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MALA-WITHIN-GIBBS SAMPLERS FOR HIGH-DIMENSIONAL
DISTRIBUTIONS WITH SPARSE CONDITIONAL STRUCTURE\ast 

X. T. TONG\dagger , M. MORZFELD\ddagger , AND Y. M. MARZOUK\S 

Abstract. Markov chain Monte Carlo (MCMC) samplers are numerical methods for drawing
samples from a given target probability distribution. We discuss one particular MCMC sampler, the
MALA-within-Gibbs sampler, from the theoretical and practical perspectives. We first show that
the acceptance ratio and step size of this sampler are independent of the overall problem dimension
when (i) the target distribution has sparse conditional structure, and (ii) this structure is reflected in
the partial updating strategy of MALA-within-Gibbs. If, in addition, the target density is blockwise
log-concave, then the sampler's convergence rate is independent of dimension. From a practical
perspective, we expect that MALA-within-Gibbs is useful for solving high-dimensional Bayesian
inference problems where the posterior exhibits sparse conditional structure at least approximately.
In this context, a partitioning of the state that correctly reflects the sparse conditional structure
must be found, and we illustrate this process in two numerical examples. We also discuss trade-offs
between the block size used for partial updating and computational requirements that may increase
with the number of blocks.
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1. Introduction. Markov chain Monte Carlo (MCMC) samplers are numerical
methods for drawing samples from an arbitrary target probability distribution whose
density is known up to a normalizing constant. Generically, a Metropolis--Hastings
MCMC sampler proposes a move by drawing from a proposal distribution and accepts
or rejects the move with a probability that ensures that the stationary distribution of
the Markov chain is the target distribution.

To design or choose a sampler for a given distribution, one typically considers the
following three criteria. First, the type of proposal distribution is chosen based on
how much information about the target distribution is available. For example, the
Metropolis adjusted Langevin algorithm (MALA) requires derivatives of the target,
while the random walk Metropolis (RWM) algorithm does not. Second, the step size,
which controls how far the proposed sample strays from the current MCMC state,
needs to be tuned. Put simply, too large a step size leads to poor mixing because the
acceptance probability is too low; too small a step size leads to a large acceptance
probability, but the mixing of the chain is poor because a large number of steps is
required to produce an effectively independent sample. Step size tuning must find a
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practical solution to this trade-off and is problem-dependent. Optimal or practical
choices of the step size may depend, among other things, on the choice of proposal
distribution, the computational resources available, the (apparent or effective) di-
mension of the problem, and the overall desired accuracy of the MCMC computation.
Lastly, in an n-dimensional problem, one can propose an n-dimensional update via
an n-dimensional proposal, or one can propose, at each step in the chain, an update
for an n/m-dimensional block of variables. Such samplers are called within-Gibbs
samplers, partially updating MCMC, componentwise MCMC, or partial resampling
algorithms; see, e.g., [37, 29, 5].

The distributions one wishes to sample by MCMC are often high-dimensional.
Yet the convergence of MCMC samplers often slows in high dimensions, to the extent
that calculations become practically infeasible. Our main motivation for this work is
that, while it is certainly difficult to sample generic high-dimensional distributions,
distributions that exhibit certain special structure can be feasible to sample, indepen-
dent of their dimension, provided that the sampler exploits this structure. Examples
of samplers in the current literature that leverage various special problem structures
are given in section 4. In this paper, we focus on high-dimensional sampling via the
MALA-within-Gibbs sampler in the presence of sparse conditional structure.

We define sparse conditional structure in section 3 via the Hessian of the log-
arithm of the target density. In the special case of a Gaussian target distribution,
sparse conditional structure is equivalent to the precision matrix being sparse. More
generally, sparse conditional structure is equivalent to the existence of many condi-
tional independence relationships, or the distribution being Markov with respect to a
sparse graph [31]. We prove in section 3 that the partial updating strategy of MALA-
within-Gibbs, with carefully defined updates that make use of the sparse conditional
structure, leads to acceptance ratios that depend on the dimension of the block-update
but are independentof the overall dimension. We further show that MALA-within-
Gibbs converges with a rate independent of the dimension if the target distribution
is blockwise log-concave.

We then discuss MALA-within-Gibbs from a practical perspective in section 5.
In this context it is important to realize that the sparse conditional structure may be-
come apparent only after a suitable change of coordinates. For MALA-within-Gibbs
to be an effective sampler, we thus need a means of discovering these coordinates or,
equivalently, identifying sparse conditional structure. We expect that many Bayesian
inference problems (see, e.g., [15, 41, 2]) are naturally formulated in coordinates that
exhibit sparse conditional structure, but we also consider an example where a coor-
dinate transformation is required to reveal sparse conditional structure. We further
discuss the overall computational efficiency of the MALA-within-Gibbs approach and
raise the issue that the partial updating of MALA-within-Gibbs requires m simu-
lations of the numerical model per sample, m being the number of blocks. This
implies that there may be an optimal, problem-dependent choice for the dimension-
ality of the update that can lead to significant computational savings. We explore all
of the above issues numerically by applying MALA-within-Gibbs to two well-known
test problems: a log-Gaussian Cox point process [24, 33] and an elliptic PDE inverse
problem [35, 36, 38, 4, 20, 48]. We further compare the computational efficiency of
MALA-within-Gibbs to the efficiencies of other samplers including MALA, pCN [17],
and manifold MALA (MMALA) [24].

2. Notation, assumptions, and background. We consider probability distri-
butions with density functions c\pi (x), where c is an unknown normalization constant
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MALA-WITHIN-GIBBS WITH SPARSITY A1767

and \pi is a known function. We partition the n-dimensional vector x into m blocks,
x1, . . . ,xm, where the subscripts are called block indices. Note that the blocks xj are
not necessarily consecutive elements of the vector x.

2.1. Notation. MALA will require gradients of the logarithm of the target den-
sity \pi , which we write as v(x) = \nabla \bfx log \pi (x). Similarly, we sometimes write de-
rivatives of \pi with respect to the blocks as vj(x) = \nabla \bfx j

log \pi (x). We write \nabla 2
\bfx i,\bfx j

to denote second derivatives with respect to blocks i and j; i.e., \nabla 2
\bfx i,\bfx j

log \pi (x) is
a matrix of size dim(xi) \times dim(xj). Throughout this paper, we use the Euclidean

norm for vectors, i.e., \| x\| =
\surd 
xTx, where superscript T denotes a transpose, and the

l2-operator norm, \| A\| , for matrices. We write A \preceq B, where A and B are two n\times n
matrices, when the matrix A - B is negative semidefinite. We write \lambda min(A) for the
smallest eigenvalue of the matrix A.

We write conditional densities of one block, \pi (xj | x1,x2, . . . ,xj - 1,xj+1, . . . ,xm),
as \pi (xj | x\setminus j), i.e., the block index set \setminus j = \{ 1, 2, . . . , j  - 1, j + 1, . . . ,m\} . More
generally, we write \scrI for a subset of block indices; i.e., \scrI is a subset of \{ 1, 2, . . . ,m\} .
The cardinality of \scrI will be denoted as | \scrI | . We denote the complement of \scrI by \scrI c;
i.e., \scrI c is the subset of \{ 1, 2, . . . ,m\} which excludes the block indices in \scrI .

An important concept we will use repeatedly is conditional independence. Con-
ditional independence means that conditioning block i on all but a few other blocks
is irrelevant, which we write as

xj \bot \bot x\scrI c
j
| x\scrI j\setminus \{ j\} ,

where the index set \scrI j depends on j and includes the block index j and where \scrI j \setminus 
\{ j\} is the index set \scrI j with index j removed. In terms of probability distributions,
conditional independence means that

\pi (xj | x\setminus j) = \pi (xj | x\scrI j\setminus \{ j\} ).

We assume throughout that \scrI j has at most S \ll m elements.

2.2. Assumptions. We assume throughout this paper that \pi (x) has continuous
second derivatives and that
(i) the dimension, n, of x and the number of blocks, m, are large;
(ii) any block xj is conditionally independent of most other blocks.

We refer to assumption (ii) as sparse conditional structure. This terminology is in-
spired by linear algebra and Gaussian \pi (x)---a Gaussian with sparse conditional struc-
ture is characterized by a sparse precision matrix. We make assumption (ii) mathe-
matically more precise in section 3.1. For simplicity, we assume that n/m (dimension
divided by the number of blocks) is an integer.

2.3. Background: MALA and MALA-within-Gibbs. The MALA sampler
with n-dimensional updates and step size \tau generates a sequence of iterates xk by
repeating the following two steps, starting from a given x0:

1. Draw a sample \~xk from the MALA proposal by

\~xk = xk + \tau v(xk) +
\surd 
2\tau \bfitxi k,

where \bfitxi k is an independent sample from \scrN (0, In).
2. Accept this proposal with probability

\alpha (xk, \~xk) = min

\Biggl\{ 
1,

\pi (\~xk) exp( - 1
4\tau \| x

k  - \~xk  - \tau v(\~xk)\| 2)
\pi (xk) exp( - 1

4\tau \| \~xk  - xk  - \tau v(xk)\| 2)

\Biggr\} 
;

D
ow

nl
oa

de
d 

05
/0

3/
21

 to
 1

8.
30

.8
.7

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1768 X. T. TONG, M. MORZFELD, AND Y. M. MARZOUK

i.e., let xk+1 = \~xk with probability \alpha (xk, \~xk), and xk+1 = xk with probability
1 - \alpha (xk, \~xk).

It is straightforward to show that c\pi (x) is the invariant distribution of the Markov
chain xk. Therefore, when k \rightarrow \infty , xk can be viewed as a sample from c\pi (x).

MALA-within-Gibbs is a variation of MALA that uses n/m-dimensional updates.
We use superscripts to index ``time"" in the Markov chain (see above) and subscripts to
index the blocks. Thus, starting with a vector x0 and step size \tau , MALA-within-Gibbs
iterates the following steps:

1. Set xk = xk - 1. Repeat steps (a) and (b) below for j = 1, . . . ,m to update
all m blocks of xk = [xk

1 , . . . ,x
k
m].

(a) Sample a standard Gaussian \bfitxi kj of the same dimension as xj and use the
MALA proposal for the current block xj :

(2.1) \~xk
j = xk

j + \tau vj(x
k) +

\surd 
2\tau \bfitxi kj .

(b) Define \~xk = [xk
1 , . . . ,x

k
j - 1, \~x

k
j ,x

k
j+1, . . . ,x

k
m], i.e., \~xk is equal to xk, except

at its jth block. Compute the block acceptance ratio

\alpha j(x
k, \~xk) = min

\Biggl\{ 
1,

\pi (\~xk) exp( - 1
4\tau \| x

k  - \~xk  - \tau vj(\~x
k)\| 2)

\pi (xk) exp( - 1
4\tau \| \~xk  - xk  - \tau vj(xk)\| 2)

\Biggr\} 
.

Set xk to be \~xk with probability \alpha j(x
k, \~xk); else xk maintains its value.

2. Increase the time index from k to k + 1 and go to 1.
As before, it is straightforward to verify that the target c\pi (x) is the invariant dis-
tribution of the MALA-within-Gibbs iterates. The partial updating can be derived
from applying MALA within a Gibbs iteration (hence the name), i.e., with target
distributions \pi (xj | x\setminus j).

3. Dimension-independent acceptance and convergence rate. Both the
MALA and MALA-within-Gibbs samplers can, in principle, be used for arbitrary
target distributions, but in generic high-dimensional problems we expect that con-
vergence is slow. In high-dimensional problems with sparse conditional structure,
however, MALA-within-Gibbs can be effective if the partitioning of x, defining the
partial updates, is chosen in accordance with the sparse conditional structure. With a
suitable partial updating strategy, we show that the step size and the acceptance ratio
of MALA-within-Gibbs (within each block) can be made independent of the overall di-
mension. We then show, under additional assumptions of blockwise log-concavity, that
MALA-within-Gibbs converges to the target distribution at a dimension-independent
rate. The proofs of the propositions and the theorem can be found in the Supplemen-
tary Material.

3.1. Dimension-independent acceptance rate under sparse conditional
structure. To simplify the proofs, the conditional independence assumption is for-
mulated in terms of the gradient v(x).

Assumption 3.1 (sparse conditional structure). For \pi (x) and the partition x =
(x1, . . . ,xm), there are constants S and q independent of n, so that the following hold:
(i) The dimension of each block xj is bounded by q.
(ii) For each block index j \in 1, . . . ,m, there is an x-independent block index set

\scrI j \subset \{ 1, . . . ,m\} with j \in \scrI j and cardinality | \scrI j | \leq S so that

\nabla 2
\bfx k,\bfx j

log \pi (x) = \nabla \bfx k
vj(x) = 0 if k /\in \scrI j .
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MALA-WITHIN-GIBBS WITH SPARSITY A1769

Note that (i) is trivial because we deal with finite-dimensional problems and note
that (ii), by Lemma 2 of [46], is equivalent to xj \bot \bot x\scrI c

j
| x\scrI j\setminus \{ j\} if the density is

strictly positive and smooth. In other words, Assumption 3.1 is equivalent to the
assumption of sparse conditional structure, as described earlier, but the formulation
in terms of gradients is easier to use in our proofs.

Whether or not Assumption 3.1 is satisfied for a given target distribution de-
pends, to a large extent, on how the blocks of x are defined. Using physical insight
into the problem, it is often possible to group components of x such that Assump-
tion 3.1 is satisfied or approximately satisfied. We discuss this issue more in section 5
below, but it is important to understand that Assumption 3.1 essentially requires a
good understanding of the target distribution and that the results we derive under
this assumption make use of the fact that one understands and leverages conditional
independencies among the components of x.

We also assume that the gradient v(x) and its derivatives are bounded.

Assumption 3.2 (bounded vector fields). The vector field vj(x) = \nabla \bfx j log \pi (x),
for j = 1, . . . ,m, and its first derivatives are bounded, i.e., there exist constants Mv

and Hv, independent of the overall dimension n, such that

\| vj(x)\| \leq Mv, \| \nabla \bfx i
vj(x)\| \leq Hv, \| \nabla \bfx j

vj(x) - \nabla \bfz j
vj(z)\| \leq Hv\| x - z\| .

By Assumption 3.1, vj(x) has no dependence on x\scrI c
j
, so one can write it as

vj(x\scrI j ). If the support of \pi (x) is bounded, then vj(x) having no dependence on x\scrI c
j
,

along with the fact that the dimension of each block xi is at most q, often yields
Assumption 3.2. Unbounded support is more complicated. A Gaussian, for example,
violates Assumption 3.2 because the norm of the gradient is not bounded. This
boundedness assumption, however, is made for simplicity and may not be required
in practice. More sophisticated constructions may be used in the future to relax this
assumption and to derive more general results.

Under Assumptions 3.1 and 3.2, the following proposition shows that the step
size and the acceptance ratio of MALA-within-Gibbs are independent of the overall
dimension.

Proposition 3.1 (block acceptance). Suppose c\pi (x) is the density of a dis-
tribution with sparse conditional structure (Assumption 3.1) and that, in addition,
Assumption 3.2 holds. There is a constant M , independent of the number of blocks
m, so that, for any given state x \in \BbbR n, the block acceptance ratio \alpha j(x

k, \~xk) is bounded
below by

\BbbE [\alpha j(x
k, \~xk)] \geq 1 - M

\surd 
\tau 

for all blocks j \in \{ 1, . . . ,m\} .
Proposition 3.1 follows directly from Lemma SM1.2, which we prove in sec-

tion SM1. The dimension-independent block acceptance ratio is intuitive. Partial
updating implies that the proposed updates are, by design, low-dimensional: their
dimension depends on the block size, q, but is independent of the number of blocks,
m, or the overall dimension n = m\cdot q. Thus, only the dimension of the update controls
the block acceptance ratio. The overall number of low-dimensional updates, which
defines the overall dimension, is irrelevant.

It might seem that Proposition 3.1 contradicts earlier results on optimal scalings
of MALA step sizes, where the optimal step size decreases with dimension at a well-
understood rate [42, 43, 8, 7]. These earlier scaling results, however, do not assume
sparse conditional structure. Thus, in general, the optimal step size of MALA and
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MALA-within-Gibbs should decrease with dimension, but if the target distribution
has sparse conditional structure and if, in addition, this structure is used in the block-
updates, then the step size (and acceptance ratio) can be independent of the overall
dimension.

Assumption 3.1 ensures that the sparse conditional structure of the target is ex-
ploited by the MALA-within-Gibbs sampler. We thus assume away any difficulties
of discovering sparse conditional structure, but we discuss practical aspects of this
assumption in section 5, including a brief discussion of what happens when the as-
sumptions are only nearly met. We also emphasize that we have no claims at optimal
step sizes of MALA-within-Gibbs---we merely show that the step size need not de-
crease with dimension to ensure a constant average block acceptance ratio. Moreover,
local tunings as discussed in [5] may further improve efficiency, but we do not pursue
such ideas here.

Partial updating of MALA has also been considered in [37], where the conclusion
is that the updates in MALA-within-Gibbs should be high-dimensional. Again, this is
true in general, but if the target has sparse conditional structure, the dimensionality
of the updates may depend on this structure. We revisit this issue in section 5, where
we also bring up a trade-off between the block size and computational requirements
that may increase with the number of blocks. One can also perform random partial
updates, i.e., choosing at random which components of x are next updated. Asymp-
totically, MALA-within-Gibbs with a random partial updating strategy converges to
the target distribution, but we expect that the convergence will be slow for problems
with sparse conditional structure because this structure is not used by random partial
updates.

3.2. Dimension-independent convergence rate. We have shown above that
the step size and acceptance ratio of MALA-within-Gibbs can be independent of di-
mension if the sparse conditional structure of the target distribution is known and
used via a suitable partition of the variables during the within-Gibbs moves. This
is not enough to guarantee fast convergence of MALA-within-Gibbs. To study the
convergence rate of MALA-within-Gibbs, we require, as an additional assumption,
that the target distribution be unimodal and blockwise log-concave (see below for a
definition). The reason is that difficulties with MCMC that arise from high dimen-
sionality or multimodality are independent of each other: if the target distribution
has multiple modes, a large number of samples may be required even if the dimension
is small. We focus on aspects of high-dimensional problems with a single mode.

The additional assumption we need in our proof (see section SM1) is blockwise
log-concavity. To define blockwise log-concavity, we first construct an m\times m matrix
H(x), where m is the number of blocks, with the following properties.

Definition 3.3. A symmetric m\times m matrix function H(x) with entries Hj,i(x)
is uniformly bounded and negative if there are strictly positive constants Hv and \lambda H

such that for all j, i and all x,

| Hj,i(x)| \leq Hv, \lambda max(H(x)) \leq  - \lambda H < 0.

As a simple example, a constant symmetric negative definite matrix is uniformly
bounded and negative. Blockwise log-concavity can now be formulated as follows.

Assumption 3.4. A probability density c\pi (x) is blockwise log-concave with block
size m if there exists an m \times m uniformly bounded and negative matrix H(x) such
that
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Table 1
Blockwise log-concavity with H as defined in the text for different block sizes q and different

correlation length scales l. Positive numbers, highlighted in bold, indicate blockwise log-concavity.

Setting q = 1 q = 2 q = 4 q = 8 q = 16 q = 32
l = 2 -0.71 -1.28 -1.44 -1.28 -0.71 0.24
l = 1 0.04 -0.21 -0.29 -0.21 0.04 0.46
l = 0.5 0.62 0.54 0.52 0.54 0.62 0.76

(i) \nabla 2
\bfx j ,\bfx j

log \pi (x) \preceq Hj,j(x) I, where I is the identity matrix of size dim(xj) \times 
dim(xj);

(ii) the off-diagonal elements bound the conditional dependence between blocks, that
is, \| \nabla 2

\bfx j ,\bfx i
log \pi (x)\| \leq Hj,i(x) for all i \not = j.

Note that if the dimension of the blocks is q = 1, so that m = n, and if the Hessian
of log \pi (x) is diagonally dominant, then H(x) can be taken as the Hessian of \pi , with
all off-diagonal entries replaced by their absolute value. Further note that blockwise
log-concavity is a stronger assumption than log-concavity---the function \pi (x) can be
log-concave but not blockwise log-concave (see example below). On the other hand,
a distribution that is blockwise log-concave, for any block size, is also log-concave.

As an illustration, we consider a Gaussian distribution for x = [x1, . . . , x64] with
mean zero and covariance matrix C with elements

[C]i,j = exp

\biggl( 
 - 1

2l
| i - j| 

\biggr) 
, i, j = 1, . . . , 64.

Interpreting this Gaussian as a discretization of a 1D random field with exponential
covariance kernel (and discretization \Delta x = 1), the quantity l is a correlation length
scale. If l is small, only those components of x that are near each other in the 1D
domain are significantly correlated. This suggests partitioning x based on neighbor-
hoods in the 1D domain which correspond to consecutive elements of x. For example,
the block size q = 4 results in m = 16 blocks

x1 = [x1, . . . , x4], x2 = [x5, . . . , x8], . . . , x16 = [x61, . . . , x64].

Recall that, for Gaussian distributions, the precision matrix P is equal to  - 2\nabla 2 log \pi ,
which suggests constructing the matrix H(x) \in \BbbR m\times m by

Hi,i(x) \equiv  - \lambda min(Pi,i), Hi,j(x) \equiv \| Pi,j\| .

Here, Pi,j is the i, jth q \times q subblock of P with indices corresponding to the blocks
xi and xj . For example, with q = 4, P1,2 is a subblock of P consisting of rows 1--4
and columns 5--8. Assumption 3.4 is then equivalent to assuming that H is negative
definite, i.e., \lambda min( - H) > 0. We can numerically check this condition by computing
eigenvalues of H. Table 1 lists values of \lambda min( - H) for varying correlation length scales
l and block sizes q.

We note that while the Gaussian is log-concave for any l, blockwise log-concavity
depends on the length scale l and the size of the blocks q. If l is large, only large blocks
lead to blockwise log-concavity (with q = 64 guaranteeing log-concavity and blockwise
log-concavity). If the correlation is (essentially) confined to small neighborhoods, i.e.,
if l is small, then small block sizes q also lead to blockwise log-concavity.

With the definition of blockwise log-concavity, we can now state a theorem about
the dimension-independent convergence rate of MALA-within-Gibbs. The proof is
given in section SM1.
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Theorem 3.2. Under Assumptions 3.1, 3.2, and 3.4, for any \delta > 0, there exists
a \tau 0 > 0 independent of the number of blocks m, so that when the step size \tau < \tau 0,
we can couple two MALA-within-Gibbs samples xk and zk, such that

m\sum 
i=1

\bigl( 
\BbbE \| xk

i  - zki \| 
\bigr) 2 \leq (1 - (1 - \delta )\lambda H\tau )2k

m\sum 
i=1

\bigl( 
\BbbE \| x0

i  - z0i \| 
\bigr) 2

.

In particular, one can let z0 \sim \pi . It follows that zk \sim \pi , which in turn shows that xk

converges to \pi geometrically fast.

Theorem 3.2 indicates that MALA-within-Gibbs can be a fast sampler for high-
dimensional problems if (i) the target distribution has sparse conditional structure
and this structure is used by the MALA-within-Gibbs sampler; and (ii) the target
distribution is blockwise log-concave.

Blockwise log-concavity implies that the target has only one mode. Assuming
blockwise log-concavity thus allows us to study computational barriers due to high
dimensionality without requiring that we simultaneously consider challenges due to
multimodality. Notably, blockwise log-concavity is more restrictive than log-concavity,
which also implies that the target is unimodal. We use blockwise log-concavity here to
gain stronger control over the coupling between blocks in the analysis. Ultimately, a
less restrictive assumption (e.g., log-concavity) may be preferable, and one may view
our results as a first step towards a full understanding of how MALA-within-Gibbs
can operate effectively in high-dimensional problems.

Theorem 3.2 also has connections to previous work on Gibbs samplers for Gauss-
ian distributions with sparse conditional structure [34]. In particular, Theorems 3.1
and 3.2 of [34] show dimension-independent convergence of a Gibbs sampler for Gauss-
ian distributions. By interpreting the blockwise log-concavity assumption as a gen-
eralization of the Gaussian assumptions in Theorems 3.1 and 3.2 of [34], one can
understand Theorem 3.2 as a generalization of this result to a within-Gibbs sampler
for non-Gaussian distributions.

4. Discussion of efficient samplers in high dimensions. We suggested ear-
lier that sampling generic high-dimensional distributions is difficult, but if the target
distribution has a special structure, then efficient samplers can be constructed. One
example is Gaussian distributions. Gaussians can be sampled efficiently even if their
dimension is large, either by direct samplers (using techniques from numerical linear
algebra for computing matrix square roots), or by MCMC, using analogies between
Gibbs samplers and linear solvers to construct matrix splittings for accelerated sam-
pling [23, 22]. Connections between linear solvers and MCMC are also discussed in
[25].

There are also several routes to making MCMC samplers effective for high-
dimensional distributions that are not Gaussian, and we discuss some of them here
in relation to our results. Recall that the MALA-within-Gibbs sampler relies on sam-
pling blocks of variables; this idea is also used in multigrid Monte Carlo (MGMC)
for lattice systems [26, 27, 21]. The basic ideas in MGMC, however, are different.
MGMC proposes the same move simultaneously for all variables within one block.
The MALA-within-Gibbs sampler proposes moves for each variable within a block,
but handles the blocks (nearly) independently. In terms of analogues to linear solvers,
MALA-within-Gibbs is perhaps more akin to domain decomposition than to multi-
grid.

Metropolis--Hastings (MH) samplers offer a general tool for sampling non-Gaussian
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target distributions. The step size \tau of many MH samplers needs to be tuned, which
often requires that \tau decrease with dimension n. In fact, optimal scalings of \tau with
dimension for various MCMC samplers have been derived for RWM \tau opt = O(n - 1),
for MALA \tau opt = O(n - 1/3), and for HMC \tau opt = O(n - 1/4). Fixing the acceptance
ratio with small \tau , however, comes with a price: the acceptance ratio may be large,
but all accepted steps are small (on average on the order of \tau ), so that the sampler
moves often, but slowly. As a rule of thumb, it takes about O(1/\tau ) iterations to
move through the support of the target distribution (putting aside issues of reaching
stationarity [16]). For very large dimensions, many MCMC samplers are thus slow to
converge. These results hold for general target distributions. Even if the analyses that
lead to the optimal scalings rely on certain assumptions, e.g., that the target measure
is of product type, this problem structure is not directly used by the samplers. Our
results on dimension-independent step size and convergence rates hold only for target
distributions with sparse conditional structure and when this structure is explicitly
used by the MALA-within-Gibbs sampler (via Assumption 3.1).

Another strategy for effective sampling of high-dimensional distributions applies
if the parameters x can be decomposed as x = (y, z), where z is low-dimensional and,
conditioned on z, there are fast (perhaps direct) samplers for y; see, e.g., [10, 11, 13].
In Bayesian inverse problems, this structure can often be identified by a suitable choice
of basis or reparameterization, as in [19, 47, 50]: typically z represents directions where
the posterior departs significantly from the prior, while y represents prior-dominated
directions of the parameter space, which may even be conditionally Gaussian and/or
(approximately) independent of z. Note that the MALA-within-Gibbs sampler does
not require partially or conditionally Gaussian target distributions, but our analysis
of its efficiency requires sparse conditional structure and blockwise log-concavity.

The theory of function-space MCMC also has led to effective MCMC methods for
another class of high-dimensional Bayesian inverse problems; see, e.g., [17, 28, 48, 39].
The basic idea is to design MCMC samplers that are well defined on function spaces:
consider, for example, the inference of a spatially distributed parameter, and send the
spatial discretization parameter h to zero while keeping the number of observations
fixed. Since the spatial discretization controls the dimension of the problem, the limit
h \rightarrow 0 corresponds to an infinite-dimensional problem. The proposal distributions
of function-space MCMC are chosen such that, for a fixed step size, the acceptance
ratio remains constant, independent of h or, equivalently, the dimension of the prob-
lem. There are many variations of such discretization invariant MCMC samplers
[19, 44, 14, 6], with applications discussed in, e.g., [9, 40]. Some (e.g., [18, 3, 30])
combine function-space MCMC with the decomposition of the parameter space into
(finite-dimensional) likelihood-informed directions and (infinite-dimensional) prior-
dominated directions, as described above.

The dimension-independence of the MALA-within-Gibbs sampler discussed here
is markedly different from the discretization invariance of function-space MCMC. We
do not consider the infinite-dimensional limit resulting from the discretization of a
function on a given domain. Rather, we show that the dimension of the inference
problem may not affect the acceptance and convergence rates of the sampler if the
problem has sparse conditional structure that is suitably exploited. This allows us,
for example, to consider a sequence of inference problems posed on increasingly large
domains and with an increasing number of observations, while keeping the spatial
discretization fixed (see section 5.3 and Figure 5.1). Provided that each of the prob-
lems within the sequence has suitable sparse conditional structure, the acceptance and
convergence rates of MALA-within-Gibbs are the same for all problems within the se-
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quence. The convergence rate of function-space MCMC, e.g., the pCN method, is not
constant for all problems within such a sequence (see section 5.3 for a specific exam-
ple). This does not come as a surprise, because the dimension independence of pCN
holds only in the case in which the dimension increases due to grid refinement, with
the number of observations and the domain size held constant. A sequence of prob-
lems with increasing domain size and increasing numbers of observations violates the
assumptions underpinning the dimension independence of pCN. We refer the reader
to [34] for a more thorough discussion of the various notions of high dimensionality
that may occur when solving Bayesian inverse problems.

5. Practical considerations and numerical experiments. Our results on
dimension-independent step size, acceptance probabilities, and convergence rates hold
under precise mathematical assumptions of sparse conditional structure and log-
concavity (see section 3). We now focus on posterior distributions that arise in
Bayesian inference problems, because of their practical importance and because we
anticipate that the assumption of sparse conditional structure is often satisfied in such
problems. We also demonstrate how to use MALA-within-Gibbs in two numerical ex-
amples and discuss and compare the computational costs of MALA-within-Gibbs and
other MCMC samplers.

5.1. Posterior distributions with sparse conditional structure. Below we
provide the Bayesian problem setup. Let x be an n-dimensional vector endowed with
a prior probability density \pi 0(x). In many problems, x arises from a discretization of
a spatially distributed quantity (i.e., a field) and, for that reason, is high-dimensional.
The prior reflects assumptions about the smoothness of the field and is often assumed
to be Gaussian with a known mean and covariance. A computational model, \scrM (x),
maps x to observations y. Typically, the model is nonlinear and the number of
observations is less than the dimension of x. Any model errors are represented by a
random variable \bfitvarepsilon , and, often, model errors are additive, i.e.,

(5.1) y = \scrM (x) + \bfitvarepsilon .

The distribution of \bfitvarepsilon is assumed to be known (often Gaussian with mean zero and
diagonal covariance matrix). Equation (5.1) defines a likelihood \pi l(y| x), and the
likelihood and prior jointly define the posterior distribution

\pi (x| y) \propto \pi 0(x)\pi l(y| x).

Sparse conditional structure arises naturally in Bayesian posterior distributions
when (i) the parameters x are high-dimensional, but not all components of x have
significant statistical interactions; and (ii) each observation is informative for only a
small subset of the components of x (see also [34]). Put differently, we assume that the
prior has sparse conditional structure and that the observations do not significantly
densify the conditional structure of the prior. This happens in many geophysical
applications, e.g., in numerical weather prediction (NWP), where the posterior dis-
tribution is defined jointly by a global atmospheric model (with dimension O(108))
and observations of the atmospheric state (typically O(107) observations). In a global
atmospheric model, each model component stores information about the atmospheric
state at a specific location at a given time, and each component has significant sta-
tistical interactions with nearby components, but not with components that are far
away. A discussion of the mathematical mechanisms that lead to this property can
be found in [12].
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5.2. Implementation of MALA-within-Gibbs. The partitioning of x into
blocks is important for effective sampling of the posterior by MALA-within-Gibbs,
because only a suitable partition will indeed put the sparse conditional structure to
use. We do not have a general strategy to find a suitable partition, but we expect
that a workable partition is often intuitive. For example, if x is defined over a spatial
domain (1D, 2D, or 3D) and if correlations are limited to small neighborhoods, then
the partitioning should be based on these neighborhoods and the block size should
take the correlation lengths' scales into account. We demonstrate this process in a
numerical example in section 5.3. Our second example in section 5.4 demonstrates
how to choose a partition for the partial updating based on prior covariances in the
absence of a spatial scale.

The partial updating of MALA-within-Gibbs requires m likelihood evaluations
per sample. In a typical Bayesian inverse problem, each likelihood evaluation will
require a full forward solve with the numerical model \scrM , even if only one block of
the model's components is updated. Using the common effective sample size

(5.2) Neff = Ne/IACT,

where Ne is the number of MCMC samples (length of the Markov chain) and IACT
is the integrated auto correlation time (see, e.g., [49, 45]), we can estimate the cost
per effective sample by
(5.3)
cost per effective sample = IACT\times (\# of blocks)\times cost of likelihood evaluation.

It is now clear that the computational cost of MALA-within-Gibbs grows with the
number of blocks, even if IACT is independent of dimension. The computational
requirements of MALA-within-Gibbs are, therefore, not independent of the dimension
of the problem, since a higher-dimensional problem requires a larger number of blocks
(keeping other parameters that define the model unchanged; see examples below).
This also points to a trade-off for sampling in high dimensions that may not be easy
to resolve: to keep the efficiency high (small IACT), one may want to use a large
number of small blocks (with a lower bound on the block size depending on the
correlation structure), but on the other hand, one may want to use a small number
of large blocks to keep the number of model evaluations per sample small.

5.3. Numerical illustration 1: Log-Gaussian Cox point processes. We
consider inference in a log-Gaussian Cox point process similar to the numerical ex-
periments in [24]. A uniform Nu \times Nv grid, with spacing \Delta u = \Delta v = 1, covers the
2D (spatial) domain, [1, L]\times [1, L]. The parameter to be inferred is defined over the
domain, \{ Xi,j , i, j = 1, . . . , L/\Delta u\} . Its prior is \scrN (\mu 1,B), where B is a discretization
of the exponential covariance kernel, i.e.,

cov(Xs1,t1 , Xs2,t2) = \sigma 2
s\sigma 

2
t exp

\biggl( 
 - 1

2

| s1  - s2| 
ls

 - 1

2

| t1  - t2| 
lt

\biggr) 
,

where \sigma 2
s = \sigma 2

t = 2, \mu = 4, ls = 2, lt = 4.
Observations are made at each grid point, denoted by Yi,j . The observations are

conditionally independent and Poisson distributed with means exp(Xi,j). Our goal is
to estimate Xi,j from Yi,j . The prior and likelihood define the posterior distribution

\pi (x| y) \propto exp

\biggl( 
 - 1

2
| | B - 1/2(x - \mu 1)| | \bftwo 

\biggr) \prod 
i,j

exp (Yi,jXi,j  - exp(Xi,j)) ,

where x is the column stack of Xi,j , i.e., an n = L2 dimensional vector.
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Fig. 5.1. True values of X for three problems with increasing domain size L (drawn to scale).

5.3.1. Problem setup. We consider three problems with increasing domain size
L = 16, L = 32, and L = 64, leading to sampling problems of dimensions 256, 1024,
and 4096. The true values of Xi,j for the three domains are shown in Figure 5.1.
Note that the (apparent) dimension of the problem (n = L2) and the number of
observations (L2) increase with increasing domain size, but the prior length scales are
fixed and short compared to all three domain sizes. Moreover, each observation Yi,j

carries information about only one grid point, Xi,j .
We note that our setup is different from the problems usually considered in

function-space MCMC, where the increasing dimension is caused by refining the spa-
tial discretization, while keeping the size of the domain and the number of observations
constant. In fact, we consider the opposite scenario: the number of observations and
the size of the domain increase, but the spatial discretization remains unchanged.
Our setup is also slightly different from that considered in [24], where the means of
the Poisson distributions are exp([X]i,j)/L

2 (in our notation) and where a different
covariance kernel is used to define the prior. The latter is minor. We do not scale
the mean values with domain size, L, because we want to study MALA-within-Gibbs
on problems with increasing dimension while leaving all other parameters that define
the problem unchanged.

The prior precision matrix is sparse, as illustrated in Figure 5.2 for the problem of
size 16\times 16. The prior precision matrices of the larger problems (32\times 32 and 64\times 64)
have similar sparsity patterns. We now investigate whether Assumptions 3.1 (sparse
conditional structure) and 3.4 (blockwise log-concavity) are satisfied in this problem.
Sparse conditional structure can be verified by inspection: the chosen Gaussian prior
is a Markov random field where each pixel has only four neighbors, and the likelihood
is purely local, introducing no new dependencies. We can verify this structure more
carefully as follows, partitioning the state x based on 2D neighborhoods. Recall that
the log posterior density is

(5.4) log \pi (x| y) = C  - 1

2
| | B - 1/2(x - \mu 1)| | 2 +

\sum 
i,j

(Yi,jXi,j  - exp(Xi,j)) ,

where C is a constant whose value is irrelevant. Fixing the block size at q = n/m, we
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Fig. 5.2. Prior precision matrix of the 16\times 16 problem.

find that

(5.5) \nabla \bfx i,\bfx j log \pi (x| y) =  - [B - 1]\bfx i,\bfx j  - 1i=jDi,

where the q \times q matrices [B - 1]\bfx i,\bfx j
are constructed from B - 1 based on the blocks

xi,xj , and Di is a diagonal q\times q matrix with entries being exp(Xk,l) for each Xk,l in
xi. Due to the sparse structure of the prior precision B - 1 (see Figure 5.2), [B - 1]\bfx i,\bfx j

is zero if the blocks i and j are far from each other in the 2D domain. In this case,
1i=jDi = 0, so that by (5.5), \nabla 2

\bfx i,\bfx j
log \pi (x| y) is also zero. The problem is thus

indeed characterized by sparse conditional structure.
The blockwise log-concavity, Assumption 3.4, may not be satisfied in this example.

By (5.5), the Hessian is bounded above by  - B - 1, which suggests using

Hi,i(x) \equiv  - \lambda min([B
 - 1]\bfx i,\bfx i), Hi,j(x) \equiv \| [B - 1]\bfx i,\bfx j\| , i, j = 1, . . . ,m,

where [B - 1]\bfx i,\bfx i
and [B - 1]\bfx i,\bfx j

are constructed from B - 1, based on the blocks with
indices i and j. With this choice, Assumption 3.4 requires that

(5.6) c := \lambda min( - H) > 0.

With this choice of H and with the length scales ls = 2, lt = 4, the condition in (5.6)
is not satisfied, suggesting that the problem is not blockwise log-concave.

5.3.2. MCMC samplers. We apply simplified manifold MALA (MMALA) [24]
and MMALA-within-Gibbs to draw samples from the posterior distributions of the
16 \times 16, 32 \times 32, and 64 \times 64 problems. We also apply pCN, as an example of
a function-space MCMC scheme, to illustrate that function-space MCMC is not
dimension-independent when some of its underlying assumptions are not met.

The MMALA proposal is

\~xk = xk + \tau M\nabla log p(xk| y) +
\surd 
2\tau M1/2\xi k+1, \xi k+1 \sim \scrN (0, I),

where the choice M = \Lambda + B - \bfone turns MALA into simplified manifold MALA. The
matrix \Lambda is diagonal and the ith diagonal element is [\Lambda ]i,i = exp(\mu + [B]i,i); see [24].
We implement MMALA-within-Gibbs using blocks of size q = d \times d and consider
d = 8, 16, 32, 64. We emphasize that MMALA-within-Gibbs with a single block,
covering the entire domain, is equivalent to the MMALA sampler. For example, if
L = 64 and d = 64, the sampler does not use partial updating and we recover the
usual MMALA; with L = 64 and d = 16, we divide the domain into 16 blocks, each
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Fig. 5.3. Illustration of results obtained by 104 samples of a MMALA-within-Gibbs sampler
with d = 8 and step size \tau = 0.5. Top row: Posterior mean (left) and observations Yi,j (right).
Bottom row: Posterior variance at each grid point (left) and observations corresponding to posterior
mean (right).

of size 16\times 16. The blocks define a neighborhood of components Xi,j of size d\times d on
the 2D domain and are ordered left-to-right and top-to-bottom.

All samplers are initialized at the maximum a posteriori point (MAP), which we
find by solving the optimization problem

min
\bfx 

 - log \pi (x| y),

using a Gauss--Newton method. We consider various step sizes \tau , and, for each one, we
run pCN to generate 105 samples and MMALA or MMALA-within-Gibbs to generate
104 samples. We then compute the integrated auto correlation time (IACT) of each
pixel using the techniques described in [49]. Note that we use all samples (no burn-in)
to compute the average acceptance ratios and IACT. We inspected some of the chains
and could not identify an apparent transient phase, likely because our initialization
point makes the transients negligible.

5.3.3. MCMC results. Results of an MMALA-within-Gibbs sampler with d =
8 and step size \tau = 0.5 are shown in Figure 5.3. The panels in the top row show the
posterior mean (average of all MCMC samples) and the observations Yi,j (on a log-
scale). The panels in the bottom row show the posterior variance at each grid point
and the observations (on a log-scale) corresponding to the posterior mean. We note
a good agreement between the posterior mean and the true field (see Figure 5.1), as
well as a good agreement between the observations and the reconstructed obervations.

Our tuning of the step size is illustrated in Figure 5.4, where the average accep-
tance ratio of MMALA and MMALA-within-Gibbs is plotted as a function of the step
sizes we tried for the problem with L = 64. The results are qualitatively similar for
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Fig. 5.4. Left: Average acceptance ratio of MMALA and MMALA-within-Gibbs as a function
of the step size for the 64\times 64 problem. Right: IACT of MMALA and MMALA-within-Gibbs as a
function of the step size for the 64\times 64 problem.

the problems with L = 16 and L = 32. We see that the acceptance ratio decreases
with step size, but for any fixed step size \tau , the acceptance ratios of the within-Gibbs
samplers increase when the block sizes are decreased. The reason is that the partial
updating of the MMALA-within-Gibbs sampler results in large acceptance ratios for
large step sizes independently of the dimension of the problem. Figure 5.4 also shows
IACT as a function of the step size. We note that, for a fixed step size, IACT in-
creases with the block size and that the step size that minimizes IACT increases as
the block size decreases. Again, the reason is that the partial updating strategy of
MMALA-within-Gibbs allows larger steps for smaller blocks, which decreases IACT
and accelerates the mixing of the Markov chain.

IACT, averaged over all grid points, and the average acceptance probabilities
(averages taken over the MCMC moves) are listed in Table 2. Here, we list results
where we fixed the step size for each considered block size to make the resulting
average acceptance probabilities comparable. An even better agreement between the
acceptance probabilities at each block would require a more careful tuning of the step
size, but the step size tuning we carried out is sufficient to make our points and to
illustrate the relevant characteristics of the samplers.

Table 2
IACT/average acceptance probability/\tau of pCN, MMALA, and MMALA-within-Gibbs for three

problems with increasing domain size L (and thus increasing dimension). Note that MMALA-within-
Gibbs with block size equal to the domain size corresponds to MMALA.

MMALA-within-Gibbs (Ne = 104)
L pCN (Ne = 105) 64\times 64 blocks 32\times 32 blocks 16\times 16 blocks 8\times 8 blocks
16 4626/0.18/0.002 - - 342/0.95/0.2 204/0.93/0.5
32 5363/0.26/0.002 - 437/0.75/0.1 330/0.73/0.2 203/0.78/0.5
64 6884/0.21/0.001 627/0.48/0.05 529/0.61/0.1 394/0.75/0.2 249/0.80/0.5

For a fixed block size, MMALA-within-Gibbs yields the same IACT indepen-
dently of the domain size (dimension). For example, with blocks of size d = 16,
IACT of the 4096-dimensional problem is similar to the IACT of the 256- or 1024-
dimensional problem. Moreover, the step size and corresponding acceptance ratios
seem to be independent of the overall problem dimension. The numerical experi-
ments thus corroborate our theoretical results on dimension-independent convergence
of MALA-within-Gibbs, even when the assumption of blockwise log-concavity, re-
quired for our proofs, is not satisfied with our choices of block size.
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Comparing MMALA-within-Gibbs with MMALA and pCN, we note that the
IACTs of pCN and of MMALA with n-dimensional updates increase with dimension.
In the case of pCN, this behavior is not surprising because the way that dimension in-
creases in this sequence of problems breaks some of the assumptions that are required
for the dimension independence of pCN. For MMALA, this behavior is also to be ex-
pected since MMALA in itself is not dimension-independent. Using the within-Gibbs
framework turns MMALA into a dimension-independent sampling algorithm.

The dimension-independent convergence of MMALA-within-Gibbs, however, does
not necessarily imply that MMALA-within-Gibbs is the most efficient sampler for this
problem. Using the cost-per-effective-sample in (5.3), it is evident that MMALA is
more efficient than MMALA-within-Gibbs (at the block sizes we consider). The cost
estimate (5.3), however, assumes that a full likelihood evaluation is required for each
proposed sample of MMALA-within-Gibbs, which is a conservative estimate. One can
easily envision making use of the problem structure during likelihood evaluations in
each block. For example, evaluation of the prior term in (5.4) in each block does not
require computing the full matrix-vector product B - 1/2(x  - \mu 1). One can speed up
the computations by only updating the relevant components that are modified in the
current block. We did not pursue such ideas because this problem is relatively simple
and because our main goal is to demonstrate that MMALA-within-Gibbs can exhibit
dimension independence.

5.4. Numerical illustration 2: Inverse problems with an elliptic PDE.
We consider the PDE

 - \nabla \cdot (\kappa \nabla u) = g

on a square domain (s, t) \in [0, 1]2 with Dirichlet boundary conditions; here u rep-
resents a pressure field, and g is a given source term, which consists of four delta
functions (sources) at four locations in the domain. Details on the boundary condi-
tions and source term are given in [35]. The quantity \kappa > 0 represents the permeability
of the medium; we use a log-normal prior for the permeability to enforce the non-
negativity constraint. Thus, K = log \kappa is a Gaussian random field. We set its mean
to be zero and employ the covariance kernel

k(s1, t1; s2, t2) = exp

\biggl( 
 - (s1  - s2)

2

2l2s
 - (t1  - t2)

2

2l2t

\biggr) 
,

where (s1, t1) and (s2, t2) are two points in the square domain and ls and lt are
correlation length scales. Our goal is to estimate the permeability given 128 noisy
observations of the pressure u in the center of the domain. This problem setup is also
described in [35]. The inverse problems we consider here differ from those in [35] only
in the correlation lengths of the prior, which do not affect the numerics of the PDE
solve, the gradient computations, or the observation and forcing network. We thus
refer the reader to [35] for the details of the numerical solution of the PDE, and in
particular to Figure 2 of [35] for descriptions of the locations of the forcing terms.

5.4.1. Discretization and problem setups. For computations, we discretize
the PDE using a standard finite element method with a uniform grid of 16\times 16 points
(see [35] for details of the discretization). The discretization leads to the algebraic
equation

(5.7) A(\^\bfitkappa )\^u = \^g,
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MALA-WITHIN-GIBBS WITH SPARSITY A1781

where the hat over variables denotes discretized quantities, i.e., \^\bfitkappa , \^u, and \^g are vectors
of size Nu = 256, and A is a 256 \times 256 matrix that depends on the permeability \^\bfitkappa .
We will be computing with the discretized PDE from now on, and, for that reason,
we drop the hats above all variables. The pressure observations are modeled by the
equation

(5.8) y = Hu+ \bfiteta , \bfiteta \sim \scrN (0,R),

where H is an Ny \times Nu matrix that has exactly one 1 in each row and picks out every
other component of u. The observation noise covariance is set to be R = 0.12 I.

After discretization, the log-permeability k is finite-dimensional and its prior dis-
tribution is the finite-dimensional Gaussian \scrN (0,B). Due to the squared exponential
covariance model, B can be well approximated by a low-rank matrix, i.e.,

(5.9) B \approx U\theta L\theta U
T
\theta ,

where L\theta is an N\theta \times N\theta diagonal matrix whose diagonal elements are the N\theta < Nu

largest eigenvalues of B (see [35] for details).
The Gaussian prior for the log-permeability and the likelihood in (5.8) define the

posterior distribution \pi (k| y) \propto \pi 0(k)\pi l(y| k) for the log-permeability:

\pi (k| y) \propto exp

\biggl( 
 - 1

2
\| B - 1/2k\| 2  - 1

2
\| R - 1/2(\scrM (k) - y)\| 2

\biggr) 
;

here \scrM maps the log-permeability to the pressure at observation locations, i.e.,
\scrM (k) = Hu(exp(k)), with the u being the solution to the discretized PDE (5.7).

Since symmetric positive semidefinite matrices can always be diagonalized by a
coordinate transformation, we consider the change of variables

(5.10) \bfittheta = L
 - 1/2
\bfittheta UT

\bfittheta k \approx B - 1/2k,

which leads to the posterior distribution

(5.11) \pi (\bfittheta | y) \propto exp

\biggl( 
 - 1

2
\| \bfittheta \| 2  - 1

2
\| R - 1/2(\scrM (k(\bfittheta )) - y)\| 2

\biggr) 
.

Below, we use MCMC samplers to draw samples from the posterior distribution of \bfittheta .
The corresponding (log-)permeabilities are computed from posterior samples of \bfittheta via
the inverse of the transformation (5.10).

We consider two problem setups, which differ in the correlation lengths of the
log-normal prior. The correlation lengths define the dimension of \bfittheta in that the latter
is chosen to retain 95\% of the integrated prior variance. Specifically, if the correlation
lengths are short compared to the [0, 1] \times [0, 1] domain, then the dimension of \bfittheta is
large; if the correlation lengths are large, the dimension of \bfittheta is small. The correlation
length scales and implied dimensions of \bfittheta of Setups 1 and 2 are summarized in Table 3.

Table 3
Correlation lengths and reduced dimensions for Setups 1 and 2.

ls lt N\bfittheta 

Setup 1 0.4 0.8 30
Setup 2 0.2 0.1 136
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Fig. 5.5. Left: Eigenvalues of the prior covariance matrix for Setup 1 (blue) and Setup 2 (red).
Center: True log-permeability of Setup 1. Right: True log-permeability of Setup 2. (Color available
online.)

We illustrate the decay of the prior covariance eigenvalues and the true log-
permeabilities of Setups 1 and 2 in Figure 5.5. Specifically, we note that the eigenval-
ues decay more quickly for Setup 1 than for Setup 2 because Setup 1 is characterized
by larger correlation length scales than Setup 2. The true log-permeabilities of Set-
ups 1 and 2 are random draws from the prior and are shown in the right panels of
Figure 5.5. There is more small-scale structure in the log-permeability of Setup 2
than in Setup 1, again due to the shorter prior correlation length scales.

Setup 2 is intended to have a higher dimension than Setup 1, not just in the
apparent dimension of \bfittheta but also in the sense of the prior-to-posterior update and
hence the influence of the data (i.e., the effective dimension, as defined in [1]). We
achieve this by keeping the domain size fixed while decreasing the correlation lengths,
which effectively increases the number of degrees of freedom in the unknown. In the
previous log-Cox example, we imposed a similar growth by keeping the correlation
lengths fixed but increasing the domain size. Note that, however, in the previous
example we also increased the number of observations with the dimension (size of the
domain), while in this example, we keep the number of observations fixed. This is
a minor issue because in Setup 1, due to the large prior correlation lengths, many
of the observations are strongly dependent (i.e., in the prior predictive \pi (y)). When
the correlation lengths decrease in Setup 2, the number of effectively independent
observations increases, and thus the relative influence of the likelihood, and hence the
effective dimension, increase as well.

We emphasize that the way dimension increases in these two elliptic PDE in-
verse problem setups is different from what is usually considered in function-space
MCMC. Dimension independence of function-space MCMC requires that the dimen-
sion increase due to refinement of a discretization, while keeping all other aspects of
the problem setup (e.g., the prior and forward operator, assuming a consistent dis-
cretization scheme) fixed. As in the previous example, we in fact do the opposite and
keep the discretization fixed but decrease the prior correlation length scales. For this
reason, one cannot expect that pCN, or other function-space MCMC techniques, will
exhibit dimension independence in the problem setups we consider.

5.4.2. Sparse conditional structure and blockwise log-concavity. The
theory we created for the dimension-independent convergence of the MALA-within-
Gibbs sampler relies on assumptions of sparse conditional structure and blockwise
log-concavity. With our choice of prior, the problem does not have sparse conditional
structure in (s, t)-coordinates. Yet the coordinate transformation (5.10) produces
a sparse conditional structure---indeed complete independence---in the prior for the
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MALA-WITHIN-GIBBS WITH SPARSITY A1783

\bfittheta -coordinates, which correspond to discretized Karhunen--Lo\`eve (KL) modes. Condi-
tioning on the observations, however, can introduce dependence among the smoother
KL modes because an observation at a given (s, t)-location is in principle influenced
by all of the modes---due to the nature of the elliptic operator and the KL modes'
global support. Conversely, changes in one KL mode can affect the solution every-
where in (s, t)-coordinates. Nonetheless, our experiments, along with various other
experiments with this problem found in the literature, suggest that this dependence
is weak and that the problem thus has an approximate sparse conditional structure
in the KL modes. The assumption of blockwise log-concavity is difficult to verify in
this example, in either the \bfittheta - or (s, t)-coordinates. The reason is that the discretiza-
tion of the PDE, e.g., in (5.11), makes computations difficult because we do not have
second-order adjoints to compute the required Hessian.

5.4.3. MCMC samplers. We use pCN, MALA, and MALA-within-Gibbs to
draw samples from the posterior distribution (5.11). Again, we emphasize that
MALA-within-Gibbs with a sufficiently large block size is the same as the usual MALA
without partial updating. The pCN proposal is

\~\bfittheta 
k+1

=
\sqrt{} 
1 - \beta 2\bfittheta k + \beta \bfitxi k+1,

where \bfittheta k is the current state of the MCMC and where \bfitxi \sim \scrN (0, IN\bfittheta 
), IN\bfittheta 

being the

identity matrix of order N\bfittheta . The proposed \~\bfittheta 
k+1

is accepted with probability

\alpha pCN = 1 \wedge exp

\biggl( 
1

2
\| R - 1/2(\scrM (k(\bfittheta k)) - y)\| 2  - 1

2
\| R - 1/2(\scrM (k(\~\bfittheta 

k+1
)) - y)\| 2

\biggr) 
,

where 1 \wedge x denotes min\{ 1, x\} . We initialize the pCN chain at the MAP, which we
find by quasi-Newton optimization (MATLAB fminunc) of the cost function

(5.12) F (\bfittheta ) = log(\pi (\bfittheta | y)) =  - 1

2
\| \bfittheta \| 2  - 1

2
\| R - 1/2(\scrM (k(\bfittheta )) - y)\| 2 + C,

where C is a constant that is irrelevant. We tune the parameter \beta to obtain minimal
IACT. As above, IACT is computed using the techniques and definitions of [49].

The MALA proposal for this problem is

\~\bfittheta 
k+1

= \bfittheta k  - \tau J - 1\nabla \bfittheta F (\bfittheta k) +
\surd 
2\tau J - 1/2\bfitxi k+1,

where F (\bfittheta ) is as in (5.12) and where J is the Hessian of F at the MAP. As with
pCN, we initialize MALA at the MAP and tune the step size \tau of MALA to find a
minimal IACT. As in the previous example, we use all samples for our computations
(no burn-in).

MALA-within-Gibbs requires that we partition \bfittheta into blocks. Above, we argued
that this problem has an approximate sparse conditional structure in the \bfittheta coordi-
nates. For this reason, we use partitions of \bfittheta that group consecutive elements of
\bfittheta together. Below, we consider several block sizes, and for each one, we initialize
MALA-within-Gibbs at the MAP (as before) and tune the step size to achieve a
minimal IACT.

5.4.4. MCMC results. Typical results one can obtain via MCMC are shown
in Figure 5.6, where we plot an approximation of the posterior mean of the log-
permeability and the approximate posterior standard deviations (on the grid) com-
puted via MALA-within-Gibbs. We obtain an approximate posterior mean of the
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A1784 X. T. TONG, M. MORZFELD, AND Y. M. MARZOUK

Fig. 5.6. Top row: Approximate posterior mean (left) and approximate standard deviation
(right) computed from Ne = 104 MALA-within-Gibbs samples with block size q = 1 for Setup 1.
Bottom row: Approximate posterior mean (left) and approximate standard deviation (right) com-
puted from Ne = 103 MALA-within-Gibbs samples with block size q = 1 for Setup 2.

Table 4
Summary of simulation results of Setups 1 and 2.

Method Length of chain IACT Acc. ratio Step

S
et
u
p
1 MALA-within-Gibbs, q = 1 104 25 0.43 0.5

MALA-within-Gibbs, q = 15 104 141 0.22 0.05
MALA/MALA-within-Gibbs, q = 30 105 246 0.44 0.01

pCN 106 6,102 0.24 0.01

S
et
u
p
2 MALA-within-Gibbs, q = 1 103 20 0.38 0.500

MALA-within-Gibbs, q = 68 104 367 0.23 0.010
MALA/MALA-within-Gibbs, q = 136 105 923 0.23 0.005

pCN 106 28,015 0.45 0.010

log-permeability, k, from the posterior mean of \bfittheta , by mapping \bfittheta to k via the inverse
of (5.10). The approximate posterior mean of k should be compared to the true
log-permeability in Figure 5.5.

A summary of the numerical experiments we performed is provided in Table 4.
The table lists IACT, step sizes, and average acceptance ratios for the various MCMC
samplers. The numbers shown are tuned, in the sense that we only show results for
the step size that leads to minimal IACT (over all step sizes we tried).

We note that the IACT of MALA-within-Gibbs with block size one is nearly
identical for the two problem setups, indicating that the dimension independence
results we obtained under more restrictive assumptions may indeed hold in practice.
As in the previous example, we also note that the step size \tau that leads to minimal
IACT decreases as we increase the size of the blocks of MALA-within-Gibbs. This
is further illustrated in Figure 5.7, where we plot the average acceptance ratio as a
function of the step size for MALA-within-Gibbs (several block sizes) and MALA.
As in the previous example, we note that for a given fixed step size, the average
acceptance ratio increases as we decrease the block size. The figure also shows IACT
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Fig. 5.7. Left: Average acceptance ratio of MALA-within-Gibbs and MALA, as a function of
step size, for Setup 1. Right: Average IACT of MALA-within-Gibbs and MALA, as a function of
step size, for Setup 1.

as a function of the step size for the various samplers, with optimal step sizes clearly
visible. We note, as before, that the partial updating of MALA-within-Gibbs pushes
the step size that minimizes IACT towards larger values.

We also note that the IACT of pCN is larger than that of MALA, and that the
IACTs of pCN and MALA increase with the dimension of \bfittheta . The reason that the
IACT of pCN is larger than that of MALA may be that MALA makes use of gradients
of the target, while the pCN proposal does not directly exploit gradient or likelihood
information. Increase of the IACT of pCN with dimension is due to the way in which
dimension increases when going from Setup 1 to Setup 2. As in the previous example
(and as explained above), some of the fundamental assumptions that are needed for
dimension independence of pCN are not satisfied when transitioning from Setup 1 to
Setup 2. For that reason, one cannot expect pCN to be dimension-independent in the
scenario we consider here.

Finally, we note that the acceptance rate of pCN that minimizes IACT (over
the step sizes we tried) in Setup 2 is substantially larger than optimal acceptance
rates of RWM (45\% rather than about 20\%). This is in line with recent numerical
experiments and analyses which suggest that for Gaussian targets, a good acceptance
rate may be near 50\%. We make no claim, however, that our tuning of pCN is perfect.
We considered a wide range of step sizes and ran pCN chains of length 106 for each
choice. One could possibly achieve a slightly better IACT with further tuning, but
nonetheless the IACT of pCN can be expected to be significantly larger than that
of MALA or MALA-within-Gibbs. Moreover, given the overall chain length of only
106, the estimated IACT of 28015 for pCN may not be entirely precise, but all of our
numerical experiments indicate that it is in any case very large.

Recall that a small and dimension-independent IACT of MALA-within-Gibbs
does not necessarily imply that the algorithm is a computationally efficient sampler;
generating one sample requires several likelihood evaluations due to the partial up-
dating strategy, as described above. Estimating the cost per effective sample by (5.3),
we see that MALA-within-Gibbs is not an efficient sampler for Setup 1, but MALA-
within-Gibbs with q = 68\times 68 (leading to two blocks and two likelihood evaluations
per sample) is indeed the most effective sampler for Setup 2. This further illustrates
that there is a trade-off between the need to reduce IACT by using partial updating
and the need to keep the cost-per-sample, which we take to be proportional to the
number of blocks, reasonable. In the future, such issues may be addressed by incor-
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porating the partial updating into local likelihood evaluations which do not require
solving the full PDE, similar to the localization of forward dynamics discussed in [32],
but such issues are beyond the scope of this paper.

We also note that our numerical experiments are limited in the sense that we
only considered pCN, MALA, and MALA-within-Gibbs. Other samplers may turn
out to be more practical than MALA-within-Gibbs. Specifically, note that the pres-
sure field is relatively well observed, which implies that the posterior differs strongly
from the prior in many directions (high effective dimension). This explains, at least in
part, why we observe such large IACT for pCN. Other anisotropic samplers that are
modifications of pCN, e.g., DILI [18], pCNL [17], and generalized pCN [44], might be
effective in this problem. Our goal, however, is not to find the most appropriate sam-
pler for this Bayesian inverse problem but rather to use this example to demonstrate
some of the practical and theoretical aspects of the MALA-within-Gibbs sampler.

6. Conclusion. Markov chain Monte Carlo (MCMC) samplers are used to draw
samples from a given target probability distribution in a wide array of applications.
We have discussed the numerical efficiency of a particular sampler, the MALA-within-
Gibbs sampler, when the target distribution exhibits a particular sparse conditional
structure. In simple terms, the latter is just a structured conditional independence
relationship, or block conditional independence relationship, among the variables of
interest. For Gaussians, sparse conditional structure is equivalent to a (block-)sparse
precision matrix. MALA-within-Gibbs samplers are natural tools to make effective
use of sparse conditional structure for numerical efficiency via a suitable partial updat-
ing. We have shown that the acceptance ratio and step size of MALA-within-Gibbs
are independent of the overall dimension of the problem if the partial updating is
chosen to be in line with the sparse conditional structure of the target distribution.
Under additional assumptions of blockwise log-concavity, we could prove that the
convergence rate of MALA-within-Gibbs is independent of dimension. This suggests
that MALA-within-Gibbs can be an effective sampler for high-dimensional problems.

We have investigated the applicability of MALA-within-Gibbs in the context of
Bayesian inverse problems, where we expect to encounter sparse conditional struc-
ture. In many Bayesian inverse problems, we expect that sparse conditional structure
can be anticipated based on the prior distribution and the locality of the likelihood,
in appropriate coordinates. Numerical experiments on two well-known test prob-
lems suggest that our theoretical results are indeed indicative of what to expect in
practice, where the required assumptions may only hold approximately. For exam-
ple, in both numerical examples, we could show that measures of performance of the
MALA-within-Gibbs sampler, e.g., integrated autocorrelation time (IACT), step size,
and acceptance ratio, are indeed independent of the overall dimension of the prob-
lem. Nonetheless, the actual computational cost of MALA-within-Gibbs is dependent
on the problem dimension because the partial updating requires repeated likelihood
evaluations (which are costly) per sample. Our numerical experiments suggest that
there is a trade-off between additional computational costs due to the partial updat-
ing and the increase in computational cost due to larger IACT or decreasing step
size, without partial updating. To keep, for example, IACT small, a large number
of partial updates should be used, but this in turn requires several likelihood evalu-
ations per sample. This trade-off may not always be easy to resolve in practice. We
have provided examples in which MALA-within-Gibbs leads to significant gains in the
computational cost per (effective) sample, but we have also encountered examples in
which a global update is, ultimately, the right choice.
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