ANALYSIS OF FREE-EDGE EFFECTS IN
COMPOSITE LAMINATES BY AN ASSUMED-STRESS METHOD

by

GORDON KEITH MANDELL

S.B., Massachusetts Institute of Technology
(1969)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF
. SCIENCE

at the

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

August, 1970

ngnature of Author_
' Department of Aeronautics and
Astronautics, 24 August, 1970

Certified by

‘ThesiF Supervisor T~

Accepted by

“Chalrman, Departmentall Committee
on Graduate udents

Archives
."‘u-‘ss, INST, TECH, g

SEP 111970

N\LIBRARIES




ii

ANALYSIS OF FREE-EDGE EFFECTS IN
COMPOSITE LAMINATES BY AN ASSUMED-STRESS METHOD

by
Gordon K. Mandell

Submitted to the Department of Aeronautics and
Astronautics on 24 August, 1970 in partial fulfillment

of the requirements for the degree of Master of Science.

ABSTRACT

An approximate, second-order theory of anisotropic
laminated structures which permits the calculation of
stregses in the viecinity of free edges 1s proposed. The
theory is based on the assumption of an exponential subsidence
of the edge-effect stresses which is characterized by a
"boundary-layer thickness" parameter. The parameter is
incorporated into an initially-assumed stress field which
identically satisfies equilibrium and the free-boundary
conditions and 1s asymptotic to the stress field predicted
by first-order lamination theory in the laminate interior.
Satlisfaction of compatibllity in the mean is then assured
by determining the thickness parameter according to the
principle of minimum complementary energy.

The theory 1s applied to the analysis of simple,
balanced angle=-ply and cross-ply laminates in NARMCO 5505
boron/epoxy and Morgenite II graphite/epoxy filamentary
composlites under uniaxial loading, and the results checked
agalnst finite-difference and finite-element computer
solutions. Accuracy is found to be good. The behavior
of the solutions under variations in ply orientation (angle~
ply cases) and lamina thickness ratio (cross-ply cases) is
lnvestigated. The intensity and depth of penetration of
the free-edge effects are discussed, and design recommen-
dations are made. Extenslon of the theory to more general
free-edge problems involving composite laminates is
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considered, and the relative merits as regards convenlence
of application of the approximate second-order theory and
finite~element methods are discussed.

Thesis Supervisor: T.H.H. Pian

Title: Professor of Aeronautics
and Astronautics



iv

ACKNOWLEDGEMENTS

I should like to eXpress my appreclation to Professor
T.H.H. Plan for his suggestion of the toplc of this
Investigation, for his guldance and criticism during the
development of the techniques herein described, and for
supplying the derlvation of the assumed-stress hybrid
finite-element method used to check the cross-ply laminate
calculations. I am, in addition, greatly indebted to
James Kotanchik of the MIT Aeroelastic and Structures
Research Laboratory for performing all the programming
work necessary to include the assumed-stress hybrid finite-
element treatment of the cross-ply laminate in the STACUSS-I
structural analysis program, to R. Byron Pipes of General
Dynamics/Fort Worth for supplying Morgenite II material
properties and finite-difference angle-ply results, and to
many others whose'assistance In the conduct of this study
is greatly appreciated.

Acknowledgement is also made to the United States Air
Force Materials Laboratory, who supported this work under
Air Force Aeronautical Systems Division Contract Number

F33615~-70=«C~1131.



Chapter No.
1

2

7

8

Appendices
A

B

Flgures

TABLE OF CONTENTS

Introduction

Tensor Notation andlMaterial

Properties

Formulation of Angle-Ply
Problem

Results of Angle-Ply
Calculations

Formulation of Cross-Fly
Problem

Results of Cross-Ply
Calculations

General Applicability of
Theory

Conclusions

Digital Computer Program
ANGLE

FORTRAN Varliable Glossary
for ANGLE

Digital Computer Program
CROSS

FORTRAN Variable Glossary
for CROSS

Angle=-Ply Laminate
Configuration

Page No.

13

35

46

57

T4

80

83

86

89

91

14



Mgures

O 0 3 o0 i & W

10
11
12
13
14
15

16
17
18
19

Referencesg

817 and §9, vs.
813 and Sy, Vs.
323 and 833 Vs.
S;¢ and 8,5 Vs
335 and 8, vs.
845 and 855 vsS.
S Vs. ©

Angle-Ply Case:

k vse © for b =
s

&

Y3zt

(deleted)

(deleted)

""I (Q]
G

Ya=0

e
e
e
e
e
*]

1

v,2a VSe. © for b

vs. © for b

Stress vs. Yo

"
W]

]
[

Cross=Ply Laminate

Configuration

Cross-Ply Case:
Cross-Ply Cases:
Cross-Ply Cases:

Cross~Ply Cases:

Stress vs. Yo

kvs. b
0%

Ya=¢

o
32 .
=, Vs

¥a=a
Ys=¢

Yza-wt VSe D

Page No.
19
20

22
23
24
25
36
38



vii

SYMBOLS
Symbol Meaning
a laminate half-width
@ finite element Yo dimension
dA element of area
b lamina thickness ratio
yA finite element Y5 dimension
Cy (L1 =1,...,3) cross-ply biquadratic coefficients
Eqy (1 =21,...,3) Young's moduli
?1 (L = 1,...,4) functions of b used in cross-

ply integrations
Gij (1, =1,...,3; 1 £ 3) shear moduli

:g! strain energy generating matrix

k boundary-layer thickness
parameter

[ k) element stiffness matrix

(1] surface dlsplacement generating
matrix

I{j (1, =2 1,...,3) direction cosines

nn unit normal vector in the
Yy direction

[P] stress generating matrix

{Q} corner displacement matrix

(R] surface traction generating
matrix

[s] compliance matrix



Symbol
Ji (1 = 19°"37)

Sijkl (1’jsk91 - 19""3)
85 (1,3 =21,...,6)
si;” (1,0 =2 1,000,6)

(7]

t

i

{u}

y1 (1 =1,...,3)

av

{8}

€ig (1,3 =1,...,3)
€; (1 =1,...,6)
e

Vis (1,8 21,000,351 o 3)
Te

13 (1,3 =21,...,3)

oy (L =21,...,6)

{e}

viii

Meaning

functions of compliances
general tensor compliances
contracted tensor compliances

contracted tensor compliances
for unlaxial material

surface work generating matrix
lamina thickness

surface displacement

surface displacement matrix
Cartesian coordinates

element of volume

stress coefficient matrix
general tensor strains
contracted tensor straing

lamination-theory strain in
general lamina

Poisson's ratios
complementary energy
general tensor stresses
contracted tensor stresses
stress matrix

resolved surface traction in
the Y direction

surface traction matrix

lamination-theory stress in
+© lamina

lamination-theory stress in
-8 lamina



ix

Meaning

laminatlon-theory stress in
00 lamina

lamination-theory stress in
90° lamina

lamination-theory stress in
general lamina

lamina angle



CHAPTER 1

INTRODUCTION

1.1 Filamentary Compoglites: Their Fabrication and Analysls

That class of composite materials which includes those
made from continuous, high~strength and high-modulus
filaments imbedded in a relatively low-strength and com-
pliant matrix material is presently showing great promise
for future application to aerospace and other structures
where high strength-to-weight and stiffness~to-weight
ratlos are required. Materials of this type go by the
generic name of "filamentary composites". Many such materials
are presently under study or development, but work thus
far is most advanced on those which uge boron or graphite
fibers in a polymeric matrix which may be either an epoxy
or a polyimide.

Filamentary composites are produced and . 2d in ways
fundamentally different from those characteristic of'the
metals for which, in many applications, they may eventually
be substituted. The boron filament is made by vapor-depo-
sition from boron trichloride gas onto a heated tungsten

core; the graphite by high-temperature decomposition of



synthetlc fibers similar to those used in the textile
industry. The filaments are then coated with uncured
(fluild) matrix material and made into tape of standard
width three inches by laying them on a thin "scrim cloth",
also resin-impregnated. This "prepreg tape", wound on
reels with "parting paper" inserted between the wraps to
prevent the tape (whose resin is now maintained in the
"B-stage", or partially cured, by refrigeration) from
adhering to itself, is the raw material from which the
finished structure is made. To fabricate a structural
element from the uniaxial tape, the manufacturer places a
number of layers, or "laminae", of tape, one atop the other,
at various orientations. Bach lamina may be composed of
any number of "plies" ~- single thicknesses of tape. A
ply thickness ranges from half a thousandth of an ineh for
graphite/epoxy to about five thousandths for boron/epoxy.
The tape == and, consequently, structures produced
from 1t -- is highly anisotropic in elastic and strength
properties, being extremely stiff and strong in the fiber-
axls direction but rather weak and compliant in shear and
in either of the transverse directions. For this reason
the filamentary composites offer significant advantages
in specific strength and modulus over metals only in
applications involving uniaxial or biaxial loading, or
where otherwise three~dimensional loading environmentsg can
be broken down into uniaxial or biaxlal loading paths by

replacing one component with several discrete elements.



And also for thils reason, the analytical treatment of
filamentary composite structures is conslderably more
difficult then the analysis of corresponding metal sgtructures.

The mathematical analysis of filamentary composites
today can be broken down into three fundamental levels.

The first of these may appropriately be called macromechanics,
although 1t 1s more commonly known as the first-order theory
of laminated structures or simply “lamination theory".
Lamination theory first assumes the composite laminate to

be anisotropiec but deformationally homogeneous over its
cross-section (by applying a simplified interlaminar com=-
patibility condition) for the purpose of calculating the
internal strain state resulting from a given loading. The
elastic non-homogeneity of the laminate 1s then taken into
account by calculating the stresgses produced in each lamina
by the strains thus computed. Laminstion theory is therefore
useful for predicting the overall stiffness properties and
natural frequencies of vibration of composite structures,

and the stresses in the interior reglions of each lamina
produced by a given loading environment.

In the regions near the edges and surfaces of lam~
inated components, however, the stress and strain flelds
predlcted by lamination theory are inaccurate. 4 level
of analysis one might appropriately call mesomechanics isg
required to produce an accurate determination of the elastic
flelds in these regions by taking into account the mech-

anism of load transfer between the individual laminae.



By such a determination mesomechanical analysis makes pos-
sible the prediction of stress concentrations near the

edges and surfaces of the material which are not identifiable
by lamination theory and which may, 1ln certain cases,

account for fallure of the structure by delamination, lamina
buckling, or weakening of the bond between laminae.

.Filnally there is the field of micromechanics, which
concerns itself with the properties and technology of the
constituent materials from which the uniaxial composite
tape 1s fabricated, and with the mechanism of load transfer
from the matrix material to the fibers contained therein.

At the "fine" end of its spectrum of interests micromechanics
shades into polymer technology, crystallography, solid-state
physics and other aspects of materials sclence, while at

the "coarse" end 1t includes the failure mechanisms of
unlaxial composite, such as fiber buckling in compression

and fiber fracture and fiber-matrix debonding in tension

and shear.

1.2 Free-Bdge Effects and Their Importance to Laminate
Performance

An edge or surface of an elastic body upon which there
exists no normal or shear traction, or stress resultant,
is sald to be a free edge or free boundary. Free edges
exist, for example, on the lateral surfaces of beams and
torsion members under most loading conditions, on the un-
attached edges of aircraft control surfaces, and along the

edges of holes and cutouts in plate and membrane structures.



Lamination theory, as has been mentioned, 1s inadequate
to predict the stress distributions near the boundaries of
composite laminates. fThis is especlally true of free edges
normal to the plane of the laminae, since some of the
stresses predicted by lamination theory to be constant
throughout each lamina must in fact g0 to zero at such
edges. Lamination theory ltself accounts for this by
postulating interlaminar sghear impulses which bring the
transverse extensional stress and/or the in=plane sheapr
stress to zero at any free lateral edge, but such a model
does not provide an accurate picture of the actual stress
state near the edge == and a relatively good knowledge of
the actual stress in these reglons is necessary to a proper
understanding of some of the fallure mechanigms of composite
laminates. There exist, for instance, in longitudinally=-
loaded stiructural elements made of laminated filamentary
composites, interlaminar shear and tension distributions
near the free edges which cannot be accurately identified
by lamination theory. As these interlaminar stresses can
have a significant effect on failure modes such as delam-
ination and can slgnificantly lower fatigue 1life, an accurate
knowledge of the interlaminar stress fields and of the
maximum values of the interlaminar stresses 1s required for

the rational design of such structural components.

1.3 Study Objectives

The objectives of this investigation were twofold.



First, it was desired to develop a second~order (neso=-
mechanical) theory of laminated structures, one step in
complexity beyond lamination theory, which would nevertheless
allow the determination of gtress distributions near the
free edges of such structures with sufficlent accuracy for
design purposes. Secondly, it was desired to apply the
theory to the formulation and solution of some simple pProb-
lems in order to provide physlical insight into the basic
behavior of elastic fields near the free edges of composite
laminates, and to check the accuracy of the solutions thus
obtained against solutions obtained by finite-difference
and/or finite~element methods which are known to converge
to the exact elastlicity solutions of these problems as the

size of the differences or elements becomesg infinitesimal.



CHAPTER 2

IENSOR NOTATION AND MATERT AL PROPERTIES

2.1 Contracted Tensor Notation

A contracted tensor notation has been adopted in the
composite materials field, replacing the full tensor notation
of the general mathematical theory of elasticity in order to
effect a reduction in the number of subscripts required to
ldentify a given stress, strain, or elastic constant, and
also to simplify the equations required to write out the
stress~strain relations. The compliance form of the stressg-
strain relations was used throughout the work of this study,
as the developed form of the proposed second=order theory
1s based upon assumed functional forms for the stresses
in the viecinity of the free edge.

The corregpondence of the contracted tensor notation
as given in reference [1] to the full, general elasticity
tensor notation, using the compliance form of the stress=-

strain relations, is as follows:
a7 = 0, (2.1)

(2.2)

N|
1]

N

'Y



O3 = 033
Os = 033
0 = 075
¢ = 07
€ =€,
€2 = €52
€3 = €33
€y = 2€,;
€s = 2€3
€ = 2€,
Su = S
Sa = S2222
$33 = 53333
Slz = Sz
Si3 = Suas

523 = Sazsa
Ses = 452323

555 = 4'S|a!3

(2.3)
(2.4)
(2.5)
(2.6)
(2.7)
(2.8)
(2.9)
(2.10)
(2.11)
(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)

(2.20)



2.2 Uniaxial Material Properties

See = 451512
Ses = 45,33
Sie = 25,
Sa¢ =252,

Sse

253312

(2.21)
(2.22)
(2.23)
(2.24)

(2.25)

The contracted tensgor compliance constants are com-

putable from a get of engineering constants which can be

measured directly by tension and torsion tests.

Listed

below are the equations for determining the compliances

of uniaxial, or "zero-degree“, material, in cartesian

coordinates for which the ¥ direction is parallel to the

filaments and the Y1Yo plane lies in the plane of the

tape [1].

wn
(/)
[¥7)
]
nq_

4

N
n
|

i

n
w
"
I

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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Seq = @':3 (2.32)
Ses = G—',; (2.33)
S¢e = Eﬁ; (2.34)
where
Eii = €8 (t=21,.003) (2.35)
Gi; = gﬁ% (1, =2 Lyeees3; 4 £ 3) (2.36)
Vi; =-€§% due tooy; (1,3 = 1,...,3; 1 £ 3)  (2.37)

The By4 thus represent Young's moduli, the Gij shear moduli,
and the Vij Polsson's ratios for an anisotropic material.
As there is no shear coupling in uniaxial material, the
compliances 345, 316’ 825, and 836 are zero.

Two of the most common filamentary composites presently
in use, NARMCO 5505 and Morgenite II, were chosen to supply
actual material properties for use in calculation. NARMCO
5505 1s a boron/epoxy material with the following engineering

constantss
By = 31.8 x 10% 1b./in.2 (2.38)
Epp = Byz = 3.14 x 106 1b./1n.2 (2.39)
Gyp = 613 = 1.0 x 10% 1b./1n.2 © (2.40)
Gp3 = 0.32 x 10° 1b./1n.2 - (2.41)



il

Vig 2 V13 = 0.2  (2.42)

0025 (2°43)

Vo3

Substituting these values in (2.26) through (2.34) gives

S11 = 3.14 x 1078 1n.2/1p. (2.44)
Spp = 833 = 3.18 x 10°7 1n.2/1b, (2.45)
812 = 83 = -6.61 x 1072 1n.2/1v. (2.46)
Sp3 = =7.95 x 1070 1n.2/10, (2.47)
Sy = 3.13 x 1070 1n.2/10. (2.48)
S55 = S : 1.0 x 1076 in.2/1p. (2.49)

Morgenite II, a graphite/epoxy composlite, has uniaxial

engineering constants as follows:

Ej1 = 20.C x 105 1b./in.2 (2.50)
Bpp = Bz = 2.1 x 105 1b./in.2 (2.51)
G1p = G13 = 0.85 x 10% 1b./1n.2 (2.52)
Gp3 = 0.67 x 106 1b./1n.2 (2.53)
Viz = V13 =Vp3 = 0.2 (2.54)

from which one obtains

S11 = 5.0 x 108 in.2/1p. (2.55)
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Sop = 833 = 477 x 1077 1n.2/10. (2.56)
S12 = 813 = =1.05 x 1078 1n.2/11. (2.57)
Sp3 = =1.0 x 1077 1n.2/1p, (2.58)
Syy = 1.49 x 1076 1n.2/1p, (2.59)
855 = 556 = 1.18 x 1076 1n.2/1p, (2.60)

It must be noted here that there isg by no means uni=-
versal agreement on the values of the englneering constants
of elther NARMCO 5505 or Morgenite II. Different experi-
menters have measured different values, and even among
identical tests performed by the same experimenter there is
more scatter in the data than is the case with metals.

Every effort was made to obtain the best avallable data

for use in this study. Some of the values used were taken
from [l], while others (more recent) were obtained in
personal consultation with Mr. R. Byron Pipes of General
Dynamics/Fort Worth. In cases where a glven Young's modulus
had a slightly different value in tension from that measured

in compression, the average of the two values was taken.
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CHAPTER 3

FORMULATION OF ANGLE-PLY PROBLEM

3.1 Laminate Configuration

The first problem chosen for application of the seconde-
order theory was that of the laminate shown in Figure 1,
which 1s essentially an idealized tensile specimen, or
"coupon". If the laminae are numbered (1) through (3),
top to bottom, laminae (1) and (3) are seen to be oriented
at an angle +8 to the y; axis while lamina (2) is oriented
at -@ to that axis. This configuration produces a laminate
that will not deflect vertically under axial loading and is
therefore saild to be balanced about its midplane, the
Y1¥5 piane. For the general case where @ is neitner 0°
or 90°, surh a configuration is referred to as an angle-ply
laminate. The length (y; dimension) of the laminate is
large compared t6 a, and the laminate is loaded at its ends
in longitudinal tension or compression. By Saint Vehant's
principle, all effects characteristic of the particular
means by which this loading is introduced have subsided
in the regions away from the ends, permltting the loading

state to be characterized by two parameters: a uniform
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FIGURE 1
ANGLE - PLY LAMINATE CONFIGURATION

Y3

v -
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longitudinal straln €, and an average composite longitudinal
stress 05. It should be noted here that, for an angle-ply
problem of this type, the condition of uniform €, does not
guarantee that plane cross sections remain plane. Con-
versely, however, the assumption of rlane cross sections

in the deformed state need not be made to insure the ex-
istence of a uniform €, . The problem may thus be described
as one of "modified" plame strain. A final -- and very
valuable == condition insured by the absence of end effects
in the central region of the laminate 1s that, within this
reglon, all derivatives of stress and straln with respect

to y, are zero.

5.2 Angular Dependence of Compliances

It was noted in Section 2.2 that the compliances 845,
S16 326’ and 536 are zero for uniaxial material becauge
there exlsts no shear coupling for the 0° orientation.
To state this in terms of the mathematical theory of elas~
ticity 1s to say that unlaxial material 1s orthotropic;
i.e., that it is characterized by nine independent com-
pliances. Strict;y speaking, filamentary composites are
orthotrople no matter what their orientation since there
always exists some coordinate system in which plies of a
glven orientation will exhibit no shear coupling. As a
practical matter, however, problems involving laminates
containing plies of several different orientations must be

soclved With respect to a single coordinate system. Plies
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oriented at angles other than 0° or 90° to the ¥y axis
do exhibit shear coupling and therefore have nonzero values
of 845, 816’ S0, and 336' The exlstence of thirteen
independent compliances is characteristic of monoclinlc
materlals. In the case of the composite angle ply, however,
there are thirteen nonzero compliances but all thirteen can
be expressed in terms of the nine independent compliances
of the uniaxial material. PFor the sake of analytical
accuracy, therefore, it would be most appropriate to refer
to the elastlc behavior of angle plies as guasi-monoclinic.
The elastlic compliances of composite laminae oriented
at general values of @ to the y; axls must be determined by
reverting to the full, general elasticity tensor notation

for compliances. In this system of notation [2],

Sttt = Swmnpn L L3 L2 L7 (3.1)

describes the coordinate transformation of the compliance
tensor, where the compliances cn the left-hand side of (3.1)
are thdse obgserved with respect to the coordinate system
of~F1gure 1l and those on the right are the compliances of
the uniaxial materlal. In this case,

cos O (3.2)

o~
=
)

/e?'z = -sin O (3.3)

=
M2
0

sin 6 (3.4)
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Az, = cos 6 (3.5)
Avs = 0 (3.6)
Az = 0 (3.7)
A3 =0 (3.8)
A33 = | (3.9)
Lz =0 (3.10)

Performing the indicated calculations and reverting to the
contracted tensor notation, taking into account the multi-
plicative factors involved in equations (2.19) through (2.25),

one obtalns

S" = S"(”Cosd‘e + (-25,;”'* 566(0))5“129 COS" e

+95,,”sin* 6 (3.11)

(o) (0) (o) .
Snz = (Su + Szz - 5S¢ )Slnze cos* O

+5,(sin* 6 + cos* 6) (3.12)

w
(™
W

S5 cos? B + S13Ysin? 0 (3.13)

522 = S”‘n) Sin49 + (25,2(0)1' 566“)) Sinze Cos”G
+95,,%0s* 0 (3.14)
Sas = 5,3 6in*06 + S33cos*6 (3.15)

Ss3 = S33'% (3.16)
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S = 25, c0s®0sind - 25,, sin®0cos O

+ (25" + 56" ) (sin®0 cosB -cos°05ink)

an
~N
LN
n

25,%6in20cosO -25.,"cos*0sinb

+(2513' + 6,”)(cos?0sine ~ 5in6 05 6)

(o) .
2{Si3" - S:'")sinbcosb

L))
w
*

i

(o) . 2 (o)
544= 555 sin 0 + S44 cos*0

Sy = (sss“)" 544“’) sinB cos O
555 = 555(°)£0516 + 544(0) Sinze
566 = 4(SII(°)+ 522(0) - 25,2(0)) Sinze COS" e

+ S5, (cos*0+5in*0-25in%6 cosze)

(3.17)

(3.18)
(3.19)
(3.20)
(3.21)

(3.22)

(3.23)

where the compliances identified with a superscript (0)

denote those of the uniaxial composite. ¥hen the uniaxial

compliances given by equations (2.44) through (2.49) for

NARMCO 5505, and by equations (2.55) through (2.60) for

Morgenite II, are substituted into (3.11) through (3.23)

one obtalns the angular dependences illustrated in Figures

2 through 8.

5.3 Lamination-Theory Solution for b = 1

According to lamination theory, the specimen of Flgure

1 will deform under longitudinal loading such that the
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FIGURE 3
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FIGURE 5
Sig AND Sy VS. ©
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FIGURE 6
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FIGURE 7
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stralns €,, €,, and €4 remain constant over the entire
cross-section of the laminate. For this particular problen,
this is what is meant by the terﬁinology “deformétionally
homogeneous over the cross-section" used in Section 1.1.
Such a strain state requires that the stresses o7, ¢35, and
0 be constant over the cross-section of each lamina, but
different in the =@ than in the +® laminae. All other
stresses are consldered to be zero everywhere. This, in
turn, is what i1s meant by "taking the elastic non-homogeneity
of the laminate into account" as described in Section 1.1l.
Let the superscript (+) be used to identify the stresses in
the +© laminae and (~) to identify the stresses in the -

lamina. Then by the stress-straln relations,

€, = Su'P+ 5, + 5, (3.24)
€, = 5,07+ 5, "7 - 5;60'5(-) (3.25)
€e = 91607 + 53,53 + S ™ (3.26)
€e = '5150'1(-)"525 037+ S¢¢ 05 (3.27)
€, = Si ™ + S, 73" + S, a';,“') (3.28)
€2 = 512077 + Sz 03 - S,,0¢ (3.29)

where 1t should be noted that the values of Sy and S>6
for a - lamina are the negatives of those for a +© lamina.
To continue the development for general values of b

from this point would result in the derivation of a stress
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state in which there are two nonzero stresses in the interior
which must go to zero at the free edges: 03 and 0. This
results in two edge effects which couple through the stress-
straln relations to greatly complicate the second-order
approximate solution. The behavior of edge effects due to
the free-edge requirement on ¢3, moreover, will be inves-
tigated in the cross-ply problem described in Chapters 5
and 6, so the considerable increase in cbmplexity asgoclated
with considering general values of b for the angle-ply
problem would result in little if any additional physical
ingight. PFlnally, for values of b other than unity, 1t
will be found that axial loading produces a lateral deforma-
tion of the laminate due to the existence of a uniform,
nonzero value of €, as predicted by lamination theory =-- the
lamingte i1s not balanced about the yly3 plane. As there
are relatively few applications where coupling of lateral
and axial deformations is desirable, one would not expect
such an unbalanced configuration to be used very often in
practice. For these reasons the subsequent treatment of
the angle-ply problem contained herein will be restricted
to cases where b = 1.0.

For a unity thickness ratio, the condition that the

net shear force on the edges Yo = *a be zero requires

2t + 2t = 0 (3.30)

while thekcondition that the net force normal to the cross-
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gection equal the longitudinal loading yields the equation

2tV + 2t = 4t (3.31)

Solution of (3.30) and (3.31) ylelds directly

g = - ot (3.32)

e (3.33)

Sl

a7

Then (3.28) and (3.29) can only be satisfied 1f 03 is zero,
which in turn causes (3.24) to become identical to (3.25)
and the right side of (3.27) to become the additlve inverse
of the right side of (3.26). Thus, €¢ must be zero =-- which
can also be reasoned physically from the fact that the
laminate is balanced about the yly3_p1ane. After these
considerable simplifications, one rapidly obtalns the value

of 0“‘,‘" as

® o oS T
02 = Ses o-l (3034)

3.4 Derivation of Assumed-Stress Solution for b = 1

The lamlnatlon-theory solution of Sectlon 3.3 has an
essential shortcoming in that it falls to satisfy the free-
edge conditicn; 1.e., that 0g is not zero at Vo = ta. A
second~order tk~ory 1g proposed to remedy this defect and
provide information about the stregs distributions near

the free edge. The major premises of the theory are as
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follows:

(a) All stress components beccme asymptotic to those
predicted by lamination theory sufficiently far
from the free lateral edges Yo = ta.

(b) Those stresses whichk must go to zero at the free
lateral edges do so exponentially with ¥os Or at
ﬁost as the product of a linear and an exponential
function of Yo

(c) All other stress components in the regions near
the free lateral edges are such that the dif-
ferential equations of equilibrium and all other
exterlor boundary conditions are identically
satisfied.

To solve the angle-ply problem according to this theory,
the assumed form of the stress 0% ma& be chosen as a starting
point. Using the lamina numbers as superscrifts to identify
the stresses in the various laminae, one may write the

lamination-theory asymptote condition on a3’ ag

Lim ["'Z(”Laﬂ] = a ™ (3.35)

a—>» oo

The free-edge condition here is

a0 lhza = 0 (3.36)

4 simple exponential form for g3 which satisfies both

requlrements for yo 2 0 is



o = e [l— exp (L2 ] (3.37)

where the value of k 1s, at this stage, unknown. There
is only one nontrivial equilibrium equatlion for this prob-

lem, namely

30%
3y + 35+ =0 (3.38)

This indicates that the dropping of the in-plane shear
stress 0 to zero at the free lateral edges will give rise
to an interlaminar shearing stress o3 in the viclnity of
the free edges. $Since this stress acts upon a y3 plane,
however, it must become zero at the free surfaces ¥3 = t2t.

In the case of lamina (1) this requires

¢)) =
73 by, 24 0 (3.39)
Solving (3.38) for g;—;u), integrating, and applying (3.39)
results in
03" = - oy?[2- 2]exp (B33 (3.40)
Now by (3.32),
O"‘u') = - 03 M (3.41)

and from the condition that 0% be continuous across the

interface between laminae:
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(4)) = (2) .
as ,7;.—.1; U5 ly=¢ (3.42)
1t follows that
+) -
0“5(” = - —,“ U [%}exp(ﬁtﬁa') (3.43)

To determine the longltudinal tenslion in each lamina it is
then only necessary to apply (3.24) and (3.33), from which

m _ € _ _Swie ) JA4
o= 5:1 Su T (3.44)

o (2) _ o () (3.45)

where €, is obtained by substituting (3.33) and (3.34)

into (3.24). The condition that Oy approach zero far from
tﬁe lateral edges need not be formally applied, as it is
automatically satisfied by (3.40) and (3.43). 8ince 0g is
an odd function of ¥yo and y3, and 0 an even function of

Vo and invariant with ¥3 within each lamina, a complete
description of the stress field throughout the laminate

has effectively been obtained by the derivation of equations
(3.37), (3.40), (3.41), (3.43), (3.44), and (3.45), subject
to 2 determination of k-

The solution as thus far obtained satisfies equilibrium
and the exterior boundary conditions identically and is
asymptotic to laminatlon theory in the interior. It is
not an exact solution, however, since it cannot be made to

satisfy the differential equations of strain compatibility.
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The best one can do with a solution of this type is to
guarantee satisfaction of compatibility in the mean by
minimizing the complementary energy of the laminate [2]
with respect to k:

o
S
o

"

(3.46)

Q.
x

where

T = §§ £ 0mm Emm dv = § (& TINp dA (3.47)

The condition of minimum complementary energy 1s thus used

to determine the value of k. It has already been indicated
that the stresses in the second, third, and fourth quadrants
of the cross-section are mirror images of one sort or another
of those in the first. By symmetry, therefore, the comple-
mentary energies of all four quadrants are equal and it is
necessary to treat only the first quadrant in the analysis.
And since none of the stresses or strains vary wlth Yy it

is necessary only to compute the complementary energy per
unit length of laminate. When this is done, eXpressing

07 in terms of €, and 0, one obtalns

t, .3 2 2

- 1 € _c €& @ ) fc _ Sie (2

-“c - so So [ 2 SH Sl‘ n 0; + 2 (S‘b S" a—6
L 2
+2555% ] J)’zd)'a

at,a 2

+ S - L €& £ oWy e - Sie )\ m2
St o{ 2 gy +S‘5 Su % t3 (S“ Swu )T
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Since the constant terms involving qu are independent of
k, they may be ignored with no effect on the result of the
subsequent differentiation. The values of the other inte-

grals required are

(% og Ydyady, = - 03 [at-kt?] (3.49)
S.,S., P dyady; = x®? [at-1.5kt?] (3.50)
(01, 5 dyady, = 8L @72 (3.51)
S:tS: 03" dy,dy; = g [at-«kt?] (3.52)
Gl 0t dy,dy, = 0 [at-1L5kt?] (3.53)
:tg: O dy,dy, = <l %t (3.54)

It is important to note that the expressions presented in
(3.49) through (3.54) are not the exact analytical forms
of the definite integrals. They are based on the approx-
imation that all terms involving exp(- 3-) or higher powers
thereof are very nearly zero and may be neglected in com=-
parison to all other terms in any given integral. This
evidently places a restriction on the geometry of laminates
for which the assumed form of solution is valid, but the
precise severlty of the restriction cannot be known until
a determination of k is made. Substituting (3.49) through
(3.54) into (3.48), differentiating with respect to k, and

setting the result equal to zero requlres that the value
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of k be given by

) o
k = Leel Sesls (3.55)
1.5 (-:-h‘a - S“)d"s('» - 2% -g-:;
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CHAPTER 4

RESULTS OF ANGLE-PLY CALCULATIONS

4.1 @Qample Case

The approximate second-order solution obtalned in
Section 3.4 was coded into FORTRAN and assembled into a
small computer program, ANGLE, in order to generate a matrix
of solutions displaying varlations in the stress field with
the lamina angle ©. This was done merely for couvenlence,
since the solution of Section 3.4 1s simple enough to be
worked out by hand. As the coding and logic of ANGLE are
rather straightforward, we omlt further discusslion of the
program here and proceed directly to a presentation of the
results obtained. A listing of ANGLE and a glossary of its
FORTRAN variables are presented for reference in Appendices
A and B.

A typical angle-ply result 1s shown in Figure 9. For
this particular case the value of k was found to be 1.07;
as a consequence the edge effects are seen to be confined
to a region about 4t in width dlrectly adjacent to the free
edges. PFarther from the edges the flrst-order lamination

theory is accurate to within 2% or better. This rather
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FIGURE 3
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rapid subsidence of the edge effects, which one would
intuitively expect a priorl from Salnt Venant's principle,
permits the edge effects to be thought of as a boundary
layer type of phenomenon with a boundary-layer thickness
defined in terms of the thickness of the central lamina.
One might appropriately define 4kt as the boundary-layer
thickness for a problem of this type, as the value of the
exponential terms in the assumed-stress distribution has
decreased to 0.0182 at this distance into the laminate
interior.

The maximum intensity of the interlaminar shearing
stress 0 occurs at the intersectlon of the interlaminar
interfaces, I3 = tt, and the free edges, o = ta. At these
points its magnitude is 0.387 of the average appllied composite
longitudinal tension 6 =- qulte a considerable fraction.
The longitudinal tensions in each lamina, however, are
reduced to 0.81 of thelr maximum interior values by the
actlon of o; through the stress-strain relations. Desplte
the persistence of a constant €, all the way out to the free
edges, the shearing strains produced by the edge effects
produce a marked ®scissoring™ of the +0 and ~@ laminae
with respéct to each other. This effect has in fact been

observed in tension tests of angle-ply laminates.

4,2 Variation of k and 0 with ©
The boundary-layer thickness parameter k as a function

of @ for unity thickness ratio is shown in Figure 10. The
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value of k is on the order of unity for all lamlna angles,
but varles by a factor of two to three, depending on the
material, as © varies from 0° to 90°. The variation is more
severe for NARMCO 5505, which has a maximum k of 1.58 at
35.5%, than for Morgenite II, which has a maximum k of 1.13
occurring at 299, Since k is basically a function of the
material properties, 1t does not go to zero at 0° or 90°
even though the in-plane and interlaminar shearing stresses
vanlish at these orientations.

Flgure 11 illustrates the variation in the maximum
intensity of the interlaminar shear ¢z with © for unity
thickness ratio. The free-<edge effect is more severe in
Morgenite II, where 0z reaches a magnitude of .443 of the
applied tension at 37.5°, than in NARMCO 5505, where a
maximum intensity ratio of .345 is reached at 35°. For
each material there 1s a lamina orientation (other than 0°
or 90°) for which there 1s no edge effect. In the case of
NARMCO 5505 this angle is 58°, while for Morgenite II 1t
ig 66.5°. 7For angles less than the zero edge effect angle
the ratio of 03 to & 1s negative, while for greater angles
it 1s poslitive, where o3 1s taken at the polnt y, = a,

Iz = t. fhe existence of such an angle can be readily
explained by recourse to Flgure 14, which shows that o goes
to zero for each material at the same angle as does 03.
This, in turn, as may be seen from Figure 5, is because the

tensor compliance S;¢ passes through zero at this point.
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Physically, this behavior results from the fact that angle
plies oriented at angles less than the zero edge effect
angle attempt to align themselves with the 0° direction,
while those oriented at angles greater than the zero edge
effect angle attempt to align themselves with the 90°
direction, when the composite 1s placed in longitudinal
tension or compressicn.

Much of the difference in interlaminar shear behavior
between NARMCO 5505 and Morgenlte II can be explained by
reference to the ratio of the compliance constants Sy,
and $37 for the unlaxial material. Referring to equations
{(2.44) through (2.49) and (2.55) through (2.60), one finds
that the value of 811 for Morgenite II is about 1.5 times
that for NARMCO 5505, while Sy4 in Morgenite II 1s less
than half that of NARMCO 5505. The values of S5 and Sg¢
for the two uniaxial materials, moreover, are nearly equal.
The graphite/epoxy materlial is thus considerably stiffer in
shear in relation to 1ts stiffness in tension than is the
boron/epoxy. Thus, for all angles, Morgenite II exhibits
smaller boundary layers than NARMCO 5505, and for most angles
below the zero edge effect angle the interlaminar shear

stresses are more severe in Morgenite II.

4.3 Importance of Results to Design

In designing composite laminates the free-edge effects
are generally considered undesirable, since they may contri-

bute to delamination faillure or reduce the fatigue life of
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the finished structural element. Consequently, it 1s
desirable to reduce the magnltude of such effects to a min-
imum and to confine them to as small a region near the
edges as possible.

Since the orlientation of an angle-ply laminate is
usually chosen to satisfy overall stiffness and strength
requirements, a reduction in the magnitude of the free-
edge effect by adjusting © will not always be possible.

In particular, use of the zero edge effect angle will often
be prohiblted by the fact that the material is quite weak
and compliant in longltudinal tension at this angle.

For any given orientation, however, the boundary-layer
thickness 4kt (which is a measure of the edge effect's
region of influence) is directly proportional to the lamina
thickness. It follows that thin laminae, preferably con=-
sisting of no more than a single ply, are to be preferreé
over thick ones. The practice of using a great many plies
of identical orientation te form a lamina in order to
obtain desired stiffness properties while keeping the
layup simple should be avoided.

The region of influence of the edge effects as measured
by the valﬁe of kX is uniformly greater in NARMCO 5505 than
in Morgenite II. For most ply angles, however, the intensity
of the edge effect stress gz 1s gfeater in the graphite/
epoxy than in the boron/epoxy. Except in applications
where the ‘intensity or the depth of penetration of the
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edge-effect stress is a critical consideraticn, therefore,
considerations of overall stf%ngth—to-weight and stlffness-
to~welght ratios will be considerably more important to
materials cholce than edge effects. Where edge-effect
penetration depth 1s critical, it should be remembered

that not only is k smaller for Morgenite II than for NARMCO
5505, but the graphite/epoxy tape is only about one-tenth
as thick as the boron/epoxy, making Morgenlte II clearly
the preferable material for such applications.

4.4 Accuracy and Limitations

The solutions obtained for b = 1.0 were compared with
solutions for a similar laminate arrangement in Morgenite II
obtained by Pipes [3] of General Dynamics using a finite-
difference approach. The agreement between the two solutlons
was found to be quite good, there being no detectable dif-
ference for @ = 459 in the maximum predicted intensity of
the interlaminar shear stress and only slight differences
at other points which could as easily be due to the limits
of graphing accuracy as to actual differences in the results.
In this connection 1t may be mentioned that the angle-ply
calculations of this study were performed at 7.5-degree
increments of © between © = 0° and © = 90°, while those
of [3] were done for somewhat fewer points. It should also
be noted that @ has been redefined as -8 in the plot of
normalized 63 given in [3] , so that this plot appears as
the negative of Figure 11.

L



There 1s one essential way in which the approximate
second-order solution differs from that of [3], and this
difference points out a basic limitation on the permisslble
geometry of lamlnates which can be accurately solved by the
approximate technique. The approximate solution predicts
no dependence of the interlaminar shear intensity on lam-
inate thickness. Reference [3], however, presents data
indicating that there i1s a mild dependence on thickness.
This is because {3] includes data for laminates that range
all the way up to nearly half thelr width in thickness ==
into regions for which the approximate solution is invalid.
In laminates this thick lamination-theory values are not
approached in the interior. In particular the longitudinal
tension 07 1s lowered throughout the laminate, so that the
interlaminar shear normalized by this tension, as in [3],
increages with increasing thickness. Thls behavior indicates
that the second-order approximate solution should not be
used unless the laminate width is at least 8kt, which is to
say unless the dimension a of Flgure 1 is at least 4kt -=-
one boundary-layer thickness. This amounts to stipulating

a maximum permissible error of 1.82% in 6 at y, = O.
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CHAPTER 5

FORMULATION OF CROSS-PLY PROBLEM

5.1 Laminate Conflguration
In order to investigate edge effects caused by the

free-edge condition on the transverse extensional stress
g;» & cross-ply problem was formulated uslng the laminate
configuration illustrated in Figure 15. A cross-ply lam-
inate is defined as one composed entirely of laminae orlented
at elther 0° or 90° to the y; axis.  The laminate of Figure
15 may be considered as either one of two possible config-
urations: 0/90/0 (laminae (1) and (3) at 0°; lamina (2)

at 90°) or 90/0/90 (laminae (1) and (3) at 90Y; lamina (2)
at 0°), where the same lamina numbering scheme as used 1n
Section 3.1 has been adopted. Both these arrangements
produce a laminate that is balanced about both the y,y,
plane and ‘the T3 plane, regardless of the value of b.

The same geometrical and loading considerations apply
to the cross-ply laminate as to the angle-ply configuration:
namely that the laminate length is assumed large compared
to the dimension a and the specimen i1s loaded at its ends

in longitudinal tenslon or compression, so that end effects
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FIGURE 15

CROSS~PLY LAMINATE CONFIGURATION
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have disappeared over most of the specimen's length and the
loading state may be completely speclfied by the uniform
longitudinal strain €, and the average longltudinal siress

& . Again, this insures that all stress and strain derlv-
atives with respect to y; are zero. The cross-sections

of the cross-ply laminate, unlike those of the angle-ply
configuration, remain plane in the deformed state; the cross-
ply specimen is thus placed in a state of plane straln (in
all particulars except that €, is constant rather than zZero),
as opposed to the "modified" plane strain of the angle-ply
laminate, by the end loading condltion.

5.2 Lamination-Theory Solution
Lamination theory predicts that a balanced cross-ply

laminate of the type shown in Flgure 15 will deform under
longitudinal loading such that the strains €, and €, remain
constant over the cross~-section (the condition of compati-
bility, or "deformational homogeneity"). The stresses

g7 and g3 will then be constant over the cross-section of
each lamina, but different in the 90° tran in the 0° lam-
inae, and all other stresses will be uniformly zero. Sup=-
pose we stipulate, for the present, that the solution to

a 0/90/0 configuration is desired and let the stresses in
the 0° laminae be identified with a supersciipt (0), those
in the 90° lamina by (90). Then the stress-strain rela-

tlions become
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€ = 5,0 + 5§, (5.1)
€, = S0 + 5,, 3 (5.2)
€= 5 &+ Sz (5.3)
€2 = Sn °"i(m"’ Sy a'z(m (5.4)

The condition that there be no net normal force on the

free edges requires

2bt 3 + 2t Y = Q (5.5)

while the requirement that the net force normal to the
cross-section equal the longitudinal applied loading ylelds
the equation

2bt 63 + 2t = 2(1+b)t & (5.6)

Equations (5.5) and (5.6) are readily solved for the stresses
in the 90° lamina in terms of @ and the stresses in the 0°

laminae:

03(90)= "ba}&’) (5.7)

a_’(ao) = (1+B)E = boy®@ (5.8)

Substituting (5.7) and (5.8) into (5.1) through (5.4) and
solving the resulting set of equations simultaneously de-

termines o and 03 as follows:
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= - T (Su= Saa) (5.9)

(Saa+ b S, (5"-0-5533 - K ]
[Curhuiebonl - guys,

W_ = _ 03 (Saa+bSu) (5.10)
a= a0 (1+b) 512

53 Derivation of Assumed-Stress Solution

The lamination-theory predlction of a uniform 03 through-
out each lamina of the cross-ply coupon is incorrect, just
as the prediction of a constant og was in the angle-ply
cagse, due to the free-edge requirement that all stresses
acting on a Yo plane go to zero at y, = ta. The second-
order theory proposed in 8Sectien 3.4 is again applied in
order to obtaln a more accurate plcture of the stress field
near the free edges.

S8lnce o3 must be asymptotic to the lamination=-theory
prediction in the interior but zero at the free edges, the

equilibrium equation

3

302

sy = 0 (5.11)

+

3y

[

requires that an interlaminar shearing stress oz must exist
in the regions adjacent to the edges. The forms of 0

and 0% whiéh satisfy (5.11) cannot, however, be analogous
to the forms of 0; and ¢3 which satisfy (3.38) for the
angle-ply case since the behavior of gz is complicated by
the requirement that 1t, as well as o3, must go to zero at
Yo = ta. ‘Application of the lamination-theory asymptote

conditions
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. ) - (o)
Lim. [ o3 ,m] ] (5.12)
£ [0104 ] = 0 (5.13)
a—»co Ta=o
the free-edge condltlons
a"z"’|h=a= 0 (5.14)
7290 = 0 (5.15)

the free-surface condition

()] -— 016
Ta Ys=(l+blt O (5 )

and premise {b) of the second-order theory as stated in
Section 3.4 permit 03® and o3’ to be solved by the method

of undetermined coefficients, resulting in

o = o [1- (1 350) exp (%72 (5.17)
= = *'_-Eiio)[(l-&'b _ %!_] ak-;Va]eXP(Zsﬁ;_a_) (5.18)

for y2 > 0. The fact that there is a yz-variation in o3,
however, requires that there also be a nonzero o3 ln the
regions near the free edge in order that the equilibrium

equation

L7 S L S
Sy + Sy -0 (5.19)

may be satisfied. Substituting the yp derivative of (5.18)
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)
257, integrating, and applying the

into (5.19) to obtain >

free-surface condition

) =
T3 lys=tien)t 0 (5.20)
determines 03 as
< (@ 2 y l-o- a-Y. -
o B[ o0 B B fet) 52

Then applying (5.7), 63® is found %o be

%= -} a_zm (5.22)

and since o3 and o3 are required to be continuous across

the interlaminar interfaces:

= (a) - U)I '
3 ‘Ya:t T3 lys=¢ (5.25)

q(;)i - a_(l)l (5.24)

Y=t ~ Y3=t

these stresses are determined as

e = B [ 33 - ][ 3R - enp (B2) (5.25)
ey < - Gl 22 gy (223) (5.26)

The longitudinal tension in each lamina can now be deter-

mined from the stress-strailn relations:

- = 3_;_‘ - S0 Su g (5.27)
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. & _ Siz @__S (2) 5.28
i s, 5.2 02 622 03 ( )

where €, 1s known from substituting (5.9) and (5.10) into
(5.1). The stress o3 is an even function of y, and is
invariant with Y3 within each lamina. g3 is an even functlon
of both Yo and ys3, while 0% 1s an odd function of both y,

and ¥ Bquations (5.17), (5.18), (5.21), (5.22), and

(5.25) through (5.28) therefore provide sufficient infor-
mation to determine the stress field throughout the lam-
inate by symmetry, subject to a determination of the value

of k.

As in the angle-ply case, the solution thus defined
satisfies stress equilibrium and the exterior boundary
conditions identically and satlisfles the lamination-theory
interior asymptotes, but cannot be made to satisfy differ-
ential strain compatibility. Once again, k is determined
by the principle of minimum complementary energy according
to equations (3.46) and (3.47), which insure satisfaction
of compatibility in the mean. It is agaln necessary to com=
pute only'the complementary energy of a unit length of
the first quadrant of the laminate. With Oy expressed in

terms of €,, 03, and 03 the energy integral becomes
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ted 2
€ S
Te=[] [-+ € + 226n®+ g2eq®

o ‘o S22 Sa2
*tz (S" - S_z‘: oz (535 Szz)os
S:252s () _(2) 4 L (2)2
* (5.3 - e )05- ot *+z Se5 0% A)'z‘l)'a

i
2
+(523- ig%)c'"’as“'*"su"'”]d)’zd)’s (5.29)

where the elastic properties of lamina (2) have been ex-
pressed in terms of uniaxial material properties. Again,
the constant terms in G,z may be neglected, as they cannot
affect the value of k. Making the same approximation used
in the angle-ply problem, one obtalns the following ex-

pressions for the required integrals:

(512 03 Pdyady, = ~bex” [at-2kt?] (5.30)
050 @ dysdys = O (5.31)
(17 5 dyadys = biog* [at-2.75 kt?] (5.32)
(10 @ dyady, = 1795 °F, Tt (5.33)
ﬁs 03P dy, dy, = 2083 T, F— "'m t2 (5.34)
S‘S“ P dy,dys = .0833b*—1— ” 2 (5.35)
S:MS mdyzdya b oyt {a‘t—Zkt‘] (5.36)
7 03 Pdyadys = O (5-37)
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S:"mr %"’adygdy;g = bay* [at-2.75 ktz] (5.38)
:mtS: ("zdyadya - .0125F, a*a“" 12 (5.39)
L O dy, dy, = 04176 F, T 2 (5.40)
Sil+b)tsa “T«,mzdyzdys = . (5.41)
where
°F, =.349b* +.465b3 +.186 b? (5.42)
F, = .60b3 +.40b? (5.43)
Fy = U+b) -50+0) + 100+) - 1o (1+6) 2+ 5(1+5) - | (5.44)
Ty = (b)Y -3(1+b) +3(1+8) = | (5.45)

Substituting (5.30) through (5.41) into (5.29), differen-
tiating, and solving the resulting biquadratic equation for
k yields the result

k = , [ CaxVCai+dCiCs (5.46)

2¢,

where a considerably abbreviated notation has been adopted

in which

Ci=2b€ & - 137503 (b* L, + bds) (5.47)

Ca= = [.2083F, & +.0017 (1555 + T Suy *bF )] (5+48)

Cs = 2 (.2688F, &4, +.0187 F, 4,) (5.49)



and

Y (5.50)
L= su- 82 (5.51)
Ly = Sap -2 (5.52)
Ly = 5,y - 2p2n (5.53)
Ls = éﬂl%ﬁ‘- Sas (5.54)
Ly = 55— 52 (5.55)
Ly = Sa - S (5.56)

Inherent in the above solution is the assumption, as stated
in Section 5.2, that the laminate is of the 0/90/0 con=-
figuration. In order to work a 90/0/90 problem one must
perform the following interchanges of compliance constants:
S11 with 855, S13 Wwith Sp3, and Sy with Sgg. This formal
procedure amounts to a temporary interchange of the def-

1nitions of the 0° and 90° directions.
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CHAPTER 6

RESULTS OF CROSS-PLY CALCULATIONS

6.1 Sample Case

The solution of Section 5.3 was programmed in a manner
similar to that of the angle-ply problem in order to gen-
erate a set of results which would yield information on
the variation of the stress field with the thickness ratio
b, and also on the behavioral differences dilstinguishing
90/0/90 from 0/90/0 configurations.  Again, this was done
principally for reasons of convenience, for although the
solution of 8ection 5.3 is considerably more complicated
than that of Section 3.4 it can still be worked by hand.

As in the angle=-ply case, the programming involved offers
no special- difficulty and requires no detailed discussion
here. A listing of the program used, CROSS, and a glossary
of 1ts FORTRAN variables, appear in Appendices C and D for
reference.

Pgure 16 illustrates a result typlcal of those ob-
tained for the cross-ply cases. Again, k was found to be
of order one -- in this case, 0.91 == so that the lamlna-

tion-theory asymptotes are very closely approached for
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FIGURE 16
CROSS-PLY CASE:. STRESS VS. Y,
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regions 4t or deeper into the interior. A boundary-layer
behavior is evident and one may, as for angle-ply lamlnates,
define the boundary-layer thickness as 4kt.

Unlike the results of the angle-ply cases, the maximum
intensity of the interlaminar shearing stress 03 does not
occur at the free edges. Although it necessarily does
occur on the interlaminar interfaces, 1t does so at a
distance kt in from the free edges Yo = a. The intensity
of o; at these points is 0.0118 of the average composlte
longitudinal stress. The most severe free-edge effect,
however, is not the interlaminar shear; 1t is the inter=-
laminar tensile (or compressive) stress g3. For the case
shown in Figure 16, the normalized G3 is seen to reach a
maxinum value of 0.0390 at the free edges. As illustrated
in the insert drawing, the intensity of g3 1s greatest at
the laminate mid-plane and varies quadratically with Y3
within each laminate, having inflections at the interlaminar
interfaces. As required by equations (5.31) and (5.37),

o3 is compressive over part of the laminate width and
tensile ovér the rest, such that its Yo integral vanishes.
One can see physically that this must necessarily be so,
as ELe laminate is not subjected to any loading in the Y3
direction and hence the net normal force over any Y3 plane
within the laminate must vanish. A similar argument,
based on the absence of any To loading, will be recalled
from equation (5.5) as requiring that the net normal force

on any y, plane be zerc. Because the longitudinal tensions
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o7 and o7 are too large to fit on the seale of Figure
16, and in any case vary hardly at all from the values
predicted by lamination theory throughout the laminate,

they are not shown.

6.2 Variation of k, Oa, and 03 with b

The boundary-layer thickness parameter k is shown in
Figure 17 as a function of the lamina thickness ratio b
for both 0/90/0 and 90/0/90 configurations. Not surprisingly,
since the boundary-layer thickness 1s in some sense a
weighted average of the thicknesses of the 0° and 90° lam-
inae, k starts out at zero for b = 0 and increases mono-
tonically with b for all configurations. The 90/0/90 lam-
inates display generally thinner boundary layers than
0/90/0 configurations, indicating that varying the thickness
of a 909 lamina has less effect on the boundary-layer thick-
ness than does varying the thickness of a 0° 1 ina, except
in Morgenite II at small thickness ratios. The spread in
behavior between 0/90/0 and 90/0/90 ecases 1s less for
Morgenite II than for NARMCO 5505 =« another effect of the
lesser disparity between extenslonal and shear compliances
exhibited by the graphite/epoxy material.

Figure 18 illustrates the variation of the maximum
normalized interlaminar shear stress,-%%—, with b for lam-
inates of 0/90/0 and 90/0/90 configurations. The stress
intensity is seen to increase from zero fairly rapidly as

b increases from zero to between 0.4 and 0.6, thereafter
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FIGURE 17
CROSS-PLY CASES: K VS. B
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FIGURE 18
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leveling out to a virtually comstant value of several percent
of the average applied tension. This type of behavior 1s
expected, both physically and from the nature of the assumed
stress functions of the second-order solution. Physically,
it is evident that a lamina ¢f zero thlckness cannot produce
any effect on a lamina of finite thickness, and hence all
free-edge effects (as well as the transverse tension 03 which
produces them) must vanish for b = O. Mathematically, the
exponential function exp(’ a) is driven to zZerc more
strongly than any negative power of k 1Is driven to infinity
as k 1tself goes to zero with b, and hence both o3 and 03
become zero as the thickness of the outer lamlnae becomes
infinitesimal (the point y, = a is singular and must be
approached from the left). As b increases from zero so

M jecreases even

does k, and hence the y, derivative of 03
more than it would otherwise due to the decrease 1n the
intensity of the lamination-theory value of 7" 1tself.
Thus the y3 derivative of &g 3 decreases in magnitude,
conpensating for the increase in b and eventually producing
a relatively constant peak value of oy at the interlaminar
interface for large enough values of b. 0/90/0 laminates
produce negative values of g3 for yp > O, since laminae (1)
and (3) are in transverse tension (0z* positive), while
90/0/90 laminates have positive shear stresses because

the upper and lower laminae are in transverse compression.

This statement applies to the shearing stress on the inter-

face between laminae (1) and (2); the sign of the inter-



64

laminar shear is, of course, reversed on the interface
between laminae (2) and (3). Morgenite II exhiblts slightly
higher lnterlaminar shear intensities than NARMCO 5505,
again due to its greater shear stiffness in proportion to
i1ts longitudinal modulus, but neither material experiences
interlaminar shear in excess of 2% of the average longl-
tudinal tension for any value of b between O and 2.0.

Figure 19 illustrates the varlation of the maximum
normalized interlaminar tenslon %%—'with b. As does 03,
g3 starts at zero and reaches a relatively constant intenslty
for values of b greater than about 0.6. Thls behavior is
explained by physical and mathematical arguments which are
analogous to those used in reference to Figure 18. 0/90/0
laminates are seen to experience an interlaminar tension
which is more severe for Morgenite II than for NARMCO 5505,
while 90/0/90 laminates exhibit a compression which is
greater for NWARMCO 5505 than for Morgenite II. This, too,
is expected from the results of Flgure 18 and the relation-
ship between the Yo derivative of ¢ and the V3 derivative

of 03 defined by the equilibrium equation (5.19).

6.3 Importance of Results %o Design

In cross-ply laminates, as for angle-ply laminates, 1t
is desirable to keep both the magnitude of the edge effects
and the distance over which they act to a minimum. Although
the cross-ply edge effect stresses are generally far less

intense than those for angle plies, the interlaminar tenslon
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ir particular may nevertheless present a problem and could,
in some applications, contribute to fallure of the com-
posite by delamination starting at the edges.

The value of b chosen for any given laminate 1s not
too important as regards the edge-effect intenslities, siuce
thege stresses are in any case relatively slight. It would
gti1ll be unwise to use too great a value of b, however,
since this does increase the edge-effect stresses somewhat
in some configurations and (more importantly) increases the
thickness of the boundary layer. Either a very large or
a very small value of b, moreover, will produce a significant
intensification of the lamination-theory stresses ln the
thinner laminae. Designers can use this effect to obtaln
a simultaneous-failure condition in both the 0° and 90°
laminae, but more extireme variations in b than required by
this condition will usually be found to be undeslirable
unless thelr use is forced by considerations of bending
gstiffness, as in some sandwich-construction applications.

Wherever bending stiffness in the y1Y3 plane is a
consideration, the 0/90/0 laminate will of course be pref-
erable to the 90/0/90 arrangement. The same 1s true of
applications where good reslstance to buckling under axial
compression is required -- and in fact a good general rule
of thumb would be that the filaments in the outer laminae
of any cross-ply laminate should run in the direction of
the primary loading axis.

As in angle-ply laminates, overall stiffness-to-welght

G?
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and strength-to-weight considerations may be expected to
influence material cholce more than differences in edge
effects between the two materials studied. NARMCO 5505

has the larger value of k for 0/90/0 arrangements but
Morgenite II has a slightly larger k value for most of the
90/0/90 cases. Shear intensities for the graphite/epoxy
material are uniformly greater than those of the boron/epoxy,
but only very slightly so. Interlamlnar tension is greater
for Morgenite II in 0/90/0 laminates, but more severe 1in
NARMCO 5505 for 90/0/90 configurations =-=- and relatively
slight in any case. If anything, edge-effect differences

in cross-ply laminates may be expected %o influence cholces
between the two materials even less than in the angle-ply
cases. Again, however, it should be remembered that the
smaller tape thickness of Morgenite II makes 1t the superior
material in applications where edge-effect penetration depth
1s critical.

6.4 Accuracy and Limitations

The solution obtained in Section 5.3 was compared to
results obtained from the assumed-stress hybrld finite-
element method described in reference [4]. In this method
the stresses within each element are assumed to be given
by polynomial functions of the coordinates which identically
satisfy stress equilibrium. The coefficients of the poly-

nomial terms, initially unknown, constitute a column matrix

{e}:
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{c-} = [P}{8} (6.1)

where [P] contains the various powers of the coordinates
to be used. Interelement compatibility is maintalned by
assuming the edge displacements, {u}, of each polygonal

{or polyhedral) element to vary linearly between the disg-

placements at the corners, {q}:?

{u} = (L1{¢} (6.2)

where [L] is the matrix of linear functions of the surface

coordinates required. The resolved normal and shear siresses

on the element surface, {&}, are required in terms of the
stress coefficients {8}, as the hybrld method uses the
principle of minimum complementary energy to determine the

element stiffness matrixz [k]. {&} is related to {B} by

(#} = [Rl{g} (6-3)

where the [R] matrix contalns the required functions of
element surface coordinates. With this information one can

compute [k] as described in [4] according to

[k} = [T71HIT] (6.4)
where [T] = (S IrR"][L)dA (6.5)
[H] = f{{[P"){S1(P]dv (6.6)
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and [8] is the matrix of material compliances used in wrltlng
the compliance form of the stress-straln relations. The
integration of (6.5) is carried out over the surface of the
element; that of (6.6) over the element interior volume.

A large digital computer program which has provisions for
aggenbling the stiffness matrix of the complete body from
those of the elements and accepting stress and displacement
boundary conditions is then used to solve for {q} and hence

for {p} according to

{8} = [n'1[T1{q} (6.7)

For the cross-ply problem the elements used were rectangular
solids of unit length (y; dimension), width (y2 dimension)
a, and height (y3 dimension) 4, where a and & may be varied
at will but must not differ from each other by too great a
ratio or numerical accuracy problems will be encountered.
Some investigators have used ratios greater than 5:1 suc-
cessfully for some purposes, but 3:1 ls more generally
considered the safe limit and 2:1 was adopted as the upper
limit in this study. ,

In solving the cross-ply problem by this method the

following intraelement stress dlstribution was used:

0= By +Paya +Bays (6.8)

O3 = P4+ Bsya+Bs)s (6.9)
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04 =By ~Ba¥s ~PeYa

from which, by the stress-straln relatlons,

(6.10)

o = - Swmpg - Sig _y (S . By (S2,+ 30) (6.11)

"

Since gﬁ- 1s a known constant it must be deleted from the
{8} matrix. If it is not, the [H] matrix will contaln an
extra diagonal element, and the [T] matrix an extra row,
to account for the existence of a quantity -- the comstant
—g:;- ==~ which cannot be adjusted by the principle of mln-
imum complementary energy. The [H] matrix will then be

singular and thus cannot be inverted. Upon performing

the indicated deletion, one obtains a [T] matrix in the

-

form
[ J £ £ & l
= z X s
"z 2 2 = 0 0 0 0 -«
0 & o . £ & ¥ £ &
2 2 6 3 3 3 35y
Lﬂ- Ll ‘1 Lz ..s
-+ £+ £+ -5 0 0o 0 o0 -2
1] = 0 0 0 0 _.;; _;;:_ _% _g_ "‘""s":'f (6.12)
--9‘: ...92 .2:. i-f _“‘LS.
0 0 0 Q 6 3 3 6 357‘
& o& _o& _a ol ol o835
) 3 3 6 0 -z 0 = -'Z—S'-:-’-
& s & & 2 £
2 T T 7 "%n > T -7 0
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and the [H] matrix becomes

N : l

S 2 2 2 a

iy, Py, Ko -y S, -f 0
S [N
5{3&:83." by _db -&'...1’1 + L% -akie
%5“\4 3 2 %5 3 é5 __}s] 2 a4

N 3 2 agd »
%"33 . -2‘2{’_‘5 '%&I, °i25 0

\

N a
() = &4, <ty % 0 | (6.13)
\\
3 ‘Ibl
SYMMETRIC sty, &£y, O
Nad?
2§:£¢ “g&5m4
%?544 2
N
N\
oalrS,,
- \u
where
ja - 533“"2{’?‘2 (6014)
£5= -s—'g-;s‘—l—’-Saa (6'15)
2
4y =5~ %:f- (6.16)

With the help of Mr. James Kotanchik of the MIT Aeroelastic
and Structures Research Laboratory, who performed all the
programming necessary to incorporate this treatment into
the STACUSS-I structural analysls program, solutions were
generated for several test cases and compared with the

results obtained from the solution of Section 5.2. In
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comparing results for a 0/90/0 laminate in NARMCO 5505 with
a lamina thickness ratio of 2.0 agreement between the approx-
imate second=-order and finite~element solutions was found to
be quite good in all respects. There was almost no detect-
able difference in vj, and the only difference in o3 was a
T3 dependence, causing an excursion about the lamination-
theory value across the lamina thickness, which was indi-
cated by the finite-element solution. The second-order
theory, 1t will be recalled, does not predlct any Y3 depen=
dence of 03 within a given lamina. The finite-element
solution indicated a slightly more raplid subsidence of the
edge-effect stresses than predicted by the approximate
theory, but the magnitudes of the edge-effect stresses

were substantially the same for both solutions. There was
no appreciable difference in the maximum intensity of 9y
but the approximate theory proféd to be somewhat conser-
vative in predicting the maximum lntensity of ¢ =-- .0072
of the average applied longitudinal tension as opposed to
.0058 according to the finite-element solution. ZElements
of a = t and & = 0.5t were used in generating the finite-
element results, making it likely that the behavior of the
stresses in the regions directly adjacent to the edges was
not determined as precisely as the behavior of the stresses
deeper in the laminate interior, so that the slight dis-
agreement between the two solutions encountered in the
boundary-layer reglons l1s not surprising. The shapes of

the ¢3 subsidence and edge~effect concentration curves were
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well matched, and the approximate theory's assumption of a
quadratic T3 varlation in ¢3 proved to be surprisingly
accurate. The y3 varlation of o7, like that of 0 in the
solution of [3] for the angle-ply problem, proved to have
some curvature as opposed to the linear behavicr assumed,
but the disagreement in this respect was not serious.

The same geometrical limitations apply to laminates
for which the cross~-ply approximate solutlon is accurate
as were found to apply for the angle=-ply configuration.
The laminate dimension a must be equal to or greater than
4kt to insure a boundary-layer behavior of the edge effects
and a good approximation to lamination theory in the lam-

inate interior.
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CHAPTER 7

GENERAL APPLICABILITY OF THEORY

7.1 Problems of Potential Application
The uniaxial loading of three-lamina laminates in

tension or compresslon, as investigated in this study,

is the simplest type of problem to which the proposed sec-
ond-order theory of laminated structures is applicable.

It is by no means the only type of problem capable of being
treated in this manner, however; there is a large class of
more general composite laminate problems involving free=-edge
effects in which methods entirely analogous to those of
Chapters 3 through 6 may be used. First, of course, it is
relatively easy to extend the uniaxial loading analysis to
laminates composed of any number of laminae, either cross-
ply or angle=ply or both. Bending problems, wh;ch by
lamination theory are found to invelve linear distributions
of the extensional strains €, and/or €, throughout the
laminate cross-section, and torsion problems in which the
concept of shear flow in thin-walled sections can be combined
with lamination theory to provide first-order estimates of

the intralaminar stresses and stralns can also be treated.
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The analysls of free-edge effects associated with holes or
cutouts in wide, flat laminates, while certainly involving
a considerable increase in mathematical complexity, is still
another example of the types of problems amenable to solu-
tion by the second-order assumed-stress theory.

In short, the proposed method is applicable to free-
edge effect problems of any kind which involve lntroduction
of loading at the ends of the component under conslderation,
as long as laminates of sultable geometry are involved. By
"suitable gecmetry" is meant that the width of lamlnate
directly adjacent to the free edge in question must be great
enough for the assumed boundary-layer behavior near the
edge tc become closely asymptotic to the lamination-theory
solution in the interior, and that the laminate length must
be great enough that the effects of load introduction at
the ends need not be considered. Since a lamination=theory
solution is the only initial information needed to apply
the second-order theory, it follows that laminate balance
about either the ¥1¥, OT the Y133 plane 1s not required.
Certainly the mechanics of the solution are greatly com-
plicated by laminate imbalance, but since lamination=theory
solutions are obtainable for such cases it follows that

second=-order solutions are also obtainable.

7.2 Principles of General Application

In order to extend the second-order theory to more

general edge-effect problems it is basically necessary only
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to keep in mind the fundamental premises ¢l the theory as
enumerated in Section 3.4. Suppose, by way of example,
that one has obtained the lamination=-theory solution for a
balanced laminate of width 2a, containing a large number of
both cross- and angle-ply laminae, subjected to uniaxlal
tension or compressior. Such a solution will involve non-
zero values of @5, ¢, and oy which are constant within
each lamina. Within any given lamina, let the lamination-
theory stresses and strains be identified by asterisks, as
% o,%, and so on. Let the stresses determined by the
second-order theory be written without asterlsks. Then the

equilibrium equations may be written

30% 30% -

Sve 5 = 0 (7.1)
302 o0& -

Sy * S5y, = O (7.2)
303 303 _ -
QYZ + ays O l°3)

Application of the second-order theory then yields the

results, for Yo > 0,

Ty = 0 [l-eKP(lﬁg')] (7.4)
Gg:--—lk—ﬁ# [CI"'czYB]eXP(l’::_a (7.5)
o= o5*[1- O+ 252 exp (B5)] (7.6)

0= =B oy Coys) (3] exp () (.7



* - a2

o3 = "% [CsYaz"'CsYa* C7][aktv3_|]exp( Kt ) (7.8)
- S S

R U T (1.9

The constants Cp through 07 are to be determined subject

to the equilibrium equations (7.1) through (7.3), the con-
ditions that 03, a3, and o be continuous across the inter-
laminar interfaces, and (if the lamina in question 1s the
uppermost or lowermost of the laminate) the free-surface
conditions at the upper and lower faces of the laminate.

In this case the free-edge effects due to the vanishing of
0; at the edges are not coupled through the equilibrium
equations to the effects due to the vanishing of 3. The
determination of k by the principle of minimum complementary
energy, however, will involve coupling of the stresses
through the stress~strain relations.

Even in this rather simple extension of the theory, 1t
may be seen that the number of constants to be determined
from (7.1) through (7.7) becomes increasingly great as the
number of laminae increases. Because of this, and because
the energy integrations become very much more cpmplicated,
automatic computer techniques for solving systems of linear
algebraic equations and performing numerical integrations
will have to be brought into use. For more general problems
which may involve additional stress coupling through the
equilibrium equations the formulation will be more compli-
cated still, and ultimately one can foresee that a level
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of complexity and generality will be reached beyond which
the use of a finite-element or finite-difference technique
w;}l be simpler and more convenient than attempiing to apply
the second-order assumed-stress theory. One is reminded
of an analogous situation encountered with finite-element
methods, in which there 1s a compromise to be made between
the complexity of the assumed intraelement stress or dis-
placement functions and the size of the elements: there
is a "point of diminishing returns" beyond which the quest
for a reduction in the number of elements by increasing the
number of terms in the intraelement functions i1s not worth-
while. Indeed, that such an analogy exists 1s not surprising,
for the second~order theory 1s essentially an assumed-stress
finite~element method in which each element encompasses
an entire lamina.

In this connection the possiblility of generalizing the
functional forms of the second-order theory to include
more than one exponential term may be mentioned. Thus far
1t has been tacitly assumed that all free-edge effects are
boundary-layer phenomena involving a single characteristic
length of subsidence: kt, where t is the thickness of one
of the laminae in the laminate under comsideration. Any
problem amenable to solution by the second-order theory
can be done with a single such exponential function, but
the question arises whether or not greater accuracy might
be achieved by the use of several exponential functions

involving different boundary-layer thickness parameters
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kl, ks, k3, etc., or multiples of the single characteristic
parameter k: 2k, 3k, and so on. The former choice of
multiple-exponential treatment will require the solution

of a matrix equation to determine the values of the kj
which satisfy the condition of minimum complementary energy,
while the latter treatment essentially amounts to a form of
elgenfunction expansion. It 1s certalnly possible that
such procedures could improve the accuracy of the second-
order solution; Jjudging from the results obtained for the
elementary three-lamina cases solved in this study, however,
the single-parzmeter solutions are already qulte accurate
and there is not likely to be a great deal of improvement
in accuracy required in most cases. Moreover, the inclusion
of more than one exponential term greatly complicates the
analysls == so much so, in fact, that anyone experiencing
accuracy problems with the single-parameter second-order
solution may be better advised to go to a finite-element
solution than to attempt the introduction of additional
exponentials into the second-order theory. Definite con=-
clusions regarding such matters must, of course, awalt

the results of experience in application.
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OHAPTER 8

CONCLUSIONS

8 ol Theorz
A workable second-order theory of laminated structures

which accounts for free-edge effects has been developed
and successfully applied to simple tension problems 1n-
volving balanced laminates with good accuracy. The thecry
can, in principle, be extended to apply to free-edge problems
involving tension, bending, and torsion of balanced and
unbalanced laminates composed of any number of laminae,
and to problems involving holes and cutouts in composite
laminates, as long as the laminate under consideration is
wide compared to its thickness and long compared to its
wildth, with the loading condltion being introduced at its
ends.

As presently formulated, the theory assumes the free-
edge effects to be of a boundary=layer nature with a sub-
sidence behavior characterized by a single exponential
function. The possibility of adding more exponential terms
to improve accuracy in more difficult problems exists, but

the use of finite-element solutions may prove simpler and
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more convenient than such a course, particularly ln computing
facilities where finite-element software already exists.

The single-parameter second-order theory may also prove

less convenient than a finlte-element solutlon for certain

of the more complicated free-edge problems. The merits of
both techniques must be evaluated in each particular case
before elther one is chosen.

For the simple laminates investigated 1ln this study,
the second-order approximate technique did prove superior
to the finite-element method in convenience of formulation
and in computing time required. The results presented in
Chapters 4 and 6 were generated on an IEM 1130 computing
system which compiled both programs, listed them completely,
executed 50 cases and printed detalled results all in about

50 minutes.

8.2 Results

Balanced angle-ply laminates of NARMCO 5505 boron/
epoxy and Morgenite II graphite/epoxy were found to exhibit
interlaminar shear concentrations of considerable magnltude
near their free edges. Balanced cross-ply laminates of the
same materials were found to be characterized by small
interlaminar shear concentrations and slightly greater
interlaminar tensions. In each case, the magnitudes of
the edge-effect stresses were found to be of the same order
as the magnitudes of the lamination-theory stresses that

must vanish at the free edges to produce them. In the
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angle-ply cases the edge-effect stress ¢ was found to reach
a maximum intensity of the same order as the lamination=-theory
stress ¢y, while in the cross-ply cases the maximum inten-
sities of oy and oz were of the same order as 0z . The

edge effects were in all cases found to act over a distance
into the laminate interior of the same order as the thick=-
ness of a single lamlina, beling characterized by an expo-
nential subsidence of the form exP(I%%i), where k 1s of

order one.

8.3 Design Recommendations
in the fabrication of composite laminates thick laminae

should be avoided in order to minimize the reglon of influence
of free-edge effects. Where possible, single plies should
form laminae. Wherever overall balance in a completed
laminate is required and angle-plies are to be used, they
should be used in balanced stacks of the configuration
+9/-0/-9/+®, each ply of the four thus forming a lamina

of equal thickness to each of the others. Where cross-
plies are used, the difference in thickness between 0° and
90° laminae should be no greater than that required by
simul taneous lamina fallure criteria. In choosing between
NARMCO 5505 and Morgenite II for 2 given application, edge=-
effect considerations will not normally be a significant
factor. Where edge-effect penetration depth is critical,

however, Morgenite II should be used.
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APPENDIX A

DIGITAL COMPUTER PROGRAM ANGLE

Corrections

The listing of ANGLE presented hereiln is based on an
erroneous analysis that attempts to account for the effect
of varying thickness ratio without allowing for the effects
of the transverse tension ¢3 produced by values of b other
than 1.0. The discovery of this error led to the deletion
of Figures 12 and 13 from the text. . ANGLE as glven here
will produce correct results only if the value of b input
is 1.0. To guard against the possibility of erroneous
results due to the use of b values other than 1.0, the
following changes in ANGLE can be made:

Change statements 1 and 2 to read

1 READ (2,2) KASE, A, T, THETA
2 FORMAT (I4, 3F5.2)

Change statement 10 and the subsequent three statements

to read

10 86P = =-816/866
S]-P - 1.0
S6M =« -S6P
SlM - 1.0

Remove statement 15 and the one following it, and
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change the next two statements to read

15 sr = S16%%#2/8511 - S66
= SQRT(.166T#S55#86F/(1. 5*35'*362 - 2.*816*EPSl/Sll))
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«
C ANGLE& PROGRAM FOR COMPUTING APPROXIMATE STRESS FIELDS IN ANGLE=PLY
C COMPOSITE LAMINATES OF THREE PLIESe ALSO CALCULATES COMPLIANCES.
d .
1 READ (292} KASEsA9TsBsTHETA
2 FORMAT (I494F542)
IF (KASE) 100910045
5 READ (2+6) 51109512095130+522095230+5330+5440+555045660
6 FORMAT (S5E10e2/4E1042)
THETA = THETA/57¢2
STH = SIN(THETA)
CTH = COS(THETA}
S11 = S110%CTH##44(20%#5120+5660) #STHHA2MCTHR#2+5220#STH®*4
$522 = S110%STH**44+({2e%#S120+S660 ) #STHR#2CTH#¥2+52204CTH* %4
$12 = (5110+5220=S660) *STHR*2%#CTH#%2+5120% (STH#*#4+CTH#**4)
S§66 = Lo#(5110+5220=24%5120) #STH##2ACTH* ¥ 245660% (CTHRX4+STH¥#4=2 4 *
1STH##2RCTH##2)
S$16 = 2e#5]110%#CTH##3%¥STH=20 #5220%#STH##3#CTH+(2a%#5120+5S660 ) % (STH**3
1#CTH=CTH*#3#STH)
$26 = 24%#S]110%STH##3LCTH=24#S220%CTH##3#STH+(2e#5120+5660 ) # (CTH##3
1%#STH=STH*#3%CTH)
§33 = 5330
S13 = S130#CTHX*#2+5230#STH#*2
§36 3 2¢#(S130~5230)#STH*CTH
§23 = S130#STH##2+5230#CTH##*2

S44 S550%#STH##24+S440#CTH#*2

§55 S550%CTH®#24+S440#STH*#2

545 (5550=5440)#STH®CTH
C
C COMPLIANCES HAVE NOW BEEN DETERMINED IN TERMS OF UNIAXIAL PROPERTIES.
C PROCEED TO CALCULATE LAMINATION THEORY RESULTSe
C

10 S6P = 14/((S16/S11)%#((B=16)/2e+(1e=B)/(1e+B))=((16+B)/24%566/516))

S1P = <=S6P#({(1e+B)/2e%566/S16+(1e~B)/2+4%#516/511)

S6M = ~B%SEP

SIM = =B#51P+1.+B

EPS1 = S11%#S1P+S16#56P

EPS6 = S16%#51P+S66*S6P

EPS2 = S12#S1P+S26%#S56P
C
C NOW CALCULATE BOUNDARY LAYER THICKNESS FROM MINIMUM COMPLEMENTARY
C ENERGY.
C : .

15 F1 = B##2+(1e+B)#¥3=3,%(1e+B)##243,%(14+B)=1

F2 = B##2+B

SF = S16##2/511=566

RK = SQRT(20B832#S55%F 1 #S6P/ (e TS#F2%#SF#S6P=2,#S16%B#EPS1/511))
C
C PRINT RESULTS SO FAR AND PREPARE FOR STRESS CALCULATIONSe
C

THETA = THETA#57.,3
20 WRITE (3+21) KASEsAsTsBsTHETA
21 FORMAT (1H195HCASE »14/1H s4HA = sF50295X94HT = sF54295X94HB = »FS
10295X98HTHETA = 4F54298H DEGREES//)
WRITE (3025) 5119512951395224523153395169526953695641956595559566
25 FORMAT (1H +36HCOMPLIANCE CONSTANTS OF UPPER LAMINA/1H #3X93HS11+8
1X03H512OBX03H513’8X03H52205X03H523ISX'3HS3395X03H516/1H 2 7(E10e3y1
2X)/71H 93X93HS52698X93HS3698X93HS44 08X 93HS4598X s3HS5598X»3HS66/1H (1]
3(E10e391X)/7/)
WRITE (3927) S1PsS6PsS1MeSEMIEPS19EPS2+EPSH
27 FORMAT (1H 925HLAMINATION THEORY RESULTS/1H 93X 93HSLP 98X 93HSEP 98X
13HS1IM9BX93HSEMBX 94 HEPS1 s 7X 9 4HEPS2 9 7X 9 4HEPS6/1H ?91X93(F6e345X)sFbe
2394X93(E10e301X)/7)
WRITE (3+30) RK
30 FORMAT (1H s31HASSUMED=STRESS SOLUTIONG RK = 9F5e392H T/1H »3X12H
1Y299X93HS1U9BX93HSEUIBXs3HS1Cs8X93HS6CB8X93HS51/)

C
C STRESS CALCULATIONS BEGIN,

C
DELT = T/5.
Y2 = Qe

35 EF = EXP((Y2=A)/(RK*T))

S6U = S6P#*(1e=EF}
S1U = EPS1/511-S6U#*516/511
S6C = =B#S6U
S1C = EPS1/511+456C*516/511

S51 = =BRSEP#EF/RK
WRITE (3440) Y29S1UsS6UIS1C9S6CeS51
40 FORMAT (1H 91XsF54246X95(F64395X))
Y2 = Y2+DELT
IF (Y2=A) 3543591
100 CALL EXIT
END
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APPENDIX B

FORTRAN VARTABLE GLOSSARY FOR ANGL?

FORTRAN Variable Meaning

KASE case number (input)
A a (input)

T t (input)

B b (input, must be 1.0)
THETA e (input)

§110 8§, (input)

SL20 S,2%@ (input)

8130 Siy (input)

§220 S22 (input)

8230 8,3 (input)

5330 S, (input)

S440 S4s" (input)

5550 Sgs ¢ (input)

8660 S (1nput)

STH sin ©

CTH cos @

si1 Su

S22 Saa



FORTRAN Variable
312

66
16
526
833
s13
536
823
Sh4
855
545
S6P
S1P
S6M
$1M
EPSL
EPS6
EPS2
Fl
P2
SF
RK
DELT
Y2
EF
S6U

"/ &
YR
/7,
e| /F|
€ /7,

€ /&,
agssembly function

assembly function
compliance function
k

Yo increment

Y2

exponential function

% /’0‘1



FORTRAN Variable

s1vU
S6C
81C
S51

88

Meaning
o/ &

a};m/"_"l
a.‘(a)/;|

[%/F‘]hr.t
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APPENDIX C

DIGITAL COMPUTER PROGRAM CROSS
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C
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CROSS& PROGRAM FOR COMPUTING APPROXIMATE STRESS FIELDS iN CROSS=PLY
COMPOSITE LAMINATES OF THREE PLIES.

1 READ (292) KASEsAsTsB
? FORMAT (1443F5e2)
IF (KASE) 1009100¢5
5 READ (2+6) S119512951305229523953395444555
6 FORMAT (8El0e2)

FIRST CALCULATE LAMINATION THEORY RESULTSe

10 S20 = (S11=522)/((S22+B*#S11)#{S11+B#522)/((1e+B)*512)=(14+B)#512)
S10 = 14=520%{522+B*#S11)1/((1++B)%S512)

$290 = =B*520

$190 = le+B=B¥S10

EPS]1 = S]0#511+520%#512
EPS2 = S10#512+520%522

NOW CALCULATE BOUNDARY LAYER THICKNESS FROM MINIMUM COMPLEMENTARY
ENERGY .,

15 F1 = o340%BR¥4+,465%B#%3+,186#B#42
F2 = o60%B##3+,40%B%*2
F3 = (1e+B1##5=5,#(1¢+B)##4+10¢%(10+B)##3=10e%(1e+BI#82+5,%(1¢+8)~
11,
Fo4 = (Lle+BI##3m3 % (1o+B)#%2+3,#(1e+B)=1,
SF1 = $12/822-512/511
SF2 = S11=-512#%2/522
SF3 = $22-512#%#2/511
SF4 = 513-512%#523/522
SF5 = S12%#513/511=523
SF6 = S$33=523#%2/522
SF7 = $33-513%#%2/511
Cl = 24%B*EPSI#SF1=14375%520%(BA#24SF2+R#SF3)
€2 = S70%(02083%F2%SF4+e0617% (BUHR2HSS5+F42#S44+BIFLHSFS5) )
C3 = S20%(42688%F1#SF6+40187T*F3#5F7)
RK = SQRT((C2+SQRT(C2##2+644%C1#C3))/(24%C1))

PRINT RESULTS SO FAR AND PREPARE FOR STRESS CALCULATIONS.

20 WRITE (3921) KASEsAsToB

21 FORMAT (1H1sSHCASE +14/1H 94HA = sF54295X9s4HT = sF54295Xe4HB = 9F5S
le2//7)
WRITE (3+25) 51095209519095290+EPS1+EPS2

25 FORMAT (1H »25HLAMINATION THEORY RESULTS/1H $3X93HS1098X03HS20+8Xs
14HS19007X94HS290 9 TXs4HEPSL e TX94HEPS2/1H #3(FT7e4 94X} 9FT0403X92{E10s
2341X147)
WRITE (34+20) RK

30 FORMAT (1H #31HASSUMED~STRESS SOLUTIONG RK = »F54392H T/1H 93Xs2H
1Y2 99X 93HS1UIBX93H52U98X 93HS1CeB8Xe3HS2Co8X93HS4T 98X 93HS3C/)

STRESS CALCULATIONS BEGIN.

DELT = T/5,
Y2 = 0s

35 EF = EXP((Y2=A)/(RK*T))
LF = (A=Y2)}/{RK*T)

S2U = S20%*(le=(1le+LF)*EF)

S3U = S20%(=(1le+e5#B)#3#2/2+(10+B)*(1a+a5*B)=(10+B)I##2/26)%*{LF=14}
1*#EF/RK*%2

S1U = EPS1/S11-512#52U/511-513%53U/S11

$2C = =B*S2V

S3C = =S520#B*(1e+B)/2s#{LF=10¢ ) *EF/RK*¥*2

S1C = EPS1/527=512%#52C/8522~523%53( /822

S41 = =S20#B*LF*EF/RK

WRITE (3440) Y2»51U9s52Us51CsS2Cs541+53C
40 FORMAT (1H s1X9sF54295Xs6(FTattstX))
Y2 = Y2+DELT
IF (Y2=A) 35425450
50 WRITE (3455)
55 FORMAT (1H /1H +18HY3=VARIATION OF S3/1H #3Xs2HY3,5X93HY3V/)
DELT = T/10
Y3 = Qs
56 Y3V = BR(YI#%2/(2,#T#%2)=(1e+B) /24!
57 WRITE (3958) Y3,Y3V
58 FORMAT (1H +2XoFb4e292XsFTe&)
Y3 = Y3+DELT
IF (Y3=T) 5615660
RO Y3V = =Y3##2/(2#T#¥2)+(1e+B)IRY3I/T=(1o+B)u%2/2,
IF (Y3=(1e+B)#T) 5745791
100 CALL EXIT
END
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APPENDIX D

FORTRAN VARTABLE GLOSSARY FOR CROSS

FORTRAN Variable Meaning
KASE case number (input)
A a (input)

T t (input)

B b (input)
SL1 Sy (input)
s12 S, (input)
813 Si3 (input)
S22 S,, (input)
523 S23 (input)
833 S33 (input)
S44 S4s (input)
855 Sss (input)
S520 a"i.“)/ﬁ

s10 /7
290 /&
S190 o, %/,
EPS1 €,/

EPS2 €/,



FORTRAN Variable Meaning

Fl °F,

F2 Fa

F3 Fs

4 Fs

SFL 4

SF2 lz

SF3 43

SFh4 4y

SF5 23

SF6 Js

SF7 £;

Cl C,

c2 0,

03 ¢,

RK k

DELT (first use) Yo increment

o Yo

ERF exponential function
LF linear function
s2u o/ F,

S3U [“"3“’/5]7;: (1+6/2)t
s1o [:/& ]y, 20wt
s2¢ 03 /&,

830 [/ &)y, 00

s1C [07(2)/6:1]73=o

S4I [qm E"-»]ya-.-t



93

FORIRAN Variable Meaning
DELT (second use) Y3 increment
I3 Y

I3V T3 variation of ¢y
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ADDENDUM

The following two figures may be consulted in conjunction
wlth the discussion on pages 72 and 73 of the text in order
to gain a more complete picture of fhe results of comparing
the second-order approximate solution to the cross-ply problem
with a solution generated by the finite-element assumed-siress
hybrid method.

It may be noted that the approximate solution is somewhat
more conservative than the finite-element solution, both as
regards edge-effect magnitudes and with respect to edge-
effect penetration depth. This behavior on the part of the
approximate solution is favorable from the standpoint of the
designer, since the interlaminar stresses (though slight)
can contribute to delamination fallure of the composite,
especially in environments where there exists periodic loading
that reverses the direction of the shear and alternates
interlaminar tension with compression in an osgillatory

fashion.
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