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ABSTRACT

Our analysis deals with the evolution of the provision of Urban
Services and more particularly with the problem of the size of these services.
It is obvious that the number of people to whom we want to provide a service
is an important parameter of the problem. We want to show that in certain
cases the variability of this number will be even more important a parameter.

We shall use extensively the concept of queues. The leosses
associated with queues naturally lead to economic considerations. Thus as
a ground for further discussion we prove in Chapter I that under optimum
economic conditions any system should incur congestion costs. This approach
to the problem of congestion is Tlimited for several reasons. We therefore
try to build an alternate approach through probabilistic computations.
This is done in Chapters II, III and IV.

In Chapter II we use a simple model to describe the way in which
a certain class of services approaches saturation and the relationship
between the capacity of the service and the characteristics of the satura-
tion process. We basically want to show that in many cases the larger the
capacity of the service, the closer the optimum level of provision of the
service to the breakdown.

In Chapters III and IV we try to develop the following argument:
a given way of providing a service is bounded in the amount of service it
can provide. For various reasons when we try to increase the number of units
providing the service we obtain a decreasing output. Thus when we attempt to
relieve congestion by simply increasing the dimensions without changing the
structure underlying the operation of the system we face increasing dif-
ficulties. We use two examples: the bus system (Chapter I11) and the case
of Pollution (Chapter IV). In Chapter V after having undertaken a few
statistical measurements we derive the consequences and implications of our
analysis.

Thesis Supervisor: Professor Aaron Fleisher
Title: Professor of City Planning
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Introduction

Anybody who remembers that period knows that the year 1040 was
supposed to bring a major catastrophe. Several usual catastrophies occurred
in the vears following this prediction but no particularly significant one
in 1040. We, too, want to speculate on the occurrence of catastrophies,
1imiting, however, our speculations to the more specific field of urban
services, but, we shall be more interested by the description of the
phenomenon itself than by the exact forecasting of the date of its occurrence.

Thus, this dissertation will deal with the evolution of the pro-
vision of urban services and more particularly with the problem of the size
of these services. It is obvious that the number of people to whom we want
to provide the service or any estimate of this number (i.e., expected demand)
is an important parameter of the problem. But, we shall see that in certain
cases the variability of this demand will be an even more important parameter.
It can eventually become a major threat to the operation of large services.

We shall start by discussing the fact that not only should we
accept a certain congestion of the services but that in a certain sense
optimality implies congestion(]). Then, given a particular mode of provi-
sion of a service we shall consider the relationship between the optimum
level of provision of this service and the level of saturation. This will
argue that it is impossible to increase the size of services and not change
the mode of provision without heading towards catastrophe. We shall use

extensively the concept of queues. In fact, we shall see that a queue is

TT)Jderome Rothenberg, The Economics of Congestion an Integrated View
AER, May, 1970.



not only a phenomenon such as the one we observe in front of movie theaters,
but that almost all services have an explicit or implicit waiting system.

Queues can be distributed either in time or in space. A police
car which responds immediately to a call randomly located in the city(z)
and the grocer who takes a random amount of time to serve the customer are
two different types of queues, but basically they correspond to the same
phenomenon which we can describe as delays introduced by random processes.
In fact, our main interest will be in the randomness of the demand for the
service.

For certain services, it is possible to contend that queues
should not exist. For example, there should not be any delay in the provi-
sion of obstetrical services. The emergency capacity of obstetrical depart-
ments of hospitals should be large enough so that there is no chance for a
queue to form. It is easy to turn this into a general statement and say
that we should plan the capacity of all the basic services (hospitals,
schools) so that no one has a chance of ever waiting for the provision of
these services. But, this is impossible since there is no such condition
as no chance. Services do have a finite capacity and there is always a
chance that they can get saturated. At the end of the last century, a
Dutch scientist was trying to measure with perfect accuracy the frequency
of some obscure vibration. He isolated himself in a remote palace where he
noticed that there was a wave signa]lsuperimposed on the signal he was

trying to measure. He concluded that this was the noise of the North Sea,

(2)Richard C. Larson, Urban Police Patrol Analysis, M.I.T. Press,
Cambridge, Massachusetts, 1972.
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and strangely enough he could still notice it even after he had moved to
Switzerland. If we do not want to listen to the noise of the North Sea, we
should not make such statements as '"no chance."

Let us therefore reformulate the no chance problem in other
terms. Let us assume that the service we are considering has a finite size.
Thus there exists a maximum number of customers that we can serve at a time.
We shall call this number N and refer to it indifferently as being the size
or the capacity of the service. If the number of customers is n > N, we
may incur a big loss, a human Tife, for example in the case of a hospital.
If A is the average demand for the service (A = E(n), expected value of n),
then for any given N the probability of facing a saturated system is a func-
tion of » monotonically increasing with A. In Chapter III we shall explore
the behavior of this function fN(A). One of the characteristics of conges-
tion phenomena is that they appear suddenly for a certain level of use of
the service and then tend to rise sharply for any further increase of the
utilization of the service. Thus, in many cases we can assume that fN(A)
is almost zero until a certain value NO and then increases sharpiy to reach
almost one for A =N. This is described by Figure 1.

This curve is most significant because if we know the losses
associated with the queue, it gives the expected losses due to congestion
even if the system is normally operated below the limits of its capacity
and is not usually saturated. Notice that this is and should be the case
of systems the disruption of which is expensive or undesirable. As we have
already noticed such systems range from police to hospitals, for which

delaying a customer may have serious consequences. If we consider as a cost
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Figure 1

Probability of saturation versus
average demand for a given capacity
of a service

i
|
|
|

No N @)

function the cost of having a queue multiplied by its probability of
occurrence, we see that the systems we have just mentioned will have a
Joss curve increasing very rapidly as soon as A becomes larger than NO'
They should therefore be operated very close to NO’ j.e., with a very small
probability of congestion. But, this does not mean that the expected loss
is zero. That type of system can be such that it practically never shows
any congestion, but still has a significant expected loss due to the highly
unlikely but most expensive disruption.

We shall call this expected cost or its equivalent monetary cost
a congestion cost. As far as cost versus intensity of use is concerned,
the behavior of our system which has no apparent waiting 1line is exactly
the same as the behavior of a system with an apparent waiting line and a
small disruption cost and where the only cost which has to be taken into
consideration is the time wasted in the queue (it can also eventually add
up to very large figures).

Up to now we have described explicit queues and explicit costs

associated with queuing, but this is not always the case and a large number
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of systems have hidden queues and queuing policies. This is, for example,
the case of a university(3) which has a finite capacity and which because
of this finite capacity rejects a large number of candidates. The admission
process is based on an evaluation of the relative ability of the candidates.
However, as opposed to a road system or a telephone system, in the case of
the university the importance of the social environment is such that the
rejected candidates do not question too much the fact of being turned
away(4).

Kafka describes the justice system in very symbolic but in fact
very similar terms: "Before the law stands a doorkeeper. To this door-
keeper comes a man from the country and prays for admittance. But, the
doorkeeper says he cannot grant admittance at the moment. The man thinks
it over and then asks if he will be allowed in later. "It is possible,"
says the doorkeeper, "but not at the moment(s)...The doorkeeper frequently
has 1ittle interviews with him asking questions about his home and other
things, but the questions are put indifferently as great lords always put
them and finish with the statement that he cannot be let in yet..." We
shall not take such a philosophical standpoint as Kafka and discuss the
social and moral values of all rejection processes, but we must keep in
mind that not only road networks or telephone systems are concerned with

queues, queuing procedures, and rejection policies. These phenomena often

(3)CTark Kerr, The Uses of the University, Harper and Row, 1963.

(4)David Riesman, Constraint and Variety in American Education (New York)
Double Day Anchor Book, 1956.

(5)Franz Kafka, Preface to the Trial.
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exist at much deeper social levels. The idea that in almost any system
there exist someWhere Josses due to congestion or rejection will be a con-
stant reference throughout this dissertation.

our first concern, however, will be an economic analysis of the
problem of congestion(s). As a ground for further discussion we want to
prove that under optimum economic conditions any system should incur con-
gestion costs. This approach to the problem of congestion is Timited for
several reasons. We shall therefore try to build an alternate approach
through probabilistic computations. This is done in Chapters II, III, and
Iv.

In Chapter II we use a simple model to describe the way in which
a certain class of services approaches saturation and the relationship
between the capacity of the service and the characteristics of the satura-
tion process. We basically want to show that in many cases the larger the
capacity of the service, the closer the optimum level of provision of the
service to the breakdown.

In Chapters III and IV we try to develop the following argument:
a given way of providing a service is bounded in the amount of service it
can provide. For various reasons, when we try to increase the number of
units providing the service we obtain a decreasing output. Thus we attempt
to relieve congestion by simply increasing the dimensions without changing
the structure underlying the operation of the system, we cannot succeed

indefinitely. Our dissertation is developed around two examplies. The first

(6)Matthew Edel and Jerome Rothenberg, Readings in Urban Economics,
McMillan, 1972 (New York).
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one is the bus system and the so-called clumping problem (Chapter III), and
the second one is more general and describes pollution (Chapter IV).

In Chapter V, we discuss the relevance of our dissertation for
real life services. This leads naturally to the discussion of the implica-

tjons of our argument.
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Chapter 1

Economic Analysis of the Congestion of Urban Services

In this chapter, we shall consider an economic aspect of conges-
tion. We shall see that an economically optimum use of a public service
exhibits a certain degree of congestion. By a certain degree of congestion,
we do not mean that there has to be a permanent waiting 1ine, but that the
Josses incurred either because of a frequent waiting 1ine or because of the
possibility of a waiting line are not insignificant.

In the introduction we described the service by two variables,

N and NO' N was the maximum possible number of customers, and N0 was the
maximum average number of customers served without any significant conges-
tion loss. In the case of a highway, N would be the maximum possible fiow
on the highway and N0 the maximum flow so that the movement of a car is not
significantly hindered by other cars. We defined N as being the capacity
of the service. In a certain sense, NO js also a measure of the capacity
of the service. In fact, as Tong as we know the correspondence between N0
and N, measuring the service in terms of N0 or N is indifferent. Thus in ‘
this chapter we shall define the services in terms of NO’ calling this
number the effective capacity of the service.

Let us assume that in order to provide the service we face:

a. A cost, CF, directly related to the
capacity of the service. This is the
cost of construction plus the cost of
operating the facility independently

of the amount of use which is made of
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the facility. In the case of a highway
CF would be the cost of building the
highway and maintaining it for a zero
level of use (for example, signs, main-
tenance, snow removal...) We shall call
CF fixed cost CF = CF (NO), N0 being
(1)

the effective capacity

b. A congestion cost, CG. Let n be the
number of people who use the given
service. By definition of NO’ the con-
gestion cost is insignificant up to NO’
then rises sharply with n.

c. The remainder of the operating costs
which have not been taken into con-
sideration in CF depend on the amount
of use of the facility. This cost, CO
(cost per user), is a function of both
the capacity of the service and of the
number of users. However, if we con-
sider CO as a cost per user, its varia-
tion with N0 or n is likely to be small

when compared to the variations of the

(T)Meyer Kain and Wohl, The Urban Transportation Problem, Cambridge
Harvard University Press, 1965.
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congestion cost. We shall therefore use

the approximation, CO (n,NO) = CO (Con-

stant). In the case of a highway, CO

would typically be the cost associated

with the wear of the road surface.

These three costs make up the total cost CT, (n,NO). Here CT,

is a cost per user. The two following figures show the variations of these
costs; first, when N0 is fixed and n is varying; second, when n is fixed

and N, is varying.

0
Thus, we have,

CF (N,)

- 0
CT (n,Ny) = - + CO + CG (n,NO)

0)
Let us assume that we know the number, n, of customers to whom we want to
provide the service and let us try to find the optimum size of the facility.

The optimum is always such that,

CT (n,No)is minimum  Since n is given,

BNO n dN0 aNO
=
g%L-is always positive (the larger the service, the more expensive it is
0

to build it). This is the rate of change of fixed cost with effective
capacity. Since we assume that n is given, CG is a function of NO‘ If

N.>n this congestion cost is zero; but, if NO < n this cost is positive

0
and decreasing with NO’

Thus, for any given n:
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i/
TS
&
®
©
|th
|
I )
nopt No /No
Figure 2 Figure 3
No fixed n varying: Cost as function of n fixed N varying: Cost as a function
the number of customers (No fixed) of the capacity (n fixed)
3CG . . .
5N6-1s negative for 0 < NO <n
3CG _
BNO =0 forn < N0

In most cases, small capacities will be associated with large
congestion losses. Thus CG (n,e) becomes large when e+0. Therefore

ggg—is not only negative but very large for small values of NO' We see

BNO

that there always exists a NO such that
dCF aCG(n,NO) o
dNO aNO

<n)

=S|—

0

Thus there exists a value of N0 which leads to a minimum cost for the pro-

vision of the service, and this value of N0 is such that n > N0 which means
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(2)(3)

that the system does indeed incur congestion costs .

The minimum cost for the provision of a public service implies

congestion.

Notice that a congestion cost rapidly increasing with n (or
decreasing with NO) leads to an optimum size close to the threshold of con-
gestion (hospitals) whereas a cost slowly increasing with n (or decreasing
with NO) leads to an optimum size much smaller than the one which would
cause no congestion (roads).

We have shown that for any demand n we have an optimum capacity
Nopt or conversely that for any capacity we have an optimum use, nopt‘
This optimum use corresponds to a certain cost per user, popt' If we have
the choice of the capacity, we can usually choose N so that (nopt’popt)
corresponds to the actual demand, which is to say that the point lies on
the demand curve. However, in many cases the capacity of the system is a
given datum and we cannot modify it easily. In that case there is no
reason for the demand curve to intersect the total cost curve at its
minimum. This is the case described by Figure 4. If the price paid by
the customer is strictly equal to the cost of the service (no tax, no

subsidy), the actual system may be such that the price of the service is

Pac and the number of customers Noc

(2)Jerome Rothenberg, The Economics of Congestion on Integrated View AER,
May, 1970.

(3)William S. Vickrey, Pricing in Urban and Suburban Transportation AER,
May, 1963.
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/
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cT
Figure 4
pe +—- : Supply and demand for a given capacity
,x0pt~'--—
DEMAND

nec n;rt

Two cases are possible:

1. Nee < nopt‘ This is the case described by the figure. We
immediately see that a subsidy, 4, would bring the system to the point

(nopt’popt'A)' Since the two curves are decreasing together, in certain

cases a rather small subsidy may significantly increase the number of people
using the system. Since varying the capacity is difficult and since a small
Joss may enable a much larger number of people to use the system, the
alternate solution of subsidizing the use of the facility has to be con-
sidered. If we did not have to give each customer the same subsidy but
only the exact amount which would induce him to use the service, the loss
would then be equal to the shadowed area of the figure and would obviously
be much smaller. In that case, for any given n, we only need to give to
the marginal customer a subsidy equal to the difference between the cost
and demand curve. Notice also that since N is given, the case Nae < N0

(no congestion loss) and nopt > NO is quite possible (overdesigned

facilities).
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2. n_>n The losses due to congestion are much beyond

ec opt”
the optimum. If we are not able to modify the system so that its capacity
is increased, we probably should impose taxes on the system.

To summarize: public services should normally show a certain
degree of congestion; those which do not show any congestion are presumably
either overdesigned or obsolete. However, the congestion we describe 1is
1imited. It probably would be more accurate to say that public services
should be at the threshold of congestion. This is the case of the bus
system we describe Tater in more detail. The means devised by economists
to obtain this optimum is taxes equal to the difference between average
and marginal prices. As we have already mentioned, this problem of taxes
is standard in economics (see for example Rothenberg(4)).

This chapter has tried to give an example of the type of under-
standing of the congestion problem we could gain through an economic
analysis. However we must not forget that we cannot compute the figures
needed to define optimum economic policies if we do not know the law of
demand and there is no possible means to derive this law from the demand
that we actually face at the prevailing price.

Thus we have to define an "a priori" law of demand and the
associated variables. It is only through an iterative process and all the

associated difficulties that we shall eventually reach the real optimum.

Furthermore, even if we have found the optimum, the overall system is not

T&YMatthew Edel and Jerome Rothenberg, Readings in Urban Economics,
MacMillan, 1972 (New York).
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jtself optimum unless we redistribute optimally the money collected through
congestion taxes. This is even more difficult and the actual discussions
about the redistribution of the money collected through highway taxes gives
an example of the type of problems we may run into.

As a whole, classical economic theory assumes that the interaction
between people is summarized by a system of prices and that an optimum
allocation of resources can be obtained by internalization of all possible
externalities. We sincerely doubt that this is possible. We also refuse
not to consider the redistributional effect of such or such economic policy.
Taxing the marginal use of a transportation facility will certainly hit
more strongly the worker who has no choice of the hour at which he should
use the facility than the richer man who has a choice of his working
hours(5)(6).

Thus, certain policies might lead to a better economic system
but a worse social system. There is a trade off between the two that we
should systematically consider. The alternate approach used in socialist
countries which pretends to define the needs of the population is unfor-
tunately even more difficult to undertake. However, it indicates that there
are limitations in the theory used in this chapter. Thus, in the following

chapters we shall try to reconsider the problem of congestion rather

independently of economics.

{5)Maurice Netter, Critique de la tarification au cout marginal social.
1a vie urbaine no. 2, Paris, 1971.

(6)Alain Juillet, Sur la rente fonciere urbaine la vie urbaine, no. 2,
Paris, 1971.
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Chapter II

An Alternate Approach: Comparing the Optimum Level of Operation of a
Service and its Maximum Level of Operation

In the preceding chapter we have shown that minimizing the cost
of provision of a service implies congestion. However we have said nothing
of the congestion process itself. For this reason we shall approach the
problem of congestion from a different point of view and in the three
following chapters we shall mainly deal with probability theory. In this
chapter we shall try to relate the size of the facilities with the optimum
Jevel at which these facilities should be operated. We shall consider
successively the case of a single channel service and the case of a multi-
channel service. In both cases we shall find that the larger the service,
the closer the optimum provision of the service to the breakdown. Economies
of scale associated with a more efficient use of the available capacity are
compensated by higher risks.

Queues in public services can build up because of the variability
of the demand, because of the variability of the service, or because of
both. 1In the study of a particular service we would have to make the distinc-
tion and evaluate separately the variability of these two components. This
js one of the problems we shall have to de$1 with in Chapter V, which relates
the conclusions of this chapter with what we observe in the outside world.
In the present chapter, this problem of variability of the demand or vari-
ability of the service is taken care of differently for the single channel
service and the multichannel service. For the single channel system, we

assume that there is no variability in the service rate. We assume that
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the service is provided on a periodical basis (period T) and at the beginning
of every period all the customers are served or rejected. This is a very
conservative assumption, since, as we shall see in the following chapter,
nonperiodical services turn out to be worse than periodical ones. The same
computations would be valid with hardly any modification, if we assumed that
the number of customers asking for the service Qas constant during each
period and that the capacity of the service was varying in a Poisson fashion.
Unfortunately, if we assume that both the service and the demand are vary-
ing, we are not able to perform the computations for this particular model.
In the case of the multichannel service, we use a standard queuing model

and we take into consideration at the same time the variability of both

the service and the demand.

I. The first type of service we consider is provided by a unique
facility (no parallel facility) and we assume that the service is provided
on a periodical basis (period T).

The number of customers is random. We assume that this random-
ness can be described by a Poisson process(]) (AT customers on the average
asking for the service during time T). We define by N the capacity of the
facility. If fewer than N customers ask for the service during the period
T, they are all provided with the service in an equivalent fashion. If
more than N cus:omers ask for the service, we assume that no service is
provided at all. This is a very pessimistic assumption. It is probably a

good approximation for the telephone system. For other services it might

(T)ATvin W. Drake, Fundamentals of Applied Probability Theory, McGraw
Hi11, 1967 (New York).
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not be such a good approximation. However, the next two chabters will "a
posteriori” show that this is not such an unrealistic assumption and that
when the number of customers approaches the capacity of the service, internal
phenomena tend to reduce considerably the possibilities of operating the
system.

We have assumed that the demand was a discrete Poisson process
with parameter AT. The probability that the number of customers asking for
the service during the period T is smaller than N is

p= I e-ATngzk (probable number of Poisson

k=0...N k! arrivals 5_N)(])

p = f(AT,N)
Which we shall write in an alternate way: p = fN(AT/N)
The arrival rate is not expressed in absolute terms; but, given a capacity

it is expressed as a fraction of that capacity.

If we call p = %I-the the utilization ratio, we now have p = fN(p)

For any given capacity N, p is a function of the rate of use of the service.
Values of p are given in Table 1.

At this point, we must emphasize again that the model we use is
a very specific one. In fact, every set of assumptions we may choose,
corresponds to a different model. We might, for example, have worked on a
more optimistic ground and assumed that even when there are too many
customers the facility is providing some service and that the penalty is

only a function of the overflow. In that case we would have to compute the

(T)ATvin W. Drake, Fundamentals of Applied Probability Theory, MacGraw
Hi1ll, 1967 (New York).
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value of the overflow. In fact, if we use the same variables as before

this overflow turns out to be:
o
AT [1-p + N ]

Then we would have to compare the previous number with the average number

of people being served which would turn out to be:

-» N
AT [p - (ﬁ}) 1+ N (1-p)

The rest of the analysis would be the same as for our previous model. We
should notice too that the only term which is significantly different is
N (1-p) which would most probably not introduce any perturbation in our
conclusions.

We could also allow a queue to build up. Using a standard
queuing model(z) we could then compute the size of the queue and define the
penalty as a function of either the probability of queuing or the size of
the queue. Whether we should allow a queue or not depends only on the
particular service we are describing. It changes the nature of the losses,
but not the argument. Notice though that in one case the rate of utiliza-
tion has to be smaller than one; otherwise an infinite queue builds up,

whereas in the other case we can operate at any level of utilization.

T2)PhiTip Morse, Queues Inventories and Maintenance, New York, Wiley,
1958.
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N N .2 .3 .4 .5 .6 .7 .8 .9 1 1.1
2 .999 .992 .977 .953 .920 .990 .834 .783 .731 .677 .570

5 1 .995 .983 .959 .916 .858 .785 .703 .616 .241
10 1 .997 .986 .967 .911 .816 .706 .583 .010
20 1 .998 .988 .953 .868 .731 .56 O

100 985 .860 .54 O
108 1-1073 515 0
10 505 0
p = fylo)
Table 1

Probapility of providing the service as a function of the rate of use for
a given capacity

We shall now make some very simple assumptions about the utility of the
system. We assume that this utility is o per customer if we serve this
customer and -a per customer if the customer is turned away. In other words,
we gain o each time we serve a customer and we lose o each time we reject

a customer. Thus, the expected utility of the service for one customer is
equal to o weighted by the probability that this customer is served plus

-0, weighted by the probability that this customer is not served.

ap + (-a) (1-p)
a (2 p-1)

According to these assumptions, a service which serves randomly one customer

u

u

out of two has a zero utility (casino). The total utility of the system is
equal to the average utility per customer multiplied by the number of

customers; for one period of time this is:
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ATu = Na (—A—P (2 p-1)

[
1]

U

Nao[2 p(p)-1]

Since o is simply a number of dollars (utility of serving one customer), we
can arbitrarily set « = 1 and refer to the utilities as being relative
utilities (dimensionless). If we want to consider a particular service we
shall just have to multiply by the value of o for this service. We are
more particularly interested in the utility per unit of capacity which we
shall call 9y Given the fact that we already know p as a function of o

we can now compute:

an (o) = %-= o [2 p(p)-11

:
The results are given in Table 2.

However, this is not the most general way of expressing the
utility of the system. In general, the losses associated with the rejection
of one customer will not be equal to the benefits derived from the provi-
sion of the service to another customer. Let us call a the benefit and B
the loss. Let us also call K the ratio g/a and indicate by a superscript

this ratio in the otherwise identically defined utility functions:

Ut = ap-g [1-p]
K = (a+8)p-8
o

N' P [(u+8)p_8]

As previously we can arbitrarily set o = 1. The relative utility per unit

of capacity is then:



gy = e [(k+1)
9N=D [Zp ']]
K

gN+KD= K+-|
gN'l'D 2
K

gy - K+ 1
N="7%—9g

29.

p - Kl

1 -k 0

2

If we consider the plane [p, gN] this transform is an affinity parallel to

Iy axis. The invariant axis is gy = ° and the ratio is

K +

Therefore

the gﬁ (p) will be obtained from the g, {p) by this very simple transform

and we need not perform the computations for the most general case.

b
N

10
20
10
10

197

N

3 4
.286  .362
.297  .387

.3 A

.3 A

3 LA

.3 4

.420
.460
.486

Table 2

.455
.499
.549

.467
.501
.562
.633

.454
.456
.505
.588
.776

.353
.232
.166
112

.08
.03

Relative utilities of one unit of capacity for various total capacities
(one channel services)

Given Table 2 we can draw the curves describing the variation of 9N (o)

various values of N.

This is done in Figure 5.

Let us assume that the

1.1

.154

-1
-1
-1
-1

for

service is operated at its maximum utility (gN (o) maximum) and let us call

o the corresponding utilization ratio.

In other words, the maximum utility

570
.07
N
N
.
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operation of the service is such that for a given N; o = o and gN(p) = gN(E).
The curve giving g (o) as a function of N describes the economies of scale
in the provision of the service (relative utility of one unit of capacity
of the service versus total number of units of provision of the service).
This curve is given in Figure 6. However, the percentage of capacity which
is still available when the service is operated at its maximum utility Tevel
is P ~ 0, 0 being the value of p for which the gy curve intersects the
horizontal axis. It describes the difference between the maximum utility
utilization and a zero utility utilization of the system. We can consider
it as the inverse of the risk associated with the operation of the system.
Let us call flexibility FT of the service the quantity (po -p). Figure 6
shows the variation with N of the flexibility.

Assuming that we operate the service at its maximum utility
level, we see that economies of scale tend to become insignificant for large
values of N whereas the flexibility approaches zero. Moreover, not only do
we see that the risk becomes very high for large values of N, but we notice
the loss of utility which occurs when the system passes its maximum is much
more severe for larger values of N. Given the fact that in real life it is
very difficult to know when we have passed the maximum, the large service
is indeed more dangerous than the small one. In the general case, we would
be able to define exactly in the same way EK and pg as being p such that

g§ is respectively maximum or zero. Notice that we would have:

K 1-K K
oy (Pg) = 73K %0
oKX is the intersection of g (o) with g = 1K,
) N 14K
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In the same way:

d o % =1X

do IN ° T+K
E'K is the point of 9N (o) where the tangent is parallel to g = %i% P
Looking at the curves of Figure 5 we see that our conclusions would most

likely be exactly the same.

I1. We could therefore try an alternate solution and instead
of increasing the service rate of a single channel, we could try to improve
the capacity of the service by adding channels in parallel. This pro-
cedure has some advantages since it reduces the size of the queue 1in
comparison to the number of units in the system. From the point of view
that we have chosen for the first part of this chapter, this type of
system behaves exactly like the single channel system; the larger the
service, the closer the optimum to the breakdown.

In order to arrive at this conclusion, we shall use a certain
a number of results of queuing theory which can be found directly in
Morse's "Queues, Inventories and Maintenance.”(z) Let us assume that the
service can be described by M parallel channels. Each channel 1is exponen-
tial (mean service rate y). Units arrive randomly with a Poisson probability
density function (mean arrival rate A). We characterize the state of the
system by the total number of units, n, present in the system. When n is
smaller than M there is no queue, when n is larger than M there is a queue

n-M Tong. Pn describes the probability that the service is in state n. We

{2)Morse, op. cit.
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Economies of scale and flexibility as a function of N (one channel)

shall define Mupas being the capacity of the service. It is the equivalent

of the quantity N/T of the first part of this chapter (number of customers which
can be served per unit of time). Notice though, as we have already men-

tioned, that we do not describe the same type of service as in the first

part.
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Two different cases are possible depending on whether or not we
allow a queue to form. If we allow a queue, we must put a penalty on the
queue and if we do not allow a queue, we must put a penalty on the rejec-
tion of customers.

1. Infinite Queue Allowed

Let us define the following functions:

n
} X X
EM (x) = T e
n=0,m
n _-x
_ x e
n (x) = nl
= X
Do, (x) E 4 (x) e (x)

In this particular case where an infinite queue is allowed, we find in
Morse* the probability that the queue is as long or longer than a given

Tength K.

t«js

Quek = M+K + n

>
1]
(@]

1K 1 1
o "e (M) / Dy (o ™M)

(2)

*Chapter 8, page 104. op. cit.
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We are particularly interested in QM, the probability that all M channels
are busy as a function of p] = ﬁi . Figure 7 shows the behavior of QM
u

for several values of M. (Morse, page 105)

Qu

O}

Figure 7

A Probability that all M channels are busy
as a function of p1 for Poisson arrivals,
M exponential channels, single queue(z)

i P | 7 1
o e / P

We notice that as M is increase, p] can get nearer to one before
the channels become saturated. Let us assume, for example, that the system
is operated according to the following policy: the number of channels is
such that the customers do not have more than a certain probability 6 to

wait in queue. In certain cases this probability will be very low (emergency

P

e

%Q)Morse, op. cit.
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hospitals); in certain other cases a much larger margin will be accepted.

Thus for each M,p1 must be smaller than BL as defined on the above figure.
The figure immediately shows that as M increases 5& gets closer and closer

to one, which is the point where the queue becomes infinite. For example

ifQ=.5 fOY‘M='|,,S;4= .5 and for M = 10, 5?4: .8.

We reach conclusions very similar to the conc]ugions we reached
for the single channel system. Let us therefore reformulate the problem in
similar terms and assess costs and benefits to the operation of the system.
Assume that the utility of providing the service to one customer is a, and
the loss of utility of having one customer waiting in queue is also a. We
mentioned in the first part that having identical figures on both the loss
and the profit side was a certain loss of generality but we also explained
how to deal with this loss of generality and go back to the general case
from a more specific one. The same argument is valid here. We know that
the probability that a customer faces a queue is QM ,and that the prob-
ability that he does not have to face a queue is 1—QM. Therefore, the
utility of the system for that particular customer is:

u= - QM o + (] - QM)&

[
|

= a [] - 2 QM]
the total utility per unit of time is:
U=xall -20Q, =Map [1-20

Since the capacity of the system is Mu per unit of time, the relative

utility (a = 1) of the service per unit of capacity is:
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;
4L-= gy (o) = ol -2 Q]

the two following tables give the values of QM and In (p]) for various
values of M.

Table 4 enables us to draw the curves describing the variations
of gy as @ function of p] for various values of M. This is done in
Figure 8. HNotice that the utility of the system can become negative,
because we have allowed a queue to form. When the queue becomes large, the
system operates at a loss. For p1 = 1, the queue becomes infinite.

If we assume that the service is operated at its maximum utility
Tevel [gM (01) maximum] and if we call Eq the corresponding utilization
ratio, we have, as in the first part of this chapter, a curve giving the
economies of scale (gM (Eq) as a function of M) and a curve giving the
flexibility of the system pl - Eq as a function of M, pl being defined in
the same way as in the first part of the chapter). These two curves are
shown in Figure 9.

Our conclusions are basically the same as for the single channel
service: the larger the service, the closer the optimum to the breakdown;
economies of scale for large services increase more slowly with the size of
the service and the flexibility of the service tends to zero.

However, we must notice two particular features of this second
type of system. First, our conclusions are only valid for large values of
M. For small values of M, the economies of scale are increasing at a con-
stant rate and the flexibility tends to increase. Muitichannel services
are usually believed to be more stable and less congestion-prone than single

channel services and for small values of M this point argues in the same way.
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1 1
2 .018
5

10

20

50

Probability QM of waiting in line as a

system
p]
M 1
1 .80
’2 .96
5 1
10 .
20 .
50 .

.067
.004

.120
173
.198

.138
.020

.120
217
.288

.225
.060
.009

.080
.220
.352
.393

100
200
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.324
131
.036
.004

.75
.004

Table 3

176
.369
.464
.49

.75
.744
.75

Table 4

.450
.236
.103
.024

.80
.020

.6
-.120

.317
476
.571

.80
.768

.575
.380
.292
.095
.301

.85

.074
.023

.7
-.280
-.105

.168
.389
.567
.6846

.85
.724
.811

.0711
.555
.618
.256
.204

.90

.200
.095

.8
-.480
-.338
-.088

131
.398

.6608

.90
.590
.729

.855
.765
.668
.550
.118

.95

.480
.365

function of the rate of use of the

-.720

.550
477
.302

.08

.245

.95

.038

.257

Relatiye utilities as a function of the utilization ratio and the capacity
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Second, we can conjecture that the curves obtained in this case are
asymptotically identical to the curves obtained in the first part of this
chapter. Even though we have no further way of proving this result we can
feel on the ground of the central limit theorem that even though each
channel has an exponentially distributed service, when we have a very large
number of channels, the number of customers served by the system during a
given period of time tends to become less and less variable and the multi-
channel system tends to become more and more identi~al to the one channel
system described in the first place.

EFT 7]

loo%;

90

8o

To )

604

Figure 9

Economies of scale and flexibility of the system as a function of its capacity
(Multichannel system)
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2. No Queue Allowed

and D,, being defined in the same way as in the previous

Ev> e "
case, we are now interested by the probability that a customer is going to
be rejected. We find in Morse (Chapter IV, page 31):

o - ey (oM)
M E&TBMT

If we substitute PM for QM’ the rest of the analysis is strictly identical
to the infinite queue system. The only distinction lies in the fact that
p] = 1 is not a breaking point of the system. The system breaks down when
the losses due to the rejection of customers are equal to the gains accruing
because of the provision of the service. However, this model is not likely
to represent any real life system. In the first part, we assumed that the
service was provided every T units of time (T fixed). If T were large
enough, it was therefore possible to assume that a customer who was not
served would disappear. In the case we are describing now, when the number
of channels becomes large, the service rate of the system becomes infinitely
small, and it is therefore most unlikely that a rejected customer will not
try again to obtain the service: therefore most of the time the infinite
queue model will be more appropriate. Thus, we are not interested in argu-
ing our point on this particular model and we shall not make the computa-
tions in this case.

Before concluding this chapter, we should notice that throughout
the chapter the closeness to disruption was expressed in relative terms.
The distinction between relative and absolute is fundamental to the point we
have tried to make. When we want to describe the service or the facility

in itself, it is its size or capacity which is important. This is an
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absolute variable (number of seats, places, employees...). On the other
hand the change of the rate of demand is typically described by relative
variables. This is true when we describe the average increase of the rate
of the demand for a service (% of increase per year) or when we describe
random variations due to non-forecasted events (% of variation). In the
same way, if we had mainly focused our discussion on the variability of the
service rate, this would have been a relative variable.

At this point we still face several major questions: To what
extent does this theoretical analysis apply to real iife services? What
are the consequences and implications of the analysis? To what extent can
we increase the rate of service to face an increasing rate of demand? On
the ground of a small statistical analysis we try to answer these questions
in Chapter V.

Thus, this chapter has theoretically proved that large services
are more fragile than small ones. In this chapter we have considered the
noise of real 1ife but, in fact, we shall have to listen to this noise even

more carefully in the next chapter.
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Table of Symbols Used in Chapter Il

One Channel Service

T
N

period

capacity

mean arrival rate

probability that the numbers of customers is smaller than N

p=fFf(aT,N) =f (AT/N)

N

utility of the service per customer
expected utility of the service per customer
expected utility of the service for all customers

Iy (AT/N) = U/N.a relative utility of the service per unit
of capacity

utilization ratio

maximum utility utilization ratio

zero utility utilization ratio

economies of scale
flexibility

loss associated with the rejection of one customer

ratio utility/disutility
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Multichannel Service

A

u

mean arrival rate (Poisson)

mean service rate of one channel (exponential)
number of channels

number of units in the system

probability that there are n units in the system

utilization ratio

probability that there are k or more units in the system

Ep (x)

ey (x) = e
Dy (x) = By (x) - T Bk (x)

given value of Q
for a given M, maximum value of o so that QM < 6

expected utility of the service per customer
expected utility of the service for all customers
I (p1) = U/Mo relative utility of the service per unit of

provision of the service
maximum utility utilization ratio
zero utility utilization ratio

economies of scale

flexibility
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Chapter III

Further Computations for One Specific Service:
Buses and the Clumping Problem

In the preceding chapter, we have discussed the problem of in-
creasing the size of urban services assuming that the environment was
totally random. This enabled us to evaluate the advantages and the risks
associated with an increase of the size of public services. We now want
to show by an example that "real" conditions can be even worse than totally
random ones and that what we have estimated as being the advantages of
larger systems is in fact a very optimisitc view of reality. Our example
will be a bus system and the reason which makes this system even worse than
a purely random one is the so-called "clumping phenomenon”(1). lle say that
there is clumping, or that two buses are clumped, when they immediately
follow each other. If there is no need for extra seating capacity, the
second bus is useless. The clumped condition is a most stable one. There
js very 1little chance for anything to happen which could separate two
clumped buses. Red Tights, pedestrians, cars pulling out, and other events
which previously affected the buses independently now affect both of them
at the same time. The two buses are running in identical conditions. Even
if we allow the buses to pass each other, the first bus will always have to

spend a longer time at the stations to pick up passengers than the second

{7)PauTl F. Bursaux, Scheduling the Buses at Rush Hour (M.I.T.)
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bus. This will stick them together. MNotice that this phenoinenon of clump-
ing is 1likely to happen along routes where the frequency of vehicles is
relatively high(z).

This chapter will be divided in two parts. In the first part,
we shall try to evaluate the probability of clumping. In order to do so,
we shall use very simple models to describe the two main causes of clumping:
the random incidents along the route and the queues at the stations. We
shall consider that these two causes are independent, and with the help of
our models we shall try to relate the probability of transition from a
random distribution along the route to a clumped distribution with the
density of traffic and the frequency of buses. In the second part, we
shall use the results of the first part to assess utilities to the bus
system as a function of the number of buses. As opposed to the purely
random systems described in Chapter II, we shall see that, for increasing
values of N, the relative utility of the bus system is not tending towards
100% but towards a lower figure. Thus, in this case, the nonindependence
of the variables of the real 1ife problem reinforce the conclusions of our
preceding chapter.

1. Probability of Clumping

Clumping Because of Random Incidents Delaying a Running Bus

We want to model the small incidents affecting the buses along
the route. We assume that as long as the buses are not clumped the inci-

dents affecting them are independent. For example, if a bus is slowed

(2)John Bourne, Towards the Quantification of Transit Scheduling
Procedures.
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down by a pedestrian, the following bus is not affected. This is not a
totally realistic assumption. In fact, if the traffic is seriously slowed
down by an incident there can be a certain amount of slowness at the same
point long after the incident occurred. Our model might therefore provide
for more clumping than there really exists and we might have to restrict
ourselves to smali incidents.

As soon as the buses are clumped, the incidents affecting them
are the same and the buses remain clumped for the rest of the route. The
best way to model this is to assume that the number of incidents is large
(N > 10 is a very good approximation). Then, we can use the general solu-
tion to the problem of the random wa]k(3). The probability density func-

tion of the deviation R of a bus from its normal position is

W (R) = 1 e"'(R - NE (g))z
VT /No2(g) 2No? (£)

N number of incidents

E (g): expected value of the deviation caused by one incident.

In fact this is a normal distribution, N (R;X,0)

with mean, A = NE(g) and variance, No2 (g).

We can easily introduce time. N here represents the number of incidents.

If we face n incidents per unit of time and if the vehicle starts at time O,
we have a normal distribution with mean, A = nt E (¢), and variance,

2
o =n tcz(g ).

13)S. Chandrasekar, Stochastic Problems in Physics and Astronomy in
Selected Papers on Noise and Stochastic Processes, Nelson Wax (editor),
Dover Publications, New York, 1959.
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If we now consider the distance between two successive buses, it
will also be normally distributed. Assume that the two successive buses
start at time 0 (small bias, since the second bus will in fact be submitted
to the perturbations of the network only a few minutes later than the
first). However, this is more than compensated for by the variability of
the departure of the second bus. The headway (time interval) between the
two buses will also be normally distributed (difference of two normal
variables) with mean h (theoretical headway between two buses) and with a

variance equal to the sum of the variance of the two buses.

og = 202 =2 n‘tqz(g )
Apar
Figure 10
Ly i Distribution of headways:;p is the
, probability of clumping
i
o ' x 7

The headway between the two buses is oscillating like a particle submitted

(3).

to a Brownian movement However, our model is not complete since we have
said that whenever a bus catches up to another one they get stuck and remain
s0. In the terms of our comparison, there is an absorbing wall located at
position 0 on the x axis (see figure). When the particle hits this wall
(i.e., the distance between the two buses becomes zero) clumping occurs.

We find in Chandrasekar(3) the probability density function of

our particle (distance between the two buses) in the presence of the absorb-

ing wall.

(3)Chandrasekar, op. cit.
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N (x3h,26%) = N (x; -h,20%)  for x > 0

w (x)

1

wi(x)=0 for x < 0

In order to find the probability of clumping or in other terms the fraction
of the particles absorbed by the wall, we just have to make the difference:
1 -w (x)

since: N (x; h, 202) =N ( -x; -h, 202)

0 2
we have: p = Zf N ( x; h, 207 )dx

By changing the variables this can also be written:

p=2 ‘/;—~— N X=R ;5 0,7)dx (standardized)
s V2 oV 2

Table 5 gives the probability, p, of clumping for a certain
number of values of o/h
This simple model shows that as soon as ¢ is larger than one half of the
headway the buses have at least 15% chances to clump; if the variance o is
of the same order of magnitude as the headway, the buses have about one
chance out of two to clump. Figure 11 represents the probability of clump-
ing as a function the frequency i/h for a given variance, o , Or as a func-
tion of the variance, o , for a given frequency. The frequency 1/h describes
the number of buses in the system. Twice as many buses means a frequency

multiplied by 2.
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a/h h/o h/o vV 2 p
J 10 7.07 ~v 107
.2 5 3.54 ~ 107
4 2.5 1.77 .077
.5 2 1.41 .16
.6 1.66 1.18 .24
.8 1.25 .88 .38
1 1 71 43
.5 .666 .47 .64
2 5 .35 73
4 25 .18 86
6 17 . 92
Table 5

Probability of clumping as a function of o/h.
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T T i 7
iy 2 A .8 1.6 32 b4

Figure 11

Probability of clumping as a function of the variance and frequency.

We must provide in the model for the observabie phenomenon that
the probability of clumping increases sharply during the rush hour period(4).
If we assume that the number of incidents is proportional %o the number of
cars in the street and if we assume that the incidents have the same

individual effects, then after the same amount of time t spent in the network

(4)Pour Tes Autobus dans Paris, Paris Project 8, Paris 1970.
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the standard deviation ¢ = v/n to %g ) will be proportional to the square
root of t. A usual approximation is that the peak hour traffic is ten
times the average traffic, which introduces a factor of 3. Second, the
speed in the network is much smaller. Thus, to reach the same station, the
amount of time, t, taken by the buses will easily be multiplied by a factor
of 2. On the other hand the frequency of buses at rush hour time is also
currently multiplied by a factor of 3 (headways decreased from 15 to 5
minutes). o/h can therefore be multiplied by a factor of the order of

20. It is more than enough to hit the potential barrier shown on the
figure. Clumping is a common feature of the rush hour period.

Clumping Because of the Queues at the Stations

The incidents occurring along the route are not the only causes
of clumping. The passengers waiting at the stations introduce a disequilibrium
in the system. If a bus is late, the number of passengers waiting for it at
the stations will be larger than the average causing the bus to fall even
more behind its schedule. The phenomenon is amplified until finally the
bus clumps with the bus behind.

Let us assume that the normal headway between two buses is h
and that the rate of arrival of passengers at the station is o per unit of
time. We shall also assume that the time S necessary to pick up N pass-
engers at the station is

S=a+bN
If the headway is constant the normal time a bus wili have to stop to pick
up passengers is

SO=a+bah
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let us assume that the bus is delayed by a time &. Thz time this bus will
have to stop is now:
S=a+ba (h+3s)

S = SO +basd

The effect of the station is to multiply the lateness by a factor (1 +ba)
Thus from station to station the lateness of the bus will increase exponen-
tially. After i stations the lateness of the first bus will be:

L1.=6(1+boc)i

The subscript is the number of the station and the superscript the number
of the bus. Let us now consider the following bus (bus number 2). For this
bus the fact that the preceding one was late leads to a decrease in the
number of passengers to pick up. The gain in stopping time is obviously the
1oss of the preceding bus (i.e., b a8). Therefore, this bus will be early
by:

E; = bas

or indifferently late by

// L-I = -bad

-
-——

At the second station we shall have

2

L,

= -2 bas (1 + ba)
After i stations the cumulative lateness will be
Ly = (-1)2'1 21 bas (1 + ba )11

For bus number j, we could prove in the same way:

= 3 e b (e ba)
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At this point we see that the buses are not independent as we assumed in

our former models. Any difference from the schedule is not only amplified
as the bus moves along the line but propagated to the other buses. However
this tends to die out very quickly because of the coefficient ba, which is
very small as compared to one (ratio arrival rate/number of passengers a bus
can load per unit of time).

Let us now consider the first two buses. If the distance between
these two buses is the scheduled headway, the fact they go through a station
will not change this headway. If it is not the scheduled headway the dif-
ference will be multiplied by (1 + 2 ba). In the first paragraph we have
proved that the distribution of the headways was normal around its mean.
Thus, after the station, this distribution will still be normal but with
standard deviation:

o = (1 +2 ba) o

After k stations the standard deviation we should consider is
_ k
Ok - (] + 2 b 0.) [0

Thus, the results of the first part remain perfectly valid but at time t

we should not use the standa~d deviation o = //nt o 2(& ) but if we are

E— R

2(c ) (1+2ba)k

located at the Kkt station the standard deviation o = //n to
On the graph of Figure 11 (logarithmic coordinates) this corresponds to a
translation T = i log (1+ba)

Since b a1, Tviba

The barrier of potential is even steeper if we consider the stations.
Notice that o is increased by the rush hour and the very conditions which

were already pushing o/h in the wrong direction.
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The main conclusion to be derived from this first part is that
the buses are not independent. In order to avoid clumping, we must break
down this interdependence or find a feedback control more powerful than the
forces creating the disequilibrium. The second part will relate this
problem of interdependence of the buses with the scale of the whole system.

II. Clumping and the Utility of the Bus System

In order to relate the bus system to the systems described in
the previous chapters, we must assess a utility to this system(5). Since
we are interested in congestion and delays, we shall define this utility
as a function of the waiting time for the buses. Therefore, we shall first
compute the expected waiting time for the buses under various assumptions.

Expected Waiting Times

Let us assume that the length of the 1ine is ¢ and that there
are n buses along the line.

1. Perfect Scheduling, Headways Constant

If the distance between the buses is constant it will be equal
to o/n. If v is the average speed of the buses the time interval between
two buses will be 2/n V. The expected waiting time of a passenger arriving
randomly at a station is:

2
E(wy) = o7

T5)Choix Entre transports publics et transports individuels en Region
Parisienne. Cahiers del'IPURP numero 26, Paris, 1969.
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2. Purely Random Buses

Let us assume that the buses are distributed in a purely random
fashion along the 1line (flat probability density function).

If a random passenger arrives at time t at a station located at
the end of the line (this does not introduce any loss of generality since
we could divide the line and consider that any station is the end of a part),
then the probability density function describing the position of the next

(6).

bus which will arrive is

n(f*1/8 dax)" /e
(0]

£(x)

£(x) = n(x/2)" /8

therefore the expected waiting time will be

-1
(1) =J;:)2 (z-x)ng/z)“ dx

(2/v) - nz% v

E(wz)

E(HZ) - (ﬁ%TYV
E (i)

ifn=1 E(W])

L E(M

ifn=o E(W]) 2)

In the same way we can compute the variance of N2

(6)Harold Freeman, Introduction to Statistical Inference, Addison Wesley,
Reading, Massachusetts.




2 n-1
2y (% a-x)° n o x dx
E(H3) 'J; ¥ Y,
2
2y _ 2%

V2 (n+1) (n+2)

Wy = 2 2 1
2 V2 (n+1)(n+2) (n+1)2

n 52,2

n+2 v2(n+1)2

o?(Hy) =

3. Clumped Buses

If i clumps occur, the service is equivalent to a service with
n-i random buses along the line. The conditional average waiting time is:

L

E(Ws3) = tnmieT)

1 _ 1 1 _ 1 ( i )K
n-i+1  n+l ]__i__ n+1 n+l
n+1 k=0

The number of clumped buses is the outcome of a Bernoulli trial (n buses

each of them having a probability p of clumping). This can be written as:

p(i clumps) = ?TY%f771 p1 (1~P)n_1

therefore:
. K i n-i
- 2 i n! p_ (1-p)
Fg) = Ym Y v w e A O (D

k=0, i=0,n
We do not know how to compute this series but we can find a lower bound.
First, notice that since n is large we can write n=n+l.

Therefore, we can write:
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;

E(u3) = vn+] Z r (%
k=0 i=0,n

Now we want to prove that:

(hk nb o5 (n-k)!
n il (i-k)!
! K
n! (1-%)'1 > 1
(n- K)'n it
(n=1)- -~ (n-k+1) i > 1
K F(i-T)+-(i-k+1)
101-5..-(1- Eil)
n
> 1
1 k+1
1(]"79"’(1'—7—)
; s A A RSP TS
Since i< n T 25 1 1...1 -

The fraction is the product of k fractions individually larger than 1. QED

Dropping the first k elements of the second summation we can now write:

E(wB) 2 E(ws) =Wn—i—]—y i pk zn: (n-k)!r(’i_k)!

which trivially reduces

n 0
_ 3 k
E(”‘,3) v(n+1) :E: P
k=0
N
o, 2 1
E(H3) v(nt1) T-p

Since for any n larger than one, ﬁgﬁ-z

W=t
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we have:
2
2,0, - 1 2 1
(M) 2 5
3773 2 (n-inn)?
. V3 % 1
olai) 2 57 v 7

v
and the same computations as the one leading to E (N3) would lead to a lower

bound estimate of a(wg)

1

2
v(n+T) T-p
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E(ws) 7]
334__
30
2L
E(Wz) i
E(W) 4
! 2 5 % 5 A 1%

Figure 12

v

E (w3) as a function of the probability of clumping

These results are shown in Figure 12 which describes E as a function of p.
We see that the expected waiting time tends to « when p tends towards 1.
Since p is a function of the number of buses used on the particular route,
we now want to find the variation of the expected waiting time when we
increase the number of buses. We shall use our estimate of p as a function
of s/h and the fact that n h = cst. We shall use our lower bound of w3 as
an estimate of the expected waiting time and assume that n is large, so that
n=n+1. We shall also assume that with N0 buses used on the route,

o/h = .1, and the expected waiting time is wo. Then the first table of the
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W/ Woi

C

2.4 CLUMPING

No CLUMPING

y 5 o T 20 15 7N/No
Figure 13
Waiting time as a function of the number of buses in the system

m/No a/h P W/ Wo

] A lo~% J

2 2 lo™3 5

4 A 077 275
5 -5 16 240
6 .6 YA .220
8 -8 38 20|
10 / L8 192
/5 1.5 bl 185
20 2 73 182
Lo L .86 1860
60 6 92 180

Table 6

Waiting time as a function of the number of buses in the system
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chapter and the formula giving E (H3) enable us to compute the
table which is illustrated by Figure 13.

Notice that even with an infinite number of buses the waiting
time does not become zero.
Utilities

The utility of increasing the number of buses is difficult to
assess since the computations of this chapter can only be expressed in
relative terms. We have only been able to give the waiting times as a
function of a reference waiting time and in the same way we shall only be
able to define utilities as a function of the utility of a reference system.
Let us define by N] the number of buses in the reference system and by w]
the corresponding waiting time. By definition N] is arbitrary. We can,
for example, choose N1 = NO’ NO being defined in the same way as in the
preceding paragraph, as being the number such that the standard deviation
of the buses around their mean is 1/10 of the headway. This is a good
approximation for the actual operating conditions of a suburban line (a bus
every hour, standard deviation approximately 5 minutes). Given the reference
level, it becomes easy to defiie the utility of having N buses in the system
as a function of the savings in waiting time:

u(nN) ="~ (w] - W)

If we want to scale the utility between zero and one, we can define the

zero level as being the reference level and choose a Tinear function for f:
w1 -

U(N)=_T'|—

In this particular case the marginal utility is equal to the marginal savings

in waiting time:
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d(w] - W)

aw_ 1
1 - ‘I
U Wy - W

In the case, N1 = NO’ if we use for W the same Tower bound estimate as in

the preceding paragraph, U is described by the curves of Figure 14. Notice

that in the absence of clumping we can obtain any Tevel of utility by increas-

ing the number of buses. With clumping we cannot go beyond the level .82

which corresponds to waiting times of the order of 11 minutes.
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A
{ . —_
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B+ CLOMPING
bl
]
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T t + t 1 1 -+ VA
] 5 io 5 20 25 =0 N/No
Figure 14

Utility as a function of the number of buses

If we choose a reference N1 such that o/h = .5 which is a good
approximation for a central city 1ine at the non-rush hour time (headways
10 min., standard deviation 5 min.), at the reference level the expected
waiting time is 12 min. (2 min. Tost because of clumping). With an infinite
number of buses the waiting time is still of the order of 9 min. and the
maximum level of utility we can reach is only .25. This means that even
in non-rush-hour conditions, it is impossible to operate this bus system so
that the expected waiting time at the stations is less than S minutes. With
different figures the same results will be true for any bus system and it is
impossible to improve these systems by simply increasing the number of buses.

Some figures describing real systems are given in Chapter V.

However, we can already notice that this example shows that we have been
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rather optimistic in the previous chapter with our description of the
economies of scale of larger systems. In the case of buses, it seems

“a priori" rather easy to reduce the waiting time between buses to any
desired level. In real life we are blocked by a structural impossibility.
I tend to believe that the same problem is true of other systems as well.

Chapter IV tries to formalize this idea.
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Chapter IV

Further Computations for a More General Example the Case of Pollution

In tie previous chapter which dealt with clumping, we have shown
that buses along a line were not independent and that this actual dependence
was a major cause of trouble for the system. We are therefore interested
in considering another example very easy to generalize of a congestion process
very similar to the clumping phenomenon. This chapter somehow escapes a
major difficulty, which is to know whether service rates increase or
decrease when congestion begins to appear. In the case of buses we have
proved it was decreasing; here we assume it 1is decreasing too, but we do
not prove it. This is certainly the case of many systems which range from
the welfare system to the ecosystem (absorption of pollutants), but since
it is only an assumption it is not enough to show that our second chapter
is always a conservative description of reality. This chapter is therefore
more an exploration of the congestion process of services than a general
statement. Thus, it is a complement to Chapter II. But the more general
discussion is only resumed in Chapter V.

It is easier to describe a model by reference to an example.

The actual concern about po]]ution(]) leads us to choose pollution as the
reference example. We can assume that the pollutant consists of discrete
units emitted in a Poisson fashion (A units of pollutant emitted per unit

of time). Let us describe the absorption process of the pollutant in a

T7)Edwin S. Mills, Economic Incentive in Air Pollution in Harold Wolozin
Ed. The Economics of Air Pollution (New York, W.W. Norton and CO.).
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1ittle more careful fashion. We shall assume that if there is only one
unit of pollutant in the atmosphere it will disappear after a period of

time t, t being a random variable exponentially distributed:

£(t) = e

u @ absorption rate ( u units per unit of time).

We shall now assume that if a second unit of pollutant is emitted while the
first one is not yet absorbed, the absorption time will be K times larger
(K > 1). In other terms the pollutant disappears after a time t randomly

distributed according to the probability density function:

-k
K t

f(t) =+e

3
k
If a third unit is emitted while the first two are still present assume
that the absorption time is multiplied by K2 etc... We shall call K the
amplification factor of the system.

Assume that at time zero one unit of pollutant is emitted. Thus
the absorption time for this first unit of pollutant will be t distributed
with probability density function:

f(t) = u e-“t

The emission time for the second unit of pollutant will be t' distributed
with probability density function

At!

f(t') = re (Poisson process)

The probability that t' is larger than t for any given t is:

oo- i
/xe At dt'

t
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Thus the overall probability that t' is larger than t is:

p =f ue't“f re Mgt dt
0 t

p =f ue'(H“)tdt
0

= _H
P Aty

Therefore with probability p = X%E'the absorption time of the second unit

will be t distributed according to the probability density function

£ (t) = pe "
and with probability (1-p) = 7\:‘_—“ the absorption time of the second unit
will be t distributed according to the probability density function:

_ M
f(t)=Le k°
k

Now, if we are in the second case, we could prove exactly in the same way

that the probability that the third unit will be emitted while the first

two are still present is
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_ A
Po = 3 /K

In a more general way, given the fact that i units are present in the
system, then the probability that the (i+1)th unit will be emitted while

i units are still present is

- A
pi = 1137F1']

We therefore have the following scheme for one unit

(2)

Figure 15

2lsapg,, Probability tree for one unit

and for the whole system:

,/////[:]
\ig>’
uNnT,[ Figure 16
R ~_ \ Y2 Global probability tree
TN
Fe \;?3

L
Applied Statistical Division
Theory. Boston Division of 2
Research Graduate School of Business
Administration, Harvard University,1961.

. 5
(2)Schlaiffer and Raiffa UNITT
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Thus we are interested in the product

T = PyoPy eeeePy onee

A A

= eme— s }\ se e 0 ® .-oac
My aH/k )\+u7E1
T is the probability that the units of pollutant will accumulate indefinitely.

jes|
}

Let us write p =

= |>

emission rate
absorption rate

p = absorption ratio =

o can vary from zero to infinity and we are interested in defining T as a

function of p

H: ] x 1 X ] X ] ce e e ] X
1+ 1+l-k 1+1-2 1+1~-3 1+l—ﬁ
P o pk pk ok

It is more convenient to express 1 in terms of Log I

“Log T = Log (1+1) + Log (1+p) ++=++ Log (1+)
P e pk1

If we consider individually the elements of this sum we have:

Log (]-}.l):l-_.l_2+_]_§ .....
p P 2p 3p
1, _ 1 1 1
Log (W) = ox =22 * 733~

1 1 1 1
LOg (]*"—-) = = - = + — = S o0 e0®
ok pk1 202k21 3p3k31




Jj=0,~ ka j=0,= pkj Jj=0, 2p2k2.]
J1 1, Logm ] 1 4 1
o 1_1 o 1_1 2 1_1
3 k2 2

1 1
ek ST e wa”
Therefore the probability that the units of pollutant will continuously
accumulate in the atmosphere is a strictly positive number and a lower
bound for this probability is

k

1k
o k -1

I=e¢e
where ¢ is the absorption ratio and k the amplification factor.
An upper bound for this probability T would be
K K2

,
k-] ZZ- k2 _-I

]
o~

Let us therefore consider the variations of I with o and k.



First Case I as a function of p

o |

Pe™ k1 I("c) =
Second Case I as a function of k

k
dI(k) a -0 —=
K e k-1

K
°1(k) _ e "* K -1 [ o2
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!
Figure 17
Lower bound of the probability of an infinite
accumulation as a function of p
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)
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Figure 18

Lower bound ¢f the probability of an infinite accumulation
as a function of k
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If K were equal to one, the service rate would be independent
of the demand rate, and this model would be a standard M/M/1 queuing
model. Thus we would have found the probability of having the pollutant
continuously accumulating is zero for any value of o smalier than one.
With our description, we find that this probability may well be a strictly
positive number. This number is a function of K and the values of this
function are given in Table 7 for various rates of utilization. Thus K
(amplification factor) is the key parameter to the model. It describes
how much the service is affected by the presence of several interacting

units and its values affect drastically the outcome of the model.

k
. 1.1 1.2 1.3 1.4 1.5 2 4
5 <108 < 1008 < 103 < 10?2510 181072 7.4007
8 <103 < 10°% 45103 1.2102% 23102 82107 .19
1 <103 25108 1.310% 3102 5107% .13 27
-3 -2
2 410 51072 .11 18 22 .37 52
10 .33 .55 .65 .70 74 .82 .88
Table 7

Lower bound of the probability of an infinite accumulation

2
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In fact, this model is very easy to generalize and describes
the operation of a large number of systems for which the service rates
depends on the number of people asking for the service. This is, for
example, the well-known problem of maximum flow through a tunne1(3) (4).
If we let everybody in a tunnel beyond a certain threshold the service
rate (flow through the tunnel) decreases for an increasing demand (K> 1).
A better solution consists of letting people wait at the entrance of the
tunnel while maintaining the flow through the tunnel at its maximum
value K = 1). This has been experimentally proved and is now a common
practice.

Thus, the conclusion of this chapter is that we must try to
design systems for which K is as small as possible. There exists a
general trade-off between letting everybody use a system, which means an
internal control mechanism and letting only a certain number of people use
the system controlling it through queues. Queues are easy to operate and
this analysis shows that the second solution will often be the best. In
order to go beyond this elementary analysis, we would have to study in
more detail the various controls used in the operation of various systems.

This cannot be done on such a simplified and general level. When the

(3)L. D. Edie and R. S. Foote, Traffic Flow in Tunnels. Highway Research
Board, Vol. 37, 1958.

(4)L. D. Edie and R. S. Foote, Effect of Shock Waves on Tunnel Traffic
Flow. Highway Research Board, Vol. 39, 1960.
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domain is more restricted, such as highway transportation, there exist
studies of the control of the system, see, for example R. E. Fenton, "On

w(5)

the Flow Capacity of Automated Highways. However, our conclusion is

at a lower level, since the only point we wanted to make was that the inter-
action of the various elements of a system are likely to create conditions
worse than the ones we describe in Chapter II. However, it argues in the
same way, since it proves that several independent system with no inter-

action between the systems will operate better than a single system, the

e1emehtswgf which interfere with each other.

(5)J. G. Bender and R. E. Fenton, On the Flow Capacity of Automated
Highways, Transportation Science, Vol. 2.
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Chapter V

Statistics, Consequences and Implications of the Analysis

At this point, we felt that trying to build more models to de-
scribe the operation of urban services and the way they approach conges-
tion would not add anything to our argument and that it was more interesting
to consider to what extent our conclusions apply to real life services.
This step is undertaken in the first part of this chapter and naturally
leads to the consequences and policy implications of our argument.

We define the utility of a service in terms of the probability
of being served versus the probability of having to wait or being denied
the provision of the service. Relative to this type of utility function
our argument was that the optimum rate of utilization(maximum utility per
unit of capacity) and the corresponding utility per unit of capacity were
increasing for increasing capacities. We also showed that the peak of the
utility curves around the optimum utilization tended to become sharper and
sharper. Thus, let us consider for a given service a sample of facilities.
We shall assume that the respective rates of utilization of these facili-
ties will be distributed around the optimum rate of utilization and spread
according to the sharpness of the maximum of the utility curves. In other
words, we assume that any given service is operated at the optimum. This
is a very strong assumption, the discussion of which would be a thesis by
jtself. However, there is ground to argue that oversized capacities will
generate the demand which will fill them up, whereas when services are not
available people 1learn to deal without them. The first case would

describe certain highways. We know that highways typically generate
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new construction and thereby the demand for highway construction. The
second case would more typically fit public transportation. Therefore, if
our conclusions are correct, we should find an average rate of utilization
increasing with increasing capacities of the facilities and a standard
deviation of this rate of utilization decreasing for increasing capacity of
the facilities.

As a first example of service, we shall consider the provision
of health care and, more particularly, one of the major elements, hospital
care. There is a rising concern for the ever increasing price of hospital
care(]), and therefore there exists a large amount of data related to the
problem. We used the official statistics of the department of Health
Education and Welfare for the 201 Standard Statistical Metropolitan Area(z).
In each of these areas, we consider only general hospitals, and we define
the capacity of the hospital system of one metropolitan area as being the
total number of hospital beds available in the area. We call utilization
ratio p of the system the utilization ratio of the beds, which is a statis-
tical datum. We then define six groups according to the values of N, and
for each group we compute the mean and the standard deviation of po. The

results are summarized in Table 8 and in the corresponding figure.

TT)Report of The National Conference on Medical Costs. Washington, D.C.,
June 1967, U. S. Department of Health Education and Welfare.

(2)Hospitals. A County and metropolitan Area Data Book. Public Health
Service Publication, U. S. Department of Health Education and Welfare.
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Table 8

Mean and standard deviation of the utilization ratio for
the six groups of hospitals

N { Loo Loo 000 |[000 2000|2000 Sooo 5000 10000 | 7y 10 00O
P 715% T63 ], 719% 77 8% 7967%
% 7.55% 7639 626 5.55%, 2937,
FA
&ol S
7
754
70,"-"':, + t .
hoo /000 Looo 5000 loooo N
Figure 19
Mean utilization ratio of the hospital beds as a function of the
capacity
Op
o]
5‘ \\
1
foy/2 - , + J ;
" oo 1000 2000 So00 Io 000 N

Figure 20

Standard deviation of the rate of utilization of the hospitals beds
as a function of the capacity
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We note that the average rate of utilization tends to level off
at 80%. Thic is not very surprising, since there probably exists a physical
1imit to the rate of utilization of hospital beds. Notice that 80% is often
listed as the "proper level" of utilization of hospital beds. Apart from
this point, we unfortunately notice that our results are not statistically
very significant (about .3 level). Since we have not taken into considera-
tion any other factor than capacity, our cross tabulations are nevertheless
worth some attention. Notice that the curves which we fitted to the statis-
tical data are very similar to the theoretical curves of Chapter II.

The second example we considered is the solid waste disposal
system. We concentrated our attention on one particular facility: the
incinerators. Through the Department of Public Health of the Commonwealth
of Masachusetts we had access to the data describing the incinerators in
the state. There actually exists twenty of them. We defined the capacity
N of an incinerator as being the rated capacity N, and the utilization ratio
as being the ratio of the average daily input to the capacity of the incin-
erator. We then divided the facilities in three groups according to their
capacities and for each group we computed the mean and the standard devia-

tion of the utilization ratio. The results are summarized in Table 9.

N 0-150 150-300 300-500
0 .47 .39 .33
g A7 .15 .09
p

Table 9

Capacities (tons/day), mean and standard deviation of the utilization ratio
of the three groups of incinerators of the state of Massachusetts.
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This table immediately shows that the rates of utilization are
not increasing for increasing capacities as we assumed, but in fact decreas-
ing. We immediately inquired if there were a particular reason for this.

It turned out that most incinerators in the state are in the process of
being shut down because of the pollution they create. The Department

of Public Health actually tries to prevent the communities f}om using their
incinerators. However the maximum rate of utilization authorized by the
Department and the effectiveness of the enforcement is variable according
to the particular conditions of the area. It is usually not constraining
for small incinerators but very constraining for large incinerators, which
both create more pollution and are located in more polluted areas. There-
fore, if we go back to the curves of Chapter II, we see that the curves
corresponding to small capacities will not be changed by the introduction
of the constraint. On the other hand, the larger facilities will be
operated exactly at the maximum authorized rate.

Our statistical experiment should therefore show the same spread
of the utilization ratio for small capacities but hardly any deviation from
the mean for large capacities constrained by law. In fact, in the second
case we are also measuring the variability of the constraint. Thus, the
second measurement is a 1ittle more significant for our argument and indeed
the results correspond to what we have just said: the larger the facilities,
the less variable their rates of utilization.

The third example that we shall use is sanitary sewage. As
opposed to solid waste disposal, the problem of sanitary sewage has now
been considered for a long time, at least in terms of the amount of sanitary

sewage per capita required ina city. We therefore do not need to perform



82.

statistical measurements for this case and we can simply use the results

of the various studies which estimate the required size of a sewage system
as a function of the size of a city. The results are compiled in Figure
21. Notice that one of the sources is as old as 1918. If we assume that
the capacity of the system has to be equal to the maximum flow and if we
define the rate of utilization as being the ratio of the average to the
maximum flow we immediéte]y see that the rate of utilization approaches a
fixed 1imit exponentially as the size of the system increases, and the
difference between the maximum and the minimum flow decreases exponentially
as the size of the system increases.

These three examples give some feeling for the relevance of our
dissertation. We could certainly choose other services, and more partic-
ularly certain facilities providing the service; then, define the capacity
of these facilities or the capacity of a system of facilities and the rate
of utilization of these facilities and come up with more evidence to support
our argument. For example, we could study airports, hotels, trains, fire
stations, buses. In fact, for buses it would be more interesting to collect
some evidence supporting the argument of Chapter III. On April the 14th
1972(3), we measured the waiting times for buses in front of MIT. The
experiment lasted for 150 minutes and we measured the waiting times of the

passengers boarding more than 50 buses. We found an average waiting time

(3)Paul F. Bursaux, scheduling the buses at rush hour, MIT.
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Quantity of Sanitary Sewage
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Figure 21

Curve A source: Babbitt, H. E., "Sewerage and Sewage Treatment," 7th Ed.,
John Wiley & Sons, Inc., New York (1953).
Curve A2 source: Babbitt, H. E., and Baumann, E. R., "Sewerage and Sewage

Treatment," 8th Ed., John Wiley & Sons, Inc., New York (1958).

Curve B source: Harman, W. G., "Forecasting Sewage at Toledo under Dry-
Weather Conditions." Eng. News-Rec. 80, 1233 (1918).

Curve C source: Youngstown, Ohio, report.

Curve D source: Maryland State Department of Health curve prepared in 1914.
In "Handbook of Applied Hydraulics." 2nd Ed., McGraw-Hill Book Co.,
New York (1952).

Curve E source: Gifft, H. M. "Estimating Variations in Domestic Sewage
Flows," Waterworks and Sewerage, 92, 175 (1945).

Curve F source: "Manual of Military Construction." Corps of Engineers,
United States Army, Washington, D.C.

Curve G source: Fair, G. M., and Geyer, J. C., "Water Supply and Waste-
Water Disposal.” 1st Ed., John Wiley & Sons, Inc., New York (1954).

Ratio of extreme flows to average daily flow compiled from various sources.

Reproduced from page 33 of manual "Design and Construction of Storm Sewers"
1969 Edition with permission of the Water Pollution Control Federation and
the American Society of Civil Engineers.
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of 3.56 minutes. This is 42% more than the theoretical 2.5 minutes which
would correspond to a constant headway between the buses. Theoretically
this would lead to a probability of clumping of approximately 30%. We
counted only 15% of clumped buses.

However, if we want to undertake the same type of measurement
for every service, we very rapidly face several major difficulties. First,
for certain services, the nature of the service itself is not clear. If
we consider, for example, the case of police protection(4) we see that there
are several components in this service ranging from traffic regulation to
crime prevention. But, the nature of the service which is provided by one
police force will be different from the service which is provided by another
police force. Even though everybody agrees that a police force is neces-
sary, the role and utilization of the police is by no means clear. In
those conditions, it becomes almost impossible to define capacity and rate
of utilization. This difficulty is not specific to the police case but
would probably arise in the same way for any other services such as educa-
tion or justice.

A second type of difficulty will arise from the specific type
of model we have used to describe services. Many services are not provided
through one or several isolated facilities, but merely through a network.
This is the case of the telephone, which is a system of hierarchical net-

works. In such conditions, the problem of providing the service will either

(#)Richard C. Larson, Urban Police Patrol Analysis, MIT Press,
Cambridge, 1972.
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depend of the capacity of the facilities located at the nodes of the net-
work (central exchange in the case of the telephone) or of the capacity of
the 1links of the network (telephone lines). If the congested facility is
the 1inks of the network our analysis might not apply. We can easily define
the capacity and the rate of utilization of one link of a network or,
eventually the capacity and rate of utilization of a network between a sink
and a source, but globally there is no such thing as a capacity and rate of
utilization of a network. For example, we cannot define the capacity of a
telephone system. Therefore, i” such is the case the analysis we have
undertaken will not be valid.

However, it is probably possible to solve the difficulty
associated with the network problem by undertaking a different type of
analysis which would hopefully lead to the same type of conclusions as ours.

For these reasons our analysis will not be as general as we
would 1ike it to be. Let us nevertheless consider its consequences and
policy implications. Our argument was that percentage wise the difference
between the optimum level of operation and the maximum level of operation
of a service tended to become smaller and smaller as the size of the
service was increased. But, we also proved that there were economies of
scale associated with the provision of services. Thus, there will be an
economic incentive to increase the size of services, and indeed this
corresponds to what we observe. Therefore, if we do not consider local or
jsolated events which affect the rate of demand or the rate of service,
and which are better taken care of by large services, but if we consider

the secular trend in the rate of demand and in the rate of service, we see
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that the condition of the large service is much more critical than the con-
dition of the small service. Indeed what we are describing is more a long
term problem than a short-term problem; or maybe should we say that it is
not a Tocal but a global problem.

Let us, for example, consider the minimal hypothesis that the
demand for services increases as the Gross National Product which is about
6% per year. In fact, services are a superior good and the demand for
services increases faster than the median income. Let us also consider a
given facility and assume that we build new facilities so that their level
of operation is optimum five years after construction is decided. If the
service is large and its flexibility is below 6% (annual increase of demand)
then if there is no new construction in the meantime, one year after being
optimum the service will reach the limits of its possibilities. In other
words, our facility is optimum after five years and useless after six years.
On the other hand a small service will remain almost optimal for a long
period of time. This proves that planning the size and capacities of
services is a problem, the difficulty of which increases rapidly with the
size of the service. For large services, we shall need very accurate pre-
dictions of the amount of service which will be required and of the condi-
tions under which we shall be able to operate the'service. More partic-
ularly, we shall not be able to wait until we observe decaying conditions
in the operation of the service to start planning and building new facil-
ties. Any mistake or underestimation will be Tikely to have disastrous
consequences, and we have not taken into consideration the fact that large

services require a much larger construction time than small ones.
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Further research could be undertaken in two directions. First
we have taken only into consideration very briefly the possibilities of
increasing the service rates and capacities in order to face increasing
demands. We have considered these as given and then computed the value of
certain parameters (maximum, optimum) as a function of these capacities
and service rates. It probably would be interesting to consider in a
general way the relationship between the evolution of the demand and the
evolution of the service. Maybe we could consider this as a control
problem and find an optimum evolution of urban services.

A second area which could be investigated is the possibility of
changing the mode of provision of urban services. We have argued that
increasing the size of service systems would provide economies of scale
but would be dangerous. Therefore, the question is whether there exists a
way to provide services which would enable us to retain the economies of
scale without giving up flexibility. Disaggregating the provision of
services to several small independent units and thereby giving up the
economies of scale might not be the only solution to the problem we have
raised. The solution might be in controls, or in different types of
queues, or in different types of services. If such is the case, it is
urgent to know what these services should be. What about giving up the
provision of services altogether?

The picture however is not so dark as we have made it. Teillhard
de Chardin assumes that saturation is a precondition for the evolution of
systems. The high densities associated with saturation increase the

probability of transition to a higher level of organization which is, in a
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certain sense, equated to intelligence. The typical example is the one of
oversaturated solutions which, beyond a certain threshold, turn instantly
to a more organized state (i.e., solid state). We will not go as far as
Teillhard and discuss life and intelligence as higher degrees of organiza-
tion of systems previously without Tife or intelligence, but we must
notice that the idea of organization and levels of organization is most
important in the problem we have discussed. Whether we have reached the
necessary level of congestion for a possible transition to a higher Tevel

of organization is obviously the fundamental question.
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Appendix to Chapter V

We suggest a method for studying the behavior of the system if we
increase the service rate as fast as the demand. The system studied is the
same as the system of the second part of Chapter II (Multi-Channel-Single
Infinite Queue System). We shall use the same notations as in Chapter II.

We assume that the service rate is increased as fast as the
demand rate. In other words we always incféase the number of channels fast

enough to maintain a constant utilization ratio o = ﬁlu We therefore want

u
to compare the M channel system and the M#1 channel system at the same
utilization ratio o. Let us therefore compare the probability of queuing

in the M channel system and in the M+1 channel system for a constant utiliza-

tion ratio.
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(Mil)M is increasing with M and tends exponentially towards e

when M tends towards infinity.

EM(o(M+1)
1 - is increasing with M and tends even faster

M
> Eylot1))
n=0

than exponentially towards 1 when M tends towards infinity.

Q
Therefore GMil is increasing with M and tends faster than exponen-
M

tially towards pe ‘e = pe]'p.

We can derive two conclusions from these few pages.

First: If the utility is defined in terms of probability of
queuing it is always less interesting to add an additional channel to a
1.rge service than to a small one.

Second: If the rate of utilization is close to one, the
influence of an additional channel tends to be very small.

Notice too that an alternate approach to this problem of

increasing service rates would be to modify our model of Chapter V.
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