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INCENTIVE-COMPATIBLE SURVEYS
VIA POSTERIOR PROBABILITIES∗
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Abstract. We consider the problem of eliciting truthful responses to a survey question when
the respondents share a common prior that the survey planner is agnostic about. The planner would
therefore like to have a “universal” mechanism, which would induce honest answers for all possible
priors. If the planner also requires a locality condition that ensures that the mechanism payoffs are
determined by the respondents’ posterior probabilities of the true state of nature, we prove that, under
additional smoothness and sensitivity conditions, the payoff in the truth-telling equilibrium must be
a logarithmic function of those posterior probabilities. Moreover, the respondents are necessarily
ranked according to those probabilities. Finally, we discuss implementation issues.
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1. Introduction. Consider the problem of truthful elicitation of responses in
a population of Bayesian agents who share a common prior.1 We allow the survey
planner to be “agnostic” about the prior (although the planner may have beliefs
about the prior, she prefers to keep these beliefs private). The true outcome that
responses are elicited about is not verifiable. If the (lack of) respondent honesty or
care is an issue, the survey planner may want to implement an incentive-compatible
mechanism or a “scoring rule.” We say that a multiperson scoring rule is (strictly)
incentive-compatible if, for each respondent π, the following condition is satisfied:
if every other respondent responds truthfully, then the honest answer of the respon-
dent π (strictly) maximizes its expected score. Incentive-compatible scoring rules play
an important role in survey studies in various fields, most notably economics and busi-
ness. Thus, it would be very valuable to both researchers and practitioners in numer-
ous applications to characterize usable incentive-compatible algorithms. Should we
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a particular new product.
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expect a variety of such algorithms, or is the incentive-compatibility a rather restric-
tive property? We show in this paper that, under a fairly natural “equilibrium-locality”
condition, the property is more on the restrictive side and guides us to an algorithm
that is well known in the literature. Let us now discuss in detail the precise nature
of our results.

Prelec [24] introduced the Bayesian truth serum (BTS) algorithm based on two
inputs determined from each respondent: a declaration of the respondent’s type and
his belief about the distribution of the type declarations by other players. BTS has
two important properties [24]. First, it is strictly incentive-compatible (IC) (that
is, strict truth-telling is an equilibrium), so that the agents’ “types” corresponding
to their true responses are fully revealed.2 Second, the BTS equilibrium score of
a respondent is, up to a linear transformation, equal to the logarithm of his posterior
probability of the true state of nature, so that BTS ranks respondents by posteriors
(henceforth called posterior ranking). We say that the BTS mechanism results in
logarithmic scoring. BTS has been successfully applied in various fields, including
new product adoption [12], economics and psychology [15], knowledge design [20],
and criminology [17].

In the present paper we consider the following motivating questions: what are
conditions for equilibrium payoffs generated by a strictly incentive-compatible scoring
rule to necessarily correspond to logarithmic scoring? Which conditions are such that
a strict incentive-compatible equilibrium must satisfy the posterior locality condition?
In other words, which conditions are such that equilibrium payoffs are essentially
equivalent to BTS payoffs?

Our main results are as follows. We identify two conditions on equilibrium payoffs
that we call the “posterior locality” and the “separation of variables” properties. The
main theorem says that

incentive-compatible

+ posterior locality

+ separation of variables

 → logarithmic scoring.

The second main result asserts that

incentive-compatible

+ posterior locality

}
→ posterior ranking.

To make these results more precise, we now describe our setting in more detail.
There is a state of nature drawn from a finite set and an infinite population (for
application purposes, one can think of having a large population). There is a planner
who asks each respondent to submit responses to a questionnaire. The respondents
are players in a Bayesian game where each player is rewarded by the planner according
to a score that depends on his responses and the responses of everyone else. Each
player has a type, and all types take values in a finite set. The variation in types
can be interpreted as a consequence of players observing varying signals. (As shown
in [26] and in the present paper, when using a different proof, a report of just types
cannot lead to a truth-telling equilibrium.3) The types are conditionally independent
and identically distributed (i.i.d.) w.r.t. the state of nature, so that there is a single

2In fact, we show that all strict equilibria in the BTS framework are either truth-telling or
a types-permutation of truth-telling, and the scores are unique up to a linear transformation.
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probability distribution (the “prior”) that describes the joint distribution of the state
of nature and types. We assume that the prior is common knowledge among players
but unknown to the planner ex-ante.

Let us now recall the notion of proper scoring rules in a framework with only one
respondent. Consider a random variable (r.v.) Ω taking values in {1, . . . , N}, N > 1,
representing the state of nature. Based on the respondent’s declarations, his belief
about the distribution p̃ = (p̃1, . . . , p̃N ) of Ω is implied. As a consequence, if the
outcome Ω = i occurs, the respondent is paid Fi(p̃ ). In the multirespondent setting
of this paper, each i itself is a distribution but over the beliefs of the respondents. In
this case, if p̃ is implied by the respondent’s answer, and if the outcome Ω = i occurs,
we refer to p̃i as his “local posterior.”

With only one respondent, a family of functions {Fi}i=1,...,N is called a strictly
proper scoring rule if it is incentive-compatible with truth-telling. This means that
the respondent’s expected payoff is maximized at his true belief, and the maximum is
attained at the respondent’s posterior (denoted p). More precisely, for all probability
vectors p̃ ̸= p, we have

(1.1)

N∑
i=1

piFi(p) >

N∑
i=1

piFi(p̃).

There are many proper scoring rules. A general characterization with many examples
is provided in [11].4 An important special case arises if Fi(p) = Fi(pi) depends only
on the local posterior, which is the probability pi that the respondent assigns to the
outcome Ω = i that is actually realized, and does not depend on how the probabilities
are divided among the remaining counterfactual outcomes. In that case, the scoring
rule is necessarily equal to a linear transformation of the logarithm of pi (see [28], [4]).
Such a rule is a natural choice if the local posterior is interpreted as a measure of
the respondent’s expertise, that is, if the quality of the respondent’s signal/type is
measured by the probability assigned to the true state of nature.

As mentioned above, in the multiplayer setting the values of Ω are interpreted as
distributions of the types in the infinite population, and posteriors as the probabilities
that a type assigns to these values of Ω. We do not allow all distributions but only
finitely many. In practice, the respondents would be given a discretized choice of
distributions, for example, “Do you think the percentage of votes for the candidate
A will fall within the range of 0%–10%, or 10%–20%, . . . ?” Assuming that our game
has a strictly type-separating equilibrium, our results depend only on the form of the
equilibrium payoffs rather than on the actual scoring rules that lead to those payoffs.
The posterior locality condition posits that the equilibrium payoffs Fi in the state
Ω = i depend on the local posteriors, that is, on the posterior probabilities of the
event Ω = i.

Anticipating the results of the present paper, we show now that, under mild
smoothness conditions, if the equilibrium payoffs Fi satisfy a property analogous
to (1.1), the difference in the state i scores of two respondents with local posteri-
ors pi and qi, respectively, has to be approximately proportional to log(pi) − log(qi)
for q ≈ p, up to the first order. To explain what we mean by this, we now assume,

3We expect that our results would still hold approximately for finite but large sample sizes. The
exact theory for the finite case is very different and left for future research. For some elements of the
finite case theory within the information-theoretic setup, see [7].

4Offerman et al. [23] consider the case in which the respondents may have nonexpected utilities,
with only two possible states of nature.
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for simplicity of notation, the case with two types with local posteriors pi and qi. If
a player implies, by her responses, local posterior pi, she receives Fi(p

i, qi), and if
she implies qi, she gets Fi(q

i, pi). The incentive compatibility of the family {Fi}, as
generalized from the one-player incentive compatibility (1.1) of proper scoring rules,
means that the solution to the problem

min
qi

{∑
i

pi[Fi(p
i, qi)− Fi(q

i, pi)] + λ
∑
i

qi
}

is qi = pi, where λ is a Lagrange multiplier for the constraint
∑

i q
i = 1. The

first-order condition for the above problem reads as

∂qFi(p
i, pi)− ∂pFi(p

i, pi) = − λ

pi
,

where ∂x denotes the partial derivative w.r.t. x. In the one player case, this reads
F ′(pi) = λ/pi and results in the log function as the only proper scoring rule that
satisfies the locality condition. In our multiplayer case, we fix pi and expand the
score difference up to the first order as a function of qi around the point pi to get

Fi(p
i, qi)− Fi(q

i, pi) ≈ [∂qFi(p
i, pi)− ∂pFi(p

i, pi)](qi − pi).

Finally, combining the above equations and using the fact that the first-order
Taylor expansion of the log function around qi = pi is log pi − log qi = (pi − qi)/pi,
we get

Fi(p
i, qi)− Fi(q

i, pi) ≈ λ

(
1− qi

pi

)
≈ λ(log pi − log qi).

Based on this approximation, our first theorem asserts the following: if we add to
the incentive compatibility mild requirements on payoff smoothness and sensitivity
to other players of the difference in equilibrium payoffs of two respondents, then the
difference in incentive-compatible scores of the two respondents is exactly, rather than
just approximately, proportional to the difference in the logarithms of the implied local
posteriors.

Our second theorem asserts that any incentive-compatible equilibrium payoff
Fi(p

i
k, p

i
−k) of the player who implies, via his responses, probability pik corresponding

to type k, given that other types imply probabilities pi−k, is nondecreasing in the local
posterior probability pik. Consequently, the ranking of experts in equilibrium, if we
consider pik as the measure of expertise, is the same given any incentive-compatible
mechanism, and it corresponds to the ranking by posteriors. The result is very gen-
eral and is proved by purely algebraic methods. It is a generalization of the results
in the literature (in the case of one respondent) on monotonicity, which is implied by
incentive compatibility of proper scoring rules (see, e.g., [19], [28], [29], and [30]).5

We also discuss implementation problems. Observe that in general, while a par-
ticular ex-post payoff of the form Fi(p

i
k, p

i
−k) may arise in theory in equilibrium, it

is not necessarily simple to implement in practice. That is, the problem is how to
implement the theoretically optimal payoff score using only the players’ responses
to a questionnaire designed by the agnostic planner, while having the questionnaire

5See also Prelec, Seung, and McCoy [25] who define and test experimentally a broader class of
algorithms to produce a ranking of experts according to their posteriors. Within this class, only BTS
is known to be incentive-compatible.
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be as simple as possible. Under an assumption somewhat stronger than posterior
locality but without assuming separation of variables, we show that the payoffs of
all strictly-separating equilibria in our framework can be implemented by particular
questionnaires; however, the latter may be complex, except for the logarithmic, BTS
case. In this context, let us recall that Prelec [24] showed that promising the respon-
dents the BTS scores ex-ante results, in equilibrium, in the ex-post scores of the form
log(pik) (plus a term that does not vary with a respondent). We revisit this result and
provide a detailed proof. We also show that the budget-balanced strict equilibrium
under BTS is necessarily separating.

Relationship to existing results. In recent years, after the appearance of [24]
proper scoring rules in the game-theoretic context, also called “information elicitation
without verification,” were studied extensively. In the case where the planner knows
the prior distribution of the player types, an early work is [21], where a clever use of
proper scoring rules was designed to elicit truthful information. However, because the
assumption that the planner knows the prior is unrealistic in practice, alternative ap-
proaches have been proposed. Jurca and Faltings [13] use robust optimization to deal
with small variations in belief models. Expanding on the framework of Prelec [24],
where the planner does not know the prior but the number of players is infinite,
Witkowski and Parkes [34] and Witkowski [33] devise mechanisms, under the name
Robust Bayesian Truth Serum (RBTS), that worked for a finite number of respondents
but with only two types. Waggoner and Chen [32] consider a general framework with-
out any assumptions on information structure. Radanovic and Faltings [26], [27] and
Zhang and Chen [36] developed mechanisms that were incentive-compatible for any
number of agents and nonbinary player types. Dasgupta and Ghosh [9] and Witkowski
and Parkes [35] relaxed the knowledge requirement even more by asking for more ex-
tensive reports by respondents in the form of responses to multiple similar questions.
Baillon [2] implemented truth-telling equilibria via a “Bayesian market” in the case
of binary types. Cvitanić et al. [8] provided additional incentive-compatible mecha-
nisms that were simple to explain to respondents. In [10], the authors characterized
“minimal” peer-prediction mechanisms; that is, those where the score depended only
on the respondent’s reported type and the reported type of another, suitably chosen
“peer” respondent. We, on one hand, allow the scores to depend on reported types of
all the respondents and on their predictions of those reports, and, on the other hand,
we impose the assumption of locality on the scores. The preference for one or the
other approach depends on whether the minimality or locality is the preferred feature
of the mechanism. The paper [14] developed an informational theoretic paradigm for
designing incentive mechanisms, which included, as special cases, many established
mechanisms, including BTS, and showed that the properties of BTS could be proved
in a simpler way by using a connection to Shannon mutual information. For a different
connection between BTS and information theory, see [7]. Liu and Chen [16] designed
a “uniform dominant” truth serum when there was a noisy signal of the ground truth
and there were sufficiently many agents and tasks. Their scoring depended on whether
a report is informative or not, and so, in a sense, they were related to the expertise
of the respondent.

However, with the exception of Prelec [24], all of the papers mentioned above
were concerned with incentive compatibility rather than with ranking of respondents,
so that the proposed mechanisms either do not satisfy our posterior locality condition
or require the planner to know the common prior of the respondents. We focus on
mechanisms that have all of these three properties: they allow IC equilibria, they
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can be implemented even when the planner is agnostic about the prior, and they
rank the respondents by posteriors. In this case, our main result says that, under
relatively weak conditions, logarithmic scoring is the only possible equilibrium payoff
form. When ranking by posteriors is not required from the mechanism, the above
papers provide many other ways to design IC mechanisms.

The problem we tackle in the paper can also be considered as a mechanism design,
since we seek to describe mechanisms that are incentive-compatible and have attrac-
tive features for opinion elicitation applications. On the one hand, our approach is
more general than typical mechanism design models,6 because we allow for uncer-
tainty regarding both the players information (type) and the true state of nature,
and these uncertainties may be correlated in a nontrivial way. It is exactly the joint
distribution of the uncertainties that drives all the results. Our basic assumption is
that the players have a common prior on this joint distribution but that the prior
is not used by the planner in designing the survey. We present this as a method-
ological rather than a substantive requirement. Although the planner may have some
beliefs about the prior, she may prefer to keep these beliefs private and adopt the
position of an agnostic/neutral outsider rather than imposing her conjectures on the
survey respondents. Thus, she is interested in a “universal” mechanism, which would
work for all priors without any input from her side apart from the initial formulation
of the multiple-choice questionnaire.7 From this perspective, the present paper is
concerned with robust Bayesian mechanisms. On the other hand, our setup is less
general in the following sense: the players do not choose actions other than report-
ing their responses, which is assumed to be costless. Thus, there is no modeling of
utility/disutility drawn from actions; the only utility the players draw is the expected
payoff they attain. Moreover, our framework is less general than some models of ro-
bust mechanism design, which, unlike ours, do not assume common knowledge of the
prior distribution by all players. (In our case only the planner may be ignorant.) In
the concluding section 5, we discuss directions wherein one could try to extend our
results.

The rest of the paper is organized as follows: section 2 introduces the model,
section 3 presents the main theoretical results, section 4 discusses implementation, and
section 5 presents conclusions. The proofs are presented in the appendix (section 6).

2. Model, definitions, and assumptions. In our model, a mechanism gives
scores to the players (respondents) of different types.8 Applications we have in mind
are of the polling type: the respondents are asked to provide responses to queries
assigned by a survey planner. The planner is interested in eliciting truthful opinions
to multiple-choice questions and in ranking the players according to the quality of
their information, which, in our framework, means the ranking according to their
posterior probabilities of the true state of nature. For instance, the planner might
be interested in the value of a certain wine some years into the future and asks
experts to respond to appropriately designed questions. Broader applications include
voting in elections, predicting political events, conducting product market research
or online product reviews, and any other application that involves a survey with

6See, e.g., [18], [3], [5]. We refer the reader to [3] for a detailed literature survey.
7In theory, using the “majority rule” mechanism that would ask for the common prior to be

declared may result in an equilibrium that reveals the common prior; however, such a rule is not
implementable in practice, as we discuss in this paper.

8A negative score is usually called a transfer in the mechanism design literature; see, e.g., [5].
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a multiple-choice question.9 We note that it is not necessary to assume that the true
response to a multiple-choice question is verifiable.

2.1. The model. The players are indexed by π ∈ R, where R is infinite and
countable.10 The state of nature is an r.v. Ω taking values in {1, . . . , N}, N > 1.11

The players can be of M > 1 different types, which can be interpreted as random
signals that the players receive about the state of nature. A player π’s type is an r.v.
Tπ with values tπ ∈ {1, . . . ,M}. We consider scoring mechanisms where, for a given
fixed positive integer K, the player π submits as a response a K-dimensional value
aπ ∈ RK (a stands for “action”), where K is a fixed natural number.

A response aπ would typically include a declaration of a respondent’s type (choos-
ing an answer to a multiple-choice question) and it would also include responses to
some other questions in order to be truth-inducing.12 It could also include a declara-
tion of the respondent’s prior distribution of types and states of nature, as introduced
below; that is, the respondent could be asked to state his prior. We posit the following.

Assumption 2.1. (i) The family of signals Tπ, π ∈ R, is a family of exchangeable
r.v.’s i.i.d. conditional on the state of nature Ω.

(ii) If a respondent π chooses the response aπ, and if the remaining responses
are represented by a−π, then his score is given by the scoring function f(aπ, a−π),
where the order of different respondents’ responses in a−π does not matter; that is, f
is symmetric in the arguments in a−π.

Condition (i) implies that the order we use to consider our players is irrele-
vant (from the point of view of the probability distribution of the entire sequence).
Moreover, by de Finetti’s theorem, the exchangeability assumption actually implies
Assumption 2.1(ii) to the effect that there exists an r.v. Ω such that Tπ’s are condi-
tionally i.i.d. w.r.t. Ω; see, e.g., [1] or [6].

The symmetry property in condition (ii) is a natural restriction considering that
the planner does not make a distinction between different types, which are assumed
to be exchangeable by condition (i).

From now on, we assume the players are risk-neutral; that is, each player maxi-
mizes his or her expected payoff.13

9Many more examples can be found in [24] and [25].
10We need the assumption that there are infinitely many players for several reasons: first, we do

not want to impose assumptions on the form of the payoffs outside of equilibrium; for this, we use the
fact that, with an infinite number of players, the form of equilibrium payoff does not change when
a player of one type mimics the equilibrium strategy of another type; second, achieving truth-telling
of types is much harder with finitely many players, as is the implementation of equilibrium payoffs
using practical inputs. We postpone for future research the analysis of the setup with finitely many
players; finally, we need an infinite number of players because we invoke de Finetti’s theorem in our
model setup.

11Strictly speaking, this is only an approximation for most applications, where the state of nature
can naturally have a continuous range of values. For instance, in the example about a wine bottle’s
value, the state of nature could be the percentage of experts who believe that the bottle is worth
more than one thousand U.S. dollars.

12In section 4, it is shown that another question might be about the percentage of other respon-
dents choosing a specific choice from the multiple-choice list.

13Typically, mechanism design models consider only the types as being random, according to
a prior which is known also to the planner. Our model is more general by considering random states
of nature in addition to random types, with a nondegenerate correlation between the two. On the
other hand, it is less general in that selecting a response to a question is the only action available to
a player.
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The prior and the posteriors. The joint distribution of types and states of
nature is given by an (M ×N)-matrix Q = [qik], where

qik = Pr(Tπ = k, Ω = i).

Note thatQ does not actually depend on π; this is a consequence of the exchangeability
assumption.

We suppose that the matrix Q is common knowledge among the players; we refer
to it as their “common prior.” However, Q is not used by the planner when designing
the survey. In fact, the planner does not even need to know the number of the
states of nature N . The only thing we assume is that the planner should know M .
For example, M is needed for implementation using a multiple-choice question—the
planner has to offer exactly as many possible choices as there are types.14

The matrix Q determines the marginal probabilities of types, referred to as type
probabilities, and the probabilities of states of nature given the type, referred to as
posteriors. They are denoted by

sk = Pr(Tπ = k) and zik = Pr(Ω = i | Tπ = k),

respectively.

We assume that the marginal probabilities of types and of states of nature are
all strictly positive. The posteriors form a matrix Z = [zik]

M,N
k=1,i=1. Note that zik

does not depend on π. Moreover,
∑N

i=1 z
i
k = 1 for every k ∈ {1, . . . ,M}, and any

matrix with this property can be represented as a Z-matrix of posteriors for some
joint distribution Q. We denote the vector (s1, . . . , sM ) by S.

2.2. Equilibrium payoff and incentive compatibility. In the standard lit-
erature on scoring rules, there is only one respondent who is asked to declare his
posterior belief about the distribution of Ω; that is, to declare zi’s. If the outcome
Ω = i occurs, the respondent is paid Fi(z). A family of functions {Fi}i=1,...,N is
called a strictly proper scoring rule if it is incentive-compatible for truth-telling; that
is, the respondent’s expected payoff is maximized at his true belief, meaning that∑N

i=1 p
iFi(p) >

∑N
i=1 p

iFi(p̃ ) for all probability vectors p̃ ̸= p.

In our framework with infinitely many respondents, we consider only the payoff
mechanisms that allow for a strictly separating Bayesian Nash equilibrium (SSNE ),
as defined in Definition 2.1 below, where the equilibrium payoffs are functions Fi:
(0, 1)2M → R of the form Fi(z

i
k, z

i
−k; sk, s−k) where, for example, zi−k = (zi1, . . . ,

zik−1, z
i
k+1, . . . , z

i
M ). We call this property the posterior locality.

We now make this more precise. A pure strategy for a player π is a map σπ, which
sends the player’s type to his response choice aπ. We allow only pure strategies. The
profile of all respondents’ pure strategies is denoted by σ(t), with entries σπ(tπ), and
the profile excluding the player π is denoted by σ−π(t−π). The score for the player π is
given by f(σπ(tπ), σ−π(t−π)), where f is a scoring function, which takes the responses
to the set of real numbers. The function f( · , · ) is of the same functional form for all
N and Q.

14To get around the issue of not knowing the common prior, the planner could ask each player
to state the whole prior distribution and harshly penalize the player who gives a response different
from others. However, asking for the common prior is unlikely to work in practice—more likely, the
majority of responses would be different from one another, and the planner would have to harshly
penalize most respondents.
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We assume that the players maximize the expected score value. We mostly restrict
the payoff mechanisms to those which are “budget balanced”; that is, such that the
sum of the scores of all players is zero with probability one.15

Here is the definition of equilibrium.

Definition 2.1. (i) Given a prior matrix Q, we say that a scoring function f
allows a Strict (Bayesian) Nash Equilibrium (SNE ) if there exists a pure strategy
profile σ = σQ such that, for all π, tπ, t−π, tγ , we have the following : for an arbitrary
response choice aπ ̸= σπ(tπ),

E[f(aπ, σ−π(t−π)) | Tπ = tπ] < E[f(σπ(tπ), σ−π(t−π)) | Tπ = tπ],

with the expectation taken w.r.t. the (conditional) distribution of Ω.

In this case, the strategy profile σ is called an SNE. If the equilibrium is also
separating, that is, if, in addition to the above, we also have σπ(tπ) = σγ(tγ) ⇒ tπ =
tγ , we call σ a Strictly Separating (Bayesian) Nash Equilibrium (SSNE ).

(ii) We say that a scoring function f is a Universal Separating Scoring Rule
(USSR) if, for all Q, it allows at least one budget-balanced SNE σQ, and if every
budget-balanced SNE is an SSNE.

We show below that the budget-balanced logarithmic scoring can be implemented
by a USSR (that is, by BTS), which also satisfies the assumptions below on the
equilibrium payoffs.

From now on, we only consider USSR functions f , or nonbudget-balanced versions
thereof, so that there exists at least one SSNE. We denote by Fi the state i ex-post
payoff in an SSNE corresponding to f , budget-balanced or not. The following is the
additional crucial assumption we impose, and it is an assumption on the ex-post,
equilibrium payoffs Fi of an SSNE.

Assumption 2.2 (posterior locality). For any k ∈ {1, . . . ,M}, any i ∈ {1, . . . , N},
and any j ̸= k, if Tπ = k and Ω = i, then the equilibrium score (but not necessarily
the out-of-equilibrium scores) of the player π has the representation

f(σπ
Q(k), σ

−π
Q (t−π)) = Fi(z

i
k, z

i
−k; sk, s−k),

where Fi : (0, 1)
2M → R.

We discuss this assumption at the end of this section. We do not address unique-
ness of equilibrium, and we study only such equilibria that the realized equilibrium
payoffs (but not necessarily the out-of-equilibrium payoffs) are of the above form.
Moreover, we require that the realized equilibrium payoffs satisfy the conditions in
the following definition.

Definition 2.2. A family {Fi} of functions of the form Fi(z
i
k, z

i
−k; sk, s−k) is

called a Posterior-Local Equilibrium Payoff System (PLEPS ) if the following condi-
tions are satisfied :

15It should be mentioned that in a budget-balanced game the players know that they may receive
negative “payments,” and some players may not be willing to participate. In practice, the “payments”
will not often be monetary but used as score points, and every respondent might be paid a nonnegative
amount, which may consist of a fixed fee and a variable fee that depends on the respondent’s score,
or his ranking according to the scores. That is, what is used may not be a budget-balanced scoring
rule but a modification thereof.
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(i) Symmetry: for all x, y ∈ (0, 1), for all z2, . . . , zM , s2, . . . , sM ∈ (0, 1), and for
any permutation Π of {2, . . . ,M},

Fi(x, z2, z3, . . . , zM ; y, s2, . . . , sM )

= Fi(x, zΠ(2), zΠ(3), . . . , zΠ(M); y, sΠ(2), sΠ(3), . . . , sΠ(M)).

(ii) Incentive compatibility, strict separation inequality: for any Z-matrix, for
any S-vector, and for any k, j ∈ {1, . . . ,M} such that (z1k, . . . , z

N
k ) ̸= (z1j , . . . , z

N
j ),

(2.1)

N∑
i=1

zikFi(z
i
k, z

i
−k; sk, s−k) >

N∑
i=1

zikFi(z
i
j , z

i
−j ; sj , s−j).

Assumption (i) on symmetry means that the equilibrium score of type k does
not depend on the order of other types and is consistent with Assumption 2.1(ii)
on the symmetry of the scoring function f . Assumption (ii) implicitly assumes that
the players are risk-neutral and maximize the expected score. By Proposition 2.1
below, it is automatically satisfied if Fi are the equilibrium payoffs in a truth-telling
equilibrium.

We now elaborate on the assumed form of equilibrium payoffs Fi.

Remark 2.1. The crucial assumption in this paper is that the score of a player
in equilibrium depends on the player’s posterior zi of the realized state of nature i,
called local posterior. This is justified if the posterior is a good measure of a player’s
expertise. Note, however, that here we think of expertise regarding the actual state
of nature in this one particular survey rather than about average accuracy over many
surveys. It is the ex-post expertise resulting from the signal a player receives rather
than the ex-ante expertise of obtaining good signals.

There are cases where the planner clearly wants to know about the distribution
of types, such as elections or product market research, where the planner is trying to
estimate what percentage of the population will vote for each candidate or is likely
to buy a product. In such cases, it is intuitive that a respondent with higher local
posterior is a better expert—he has the highest probability of being right about the
actual distribution of responses, which is reminiscent of the concept of maximum
likelihood estimators that maximize the probability of the event that does actually
occur. Moreover, if the survey study has more than one stage, for example, in market
research, a mechanism that results in PLEPS payoffs could be used to identify experts
in the first stage, and then only the experts could be used for further surveys, thus
reducing the cost of the study. It is primarily these applications we have in mind. In
other applications, such as, for example, surveying economists on whether this year’s
inflation will be higher than a certain level, it is less clear that a higher local posterior
on the distribution of types means a higher expertise. This is because in this example
it is not necessarily the case that those who are better at estimating the percentage
of their colleagues who will predict high inflation are also better at predicting the
inflation. In such cases scoring rules other than those with ex-post PLEPS payoffs
might be appropriate. In particular, if the planner is not concerned with identifying
experts but only with truth-telling, the assumption may exclude perfectly reasonable
scoring rules, as in the papers mentioned in the literature survey in the introduction.

We also note that in the present paper we look for the simplest possible equilib-
rium payoffs that describe players’ expertise— this is why the payoff F is not allowed
to depend on other local probabilities that can be derived from the prior. On the
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other hand, the reason why we allow dependence on ex-ante type probabilities sk,
s−k is because in implementations these probabilities agree with type frequencies,
which may be used to make a mechanism budget-balanced. Actually, for budget
balance, it is sufficient to have a dependence on the local conditional probabilities
sik = Pr(Tπ = k | Ω = i), but we allow a dependence on sk, s−k for generality (except
in section 4) as discussed next.

A natural question to ask is whether, for any PLEPS F , there exists a scoring
rule f that implements it in equilibrium. In the implementation section below we
argue that this is, indeed, the case, under the assumption that, instead of on possibly
all sk and s−k, Fi depends only on sik = Pr(Tπ = k | Ω = i). It is also natural to ask
if, for a given f , the equilibrium implementing F is unique. We show below that this
is essentially true for the benchmark example of the Bayesian Truth Serum scoring
rule.

The following result is simple but crucial for our results. It tells us what the score
looks like for the type who mimics another type’s equilibrium strategy. We emphasize
that we need an infinite number of players for this result.

Proposition 2.1. Suppose there exists a strictly separating Bayesian Nash equi-
librium for our game of respondents such that the ex-post payoffs are given by PLEPS
{Fi}. If a respondent of type k deviates from the equilibrium by using the strategy
of type j ̸= k, then his deviation payoff is equal to Fi(z

i
j , z

i
−j ; sj , s−j). That is, if

a player of type k mimics the equilibrium strategy of type j, then his payoff is given
by the equilibrium evaluation corresponding to type j.

This is indeed so, because every type is represented by infinitely many players, the
equilibrium payoffs are strictly separating, and the scoring function f is symmetric in
their responses. See the proof of Proposition 2.1 in section 6.

We have the following negative result, proved in section 6, when the number of
players is finite.16

Proposition 2.2. Assume (only in this proposition) a finite number of players
but at least two players. Then there exists no budget-balanced PLEPS.

We also note that even a nonbudget-balanced version of BTS is not incentive-
compatible when there are finitely many players.

Ex-ante versus ex-post payoff: Implementation. Even when identifying
states of nature with possible empirical frequencies of responses, asking about poste-
rior probabilities of state of nature is likely to be prohibitively complex in practice,
because it would require respondents to provide a distribution over all possible em-
pirical frequencies. Thus, in practice, the planner who wants the mechanism to result
in ex-post payoffs Fi when the players play the truth-telling equilibrium would like
to find a way to induce those ex-post payoffs by promising to pay the players based
on ex-ante scores that require much simpler inputs than the players’ beliefs about the
distribution of the empirical frequencies. We discuss this issue in the implementation
section, section 4, and here we just mention the following. Our benchmark example
of a PLEPS is the classical logarithmic scoring rule payoff

Fi(z
i
k, z

i
−k; sk, s−k) = log zik.

Prelec [24] showed that the budget-balanced version of this payoff can be implemented
by, in addition to asking (infinitely many) respondents to declare their own type

16We leave for a future study a more thorough analysis of the case with a finite number of players.
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(the multiple-choice question), also asking them what they think is the percentage
of other types in the population, that is, the empirical frequencies of each choice in
the multiple-choice question. It is much easier for the respondents to provide their
estimates of empirical frequencies than their estimates of the probability distribution
of the empirical frequencies. In the logarithmic case, this means that a respondent of
type k is not asked for zik’s and is not promised log zik; rather, he is asked for simpler
inputs that determine his promised score via a specific function f (called Bayesian
Truth Serum), and the value of the score turns out to be equal to log zik when the
players play the truth-telling equilibrium.

3. Possible equilibrium payoffs.

3.1. Logarithmic equilibrium payoffs. In this subsection, we present exam-
ples of PLEPSs and consider the question of whether logarithmic equilibrium payoffs
or simple modifications thereof are the only possible PLEPSs.

3.1.1. The benchmark example— the logarithmic function. The canonical example
of a PLEPS (ignoring budget-balancing) is the logarithmic function

Fi(z
i
k, z

i
−k; sk, s−k) = log zik.

More precisely, a player’s equilibrium payoff is the logarithm of the posterior prob-
ability of the state of nature given his type. It is well known and straightforward
to verify that this indeed satisfies the strict separation inequality (2.1). This is so
because of the well-known Gibbs inequality, which says that, for a probability vector
(p1, . . . , pN ),

(3.1) 0 = min
qi⩾0,

∑
i q

i=1

N∑
i=1

pi[log pi − log qi].

The last equality can be verified by considering the problem

(3.2) 0 = min
qi

{ N∑
i=1

pi[log pi − log qi] + λ
∑
i

qi
}
,

where λ is a Lagrange multiplier for the constraint
∑

i q
i = 1. The first-order condi-

tions pi/qi = λ for the problem are satisfied with qi = pi.
The question arises of whether the log function is the only PLEPS (modulo bud-

get balancing). The answer is negative in general, and we present a counterexample
in what follows. However, we next show that under mild additional conditions loga-
rithmic equilibrium payoffs are, in fact, the only possible PLEPSs.

3.1.2. Other examples of PLEPSs. Let us first note that there are variations of
the logarithmic equilibrium payoffs that produce equivalent scores when we require
budget balance. For instance, for some function G symmetric in all the arguments
and for some constant K, consider the function

F (zk, z−k) = log zk −K
∑
j ̸=k

log zj +G(z1, . . . , zM ),

where the dependence on the state of nature i is suppressed. This is a PLEPS function,
which can be verified in the same way as for problem (3.2). However, it is not
really different from logarithmic equilibrium payoffs if we insist on budget balance,
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because, as is straightforward to check, if we add the constant term that makes it
budget-balanced, we get the same equilibrium payoffs as for the budget-balanced
logarithmic equilibrium payoffs.

We now present a PLEPS that has higher-order terms that make it distinct from
the logarithmic PLEPS even if we make it budget-balanced.

Example 3.1. Consider the case with three types, M = 3, denote

pi = zik, (qi, ri) = zi−k,

and define the function

F (p, q, r) = K log p+ p4 − 2p3(q + r)− 6p(qr2 + q2r).

It is straightforward to verify that, for large enough K, this function satisfies the strict
separation inequality (2.1). This is because the first-order conditions (FOCs) for the
Lagrangian optimization problem

min
qi

{∑
i

pi[F (pi, qi, ri)− F (qi, pi, ri)] + λ
∑
i

qi
}

read as

(3.3) pi[∂pF (qi, pi, ri)− ∂qF (pi, qi, ri)] = λ

for some Lagrange multiplier λ, where ∂xF is the derivative w.r.t. x. These FOCs
are satisfied for the above function with qi = pi. For large enough K, the above
FOCs are also sufficient conditions for optimality, because the second-order optimality
conditions are also satisfied, which implies (2.1).

Remark 3.1. Even though there are “strange” PLEPS functions Fi as in the ex-
ample above, as we explained in the introduction, the difference in two equilibrium
payoffs is proportional for all of them to the difference of logarithmic payoffs, up to
the first order. This is also true if Fi depends on type probabilities sk, under the
conditions of Lemma 3.1 below.

We next identify conditions under which there can be no second-order terms,
and the budget-balanced logarithmic equilibrium payoff is the only budget-balanced
PLEPS.

3.2. When are equilibrium payoffs logarithmic? We assume17 in this sec-
tion that N ⩾ 3. As we have just shown, the difference in the ex-post scores of
two types is equal to the difference of the log scores up to the first order. We now
find conditions such that the higher-order terms cannot appear, and any PLEPS is
essentially a logarithmic equilibrium payoff.

We proceed as follows:
(i) We first state an assumption on the second-order mixed derivative of the

difference in equilibrium scores of two types;
(ii) we then show that this assumption implies an additive representation of the

equilibrium payoff of a given type—the equilibrium payoff is a sum of a term that
does not depend on the posteriors of other types and a term that is symmetric in
type;

17It is well known that there are quadratic scoring rules that are strictly separating when N = 2
for all priors.
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(iii) finally, we show, under a smoothness assumption, that such additive repre-
sentation is sufficient to imply logarithmic equilibrium payoffs.

For ease of notation, we continue to assume that M = 3 and use the above
notation pi, qi, ri for the local posteriors of the three types. We also denote by sp,
sq, sr the corresponding type probabilities. This does not impair the generality, and
the same proof works for more than three types.

The following is the assumption on “separation of variables” that we need; not
surprisingly, in light of the first-order approximation above, it is an assumption on the
second-order properties of the equilibrium payoffs. In particular, it is weaker than the
assumption that the difference in equilibrium payoffs of two types does not depend
on other types.

Assumption 3.1. For all i, and all type probabilities sp, sq, sr, the second mixed
derivative (which is assumed to exist)

∂pq
[
Fi(p

i, qi, ri; sp, sq, sr)− Fi(q
i, pi, ri; sq, sp, sr)

]
of the difference in scores of two types with local posteriors pi and qi, respectively,
does not depend on other types’ local posteriors ri.

The assumption says that the (mixed) “sensitivity” of the difference in equilibrium
payoffs to the corresponding types is not affected by other types.

We now state the following additive representation result (for a proof, see sec-
tion 6).

Proposition 3.1. Consider a PLEPS {Fi} satisfying Assumption 3.1. Suppose
that, for some p0 ∈ (0, 1) and for any fixed type probabilities sp, sq, sr, the function
Fi(p

i, qi, ri; sp, sq, sr) can be expanded as an infinite Taylor series around a point
(pi, qi, ri) = (p0, . . . , p0) ∈ (0, 1)M . Then the following Additive Representation (AR)
holds:

(3.4) Fi(p
i, qi, ri; sp, sq, sr) = Gi(p

i; sp, sq, sr) +Hi(p
i, qi, ri; sp, sq, sr),

where Hi is a function symmetric in all the pairs (pi, sp), (q
i, sq), (r

i, sr), i = 1, . . . , N .

The main result of this section is the following.

Theorem 3.1. Consider a PLEPS consisting of functions Fi(p
i, qi, ri; sp, sq, sr),

i = 1, 2, . . . , N, that satisfy the assumptions of Proposition 3.1. Assume also that Fi

is such that Gi is symmetric in all sk variables for every fixed pi, i = 1, . . . , N . Then,
for some functions λ and B of probabilities of types S = (sp, sq, sr),

Gi(p
i; sp, sq, sr) = λ(S) log pi +Bi(S).

In particular, if the corresponding PLEPS is budget-balanced, the equilibrium payoff
to the respondent with local posterior pi is given by

(3.5) Fi(p
i, qi, ri; sp, sq, sr) = λ(S) log pi − λ(S)

∑
t=p,q,r

sit log t
i,

where sio is the conditional probability of the type o in the state i, o = p, q, r.

Remark 3.2. We emphasize again that this result is obtained by restricting only
equilibrium properties of a scoring rule, without restrictions on the off-equilibrium
properties.
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Proof of Theorem 3.1. Since Fi is a PLEPS, it satisfies the separation inequal-
ity (2.1). By the stated symmetry of Hi, the function Gi also satisfies the same type
of inequality, which can be written as

(3.6) 0 = min
qi

{∑
i

piGi(p
i; sp, sq, sr)−

∑
i

piGi(q
i; sp, sq, sr)

}
.

According to [28], this property implies that Gi is continuously differentiable in pi,
i = 1, . . . , N . Hence, by Lemma 3.1 below, which identifies the first-order condition
for this minimization problem, there exists a Lagrange multiplier λ(S) independent
of p such that (suppressing the dependence on i)

λ(S)
1

pi
= ∂pG(pi; sp, sq, sr).

This implies the logarithmic form of Gi. Equation (3.5) is then straightforward to
verify. Theorem 3.1 is proved.

The following “Lagrange optimization” lemma is proved in section 6. It gives
a first-order condition for the IC minimization problem in (3.7) below.

Lemma 3.1. In the above notation, assume that functions Fi(p
i, qi, ri; sp, sq, sr),

i = 1, 2, . . . , N, are continuously differentiable in pi and qi, and, for each fixed pi, qi, ri,
are symmetric w.r.t. any s. The above strict separation inequality (2.1) can be written
as

(3.7) 0 = min
qi

{∑
i

piFi(p
i, qi, ri; sp, sq, sr)−

∑
i

piFi(q
i, pi, ri; sp, sq, sr)

}
,

that is, the minimum over the probabilities qi is attained at qi = pi. Then there exists
a function λ(S) = λ(sp, sq, sr) such that, for all i, pi, qi, ri, sp, sq, and sr,

(3.8) λ(S) = pi[∂pFi(p
i, pi, ri; sp, sq, sr)− ∂qFi(p

i, pi, ri; sp, sq, sr)].

3.3. Ranking by (local) posteriors. Our next aim is to show that PLEPS pay-
offs necessarily rank the players according to the relative ranking of the corresponding
local posteriors. That is, when using a scoring system resulting in an equilibrium with
PLEPS payoffs, the planner knows which players are better experts than others if she
considers the level of the local posterior equivalent to the level of expertise.18 We em-
phasize that for this result it is crucial to assume that the equilibrium scores depend
only on the local posteriors of the realized state of nature.

The main result of this section is as follows.

Theorem 3.2. PLEPS payoffs {Fi} are strictly increasing in the posterior prob-
abilities of the true state of nature; that is, for any prior distribution matrix Q,

(3.9)
if j, k ∈ {1, . . . ,M} and zik > zij ,

then Fi(z
i
k, z

i
−k; sk, s−k) > Fi(z

i
j , z

i
−j ; sj , s−j).

In other words, if the planner wants to determine the relative expertise of players
that receive exchangeable signals, it is sufficient to design a scoring system which

18If they are not ranked by their local posteriors, then, in the pregame phase, they might want
to avoid collecting information about the true state of nature, which is undesirable.
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allows only for equilibria that are realized via a PLEPS. Thus, inequality (2.1) not
only guarantees strict separation of types but also has the posterior-based ranking as
a direct consequence.

Theorem 3.2 is a generalization of the results in the literature on the monotonicity
implied by incentive compatibility of proper scoring rules (see, e.g., [19], [28], [29],
and [30]). Authors of those papers considered only the nongame version of the problem
with one respondent only. Moreover, the argument in these papers was based mostly
on analytic methods, while our proof is completely algebraic.19

The intuition behind the result is that if type A’s posterior probability of a state
is higher than that of type B, but type A’s score in that state is lower, then, he would
be better off pretending to be type B. To be more precise, consider the case with
only two types, A and B, and two states of nature, 1 and 2. Denote by pA and pB the
posterior probabilities of state 1, and suppose, without loss of generality, pA > pB .
There are only two possible PLEPS scores in each state i, denoted Fi(pA, pB) and
Fi(pB , pA) (suppressing the dependence on S). Denote by Di the difference in scores,
DA

i = Fi(pA, pB) − Fi(pB , pA). The claim is that, in equilibrium, type A’s higher
posterior probability of state i implies a higher score in that state, that is, positive
DA

i . To argue this, we first note that by the strict separation inequality, player A’s
expected value of the differences in scores (that is, the weighted average ofDA

1 andDA
2

with weights pA and 1− pA) is positive. By the same token, the weighted average of
DA

1 and DA
2 with weights pB and 1−pB is negative. The only way this can be possible

when pA > pB (thus also when 1−pA < 1−pB) is to have DA
1 > 0 and DA

2 < 0. Thus,
indeed, the type with higher posterior probability of a state receives a higher score in
that state. In other words, if the type with higher posterior probability of a state does
not receive a higher score in that state, he would adopt the other type’s strategy. In
section 6, the above simple argument is formulated and proved in Lemma 6.1, which
is then extended to any number of types and states.

4. Implementation. We first show how to implement any PLEPS, up to an
additional mild restriction, and then we elaborate on result from [24] to the ef-
fect that the Bayesian Truth Serum algorithm provides a feasible implementation
of budget-balanced logarithmic equilibrium payoffs of (3.5) (under standard Bayesian
and rationality assumptions); see also [25]. We also comment on the uniqueness of
equilibrium under the BTS scoring rule.

4.1. PLEPS actual implementation. By implementing an equilibrium pay-
off system F , we mean designing a questionnaire and a scoring rule such that the
associated game allows an equilibrium with payoffs given by F .

As before, we assume that there are infinitely many respondents. We consider the
case where the respondents are asked to choose the correct answer to a multiple-choice
question (to declare their type) and assume that the possible states of nature take
values in the set of probability distributions of the responses to the multiple-choice
questions.

19Theorem 3.2 is formulated in the spirit of theorems that relate incentive compatibility to mono-
tonicity in types if we equate types with posterior probabilities; see [22] for an early theorem of that
type and [31] for a comprehensive treatment. However, our framework is different from the standard
mechanism design framework, where we have random states of nature, so that incentive compatibility
is a property of a weighted sum (expected value conditional on type) and not of the value itself. As
a consequence, the methodology of the aforementioned papers cannot be applied.
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The following result shows that any PLEPS {Fi} such that Fi depends only on
local conditional type probabilities sik = Pr(Tπ = k | Ω = i) can be implemented by
using Fi to compute the value of the scoring function f in state i.

Proposition 4.1. Consider a PLEPS with type k payoff in equilibrium state i
given by Fi(z

i
k, z

i
−k; s

i
k, s

i
−k); that is, in addition to zjk’s, the payoff depends only on

local conditional type probabilities sik = Pr(Tπ = k | Ω = i) instead of on possibly all
ex-ante type probabilities contained in vector sk. Then this PLEPS can be implemented
by an agnostic planner. More precisely, there exist questions that the planner can ask

such that she can form estimates î, ẑ î
k , and ŝ î

k of the true state of nature i and the
true probabilities zik and sik from these questions, and, if the planner announces that

a player who declares type k receives Fî(ẑ
î
k , ẑ

î
−k; ŝ

î
k, ŝ

î
−k), then truth-telling represents

an equilibrium.

Proof. Suppose the planner asks the following from the respondents:

(a) to choose the correct answer to the multiple-choice question;

(b) to state the possible states of nature, that is, to declare what the set of the
possible distributions of the responses to (a) is, and to state their perceived probability
(z’s) for each of those distributions.

To guarantee that truth-telling represents an equilibrium, the planner announces
that she computes the scores Fi as follows. Her estimate î of the true state of nature i
is given by the frequencies for each particular answer to the multiple-choice question to

be chosen by the respondents. She also makes the estimates ŝ î
k of the type probabilities

equal to those frequencies. The estimates ẑ î
k are chosen among all probabilities zjk,

j = 1, . . . , N , which the player provides as the answer to (b). Having all the required

estimates, the planner computes the corresponding values of Fî’s by using ẑ î
k ’s and

ŝ î
k as the arguments of the function Fî.

Suppose now that all players, except the player π of type k, play the truth-telling
strategy. If the player π also plays the truth-telling strategy, his payoff in the state i
is Fi(z

i
k, z

i
−k; s

i
k, s

i
−k), because i, z’s, and s’s are correctly estimated by the plan-

ner. If the player π of type k declares a type j ̸= k, his payoff in the state i is
Fi(z

i
j , z

i
−j ; s

i
j , s

i
−j), because, with an infinite number of players and all except player

π being honest, i, z’s, and s’s are again correctly estimated by the planner. By the
IC inequality (2.1), the player’s π expected value of the payoff when he is dishonest
is less than the expected value of the payoff when he is honest, and he would not
deviate. Proposition 4.1 is proved.

Remark 4.1. The above implementation procedure is not robust— in practice,
the number of different outcomes of responses to question (b) will be higher than the
number of types, and different respondents will consider different distributions of the
responses to (a) as the possible outcomes for the states of nature. Thus, some approx-
imate grouping of the responses would have to be done. Moreover, responding to (b)
puts a large burden on the subjects, because they have to provide possible frequencies
of the responses to (a) and distributions over those frequencies. For budget-balanced
logarithmic equilibrium payoffs the story is different, as discussed in the next section:
the Bayesian Truth Serum (BTS) scoring rule of [24] implements budget-balanced
logarithmic equilibrium payoffs using inputs which are simpler than those obtained
from the responses to (b), and a procedure which is robust (that is, no grouping of
similar responses is necessary).
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4.2. Implementing logarithmic equilibrium payoffs by the Bayesian
Truth Serum. We first recall the definition of the Bayesian Truth Serum (BTS).
We specify the model in the notation of section 2. We assume that there are infinitely
(countably) many respondents, labeled π ∈ R. The truthful opinion of respondent π
is represented by a pair of M -tuples (Xπ;Y π) = ((Xπ

1 , . . . , X
π
M ); (Y π

1 , . . . , Y π
M )) of

r.v.’s. Here, Xπ
i ’s take value 0 or 1, and only one is equal to 1. This is interpreted as

choosing an answer from a set of M possible answers. The r.v.’s Y π
i ’s take values in

[0, 1] and
∑M

i=1 Y
π
i = 1. The latter represent the declared opinion of the respondent π

about what percentage of respondents choose i as the correct answer.
As in section 2, we assume that the infinite sequence (Xπ, π ∈ R) is exchangeable.

Hence, by de Finetti’s theorem, there is anM -dimensional (potentially random) vector

X = lim
n→∞

1

n

n∑
r=1

Xπ

with values in [0, 1]M and such that the Xπ’s are conditionally independent given X.
We interpret X as the true state of nature, which was denoted previously by Ω.

We denote by xj the sample mean of the declared values xπ
j of Xπ

j over all
respondents π, and by log yj the sample mean of all declared values log yπj of log Y π

j

(so that yj is their geometric mean)

log yj := lim
n→∞

1

n

n∑
r=1

log yπj .

Definition 4.1. The Bayesian Truth Serum (BTS ) score function for the re-
spondent π is given by

BTSπ =

M∑
j=1

xπ
j log

xj

yj
+

M∑
j=1

xj log
yπj
xj

.

Prelec [24] proved that BTS is an incentive-compatible mechanism in the sense
that a respondent’s payoff is maximized by declaring the true opinion if everyone
else declares their true opinion. Moreover, we can state a new “uniqueness” result,
namely, that with the BTS mechanism any budget-balanced strict (Bayesian) Nash
equilibrium is separating.

Remark 4.2. It is a natural convention to define log(xj/yj) = 0 if xj = yj = 0,
and xj log(y

π
j /xj) = 0 if xj = 0. Note that if xπ

j = 0 for all but a finite number of π’s,
so that xj = 0, then it is optimal for every player π to correctly predict yπj = 0, so

that yj is naturally defined to be zero.20 Under these conventions, the only possible
budget-balanced SNEs are those that are separating, and where the players of the
same type have the same strategies. Let us justify this.

(i) First, it is impossible to have an SNE in pure strategies where two individuals
of the same type choose different strategies and hence have different expected scores:
suppose they have different strategies in this SNE. If player 1 switches to strategy 2,
he would have a strictly lower value, by definition of “strict,” and this value would be
the same as player 2’s value, because with an infinite number of players, the value of

20This is so because increasing yj does not change the score, while decreasing yk for k ̸= j
decreases the score if xk > 0.
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one player is not affected by that of another player. For the same reason, if player 2
switches to strategy 1, his value would be equal to the original player 1’s value,
which we argued above is strictly larger. This means that player 2 is not playing an
equilibrium strategy to start with, which is a contradiction.

(ii) Second, two individuals of different types cannot have the same strategies in
an SNE: if they do, by (i) all other players of their types would also choose the same
strategy, which means that there would be a type k that nobody would “claim,” that
is, a k such that xπ

k = 0 for all π. Since we assume budget balance, there is a player
with a nonpositive score. If this player deviates to type k, by the above natural
conventions his BTS score would be zero, which is weakly better than not deviating,
so the equilibrium could not be strict.

Because of this remark and since the truth-telling equilibrium is focal among
strictly separating equilibria, from now on we consider xi’s and yi’s to be the truthful
responses.

For the reader’s convenience and to provide additional details, we recall the result
of Prelec [24] to the effect that, in such a truth-telling equilibrium, the BTS score
is equal to the budget-balanced logarithmic payoff (a detailed proof is provided in
section 6).

Theorem 4.1 (see [24, Theorem 2]). Under the above assumptions, when the
players play the truth-telling equilibrium, BTS scoring results in budget-balanced log-
arithmic equilibrium payoffs. More precisely, in the equilibrium we have

(4.1) BTSπ = log Pr(X = x | Xπ = xπ)− lim
n→∞

1

n

n∑
s=1

log Pr(X = x | Xγ = xγ)

or (denoting xπ = k, xγ = j, x = i)

(4.2) BTSπ = log Pr(Ω= i | Tπ = k)−
M∑
j=1

Pr(Tπ = j | Ω= i) log Pr(Ω= i | Tπ = j).

Thus, the BTS score corresponds to the PLEPS function Fi, which is logarithmic.
In other words, BTS implements budget-balanced logarithmic equilibrium payoffs by
asking the players just two things: to choose an answer from the multiple-choice list,
and to predict what percentage of players will choose a particular answer.

To conclude, this section confirms the appeal of BTS because of the following
three properties: BTS always leads to a strictly separating equilibrium wherein the
players of the same type get the same score; it results in the benchmark, logarithmic
ex-post scores; and it is easily implemented. As far as we know, no other mechanism
has all three properties.

5. Conclusions. We consider the problems of extracting true opinions from
a large group of respondents and of ranking them according to their posteriors on the
realized state of nature (local posteriors) in the case where the planner is agnostic
about the distribution of the states of nature and the respondents’ types. Thus, the
planner has to design a universal mechanism that would work for all such distributions.
One such mechanism is based on ex-post logarithmic payoffs. We prove the following
results for equilibrium payoffs that are determined only by the local posteriors and
type probabilities: (i) under assumptions on the sensitivity of score differences, the
incentive-compatible budget-balanced equilibria necessarily result in logarithmic pay-
offs; (ii) for arbitrary mechanisms, any incentive-compatible equilibrium necessarily
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ranks the respondents according to the relative size of their posterior probabilities of
the realized state of nature. We elaborate on the result from [24] that the logarithmic
equilibrium payoffs can be implemented using the BTS algorithm, and we note that
other equilibrium payoff rules can also be implemented but may require responses to
more complex questions.

Our setup does not allow for players’ actions other than costless expression of
their opinions. Thus, developing a more general analysis of robust mechanisms in our
framework, where the players also would draw utility from costly actions, is an unfin-
ished task. In our model the experts have no reason to lie but need positive incentive
to tell the truth. One could envision a framework wherein players have some reason to
lie, for example, they do not care about their own payoff but want to manipulate the
results so as to have some other type to obtain the highest score, or a framework with
known utilities and unknown correlation of types, where the planner wants to elicit
information about the correlations without disturbing the stated utilities; for exam-
ple, the case where the planner wants to ask players to predict what others will do,
but she does not want their payoff for making these predictions to change any of the
other incentives in the game. Finally, ours is a static game, while many applications
are dynamic by nature.

6. Appendix.

Proof of Proposition 2.1. Our aim is to show that, if a player of type k mimics the
equilibrium strategy of type j, then his payoff is given by the equilibrium evaluation
corresponding to type j.

First, recall that a pure strategy for the player π is a map σπ(tπ), which sends the
player’s type to his response choice aπ. The profile of all respondents’ pure strategies
is denoted by σ(t) with entries σπ(tπ), and the profile excluding player π is denoted by
σ−π(t−π). The score for the player π is given by f(σπ(tπ), σ−π(t−π)). Let us denote
by σ the equilibrium strategy profile of all respondents and define ρ to be the strategy
profile that is identical to σ, except that a specific player π of type k ̸= j plays the
strategy σπ(j) corresponding to type j. Let γ denote a player of type j. Then the
payoff to the mimicry strategy, when π plays j, is

f(ρπ(k), ρ−π(T−π)) = f(ργ(j), ρ−s(T−s)) = f(σγ(j), ρ−s(T−s))

= f(σγ(j), σ−s(T−s)),

because σ−s(T−s) and ρ−s(T−s) differ only in π’s response, and this does not matter
with infinitely many players. This is because every type will be represented by infin-
itely many players, and f is symmetric in their responses. More precisely, to justify
the last equality above, we argue as follows. We need to prove that if exactly one of
−s respondents deviates from the equilibrium response, then the score f of respon-
dent γ does not change. Since σ corresponds to a strictly separating equilibrium, the
sequence {σ−s(T−s)} consists of M different K-tuples, each repeated infinitely many
times. If a respondent of type k deviates to type j, that means one repetition (among
infinitely many) of K-tuples corresponding to type k becomes an additional repeti-
tion (among infinitely many) of K-tuples corresponding to type j. We can then define
a permutation of the sequence {σ−s(T−s)}, which is equal to the deviation sequence
{ρ−s(T−s)}, and, by symmetry of f , we prove the last equality in the equation above.
Proposition 2.1 is proved.

Proof of Proposition 2.2. Recall that it is required to prove there is no budget-
balanced PLEPS for finitely many players.
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For notational simplicity, we consider the case M = 2 with two types only, type 1
and type 2, with at least two players, and with N = 3, the states of nature 1 being
(2, 0) (two of type 1, zero of type 2), state 2 being (1, 1), and state 3 being (0, 2). The
proof adjusts easily to the case M > 2, since we can consider only those matrices Q
wherein the two types are isolated in a particular block.

We consider a Z matrix of the form(
p 1− p 0
0 q 1− q

)
,

where 0 < p, q < 1 (notice that the rows correspond to types and columns to states
of nature).

With infinitely many players, any PLEPS functions Fi would depend on the
posteriors based on the state of nature i corresponding to the declared types. For
example, if the true state is (2, 0) but one respondent declares herself as type 2, then
the payoffs correspond to state (1, 1).

The expected score of the truthful response for type 1 would be

pF1(p, p) + (1− p)F2(1− p, q).

If one respondent lies and declares his type 1 as type 2, then the expected value is

pF2(q, 1− p) + (1− p)F3(1− q, 1− q)

or, equivalently,

pF1(p, p) + (1− p)F2(1− p, q) > pF2(q, 1− p) + (1− p)F3(1− q, 1− q)

or
p[F1(p, p)− F2(q, 1− p)] + (1− p)[F2(1− p, q)− F3(1− q, 1− q)] > 0.

Similarly, when one type 2 respondent lies, the separating inequality reads as

qF2(q, 1− p) + (1− q)F3(1− q, 1− q) > qF1(p, p) + (1− q)F2(1− p, q).

This becomes

q[F2(q, 1− p)− F1(p, p)] + (1− q)[F3(1− q, 1− q)− F2(1− p, q)] > 0.

Suppose now that p ̸= q. Without loss of generality, we consider the case p > q and
apply Lemma 6.1 to the above two inequalities. We have

F1(p, p)− F2(q, 1− p) > 0, F2(1− p, q)− F3(1− q, 1− q) < 0.

Assuming budget balance holds, we must have F1(p, p) = 0 = F3(1− q, 1− q), and so

(1− p)F2(1− p, q) + qF2(q, 1− p) = 0.

Note that F1(p, p) = 0 leads to F2(q, 1 − p) < 0, while F3(1 − q, 1 − q) = 0 leads to
F2(1− p, q) < 0. This clearly contradicts the last equality. Proposition 2.2 is proved.

Proof Lemma 3.1. Let us prove (3.8). By the standard result on optimization
under constraints (in our case the constraint is

∑
i q

i = 1), there exists a Lagrange
multiplier function λ(p⃗, r⃗, sp, sq, sr), where, for example, p⃗ = (p1, . . . , pN ), such that

(6.1) pi[∂pFi(p
i, pi, ri; sp, sq, sr)− ∂qFi(p

i, pi, ri; sp, sq, sr)] = λ(p⃗, r⃗, sp, sq, sr).
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We fix arbitrary values of i and pi, ri. Since N > 2, we can set pj = x, rj = y, for
a fixed but arbitrary j ̸= i, for any 0 < x < 1 − pi, 0 < y < 1 − ri. By the above
equality, λ(p⃗, r⃗, S) is a function λ(pi, ri, S) of pi, ri, S only, and so

x[∂pFj(x, x, y;S)− ∂qFj(x, x, y;S)] = λ(pi, ri;S)

for all 0 < x < 1 − pi, 0 < y < 1 − ri. Since we can choose pi, ri to be arbitrarily
small, it follows that, for fixed S, the left-hand side is constant across all values of
x, y in (0, 1), and because i is arbitrary, λ(S) does not depend on any of the values
pi, ri, i = 1, . . . , N . Lemma 3.1 is proved.

Proof Proposition 3.1. We suppress the dependence on i, sp, sq, and sr. We want
to show that

F (p, q, r) = G(p) +H(p, q, r),

where H is symmetric in all pairs (p, sp), (q, sq), (r
j , srj ).

For p0 ∈ (0, 1) denote

p = p− p0, q = q − p0, r = r − p0.

From the smoothness and the symmetry property of F , we can write, for some func-
tions a, b, c, d, e of the type probabilities, by Taylor’s expansion,

F (p, q, r) =

∞∑
n=0

anp
n +

∞∑
n=1

(bqnq
n + bπnr

n) +

∞∑
m,n=1

pm(cqm,nq
n + cπm,nr

n)

+

∞∑
m,n=1

dm,nq
mrn +

∞∑
l,m,n=1

el,m,np
lqmrn,

where, by the symmetry property,

bqn(sp, sq, sr) = bπn(sp, sr, sq), cqm,n(sp, sq, sr) = cπm,n(sp, sr, sq),

dm,n(sp, sq, sr) = dn,m(sp, sr, sq), el,m,n(sp, sq, sr) = el,n,m(sp, sr, sq).

Note that it is sufficient to show that

cπm,n = dm,n, el,m,n = em,l,n,

because then we can write

F (p, q, r) =

∞∑
n=0

[an − bqn]p
n +H(p, q, r),

where H is symmetric in all pairs (pi, sp), (q
i, sq), (r

i
j , srj ).

Let us use Lemma 3.1 to consider the consequences of the strict separation in-
equality (3.7). We have

∂qF (p, p, r)− ∂pF (p, p, r) =

∞∑
n=1

nbqnp
n−1 +

∞∑
m,n=1

cqm,nnp
m+n−1

+

∞∑
m,n=1

dm,nmpm−1rn +

∞∑
l,m,n=1

el,m,nmpl+m−1rn

−
∞∑

n=0

nanp
n−1 −

∞∑
m,n=1

mpm−1(cqm,np
n + cπm,nr

n)−
∞∑

l,m,n=1

el,m,nlp
l+m−1rn.
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We can then write

p ∂qF (p, p, r)− p ∂pF (p, p, r) =

∞∑
n=1

nbqnp
n +

∞∑
m,n=1

cqm,nnp
m+n

+

∞∑
m,n=1

dm,nmpmrn +

∞∑
l,m,n=1

el,m,nmpl+mrn −
∞∑

n=0

nanp
n

−
∞∑

m,n=1

mpm(cqm,np
n + cπm,nr

n)−
∞∑

l,m,n=1

el,m,nlp
l+mrn +

∞∑
n=1

nbqnp
0pn−1

+

∞∑
m,n=1

ncqm,np
0pm+n−1 +

∞∑
m,n=1

dm,nmp0pm−1rn

+

∞∑
l,m,n=1

el,m,nmp0pl+m−1rn −
∞∑

n=0

nanp
0pn−1

−
∞∑

m,n=1

mp0pm−1(cqm,np
n + cπm,nr

n)−
∞∑

l,m,n=1

el,m,nlp
0pl+m−1rn.

By Lemma 3.1, in order to have a PLEPS, this needs to equal (−λ) for all p, r,
which is possible only if

– for rn terms,

(6.2) cπ1,n = d1,n;

– for prn terms,

(6.3) 0 = cπ1,n − d1,n + cπ2,n − d2,n;

– from p2rn terms,

(6.4) 0 = 2(d2,n − cπ2,n) + 3p0(d3,n − cπ3,n) + p0(e1,2,n − e2,1,n);

– for p3rn terms,

(6.5) 0 = 3(d3,n − cπ3,n) + (e1,2,n − e2,1,n) + 4p0(d4,n − cπ4,n) + 2p0(e1,3,n − e3,1,n),

and so on.
So, it is sufficient to show that el,m,n = em,l,n. This follows directly from Assump-

tion 3.1, because then the third mixed derivative of the difference F (p, q, r)−F (q, p, r)
in scores is zero for all p, q, r, that is,

0 =

∞∑
l,m,n=1

lmn el,m,np
l−1qm−1rn−1 −

∞∑
l,m,n=1

lmn el,m,nq
l−1pm−1rn−1.

This contradiction completes the proof of Proposition 3.1.

The following lemma is the key ingredient in proving Theorem 3.2. This result is
a slight extension of Lemma A.1 in [29].

Lemma 6.1 (Schervish [29]). Let 0 < a ⩽ 1, p, q ∈ (0, a), and p > q. If A, B are
real numbers such that

pA+ (a− p)B > 0, q(−A) + (a− q)(−B) > 0,

then A > 0 and B < 0.
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Proof. Notice that A ̸= 0. If this is false, then the above two inequalities should
become (a−p)B > 0 and (a−q)(−B) > 0, which is a contradiction. In order to prove
the lemma, we just need to show that A > 0. Suppose on the contrary that A < 0.
Then B > 0. Since (a − p)B > −pA, we have B > −pA/(a− p) > 0. We then get
0 < q(−A) + (a − q)(−B) < q(−A) + (a − q)pA/(a − p) = Aa(p − q)/(a − p) < 0,
which is impossible. This contradiction shows that A > 0. Lemma 6.1 is proved.

Proof of Theorem 3.2. Recall that we want to prove that PLEPS payoffs are
strictly increasing in the posterior probabilities of the true state of nature.

We suppress the dependence on sk’s in our notation. This is justified because
fixing sk’s does not restrict the choice of any two rows of the Z-matrix, inasmuch as
we can always define Q by qik = ziksk.

We consider three cases separately according to the values of M and N .
Case 1. Let M = 2, N = 2. The matrix Z can be written as[

z11 z21
z12 z22

]
.

If we denote p := z11 , q := z12 , then the matrix Z becomes

Z =

[
p 1− p
q 1− q

]
.

Suppose p > q (which is equivalent to 1− q > 1− p). The IC property (2.1) implies

pF1(p, q) + (1− p)F2(1− p, 1− q) > pF1(q, p) + (1− p)F2(1− q, 1− p),

qF1(q, p) + (1− q)F2(1− q, 1− p) > qF1(p, q) + (1− q)F2(1− p, 1− q).

Hence

p[F1(p, q)− F1(q, p)] + (1− p)[F2(1− p, 1− q)− F2(1− q, 1− p)] > 0,

q[F1(q, p)− F1(p, q)] + (1− q)[F2(1− q, 1− p)− F2(1− p, 1− q)] > 0.

We set a = 1, A = F1(p, q)−F1(q, p), and B = F2(1−p, 1−q)−F2(1−q, 1−p) and
apply Lemma 6.1 from section 6 to the above equations. We obtain F1(p, q) > F1(q, p)
and F2(1− p, 1− q) > F2(1− q, 1− p), which proves the theorem in this case.

Case 2. Assume M ⩾ 3, N = 2. The matrix Z can be written as
z11 z21
z12 z22
...

...
z1M z2M

 .

The entries of the matrix satisfy z2k = 1 − z1k, k = 1, . . . ,M . Take any k, j ∈
{1, . . . ,M} such that z1k > z1j (which is equivalent to z2j > z2k). Using the notation

p := z1k, q := z1j , and the notation zi−j,k for the (N − 2)-tuple, which consists of

{zi1, . . . , ziM} \ {zij , zik}, from (2.1) we get the two equations

pF1(p, q, z
1
−(j,k)) + (1− p)F2(1− p, 1− q, z2−(j,k))

> pF1(q, p, z
1
−(j,k)) + (1− p)F2(1− q, 1− p, z2−(j,k)),

qF1(q, p, z
1
−(j,k)) + (1− q)F2(1− q, 1− p, z2−(j,k))

> qF1(p, q, z
1
−(j,k)) + (1− q)F2(1− p, 1− q, z2−(j,k)).
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Hence, if we define A and B as

A = F1(p, q, z
1
−(j,k))− F1(q, p, z

1
−(j,k)) = F1(z

1
k, z

1
−k)− F1(z

1
j , z

1
−j),

B = F2(1− p, 1− q, z2−(j,k))− F2(1− q, 1− p, z2−(j,k))

= F2(z
2
k, z

2
−k)− F2(z

2
j , z

2
−j),

then from Lemma 6.1 we conclude that A > 0 and B < 0, which proves (3.9) for both
i = 1 and i = 2.

Case 3. Let M ⩾ 2, N ⩾ 3. We put

Z =


z11 z21 . . . zN1
z12 z22 . . . zN2
...

...
...

...
z1M z2M . . . zNM

 .

Let us prove (3.9) for the ith column of the matrix Z. We choose any rows (types)
j, k ∈ {1, . . . ,M}, where j ̸= k. Since the only requirement for the matrix Z is that
its rows are nondegenerate probability distributions, and since the values of Fi depend
only on the quantities in the ith column, in order to complete the proof we need only
show that

(6.6) Fi(p, q, z
i
−(k,j)) > Fi(q, p, z

i
−(k,j))

for every p := zik and q := zij , with 1 > p > q > 0, and for any choice of zi−(k,j) ∈
(0, 1)M−2 (if M = 2, this last requirement would be unnecessary).

In order to use (2.1) and apply Lemma 6.1, we modify the matrix Z without

changing its ith column by finding a matrix Q̃ with the same type of probabilities sℓ
as the original matrix Q. As mentioned above, we can always do that by choosing
qℓi = ziℓsℓ. Moreover, looking at the arguments in Cases 1 and 2, we see that we apply
Lemma 6.1 to the payoff differences in two different states which correspond to two
different columns of matrix Z. Without loss of generality, we assume i ̸= 1. More
precisely, instead of working with the original matrix Z, we work with the following
Z-matrix where the ith column is not changed: given 0 < ε < 1 and a := 1 − ε, we
define the matrix Z̃ by

Z̃t
l :=



ztl if l ∈ {1, . . . ,M} \ {j, k},
p if l = k, t = i,

q if l = j, t = i,

a− p if l = k, t = 1,

a− q if l = j, t = 1,
ε

N − 2
otherwise,

where p, q are arbitrary values in (0, a) with p > q. Hence, for every choice of ε and

p and q, we see that Z̃ is a Z-matrix, which differs from Z only in the jth and kth
rows, and these rows read asa− p

ε

N − 2
. . .

ε

N − 2
p

ε

N − 2
. . .

ε

N − 2

a− q
ε

N − 2
. . .

ε

N − 2
q

ε

N − 2
. . .

ε

N − 2

 .
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Applying the IC property (2.1) to the jth and kth rows, we get

N∑
t=1

z̃ t
kFt(z̃

t
k , z̃

t
−k) >

N∑
t=1

z̃ t
kFt(z̃

t
j , z̃

t
−j),

N∑
t=1

z̃ t
j Ft(z̃

t
j , z̃

t
−j) >

N∑
t=1

z̃ t
j Ft(z̃

t
k , z̃

t
−k).

Observe that z̃ t
j = z̃ t

k = ε/(N − 2) for t ∈ {1, . . . , N} \ {1, i}. Hence both sides of

the above inequalities involve the terms [ε/(N − 2)]Ft

(
ε/(N − 2), ε/(N − 2), zt−(j,k)

)
,

which cancel each other. Now these inequalities can be written as

(a− p)F1(a− p, a− q, z1−(j,k)) + pFi(p, q, z
i
−(j,k))

> (a− p)F1(a− q, a− p, z1−(j,k)) + pFi(q, p, z
i
−(j,k)),

(a− q)F1(a− q, a− p, z1−(j,k)) + qFi(q, p, z
i
−(j,k))

> (a− q)F1(a− p, a− q, z1−(j,k)) + qFi(p, q, z
i
−(j,k)).

If we consider

A = Fi(p, q, z
i
−(j,k))− Fi(q, p, z

i
−(j,k)),

B = F1(a− p, a− q, z1−(j,k))− F1(a− q, a− p, z1−(j,k)),

we see from Lemma 6.1 that A > 0, which proves inequality (6.6) for a > p > q > 0.
By letting ε → 0, we obtain (6.6) for 1 > p > q > 0.

Theorem 3.2 is proved.

Proof of Theorem 4.1. We need to derive a representation of the BTS score in
terms of the logarithms of the local posteriors.

Let us denote
pij = Pr(Xπ

i = 1, Xγ
j = 1),

where we use the fact that, by exchangeability, the right-hand side does not depend
on the choice of π ̸= γ. So,

(6.7) Pr(Xπ = xπ | Xγ = xγ) =
pij∑M

k=1 pkj
.

We need the following three properties.
Property I: yπj =

∑M
i=1

(
xπ
i pij/

∑M
k=1 pki

)
.

Property II: log Pr(Xγ = xγ | Xπ = xπ) =
∑M

j=1 x
γ
j log y

π
j , where conditioning

indicates conditioning on the truthful response, and hence on the signal.
Property III: log Pr(Xπ = xπ | X = x) =

∑M
k=1 x

π
k log xk.

Property I holds as a Bayesian game is assumed: the respondents compute condi-
tional probabilities in a Bayesian fashion. Property II is a consequence of Property I
and equation (6.7). For Property III, let ℓ be such that xπ

ℓ = 1. De Finetti’s theorem
implies

Pr(Xπ = xπ | X = x) = xℓ =

M∑
k=1

xπ
kxk.

The sum on the right always has only one nonzero term. Therefore, taking the
logarithms of both sides, we arrive at Property III.
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Next, let xγ be such that

xk = lim
n

1

n

∑
s

xγ
k .

Note that we can use exchangeability to reorder the respondents so that π = 1
and γ = 2, . . . , n+1. For such choices of π and γ we have log Pr(Xπ = xπ|Xγ = xγ) =∑M

j=1 x
π
j log(y

γ
j ). We may always omit those γ such that Pr(Xγ = xγ) = 0. Thus, we

actually have only finitely many choices for an M -tuple xγ such that 0 < Pr(Xγ =
xγ) < 1, and there is a lower bound A and an upper bound B such that 0 < A ⩽
Pr(Xγ = xγ) ⩽ B < 1. Now it follows that A = n

√
An ⩽ n

√∏n
s=1 Pr(X

γ = xγ) ⩽
n
√
Bn = B. The log function is continuous, and so log lim f = lim log f as long

as f and lim f are both finite and strictly positive. We conclude that the limit
limn→∞

∏n
s=1 Pr(X

γ = xγ) exists and is not zero, and we can take the logarithm
outside or inside the limit.

Next, using the above conclusion, from Properties I–III we get

M∑
k=1

xk log y
π
k = lim

n

1

n

∑
s

log Pr(Xγ = xγ | Xπ = xπ),

M∑
k=1

xπ
k log yk = lim

n

1

n

∑
s

log Pr(Xπ = xπ | Xγ = xγ).

Hence, using the Bayes rule,

BTSπ =

M∑
k=1

xπ
k log

xk

yk
+

M∑
k=1

xk log y
π
k

= log Pr(Xπ = xπ | X = x) + lim
n

1

n

∑
s

log Pr(Xγ = xγ | Xπ = xπ)

− lim
n

1

n

∑
s

log Pr(Xπ = xπ | Xγ = xγ)

= log

(
Pr(Xπ = xπ | X = x) lim

n

n∏
s=1

Pr1/n(Xγ = xγ | Xπ = xπ)

Pr1/n(Xπ = xπ | Xγ = xγ)

)

= log

(
Pr(Xπ = xπ | X = x)

limn

∏n
s=1 Pr

1/n(Xγ = xγ)

Pr(Xπ = xπ)

)
= log Pr(X = x | Xπ =xπ)− log Pr(X =x) + lim

n

1

n

∑
s

log Pr(Xγ =xγ).

Since the last two terms do not depend on π, and since
∑

r BTS
π = 0, we arrive

at (4.1). Next, for fixed n and x, denote by nj the number of respondents of type j,
so that ∑

j

nj = n.
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Hence we can write (4.1) as

BTSπ = log Pr(X = x | Xπ = xπ)− lim
n→∞

1

n

[ n1∑
s=1

log Pr(X = x | Xπ = x1)

+ · · ·+
nM∑

s=nM−1+1

log Pr(X = x | Xπ = xM )

]

= log Pr(X = x | Xπ = xπ)− lim
n→∞

[
n1

n
log Pr(X = x | Xπ = x1)

+ · · ·+ nM

n
log Pr(X = x | Xπ = xM )

]
.

Now (4.2) follows, since limn→∞(nj/n) = Pr(Tπ = j | X = x). Theorem 4.1 is proved.
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