluates as true at time t if ϕ1 evaluates to true at t + 1.
The operator U is read as “until” and the formula ϕ1Uϕ2
evaluates as true at time t1 if ϕ2 evaluates as true at some
time t2 > t1 and ϕ1 evaluates as true for all time steps t, such
that t1 ≤ t ≤ t2. We also use the additional propositional logic
operators ∧ (and) and 7→ (implies), as well as other higher-
order temporal operators: F (eventually) and G (globally). Fϕ1
evaluates to true at t1 if ϕ1 evaluates as true for some t ≥ t1.
Gϕ1 evaluates to true at t1 if ϕ1 evaluates as true for all t ≥ t1.

The “safe” and “co-safe” subsets of LTL formulas have
been identified in prior research ([25], [33], [34]). A “co-safe”
formula is one that can always be verified by a trace of a finite
length, whereas a “safe” formula can always be falsified by a
finite trace. Any formula produced by the following grammar
is considered “co-safe”:

ϕco−sa f e ::=> | p | ¬p | ϕ1∨ϕ2 | ϕ1∧ϕ2 | Xϕ | Fϕ | ϕ1Uϕ2
(2)

Similarly, any formula produced by the following grammar
is considered “safe”:

ϕsa f e ::=⊥ | p | ¬p | ϕ1∨ϕ2 | ϕ1∧ϕ2 | Xϕ |Gϕ | ϕ1Rϕ2 (3)

A formula expressed as ϕ = ϕsa f e∧ϕco−sa f e belongs to the
Obligation class of formulas presented in Manna and Pnueli’s
[34] temporal hierarchy.

Finally, a progression Prog(ϕ,αt) over an LTL formula
with respect to a truth assignment αt at time t is defined
such that for a trace of truth assignments over propositions
[ααα]: [ααα], t |= ϕ iff [ααα], t + 1 |= Prog(ϕ,αt), where αt is the
truth value of the propositions in the trace [ααα] at time t.
Thus, a progression of an LTL formula with respect to a truth
assignment is a formula that must hold at the next time step
in order for the original formula to hold at the current time
step. Bacchus and Kabanza [35] defined a list of progression
rules for the temporal operators in Equations 1, 2, and 3.

B. Belief over Specifications

In this paper, we define the specification of our planning
problem as a belief over LTL formulas. A belief over LTL
formulas is defined as a probability distribution with support
over a finite set of formulas with the probability mass function
P : ϕϕϕ → [0,1]; where ϕϕϕ is the set of LTL formulas belonging
to the Obligation class defined by Manna and Pnueli [34].
The support of P(ϕ) is restricted to a finite set of formulas
{ϕ}. The distribution represents the probability of a particular
formula being the true specification.



SHAH et al.: PUNS 3

C. Model-free Reinforcement Learning

A Markov decision process (MDP) is a planning problem
formulation defined by the tuple M = 〈S,A,T,R〉, where S
is the set of all possible states, A is the set of all possible
actions, and T := P(s′ | s,a) is the probability distribution that
the next state will be s′ ∈ S given that the current state is
s ∈ S and the action taken at the current time step is a ∈ A.
R : S→R represents the reward function that returns a scalar
value given a state. Watkins and Dayan proposed Q-learning
[36], an off-policy, model-free algorithm to compute optimal
policies in discrete MDPs. The Q-value function Qπ(s,a) is
the expected discounted value under a policy π(a | s). In a
model-free setting, the transition function is not known to the
learner, and the Q-value is updated by the learner acting within
the environment and observing the resulting reward. If the Q-
value is updated while not following the current estimate of
the optimal policy, it is considered “off-policy” learning. Given
an initial estimate of the Q-value Q(s,a), the agent performs
an action a from state s to reach s′ while collecting a reward
r and a discounting factor γ ∈ [0,1). The Q-value function is
then updated as follows:

Q(s,a)← (1−α)Q(s,a)+α(r+ γ max
a′∈A

Q(s′,a′)) (4)

IV. PLANNING WITH UNCERTAIN SPECIFICATIONS (PUNS)

The problem of planning with uncertain specifications
(PUnS) is formally defined as follows: The state representation
of the learning and task environment is denoted by x ∈ X,
where X is a set of features that describe the physical state
of the system. The agent has a set of available actions, AAA.
The state of the system maps to a set of finite known Boolean
propositions, ααα ∈ {0,1}nprop , through a known labeling func-
tion, f : X → {0,1}nprops . The specification is provided as
a belief over LTL formulas, P(ϕ); ϕ ∈ {ϕ}, with a finite
set of formulas in its support. The expected output of the
planning problem is a stochastic policy, π{ϕ} : X×AAA→ [0,1],
that satisfies the specification.

The binary semantics of satisfying a single logical formula
are well defined; however, there is no single definition for
satisfying a belief over logical formulas. In this work, we
present four criteria for satisfying a specification expressed as
a belief over LTL, and express them as non-Markovian reward
functions. A solution to PUnS optimizes the reward function
representing the selected criteria. Next, using an approach
inspired by LTL-to-automata compilation methods ([37]), we
demonstrate the existence of an MDP that is equivalent to
PUnS. The reformulation as an MDP allows us to utilize any
reinforcement learning algorithm that accepts an instance of
an MDP to solve the corresponding instance of PUnS.

A. Satisfying beliefs over specifications

A single LTL formula can be satisfied, dissatisfied, or
undecided; however, satisfaction semantics over a distribution
of LTL formulas do not have a unique interpretation. We
identify the following four evaluation criteria, which capture

the semantics of satisfying a distribution over specifications,
and formulate each as a non-Markovian reward function:

1) Most likely: This criteria entails executions that satisfy
the formula with the largest probability as per P(ϕ). As
a reward, this is represented as follows:

J([ααα];P(ϕ)) = 1([ααα] |= ϕ
∗)

where ϕ
∗ = argmax

ϕ∈{ϕ}
P(ϕ) (5)

where

1([ααα] |= ϕ) =

{
1, if [ααα] |= ϕ

−1, otherwise
(6)

2) Maximum coverage: This criteria entails executions
that satisfy the maximum number of formulas in support
of the distribution P(ϕ). As a reward function, it is
represented as follows:

J([ααα];P(ϕ)) = ∑
ϕ∈{ϕ}

1([ααα] |= ϕ) (7)

3) Minimum regret: This criteria entails executions that
maximize the hypothesis-averaged satisfaction of the for-
mulas in support of P(ϕ). As a reward function, this is
represented as follows:

J([ααα];P(ϕ)) = ∑
ϕ∈{ϕ}

P(ϕ)1([ααα] |= ϕ) (8)

4) Chance constrained: Suppose the maximum probability
of failure is set to δ , with ϕϕϕδ defined as the set of
formulas such that ∑ϕ∈ϕϕϕδ P(ϕ) ≥ 1− δ ; and P(ϕ ′) ≤
P(ϕ) ∀ ϕ ′ /∈ ϕϕϕδ ,ϕ ∈ ϕϕϕδ . This is equivalent to selecting
the most-likely formulas until the cumulative probability
density exceeds the risk threshold. As a reward, this is
represented as follows:

J([ααα];P(ϕ)) = ∑
ϕ∈ϕϕϕδ

P(ϕ)1([ααα] |= ϕ) (9)

Each of these four criteria represents a “reasonable” inter-
pretation of satisfying a belief over LTL formulas, with the
choice between the criteria dependent upon the relevant appli-
cation. In a preference elicitation approach proposed by Kim
et al. [8], the specifications within the set {ϕ} are provided by
different experts. In such scenarios, it is desirable to satisfy
the largest common set of specifications, making maximum
coverage the most suitable criteria. When the specifications
are inferred from task demonstrations (such as in the case of
Bayesian specification inference [4]), minimum regret would
be the natural formulation. However, if the formula distribution
is skewed towards a few likely formulas with a long tail
of low-probability formulas, the chance constrained or most
likely criteria can be used to reduce computational overhead
in resource-constrained or time-critical applications.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

Fig. 1: Example compilation process with {ϕ} = {ϕ1,ϕ2}
and the minimum regret criterion. The deterministic MDPs
Mϕ1 , and Mϕ2 are composed through a cross product to
yield the deterministic MDP M{ϕ} corresponding to the set
{ϕ}. The states of M{ϕ} producing a non-zero reward are
shaded in gray. Note that while a naïve enumeration would
yield a discrete state space with 12 states, the breadth-first
enumeration generates a minimal set with five states. For
clarity, only the edges corresponding to change of truth value
of only a single proposition are shown, while self transitions
are not shown.

B. Specification-MDP compilation

We demonstrate that an equivalent MDP exists for all
instances of PUnS. We represent the task environment as an
MDP sans the reward function, then compile the specification
P(ϕ) into an automaton with terminal reward generating
states. The MDP equivalent of the PUnS problem is generated
through the cross-product of the environment MDP with the
automaton representing P(ϕ). Figure 1 depicts the compilation
of an illustrative PUnS problem into an automaton representing
a deterministic MDP. The belief over formulas, P(ϕ) has
support {ϕ} = {ϕ1 := G¬T0 ∧ F W2 ∧ ¬W2 U W1, ϕ2 :=
G¬T0∧FW2}; P(ϕ1) = 0.3, and P(ϕ2) = 0.7. ϕ1 is satisfied if
“T0” never becomes true and “W1” and “W2” become true in
that order. ϕ2 is satisfied if “T0” never becomes true and “W2”
becomes true eventually.

Given a single LTL formula, ϕ , a Büchi automaton can
be constructed which accepts traces that satisfy the property
represented by ϕ [33]. An algorithm to construct the automa-
ton was proposed by Gerth et al. [37]. The automata are
directed graphs where each node represents a LTL formula
ϕ ′ that the trace must satisfy from that point onward in
order to be accepted by the automaton. An edge, labeled
by the truth assignment at a given time αt , connects a node
to its progression, Prog(ϕ ′,αt). Our decision to restrict ϕ to
the Obligation class of temporal properties (ϕsa f e ∧ϕco−sa f e)
ensures that the automaton constructed from ϕ is deterministic
and will have terminal states that represent >, ⊥, or ϕsa f e [34].

When planning with a single formula, these terminal states are
the reward-generating states for the overall MDP, as seen in
approaches proposed by Littman et al. [2] and Toro Icarte et
al. [3].

An LTL formula can be represented by an equiva-
lent deterministic MDP described by the tuple Mϕ =
〈{ϕ ′},{0,1}nprop ,T,R〉, with the states representing the pos-
sible progressions of ϕ and the actions representing the truth
assignments causing the progressions ([2], [3]). The transition
function is defined as follows:

Tϕ(ϕ
′
1,ϕ

′
2,α) =

{
1, if ϕ ′2 = Prog(ϕ ′1,α)

0, otherwise
(10)

The reward function R is a function of the MDP state, and
defined as follows:

Rϕ(ϕ
′) =


1, if ϕ ′ => or ϕ ′ = ϕsa f e

−1, if ϕ ′ =⊥
0, otherwise

(11)

The equivalent MDPs Mϕ1 , and Mϕ2 corresponding to ϕ1
and ϕ2, with four and three states respectively, are depicted in
Figure 1. Each state encodes the temporal property that must
hold in the future once the MDP enters that state. For example,
Mϕ1 is initially in the state labeled as G¬T0∧FW2∧¬W2 U W1.
Once the proposition “W1” evaluates as true, the MDP enters
the state labeled by G¬T0 ∧FW2, that encodes the temporal
property that in the future, “W2” must eventually evaluate as
true. Note that in Figure 1, only the edges corresponding to
changing truth values of a single propositions are depicted for
clarity.

For an instance of PUnS with specification P(ϕ) and
support {ϕ}, a deterministic MDP is constructed by computing
the cross-product of MDPs of the component formulas. Let
〈ϕϕϕ ′′′〉 = 〈ϕ ′1, . . .ϕ ′n〉; ∀ϕ ′i ∈ {ϕ} be the progression state for
each of the formulas in {ϕ}; the MDP equivalent of {ϕ} is
then defined as M{ϕ} = 〈{〈ϕϕϕ ′′′〉},{0,1}nprop ,T{ϕ},R{ϕ}〉. Here,
the states are all possible combinations of the component
formulas’ progression states, and the actions are propositions’
truth assignments. The transition is defined as follows:

T{ϕ}(〈ϕϕϕ ′′′111〉,〈ϕϕϕ ′
′′
222〉,α) =

{
1, if ϕ ′i2 = Prog(ϕ ′i1 ,α)∀i
0, otherwise

(12)

This MDP reaches a terminal state when all of the formulas
comprising {ϕ} have progressed to their own terminal states.
The reward is computed using one of the criteria represented
by Equations 5, 7, 8, or 9, with 1(. . .) replaced by Rϕ(ϕ

′).
Note that while 1(. . .) has two possible values (1 when the
formula is satisfied and −1 when it is not) Rϕ(ϕ

′) has three
possible values (1 when ϕ has progressed to > or ϕsa f e, −1
when ϕ has progressed to ⊥, or 0 when ϕ has not progressed
to a terminal state). Thus, the reward is non-zero only in a
terminal state.

Consider the example PUnS problem depicted in Fig-
ure 1. The initial state of M{ϕ} is labeled 〈G¬T0 ∧ FW2 ∧
¬W2 U W1,G¬T0 ∧FW2〉. From this state, if W2 evaluates as
true, the MDP transitions into a state labeled 〈⊥,G¬T0〉, where



SHAH et al.: PUNS 5

ϕ1 is dissatisfied, and ϕ2 has progressed to ϕsa f e. M{ϕ} has
three terminal states labeled 〈⊥,G¬T0〉, 〈G¬T0, G¬T0〉 and
〈⊥,⊥〉 with corresponding rewards of 0.4, 1.0, and −1.0 as
per the minimum regret criterion.

In the worst case, the size of the automaton of {ϕ} is
exponential in |{ϕ}|. In practice, however, many formulas
contained within the posterior may be logically correlated.
In the example depicted in Figure 1, a naïve enumeration of
the states would have resulted in 12 discrete states. However
there are certain states such as 〈G¬T0,⊥〉, corresponding to ϕ1
being satisfied and ϕ2 being dissatisfied that are impossible.
In fact, the minimal state space only has five reachable states
as depicted in Figure 1. To compute a minimal reachable
set of states, we start from 〈ϕϕϕ〉 and perform a breadth-first
enumeration. As the deterministic MDP M{ϕ} has a finite
number of states, and an output function R{ϕ} dependent only
on the current state, it is an instance of a reward machine [9],
[10].

We represent the task environment as an MDP without
a reward function using the tuple MX = 〈X,AAA,TX〉. The
cross product of MX and M{ϕ} results in an MDP: MSpec =
〈{〈ϕϕϕ ′′′〉}×X,AAA,TSpec,R{ϕ}〉. The transition function of M{ϕ}
is defined as follows:

TSpec(〈〈ϕϕϕ ′1〉,x1〉,〈〈ϕϕϕ ′′′222〉,x2〉,a) =
T{ϕ}(〈ϕϕϕ ′′′111〉,〈ϕϕϕ ′

′′
222〉, f (x2))×TX(x1,x2,a)

(13)

MSpec is an equivalent reformulation of PUnS as an MDP,
creating the possibility of leveraging recent advances in rein-
forcement learning for PUnS. In Section V, we demonstrate
examples of PUnS trained using off-policy reinforcement
learning algorithms.

C. Counterfactual updates in a model-free setting

Toro Icarte et al. ([9], [3]) demonstrated that reward ma-
chines allow for off-policy updates for each state in the reward
machine. Constructing MSpec as a composition of MX and
M{ϕ} results in the following properties: the reward function
is only dependent upon 〈ϕϕϕ〉, the state of M{ϕ}; the action
availability only depends upon x, the state of MX; and the
stochasticity of transitions is only in TX, as T{ϕ} is deter-
ministic. These properties allow us to exploit the underlying
structure of MSpec in a model-free learning setting. Let an
action a ∈ AAA from state x1 ∈ X result in a state x2 ∈ X. As
T{ϕ} is deterministic, we can use this action update to apply
a Q-function update (Equation 4) to all states described by
〈〈ϕϕϕ ′′′〉,x1〉 ∀ 〈ϕϕϕ ′′′〉 ∈ {〈ϕϕϕ〉}.

V. EVALUATIONS

In this section, we first explore how the choice of criteria
represented by Equations 5, 7, 8, and 9 results in qualita-
tively different performance by trained RL agents. Then, we
demonstrate how the MDP compilation can serve to train an
agent on a real-world task involving setting a dinner table
with specifications inferred from human demonstrations, as per
Shah et al. [4]. We also demonstrate the value of counterfactual
Q-value updates for speeding up the agent’s learning curve.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 2: Comparisons between different types of distributions
over specifications. In each case , the size of the set is
proportional to the number of executions satisfying the spec-
ification, and the thickness of the boundary is proportional to
the probability mass assigned to that specification.

A. Synthetic Examples

The choice of the evaluation criterion impacts the executions
it entails based on the nature of the distribution P(ϕ). Figure
2 depicts examples of different distribution types. Each figure
is a Venn diagram where each formula ϕi represents a set
of executions that satisfy ϕi. The size of the set represents
the number of execution traces that satisfy the given formula,
while the thickness of the set boundary represents its prob-
ability. Consider the simple discrete environment depicted in
Figure 3a: there are five states, with the start state in the center
labeled ‘S’ and the four corner states labeled “T0”, “W0”, “W1”,
and “W2”. The agent can act to reach one of the four corner
states from any other state, and that action is labeled according
to the node it is attempting to reach.

Case 1: Figure 2a represents a distribution where the most
restrictive formula of the three is also the most probable.
All criteria will result in the agent attempting to perform
executions that adhere to the most restrictive specification.

Case 2: Figure 2b represents a distribution where the most
likely formula is the least restrictive. The minimum regret and
maximum coverage rewards will result in the agent produc-
ing executions that satisfy ϕ3, the most restrictive formula;
however, using the most likely criteria will only generate
executions that satisfy ϕ1. With the chance-constrained policy,
the agent begins by satisfying ϕ3 and relaxes the satisfactions
as risk tolerance is decreased, eventually satisfying ϕ1 but not
necessarily ϕ2 or ϕ3.

Case 3: Case 3 represents three specifications that share
a common subset but also have subsets that satisfy neither
of the other specifications. Let the scenario specification be
{ϕ}= {G¬T0∧FW0,G¬T0∧FW1,G¬T0∧FW2} with assigned



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

(a) Task MDP (b) Case 3: most likely

(c) Case 3: min regret
(d) Case 3: chance con-
strained

Fig. 3: Figure 3a depicts the transition diagram for the ex-
ample MDP. Figures 3b, 3c, and 4a depict the exploration
graph of agents trained with different evaluation criteria for
distributions with an intersecting set of satisfying executions.

(a) Case 4: max coverage (b) Case 4: min regret

Fig. 4: Figures 4a and 4b depict the exploration graph of agents
trained with different evaluation criteria for distributions with-
out an intersecting set of satisfying executions.

probabilities to each of 0.4,0.25, and 0.35, respectively. These
specifications correspond to always avoiding “T0” and visiting
either “W0”, “W1”, or “W2”. For each figure of merit defined
in Section IV-A, the Q-value function was estimated using
γ = 0.95 and an ε-greedy exploration policy. A softmax policy
with temperature parameter 0.02 was used to train the agent,
and the resultant exploration graph of the agent was recorded.
The most likely criterion requires only the first formula in {ϕ}
to be satisfied; thus, the agent will necessarily visit “W0” but
may or may not visit “W1” or “W2”, as depicted in Figure
3b. With either maximum coverage or minimum regret serving
as the reward function, the agent tries to complete executions
that satisfy all three specifications simultaneously. Therefore,
each task execution ends with the agent visiting all three
nodes in all possible orders, as depicted in Figure 3c. Finally,
in the chance-constrained setting with risk level δ = 0.3,
the automaton compiler drops the second specification; the
resulting task executions always visit “W0” and “W2” but not
necessarily “W1”, as depicted in Figure 3d.

Case 4: Case 4 depicts a distribution where an intersecting
subset does not exist. Let the scenario specifications be {ϕ}

= {G¬T 0∧G¬W2∧FW1,G¬T0∧G¬W2∧FW1,G¬T0∧FW2},
with probabilities assigned to each of 0.05,0.15, and 0.8,
respectively. The first two formulas correspond to the agent
visiting either “W1” or “W0” but not “W2”. The third spec-
ification is satisfied when the agent visits “W2”; thus, any
execution that satisfies the third formula will not satisfy the
first two. The first two formulas also have an intersecting set
of satisfying executions when both “W0” and “W1” are visited,
corresponding to Case 4 from Figure 2d. Optimizing for max
coverage will result in the agent satisfying both the first and
the second formula but ignoring the third, as depicted in Figure
4a. However, when using the minimum regret formulation,
the probability of the third specification is higher than the
combined probability of the first two formulas; thus, a policy
learned to optimize minimum regret will ignore the first two
formulas and always end an episode by visiting “W2”, as
depicted in Figure 4b. The specific examples and exploration
graphs for the agents in each of the scenarios in Figure 2 and
for each reward formulation in Section IV-A are provided in
the supplemental materials.

B. Planning with Learned Specifications: Dinner Table Do-
main

We also formulated the task of setting a dinner table as an
instance of PUnS, using the dataset and resulting posterior dis-
tributions provided by Shah et al. [4]. This task features eight
dining set pieces that must be organized in a configuration
depicted in Figure 5a. In order to successfully complete the
task, the agent must place each of the eight objects in the final
configuration. As the dinner plate, small plate and the bowl
were stacked, they had to be placed in that particular partial
order. The propositions ααα comprise eight Boolean variables
associated with whether an object is placed in its correct
position. The original dataset included 71 demonstrations;
Bayesian specification inference was used to compute the
posterior distributions over LTL formulas for different training
set sizes.

For the purpose of planning, the task environment MDP
MX was simulated. Its state was defined by the truth values
of the eight propositions defined above; thus, it had 256 unique
states. The action space of the robot was the choice of which
object to place next. Once an action was selected, it had an
80% chance of success as per the simulated transitions. For
this scenario, we selected the posterior distribution trained with
30 training demonstrations, as it had the largest uncertainty
in true specification. This distribution P(ϕ) had 25 unique
formulas in its support {ϕ}. As per the expected value of the
intersection over union metric, the belief was 85% similar to
the true specification. The true specification itself was part of
the support, but was only the fourth most likely formula, as
per the distribution. The deterministic MDP M{ϕ} compiled
from P(ϕ) had 3,025 distinct states; thus, the cross-product
of M{ϕ} and MX yielded MSpec with 774,400 unique states
and the same action space as MX. We chose the minimum
regret criteria to construct the reward function, and trained
two learning agents using Q-learning with an ε-greedy policy
(ε = 0.3): one with and one without off-policy updates. We



SHAH et al.: PUNS 7

(a) Desired final configuration (b) Learning Curves (c) Task setup

Fig. 5: Figure 5a depicts the desired final configuration of objects. Figure 5b depicts the median terminal rewards and the 25th

and 75th quartiles. Figure 5c presents the UR-10 arm performing the table-setting task.

Reward
Type

Formulas
included

M{ϕϕϕ}

States

True valid
orders

Successful
executions
(On robot)

Unique
orders
(On robot)

Constraint
violations
(On robot)

Successful
executions
(Simulation)

Unique
orders
(Simulations)

Constraint
violations
(Simulations)

Min Regret 25 3025 6720 20 20 0 19997 1962 3
Most Likely 1 193 6720 12 20 8 9920 10215 10080
Chance Constrained
(δ = 0.1) 4 449 6720 20 20 0 19995 4253 5

Chance Constrained
(δ = 0.3) 3 353 6720 20 20 0 19987 4882 13

TABLE I: A summary of the experiments on the physical robot and simulated executions for four different reward compilations.
The differences in the number of unique orderings recorded and the constraint violations demonstrates the risk-creativity trade-
off inherent to PUnS.

evaluated the agent at the end of every training episode
using an agent initialized with softmax policy (the temperature
parameter was set to 0.01). The agent was allowed to execute
50 test episodes, and the terminal value of the reward function
was recorded for each; this was replicated 10 times for each
agent. All evaluations were conducted on a desktop with i7-
7700K and 16 GB of RAM. Our code is included in the
supplementary materials, and is adapted from LPOPL [9]1.

The statistics of the learning curve are depicted in Figure
5b. The solid line represents the median value of terminal
reward across evaluations collected from all training runs.
The error bounds indicate the 75th and 25th percentile. The
maximum value of the terminal reward is 1 when all formulas
in the support {ϕ} are satisfied, and the minimum value is
−1 when all formulas are not satisfied. The learning curves
indicate that the agent that performed Q-value updates for
all states of M{ϕ} learned faster and had less variability
in its task performance across training runs compared with
the one that did not perform counterfactual updates. This
provides additional empirical evidence to suggest that off-
policy updates to each reward machine state improve the
sample complexity as observed by Toro Icarte et al. ([3], [9]).

We implemented the learned policy with predesigned mo-
tion primitives on a UR-10 robotic arm. We observed during
evaluation runs that the robot never attempted to violate any
temporal ordering constraint. The stochastic policy also made
it robust to some environment disturbances: for example, if
one of the objects was occluded, the robot finished placing
the other objects before waiting for the occluded object to

1https://bitbucket.org/RToroIcarte/lpopl

become visible again2.
Next to examine the trade-off between creativity of per-

forming the task and risk aversion, we repeated the training
and testing with the M{ϕ} compiled with the most likely and
the chance constrained criteria with δ = {0.1,0.3}. For each
of the trained agents, we recorderd 20 physical executions by
deploying the policy on the robot and we also ran 20000 simu-
lated test episodes for each instance of the PUnS MDP MSpec.
During the simulated and physical test runs, we recorded the
number of unique placement sequences and the number of
specification violations. The results are tabulated in Table I.

Assuming that the dinner plate, the small plate and the bowl
must be placed in that partial order, there are 6720 unique
valid orderings for placing the eight objects. The policies
trained as per min regret and both the chance constrained
criteria generated 20 unique orderings in the physical test
executions. The simulated tests reveal that the policy trained
in accordance with minimum regret criterion executes the task
with fewer unique orders than the policy trained with both
the chance constrained criteria. Both the physical executions
and the simulations reveal that the policy trained with the
most likely criterion performs the task with many constraint
violations because the most likely formula does not include an
ordering constraint existing in the ground truth specification.
This demonstrates a three-way tradeoff between computational
complexity in terms of the additional states to consider while
planning, the creativity displayed by the policy in terms of
the unique executions discovered and the risk of specification
violation. The min regret policy is the most risk averse but

2example executions can be viewed at https://youtu.be/LrIh_jbnfmo



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

also the least creative while the chance constrained policies
demonstrate a higher creativity but with more constraint vio-
lations.

VI. CONCLUSIONS

In this work, we formally define the problem of planning
with uncertain specifications (PUnS), where the task specifi-
cation is provided as a belief over LTL formulas. We propose
four evaluation criteria that define what it means to satisfy
a belief over logical formulas, and discuss the type of task
executions that arise from the various choices. We also present
a methodology for compiling PUnS as an equivalent MDP
using LTL compilation tools adapted to multiple formulas.
We also demonstrate that MDP reformulation of PUnS can be
solved using off-policy algorithms with counterfactual updates
for a synthetic example and a real-world task. Although we
restricted the scope of this paper to discrete task environment
MDPs, this technique is extensible to continuous state and
action spaces; we plan to explore this possibility in future
work.

REFERENCES

[1] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning
for robust satisfaction of signal temporal logic specifications,” in 2016
IEEE 55th Conference on Decision and Control, pp. 6565–6570, IEEE,
2016.

[2] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan,
“Environment-independent task specifications via GLTL,” arXiv preprint
arXiv:1704.04341, 2017.

[3] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Teach-
ing multiple tasks to an RL agent using LTL,” in Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 452–461, International Foundation for Autonomous Agents
and Multiagent Systems, 2018.

[4] A. Shah, P. Kamath, J. A. Shah, and S. Li, “Bayesian inference
of temporal task specifications from demonstrations,” in Advances in
Neural Information Processing Systems 31 (S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.),
pp. 3804–3813, Curran Associates, Inc., 2018.

[5] J. Kim, C. Muise, A. Shah, S. Agarwal, and J. Shah, “Bayesian inference
of linear temporal logic specifications for contrastive explanations,”
in Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pp. 5591–5598, International Joint
Conferences on Artificial Intelligence Organization, 7 2019.

[6] A. Camacho and S. A. McIlraith, “Learning interpretable models in
linear temporal logic,” in Proceedings of the Twenty-Nineth International
Conference on Automated Planning and Scheduling, pp. 621–630, 2019.

[7] Y. Oh, R. Patel, T. Nguyen, B. Huang, E. Pavlick, and S. Tellex,
“Planning with state abstractions for non-Markovian task specifications,”
in Robotics: Science and Systems, June 2019.

[8] J. Kim, C. Banks, and J. Shah, “Collaborative planning with encoding
of users’ high-level strategies,” in AAAI Conference on Artificial Intel-
ligence, 2017.

[9] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Using
reward machines for high-level task specification and decomposition
in reinforcement learning,” in Proceedings of the 35th International
Conference on Machine Learning, pp. 2112–2121, 2018.

[10] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “LTL and beyond: Formal languages for reward function
specification in reinforcement learning,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pp. 6065–6073,
2019.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
pp. 1928–1937, 2016.

[13] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, pp. 1008–1014, 2000.

[14] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-
explore: a new approach for hard-exploration problems,” arXiv preprint
arXiv:1901.10995, 2019.

[15] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[16] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Hor-
gan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou,
M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang,
T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney,
O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in starcraft ii using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[17] S. Singh, R. L. Lewis, and A. G. Barto, “Where do rewards come from,”
in Proceedings of the annual conference of the cognitive science society,
pp. 2601–2606, Cognitive Science Society, 2009.

[18] E. Ratner, D. Hadfield-Mennell, and A. Dragan, “Simplifying reward
design through divide-and-conquer,” in Robotics: Science and Systems,
2018.

[19] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan,
“Inverse reward design,” in Advances in neural information processing
systems, pp. 6765–6774, 2017.

[20] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active preference-
based learning of reward functions,” in Robotics: Science and Systems,
2017.

[21] K. Regan and C. Boutilier, “Robust policy computation in reward-
uncertain mdps using nondominated policies,” in Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

[22] A. Camacho, J. A. Baier, C. Muise, and S. A. McIlraith, “Finite LTL
synthesis as planning,” in Twenty-Eighth International Conference on
Automated Planning and Scheduling, 2018.

[23] A. Camacho and S. A. McIlraith, “Strong fully observable non-
deterministic planning with LTL and LTL-f goals,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence
(IJCAI), pp. 5523–5531, 2019.

[24] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE transactions on robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[25] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[26] B. Lacerda, D. Parker, and N. Hawes, “Optimal policy generation
for partially satisfiable co-safe LTL specifications,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[27] A. Gerevini and D. Long, “Plan constraints and preferences in PDDL3,”
tech. rep., Technical Report 2005-08-07, Department of Electronics for
Automation, University of Brescia, 2005.

[28] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners,” Artificial Intelli-
gence, vol. 173, no. 5, pp. 619 – 668, 2009. Advances in Automated
Plan Generation.

[29] J. A. Baier, F. Bacchus, and S. A. McIlraith, “A heuristic search
approach to planning with temporally extended preferences,” Artificial
Intelligence, vol. 173, no. 5-6, pp. 593–618, 2009.

[30] F. Bacchus, C. Boutilier, and A. Grove, “Rewarding behaviors,” in Pro-
ceedings of the National Conference on Artificial Intelligence, pp. 1160–
1167, 1996.

[31] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith, “Non-Markovian
rewards expressed in LTL: Guiding search via reward shaping (extended
version),” in First Workshop on Goal Specifications for Reinforcement
Learning, collocated with ICML/IJCAI/AAMAS, 2018.

[32] A. Pnueli, “The temporal logic of programs,” in Foundations of Com-
puter Science, 1977., 18th Annual Symposium on, pp. 46–57, IEEE,
1977.

[33] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,”
in Logics for concurrency, pp. 238–266, Springer, 1996.

[34] Z. Manna and A. Pnueli, A hierarchy of temporal properties. Department
of Computer Science, 1987.

[35] F. Bacchus and F. Kabanza, “Using temporal logics to express search
control knowledge for planning,” Artificial intelligence, vol. 116, no. 1-2,
pp. 123–191, 2000.



SHAH et al.: PUNS 9

[36] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[37] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-
fly automatic verification of linear temporal logic,” in International
Conference on Protocol Specification, Testing and Verification, pp. 3–18,
Springer, 1995.


