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ABSTRACT

A straight and a buckled beam with fixed ends, excited by
the periodic motion of their supporting base in a direction normal
to the beam span, were investigated analytically and experimentally.

For the straight beam case, by using Galerkin's method
(one mode approximation) the governing partial differential
equation reduces to the well known Duffing equation. The harmonic
balance method is applied to solve the Duffing, equation. Besides
the solution of simple harmonic motion (SHM), many other branch
solutions, involving superharmonic motion (SPHM) and subharmonic
motion (SBHM), are found analytically and experimentally. The
stability problem is analyzed by solving a corresponding varia-
tional Hill-type equation.

For the buckled beam case, using similar procedures as the
straight beam case, the resulting equation becomes a modified
Duffing equation. Solution for SHM, SPHM are again found analyt-
ically and experimentally. The importance of the seccnd mode on
these results is examined by a stability analysis. The Runge-
Kutta numerical integration method is used to investigate the
snap-through problem.

The results of the present analysis agree well with the

experiments.
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NOMENCLATURE

Dimensionless initial static deflection = wc/h
Beam cross section area
Base motion amplitude
Dimensionless base motion amplitude = AFo wo/hm1
--- (Str.), = AFO/ha --- (Buck.)
Functions given by Eq. 2.21
Effective forcing amplitude
Beam width
Coefficients of assumed solutions
Coefficient given by Eq. 2.11 --- (Str.)

" m n Eq. 3.20 --- (Buck.)
Damping coefficient
Coefficients of assumed solutions
Coefficient given by Eq. 2.11 --- (Str.)

" m un Eq. 3.20 --- (Buck.)
Coefficient given by Eq. 2.11 --- (Str.)

" n «w Eg. 3.20 --~ (Buck.)
Young's modulus
Coefficient given by Eq. 2.11 === (Str.)

" " n Eq. 3.20 ==~ (Buck.)

Nondimensional static first mode snap-through load

Nondimensional static bifurcation load
Coefficient given by Eq. 2.11 --- (Str.)
" " w Eg. 3.20 --- (Buck.)
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Dynamic force
Static force

Critical static load

Coefficient given by Eq. 3.20
Beam thickness
Coefficient given by Eq. 3.20

Moment of inertia of beam

Integer, Also coefficient given by Eq. 3.18
Coefficients given by Eq. 2.13 --- (Str.)
" " » Eq. 3-26 —-~- (Buck.)

Beam length

Mass/unit length of beam

Mode shape coefficient, see Eq. 2.7
Integer

Initial tension force on beam

Total tension force on beam
Fictitious compressive force on beam
Critical buckling load = 4rn°EI/8°

Generalized coordinates

Reduced first generalized coordinate = §

--- (Str.)
Reduced first generalized coordinate
-~= (Buck.)

Steady state solution for a,

Amplitude of ith component = V_2 2
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R Dynamic to static force ratio
t Time ir seconds

Period of free vibration

=3

AT Temperature increment

W Beam displacement

wB Base displacement

wo Initial static deflection

W, Initial static deflection at center = Wo(%)

X Longitudinal axis

Xy Amplitude of sin kTt component

Yy Amplitude of cos kTt component

o Dimensionless frequency parameter = (wl/wF)2

O Thermal expansive coefficient

B Mode shape coefficient, see Eq. 2.8 --- (Str.)
" " " w Eg. 3.17 --- (Buck.)

4 Critical damping ratio of beam = c/(2mw1)

n Perturbation from steady state solution

eo,ecv 6.y Coefficients of Mathieu-Hill Eq. y,2

v Integer

g Dimensionless variable = x/%

T Dimensionless time = wFt/n

T Dimensionless time = t/2

¢ First vibration mode of beam, see Eq. 2.6 --- (Str.)
" buckling " " s see Eq. 3.14 --- (Buck.)

¢2 Second buckling mode of beam, see Eq. 3.15
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Dimensionless beam displacement W/h —--- (Str.)

" " T

W/ah --- (Buck.)

Dimensionless base displacement WB/h --- (Str.)

" " " Wgp/ah --- (Buck.)
Dimensionless initial static deflection = wo/ah
Nonlinear natural frequency

First mode linear natural frequency, Eq. 2.13
--- (Str.)

First mode linear natural frequency, Eq. 3.23a
--- (Buck.)

Second mode linear natural frequency, Egq. 3.23b
Beam natural frequency without tension, Eq. 2.13
Induced frequency due to tension, Eq. 2.13
Forcing frequency

Dimensionless frequency parameter = wF/w1

(for free vibration = w/wl)
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SECTION 1

INTRODUCTION

Vibrations occur everywhere in a structure. The existence
of vibration can bring about fatigue failure if vibrations
continue for a long time. Some failures are of a different nature.
When the structure is subjected to external periodic motion, it
may continually increase its response until it suddenly changes
its normal operating shape. For example, a thin shallow arch
excited by periodic excitation of its base at some particular
exclting conditions and geometrical parameters, may snap through.
This is the so-called dynamic buckling. In modern design work of
aircraft, spacecraft, missiles, etc., detailed knowledge of
dynamic behavior is necessary in order to obtain the better system.

There are two kinds of periodic vibration; one is the so-
called parametric oscillation and the other is forced vibration.
The typical example of linear parametric excitation is the Mathieu
equation which has been well studied.1 Bolotin,2 Weidenhammer,3
and Minorskyu have dealt ﬁith nonlinear modified Mathieu equations.
Bolotin,2 in particular, has investigated the parametric excitation
of a number of nonlinear structural systems. Recently, Dugundji
and Chhatpar5

pendulum and found some interesting nonlinear phenomena. The

have investigated the parametric excitation of a

present research, however, will consider only pure forced vibration,
including nonlinear effects. The physical models of the forced
vibration will be,

1) A straight beam with fixed ends excited by the periodic
motion of its supporting base.

2) A buckled beam with fixed ends excited by the periodic
motion of its supporting base.

In the straight beam case, using the first vibration mode
approximation, the governing equation of motion6becomes the well-
known Duffing equation of the hard spring type. o7 This equation



has been investigated again recently by several authors.g'lu

These investigations generally solved the equation by the per-
turbation method or by analog computer. However, there is little
experimental work considered on elastic models. The perturbation
method 8-12 is generally restricted to the case of small nonlinearity
and small external driving forces. The attempt, in general, 1is to
find the stability of the solution of simple harmonic motion (SHM),
in which the predominant component has a period the same as the

13,14 shows, in

external force. The analog computer approach
general, a few discrete points which give some information at the
unstable regions of the SHM solution. The present investigation
shows there exists other equilibrium solutions near the SHM unstable
regions in which the SHM component becomes minor and a component
with a period other than that of the external force becomes pre-
dominant. The responses, other than that of the SHM, will be

named either superharmonic motion (SPHM) or subharmonic motion
(SBHM). The present paper attempts to point out several features

of the SPHM and SBHM which may not have been apparent before.

Both analytical and experimental work of the straight beam case

are considered in Sections 2, 4, and 6.

The buckled beam case relates to the general problem of
the dynamic stability of thin arch and shell structures. This
probiem has been studied both theoretically and experimentally
by a number of authors in the past few years.2 »10,11, 15- 28
Also, the book edited by Herrmann15 includes a number of investiga-
tions on dynamic stability of structures. Humphreys16 has examined
a circular arch under impulse, step, and rectangular pulse loadings
by using the analog computer. Lock17 determined the critical
step-pressure loads of an arch by the numerical integration of
the equations of motion and by.an infinitesimal stability analysis.
Some authorsl8’19 have applied the energy method to tackle the
buckling problem of an arch, but this is less successful. Van

Gulick20 investigated the vibrations of arches and the stability



of the first antisymmetric mode. Mettlerll

has applied the

method of averagingu (one of the perturbation methods) to
investigate the problem of the stability and the vibration of a
sine arch under harmonic excitation. In his investigation, he
restricted the amplitude of the external force to be small and
found the jump phenomena of the SHM, SPHM, and SBHM resonances.
His observation, that the jump phenomena is the kinetic snap-
through in analogy to the static snap-through, seems inaccurate
since this jump to a higher branch solution may not necessarily
cause the arch to snap-through. To obtain the correct information
of snap-through, one should include the effect of dynamic overshoot.
In general, the method of averaging gives good information about
the stability condition of the SHM solution under small forcing

terms, but will give little information about the snap-through.

In the present investigation of a buckled beam under
harmonic excitation, the governing equation of motion reduces to
the same form as for the straight beam case, and similar solution
techniques are employed. The investigation includes

a) the steady-state solutions of SHM and SPHM
b) snap-through analysis
c) the effects of the initial static deflection

Both analytical and experimental work of the buckled beam case
are considered in Sections 3, 4, 5, and 6.



SECTION 2

NONLINEAR VIBRATION OF A STRAIGHT BEAM

2.1 Formulation and General Solution

The governing differential equation of a straight beam with
fixed ends excited by the base motion wB perpendicular to the
longitudinal direction of the beam is, (see Fig. 1),

2 Sw . W
E.[ ax‘* E(Nx%)z—m(at’ ‘9) C (2.1)

Ne=Noe + 55 f ( ) dx (2.2)

and boundary conditions are W = %% =0 at x = 0 and X

[}
©
L]

where E - Young's modulus,
I - moment of inertia,
N_ - initial tension on the beam,

- mass/unit length,

- deflection of beam,
beam cross section,
- beam length,

- longitudinal axis,

- damping coefficient,

t 0 X »© » = 3 O
|

- time in seconds.

For a rectangular cross beam, where A = bh and I= bh3/12, with
the following dimensionless variables

=¥, - e 5% (2.5

Eqs. 2.1 and 2.2 can be comblned and rearranged 1into



b, c2f  £1 P _( N
ILE ot my* o4 mf*

6ET [/ 28 \2 Y 38
+7fzz¢fo (Jf)dfl ) §° "“;tf (2.1)

Boundary conditions become ¢ = %g = 0, at £ = 0 and 1.

For the present frequency of interest, the solutlon of
Eq. 2.4 can be approximated as

(5t 2L (2.5)

where ql(t) is the first generalized coordinate and ¢.(g) is the

2

first free vibration mode of a clamped-clamped beam,!
__/ ,
9? ~ /588 {&%4 W?,f—Wm,}‘-I-,B(Mﬂ,}—M)’Z,f)] (2.6)

m, =
Cog Codh M, lo (2.7)

B :(Mm,-/énm,)/(wa{m,—wm,) (2.8)

For the first mode solution, m, = 4,73, 8 = .9825, and ¢1(%) = 1.0,

Substituting Eq. 2.5 into Eq. 2.4 gives



C
fdz‘z T 7 dr T omaf Af?
6EI ~2% /1 2
b d B\ AP
Zﬂéﬁ 2? ‘4( (;(jfé;)aff] 6{}2

Using Galerkin's method, Eq. 2.9 is now multiplied by ¢l and

~ No
7 —[mlz
> >
§ =3

integrated iQ g from 0 to 1 which leads to an ordinary differential

equation in qq as

Af ¢ df FI 3
és éile + ;;'f% ——g_ +-£;—Z <; /2 (f
CET . & 5 _
+2ing )EF =/
where
/ 2
B/:[, S/éd =.3%97
/3
C = [ ¢ 5L a5 -im5
D= ('rad vy e =
fo(ga)df—ééag
/
E = ffgf oL = -4.88
F=["¢ds =523

(2.10)

(2.11)



Assuming harmonic excitation of the base, WB = AFo sin wFt, Eq.
2.10 can be transformed to

e
Zf% T £§+k W'g A %zfgzk —;fa/)c AnCyt  (2.12)

where

K = /0

K; =.655

K3 =73/9

F = 50a6,§j—2,
W =/2.306 Nof(mL°) (2.13)

2 _ 2 2
" = W + G

Equation 2.12 is the well known Duffing equation with an acceleration-
type forcing function. In here, Wp represents the forcing frequency,
and Wy the linear natural frequency of the beam. For calculation
purposes, it is convenient to introduce the following dimensionless

variables such that,

LT = CUFf , n is any integer (2.14)
- g

F = Y £ (2.15)

Ar = W A (2.16)

“ %

and then, Eq. 2.12 reduces to the nondimensional form,



<7 a5, 3, .
T +2nSfX L4 KA FHTRAL KA, dm 2T (2.17)

where

« = (‘*-)//ch)2= //Q?'

j = C/(chd,) , critical damping ratio.

(2.18)

For the basic equation 2.17, the general steady state
periodic solution of SHM, SPHM (order 3, 2, 3/2) and SBHM (order
2/3, 1/2, 1/3) can be written in the form

3
;=4 +i§ (X, an AT+ & cor 7 ) (2.19)

Substituting Eq. 2.19 into Eq. 2.17 and equating the coefficients
of the terms containing constant, sin 1, cos T, sin 2t, cos 2T,
sin 3T and cos 31 separately to zero ylelds (this method is named
as Harmonic Balance),

A4 + 2_3’722/(20({% G )28 +2(4, (4%
~x,%)+ % (45108 -o

(2.20a)

A X -2n8 [X Y +37z’/(zo([% (45-28+% % —% &)

+£ (5555 + y") +28 B4z = 2K Az S,
(2.20b)

273X+ AY+ 30K [ % (X145 + %G+ 5d,)

2 2
+4 (43 -y ) r2m( Xy +2y)) =0 (2.200



Ay - 43T + 3R Ko {8 (5 -4+ zy )+ [(2%

—/-3{3,_)13 + % («C%—%Z)]jz nz/gAFé:zz (2.204)
4N X, + A2 5 +3n2/<zo({ﬁ[xx +34 —’(yz-/z;?')]
+ 4[5 (x+48 )+ 5 (%X )]} (2.20¢)
Asxs - 6ng/T Y +37°0X { (XY )+ L [% (%
2 3
*?2)"'2(7/1:%+zjg/2-_3¥4]}=7z’/(_9,4F5,23 (2.20f)
EnIIX G+ A, + 372k ({4 (8%~ %) +F[4(4
—)( )-/' 223 Y y,x 7L_4_]} (2.20g)
where
dnj = Kronecker delté
As = 27X (K + K, [%2+—2§([2+[?2+ f;)]} (2.21a)
A= Kol - / +F 3 e ol (LY [+ 21, +21) (2.21b)
Ay = WK o g + 2 set (4Z+207 L4205 )  (2aate

_ 2 2 2
As = WK oA~ G 4 2 ripool (A4 2 [ 4214157 (2.210)



2

2 z _
f] x;, + Y% , L=1/,2.3 . (2.22)

For ¢ = 0, all y components are zero, r; = X, and only Egs. 2.20b,
d, and f apply.

Equations 2.20 are the general steady-state periodic solu-
tion. It will.now be applied to some specific cases.

2.2 Specific Cases

2.2.1 SHM and SPHM Order 3

From Egs. 2.17 and 2.20 with n = 1, it is readily seen that
Yo = X5 = ¥ T 0 satisfies Egs. 2.20 a, d, and e, leaving only
Egs. 2.20 b, ¢, £, and g to be solved. Eliminating x and y

components in the above remaining equations gives

2 2
((A/‘ é%é)z+43’2d(/+-r—f3;)2]l}z=/<;/4; (2.232)
2,2 S Kol 6
Asly +365«r) =L 2.23)

There exists two equilibrium solutions in Egs. 2.23, one of them
is |r1| >> |r3|, the other is Irll << |r3|.

For the solution of |r1| >> |r3[, further simplification
is obtained by neglecting X3 and Y3 components and discarding the
associated Eq. 2.23b which reduces to the standard solution of
SHM as

((Kot~1 + 2 Rol [F 4451 = K5 Ar (2.21)

This gives the conventional cubic equation in ri. The numerical

results of Eq. 2.24 for r, show that the solution of low damping

1
ratio, say 7 < .01, is indistingulshable from that of no damping

10



case for amplitudes of interest here. Since very low damping

ratio, ¢ < .001, is considered here, only the no damping solution

is shown in Fig. 2 plotted with absolute value of r, versus Q.

The dash-lines in the figure mean unstable solutions which are

never physically realized. The nonlinear natural frequency solution
can also be obtained from Eq. 2.24 with Ap =0, T =0 and ry # 0,
which leads to the so-called 'backbone curve' solution

2 4/ -Kol) . 4(5-K,)
f = 3 K, 3K, (2.25)

Here, Q becomes w/ml, w is the nonlinear frequency and Wy is the
linear natural frequency. The backbone curve (see Fig. 2) divides
SHM Solution into two regions; on the left side of the backbone
curve the displacement of SHM is out-of-phase with the base dis-
placement, and the other side is in-phase. Similar form to Eq.
2.25 will also appear in the SPHM, SBHM cases to be studiled.

For more accurate solutions involving small but nonzero
T3, solution of Egs. 2.23 can be obtained by iterating from ry = 0
solution given by Eq. 2.24. The numerical results for ry and rs
are shown in Fig. 3. The ry results are indistinguishable from
those given previously by Eq. 2.24 alone.

For the |r3| >> |r,| case, the solution is somewhat difficult
to realize directly from Egs. 2.23, however, 1t can easily be seen
in the case of ¢ = 0 which gives

/.2
(A - _3_% ) = K As (2.26a)
/
Asly = Kjf r’ - (2.26b)

Equation 2.26b can be rewritten as

11



(K/o(—7+£—/(zo(/;2)/; :%‘5(0-6/;)52 (2.27)

By the assumption |r3| >> Irll, Eq. 2.27 can be approximated as

2 4(7-AX) 2
f;3 =~ 7 - (2.28a)
3 EYR, 21 a
or
2 g4 (9°%k,) 2
3 A;
/43 ~ O (2.28¢c)
Equation 2.26a then reduces simply to
(/7‘/(,o(~;£-/(zo(/,’2)/,’: Kz Ar (2.28a)

Equations 2.28 give almost identical result for ry and r3 as

from Egs. 2.26, yet Egs. 2.28 now gives very clear physical
significance which means that the equilibrium solution of

|r3| >> |r1| only exists at k; @ < 9 or (@ > 1/3). Similar forms
to Egs. 2.28 will also appear in SPHM and SBHM of other orders.

The numerical results for ry and r3 corresponding to SPHM
order 3 are shown in Figs. 3 and 4. They appear to bifurcate
from the main SHM solution near where the "shifted backbone curve

order 3,"

12



2 _ FP—KX) _ H(9R°—K)

I
’ 3R 3K,

(2.29)

intersects the SHM solution.* From Figs. 3 and 4, one notices
that with fixed AF’
forcing frequency decreases as {i increases. For small forcing

amplitude Irll corresponding to the external

amplitudes AF, this bifurcation point would be near @ = 1/3 and

the bifurcation point moves toward the increasing { as AF increases.
The above results seem to be in agreement with those of Caughey

for small forcing amplitudes AF and those of Atkinson13 for large

A For very large AF; see Szemplinska—Stupnickalu.

F
The details of the actual transition between these two

solutions, Irll > |r3| and Ir3| > |ryl, can be found by solving

Eqs. 2.23 numerically using a Newton iteration method (see

Appendix A). This transition is shown in Fig. 5 for ¢z = 0 and

is seen to be continuous. On the left-hand side (which is plotted

in solid line), the displacement of the ré component is out-of-

phase with the base displacement; the other side is in-phase, but

the displacement of the ry component is always out-of-phase.

There also exists an unstable branch which is never physically

realized. This type of detailed behavior will also appear for

all the other SPHM and SBHM solutions to be studied.

For small damping ¢ < .001, the solutions are very close
to the ¢ = 0 case. It is of interest, though, to note from Eq.
2.23b that there exists a limiting maximum ratio of r3/r1, depend-
ing on the damping. Since all three terms of Eq. 2.23b are always

positive,

¥
The shifted backbone curve order k is defined by replacing Q of
Eq. 2.25 with kQ where k # 1.

13



2 2

363y < —//Szﬁ(-f,‘ (2.30)

This can be rearranged to give

G| ¢ el 2
ﬁ‘ \243,[, (2.31)

Hence, the smaller g is, the more prominent will be the third

superharmonic component. Also, for small forcing amplitudes AF
which would result in small ry, very low damping is necessary to
bring out a dominant third superharmonic.*

2.2.2 SPHM Order 2

To obtain the solution of this SPHM, the complete equations
of Eq. 2.20 with n=1 must be taken into consideration. For
simplicity, first consider the ¢ = 0 case in which Eq. 2.20d

reduces to

3 Kol _
Al + === lilklh =0 (2.32)

Since r, # 0, the equation leads to

/‘2 — 42(22'/%C{)
2 3K,

—2(+ 5L +h) (2.33)

Because (ri + rirs3 + rg) > 0, SPHM order 2 exists only at

o < 4, or at @ > 1/2. Equation 2.33 together with Egqs. 2.20b and
£ form the complete solution for the ¢ = 0 case. Neglecting the
small component of r3 and discarding the assoclated equation 2.20f
will give the simple form of

—
The criterion given in Eq. 2.31 may be modified somewhat if the
5th order harmonics are included in the solution, Eq. 2.19.

14



[7-'/<,o/—4—?-/(20( 1°) = As A (2.34a)

rZ__ 4{4_'/(/«)
2 3K,
The numerical results of Egs. 2.34 for ry and r, are shown in

Figs. 2 and 6. The bifurcation from the SHM solution near @ = 1/2
is noted. It is also found that only the solution of positive

_252 (2.34b)

r, together with negative r, is stable; i.e., the displacement

o% the r, component is in-phase with the base displacement and

the ry component is out-of-phase. For the small AF case, say

AF < .5, the SPHM order 2 solution is very close to the shifted
backbone order 2. The complete solution of Egs. 2.20 gives a

very small r3 component, while not affecting ry and r, of Eq. 2.34
significantly. Similarly, Eags. 2.34 gives a good approximation

for small damping ¢ < .00l present.

2.2.3 SPHM order 3/2

Similar to the previous case, with n =2, and ¢ = 0 in
Egs. 2.20, Eq. 2.20f reduces to

(Kot =L+ 2RI+ ZhX((2B+)E

+(2r3.__/’.) ]:0 (2.35)
Since |r3| >> |r,| >> |r;|, Eq. 2.35 becomes, approximately
2. 4 ,9 2, p2 (2.36a)
5% 5 (F-ket) =207 )

Again Eq. 2.36a shows the SPHM of 3/2 exists only at k, a < 9/4
or at § > 2/3. The complete solution for ry> Tos and ry can be
obtained by solving Egqs. 2.20b, d, and f in the ¢z = 0 case.

15



Further approximation can be obtained by neglecting the

ry component and discarding Eq. 2.20b. This gives
(/4 -4 KA -FK ) [, = 4 K Ar (2.37a)
2 4 g >
b =g (2 —Ae)-210 (2.310)

The numerical results of Eags. 2.37 for r3 and r, are shown in

Fig. 3. The bifurcation from the SHM solution near @ = 2/3 1s
noted. Also, it is to be noted here that the r, component
corresponds to the forcing frequency wg. The stable solution of
Egs. 2.37 is that the r3 and r, components are in-and out-of-phase
with the base displacement, respectively.

The complete solution of Egs. 2.20 gives a very small r.
component while not affecting the rs and r3 components of Eqs.o
2.37 significantly. Similarly, Egs. 2.37 give a very good
approximation for the small damping ¢ < .001 present.

2.2.4 SBHM Order 1/3

The solution can be obtained from Egs. 2.20 with n = 3 in
which y_ = %X, = ¥ 0 satisfies Egs. 2.20a, b, and e. Similar
to the case of SPHM order 3, there are 2 equilibrium solutions
in the present case; one is r; = 0, the other is |r1| >> |r3|.
The r. = 0 solution is essentially the SHM solution discussed

1
previously, since n = 3 here.

For the |r1| >> |r3| case, first consider ¢ = 0, in which

Egqs. 2.20 reduce to

Fhot = + Skt (17 =15 +257)=0 (2.382)

Asls - Zzzkzo(/;3 = 7A3A- (2.38b)

16



itquation 2.38a shows SBHM order 1/3 exists only for a < 1/9 or
for @ > 3. The numerical results obtained by solving Egs. 2.38
simultaneously for ry and r3 are shown in Fig. 7. The bifurcation
from the SHM solution near © = 3 1s noted. The stable solution
of Egs. 2.38 is that the ry and r3 components are in-phase with
base displacements. For small damping § < .01, the solutions
are close to those from Egs. 2.38. Sizable forcing components
ry are present here since the "effective" forcing amplitude Aeff
is relatively larger than for the superharmonic case. This
"effective™ forcing.amplitude for Duffing's equation, Eq. 2.12
would be

2
Aeg € ST A (2.39)

2.2.5 SBHM Order 1/2

In this case, the solution can be obtained from Egs. 2.20
with n = 2. Again considering the ¢t = 0 case first; Eq. 2.20b
reduces to

L3 2, 5,2, 5p2 3K, 2
(Kot =5+ 3 o +2i5 25 1+ 2225 (5[ D=0 (210
Since Irll, |r2| >> |r3|, Eq. 2.40 can be approximated as

2= Yz - k) _onk (2.41a)
' 3K X 2

Equation 2.l4la shows this SBHM occurs only for a < /4 or for

Q > 2, Complete solution can be obtained by solv'ng Egs. 2.20Db,

d, and f in the case ¢ = 0.

Similar to the previous cases, neglecting the ry effects
will give a simple solution by solving Eq. 2.4la together with
the following equation, Eq. 2.41b.
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(KX +'2Lf242/(2df22)f2=—}<3/4}: (2.41b)

The numerical results of Egs. 2.41 give a good approximation to
the complete solution of Eqs.’2.20 (with ¢ = 0 and small damping
z < .001), and are shown in Fig. 7. The pbifurcation from the SHM
solution near @ = 2 is noted. Similar to the case SBHM order 3,
the solution with the ry and r, components having the same phase
as base displacement is stable. Again, Aeff is relatively large,
thus leading to substantial forcing components ry.

2.2.6 SBHM Order 2/3

The solution can be obtained from Egs. 2.20 with n = 3.
Considering the ¢ = 0 case first, Eq. 2.20d reduces to (for r, # 0)

K=

2 7 3K
Equation 2.42 shows that SBHM order 2/3 occurs only at o < 4/9 or
at 0 > 3/2. Equation 2.42 together with Egs. 2.20b and f will
give the solution for ¢ = 0.

(4-fe) =2 (I HIR+E) (2.2

Similar to the previous cases, neglecting ry effects will
lead to a simple form as

2 4
V= (7 K025 (21
L 7 2

(9 + K +Z—/(zo(/§ )[.:’, = -—/(3,4/: (2.43p)

The numerical results of Egs. é.U3 give a good approximation to
tne complete solution of Eqs. 2.20 (with ¢ =0 and Q < .001), and
are shown in Fig. 7. The solution having the r, and r3 components
in phase with the base displacement is the only stable solution.

18



‘r
[

The bifurcation from the SHM solution near Q = 3/2 1is noted.
Again, substantial r3 components ar: present due to relatively
large Aeff‘

2.3 Exact Solution of Free Vibration

The free vibration equation can be easily obtained from
Eq. 2.17 with ¢ = 0, A, = 0, and n2a = wi, which gives

F
a4
Adt*

3
+ KO E+ KW E =0 (2.44)

Equation 2.44 is now multiplied Dby dql/dt, then integrated once
with respect to time, t, which results in

2 2 2 o4
e DR T AL Cr AL

where "e" is an integral constant and can be determined from the
initial condition. It is noticed that Eq. 2.U45 represents the
law of conservation of energy. The left-hand side of Eq. 2.U45
represents the total kinetic and potential enefgy which is equal
to the sum of the initial kinetic and potential energy. For
simplicity, the initial condition 1s taken as Q= dyos dql/dt =0
at £ = 0 which leads Eg. 2.45 to

a%tg' =, {(Zf‘ ZZ)[K,+.5 K (ﬁz+ Zz)]fyz (2.146)

The period, T, of a complete cycle is easily obtained from

. Eq. 2.46 as

% dZ
T=2 : ) ,
| é O f(gi-2)[K+.5k(87+8))"

The lower bound Qg of the integral is determined at the position
at which the value of the square root in Eq. 2.47 becomes zero;

that is, the position where the veloclty dql/dt becomes zero.
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Obviously, dy = =q- Since the integrand of Eq. 2.47 is symmetric,
one can rewrite Eq. 2.47 as

__[__j‘% 4 d§ |
T ow g (Ksk(2ir D] B

Equation 2.48 (or Eq. 2.47) is the first kind of elliptic integral.
Its numerical result is shown in Fig. 8, plotted in Q = m/ml

29

versus ry where ry = q, and w = 27/T. Figure 8 also shows the
good approximation of the 'backbone curve', Eq. 2.25.
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SECTION 3

NONLINEAR VIBRATION OF A BUCKLED BEAM

3.1 Formulation and General Solution

The governing differential equation of a buckled beam (the
beam originally flat, which has been compressed past the critical
buckling load, Pcr’ to a static deflection position wo) with
fixed ends excited by the base motion wB is (see Fig. 1)

> d 3 _ ‘W
£1 Sa(wtw) - 3 Negg (W) =-m(25720)-c 2 G

4
Ne == P +2%4[ %(WHM)]Z&[)( (3.2)

Boundary conditions are W = %% = 0, at x = 0 and &, where E, I, W,

x, m, t, c, A and & are the same as in Section 2.1; Po is a
fictitious compressive force on the beam defined by

y
R=p+ %[{%)2& (3.3)

For example Po may be considered to result from thermal expansion
in which case

E = AEcG AT (3.4)

and P > P.poOr AT > Pcr/(AEaT), where oq 1s the *hermal expansion
coefficient and AT is the increment of temperature.

The initial static deflection WO satisfies

A A’ W
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and w = Eﬁg =0 at x = 0 and &, where P is tne fundamental

buckllﬂg load of a clamped-clamped beam, i e.

P = ﬂ;_—z. (3.6)
The solution of Eg. 3.5 is
W, = B2 ()~ cog ZIX (3.7)

where h is the thickness of beam and 'a' is the ratio of Wc/h,
with wc = wo(%). Equation 3.7 is the first buckling mode of a
clamped-clamped beam. Substituting Egs. 3.6 and 3.7 into Eq. 3.3,
and using Ah2 = 121 gives

P = _4%25:7(”,75@2) (3.8)

From Egs. 3.4 and 3.8 one can obtain the relation between initial
static deflection 'a' and temperature increment AT as

_ 4 ya 4.
a = ( 2 7 o, AT—“) (3.9)
Similar expression as Eq. 3.9 also appears in the problem on the
30

vibrations of thermally buckled bars and plates.

Placing Eq. 3.2 into Eq. 3.1 and using the relations of
Egs. 3.3 and 3.5, one can obtain

*w Iw » W aw:, Sw
£l 5z T8 3 { /[( 23X X dz}(ax-’-
W Y/
+ax2)+m—t:'z +C§—w=-—m 3‘24_,—2'3 (3.10)



Using the following nondimensional variables,

- W WE
é-ﬂ) é—a—[;iﬁa ﬂfa and f:f

4

Equation 3.10 is transformed to

Y ¢ B 2 AEQ” 38 \2
at2+ﬁa}_+ﬂ§f‘~[{2l2 /[(
28 28 Y6 3%y, L S 74
"3:‘ B ]”lf} (ajz +a;’)+m(4‘ af4:'atf

Let the solution of Eg. 3.12 be the form of

= £ 2K

where ql and q2 are first and second generalized coordinates,

(3.11)

(3.12)

(3.13)

respectively. ¢, and ¢, are the first and second buckling modes
1 2

of the beam, respectively,

9/5 :E/-(/——CMZW'_}:)

¢ =[p(andF-Z5)+ cor £F -/ |

£
tnf = 2

B = /- ook _ _ 2
ing-A A

23

(3.14)

(3.15)

(3.16)

(3.17)



f = 8.986 (3.18)

The purpose of the choice Egs. 3.14 and 3.15 will be readily seen

later.
Substituting Eq. 3.13 into Eq. 3.12 and applying Galerkin's

method gives
L7 ¢ dE E,Z/Ei’v AEQ 2 2
75t 7w at TEnl & 23mz¢[§“?e/?e

2 G ) (EEH) g 4

B, dt* (3.19)

where n=1and 2,

B=f/5620{f
Go=['¢ 445‘1

J

D= [ (% )a{f
/ c{ﬂﬁ
Ziz .[ ch(f
[ ¢ 5
' oA AP
Gu=l g5 ar 4
Moo ¢ L2
7 /o A§? (3.20)
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The coefficients in Eq. 3.20 can be obtained by substituting
kEgs. 3.7, 3.14 and 3.15 into Eq. 3.20, and are shown in the
following table

Bn Cn Dn En Fn Gn Hy
n=1 .375 195. 4.935 -4.935 .500 4.935 -4.935
n=2 .6045 3260 22.34 -22.34 0 0 0

(Note: Above coefficients, with n = 1, are close to those of
Eq. 2.11). Substituting coefficients above and Eq. 3.6 into Eq.

3.19 and using AEh2 = 12EI yields two non-linear coupled equatlons
in a4 and dss under the harmonic excitation of the base, wB = A

Fo
sin wFt, as

dz,f c 4% 2 5 2 3
dt* T m 4t

0
[N

+2.263°(§+/) £ :-54-/4;64}2@@,1‘ (3.21)

‘(255’ C ‘ii’ 505 24 2 5
wE i T o +6356 47,

2 o~
+/404 W (f+27)F =0 (3.22)

where AF = AFO/ah and Wy is the natural frequency of the first
mode in infinitesmal amplitude and has the value,

4~
/2 = _@..é.‘.[az (3.23a)
n f%
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It is noticed from Eq. 3.23a that wq is linearly proportional to
14' and equal to zero when a = 0, which corresponds to classical
bucxling theory. This was the purpose of choosing the first and
second buckling modes, Egs. 3.14 and 3.15, rather than beam ‘
vibration modes, Eq. 2.6 for this buckled case. The numerical
result of Eq. 3.23 is shown in Fig.'9. The natural frequency of
the second mode 1in infinitesmal amplitude is found from Eq. 3.22

to be

EL

2
w, = 3740 Py (3.23b)

This result is also plotted in Fig. 9. It 1is interesting to note

that when a = 2.25, the first and second mode frequencies become

equal.
Let wpt = nT and il =qq - 1, 52 = a5, Egs. 3.21 and 3.22
become
4°Z A3 2, g%, 2 2
A

= K Ap 4 nT (3.24)

3

dzfz dz 2 £
g +2n§j§d;? %Lffo(}; + 7K E

+ 7z2/<7o/(22—/)}; =0 (3.25)
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where n is any integer,
K =-.5 , Ky =5
Ky =/. 333 ;> K,=2263
K, = 5.05 , K =6356
K, = 1404
A = (W/we) = /s
3 = C/(Zma),) (3.26)

It is readily seen that a, = 0 satisfies the solution of Egs. 3.24
and 3.25. The governing differential equation for aq when 4, = 0,
becomes

4 df 2 .,
45; +2 n.ff&';{; + KA G+ KX f =7 K p him T (3.27)

Equation 3.27 is the same form as Eq. 2.15, except with different
coefficients in Ki's. The general solution of Egq. 3.27 before
snapping through is the same as in Egs. 2.19 and 2.20, and will
be discussed in the following subsections.

Of course, Eq. 3.27 is valid only when a, = 0. This means
that ay does not become parametrically excited by the first mode
oscillations dq» i.e., any infinitesmal disturbance in a5 will
eventually die out. The study of the unstable regions for a5 will
be discussed in Section 4.2. For the present Section 3, the
specific cases to be studied will deal with the a, = 0 solution,
i.e., Eq. 3.27.%

—
The effects of SPHM order 3/2 is less important than those of
SPHM order 2 and 3 and will not be discussed here.
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3.2 Specific Cases

3.2.1 SHM and SPHM Order 3

The solutions of these cases can be obtained from Egs. 2.20
with n = 1. For simplicity, first consider the § = 0 case 1in
which ¥y, X5 and Y3 are equal to zero and ry = Xy r, = Yos T3 = x3,
then Eqs. 2.20 becomes

Ao to +-4‘-3-/<zo((2f,gf3-r,’[2):o (3.28a)

Al + 23’/(20([4z(6@"/:/;)“G(f,z+fzz)J:K3/lF (3.280)
3 2

ar + 2[4 (260-17) - k6] =0 (3. 260)

2 3
Asls + Z3/<201[4(Zf,/; - b - §£) =0 (3.284)

The existence of Yo and r, components 1in Egs. 3.28 is due to the
contribution of the quadratic term in Eq. 3.21 or equivalently,
the fact that the coefficient k1 in Eq. 3.27 1is negative. For
the solution of |r1| >> |r2| and |r3|, further simplification can
be made Dby neglecting Ty and r. components in the equations above
and discarding the associated equations‘3.28c and d, which leads
to

Ao%: =dJ (3.29a)
/4//; =/<3A/: (3.29b)

Since ¥ # 0, Egs. 3.29 becomes
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Aozl (Kt K (% + 3 5))=0 G

L ¢ 3 2 a
% - 2 - _2_5 (3.31a)
and (‘2/<,0(—/ _ 2/_?'/(20(/;2)/; =K3AF (3.31b)

The nonlinear natural frequency relation can be obtained
from Eq. 3.31 by setting AF =0, ry # 0, which gives the 'backbone

curve'! as

2o 4CRX+1) 4 (K + %)
! /5 K, o 15 K,

where @ = m/wl, w is the nonlinear natural frequency and wy is

(3.32)

the linear natural frequency.

The numerical results of Egs. 3.31b and 3.32 are shown in
Fig. 10. From the figure, one can see that Eq. 3.31b is a soft-
spring type solution and there exists jump points which are the
basic information to investigate dynamic snap-through criterion
to be discussed in Section 5.2. Similar to the hard-spring case,
the backbone curve divides the solution of Eq. 3.31b into two
regions. On the left-hand side of the curve, the displacement of
SHM is out-of-phase with the base displacement, and the other side
is in-phase. In general, Egs. 3.31 gives very food approximation
to the complete solution with small forecing term, AF < .2, and
Q not close to 1/2 or 1/3. For the AF > .2 case, even Q not close
to 1/2 or 1/3, the r, component becomes significant although |r2|
is still less than |rl|. Also Eq. 3.27 is a good approximation

for the small damping ratio, %, case, say § < .01,
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For the [r | > [ry | >> |r2| case, neglecting the r,
component and dlscardlng the associated Eq. 3. 28c gives an

approximate solution as

A4 =0 (3.33a)
Al /<2 = KsAg (3.33b)
- Kz 3 _
Al > =0 ~ (3.33¢)
Since y # 0, Eq. 3.33a becomes A0 =0
or
yz_ A3 rtrn 4
° = Tk T2 (F+05) (3.34)

Similar argument to the SPHM order 3 case of Sectilon 2.1, one can
easily show that for the |r3| >> |r1| solution

A = 0 (3.35)

or
A, X “77‘3}3 Kzo((4z2+2/,‘2+ /;2) =0 (3.36)

Placing Eg. 3.34 into Eq. 3.36 gives

2 4 (2Ke4T) _ 4,

I (3.37)
3 /5 K, X S 6

Equation 3.37 shows that the lr3| > |r,| solution exists only at
-2k, - 992 > 0 or @ < 1/3 (Note: ky = -.5, kp = *+. 5, @2 = 1/0).

By the assumption |r3| >> Irll, Eq. 3.37 can be approximated as
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2 42K+ )
~ 75 K, X

(3.38)

fs

(Note: + sign for rs will give the stable solution). Eliminating
Vo and rg components in Egs. 3.33b by using Egs. 3.34 and 3.38

gives

[62 -4 ket -t [a751 + /ZEALD) f,]}f. = KA 339
2

For the small AF case, say AF < .2. Equations 3.34, 3.38 and

3.39 give almost identical result for Yos T1 and r3 as from Egs.

3.33. The numerical results of Egs. 3.34, 3.38 and 3.39 for ry

and r3 corresponding to SPHM order 3 are shown in Fig. 11. They

appear to bifurcate from the main SHM solution near where the

"shifted backbone curve order 3." i.e., Eq. 3.38, intersects the

SHM solution.

The details of the actual transition between these two
solutions, |ry| > |r3| and |r3| > |ry|, can be found by solving
the complete Egs. 3.28 and is shown in Fig. 12. (Note: Egs. 3.28
give a very small r, component while not affecting Yor T1 and r3
of Egs. 3.33. This negligible r, component is not shown in the
figure.) The ry and r3 components of the upper branch solution
are out-of-phase with the base displacement; for the lower branch
solution, ry is out-of-phase and r3 is in-phase. Inecidertally,
it is interesting to know that for the complete Egs. 3.28 there
exists a certain solution in which r, = 0. From Eq. 3.28c, it is
readily seen that the r, = 0 solution occurs at r, = 2r3. The
numerical results of Egs. 3.28 show that the r, = 0 solution occurs
before the jump point of the third harmonic component with the
predominant ry component.
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Tor the ¢ # 0 case, the complete Eqs. 2.20 has to be
solved. In order to obtain the solution of SPHM order 3, the
eritical damping ration, G, must be very small. An approximate
damping criterion for the existence of SPHM order 3 can be
obtained by neglecting the r, component, which leads to Eq. 2.31.
Similarly, Egs. 3.34, 3.38 and 3.39 give a good approximation for
the ¢z < .001 case.

3.2.2 SPHM Order 2

For the ¢ = 0 case, Egs. 3.28 still are appiicable to the
solution of SPHM order 2. By the assumption |r2| > ]rll >> |r3|,
the r., component can be neglected. Discarding the assoclated
Equation 3.284, the approximate solution becomes

A4 - 2 KX =0 (3.402)
Al = 3K Yl = Kk (3.400)
Al — -Zi /<20(Z,/,‘2 =0 (3.40¢)

Equations 3.40a and c can be rearranged as

K
Koty + Kol (L +2 00 +204-Fr6)=0 W

3 2
(K- 2 KA (F G +1, +20 e =20 D s0 G4

For the Iyol > |r2| >> |r1[ case, the underline terms in Egs. 3.41
and 3.42 will drop out leaving the following two simple equatlons

as

2 K 3 2
z = "—2—"/‘; (3.43)
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AKX —4+ Zzi/(zO((4%2+/;2):o (3.44)

Solving Egs. 3.43 and 3.44 will give

2 K 2LRKAX+4)
% - /(2 5/(20( (3.45a)

= 402K +4)
2 /5 Ky X

Equation 3.45b is the "shifted backbone curve order 2," which
shows that the SPHM order 2 solution exists only for @ < .5.
Substituting Eqs. 3.45 into Eq. 3.40b will give a simple equation
in ry as (Note: for stable solution r, is negative)

Z 1
{2:2 - 4K+ 4K X -7(’5/ + 2(2/9°f+4)] [-4(2/<,0(+4)]z
2 37/?zc<. /5 Ao X

"LTEKZO(/,‘?C = K; Az (3.45¢)

For the small AF case, say AF < .2, Egs. 3.45 give a close result
as from Egs. 3.40.

(3.45p)

The numerical results of Eq. 3.45 are shown in Fig. 13.
They appear to bifurcate from the main SHM solution near where
the "shifted backbone curve order 2" intersects the SHM solution.

The complete solution can be obtalned by solving Eqs. 3.28
which give a very small r3 component while not affecting Yos T1
and r, of Egs. 3.40. The numerical results of Egs. 3.28 are
shown in Fig. .14 (Note: the small r3 component is not shown 1in
the figure). The upper branch solution ry is positive and r, is
negative; for the lower branch solution, ry and r, are positive.
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Egs. 3.45 or Egs. 3.28 also give a good approximation for
the small ¢ < .001 case.

3.3 Exact Solution of Free Vibration

Since the free vibration form of Eq. 3.27 is the same as
LEq. 2.44, (except now k; = -.5, k, = +.5), Equation 2.47 also is
the solution for free vibrations. For the case of the smaller
vibrations without snap-through, the lower bound, dy» is taken to
be the root of the equation,

K, +.5K, (faz+ 22)=0 (3.46)

or 7[ = i'(- 2{’ - ,‘f‘z)% (3.47)

Hote: g is taken to have the same sign as q,- Since the quantity
in the square root has to be positive, it leads to a conclusion
that free vibrations without snap-through exist if and only if

|;u| < /_:K/S/ =J2 “ (3.48)

Or, it is equivalent to say that the total energy, e, in Eq. 2.45
has to be less than zero. '

For Iqul > /2 case, free vibrations with snap-through
will take place, and the lower bound q, in Eq. 2.47 becomes
q, = -q, which is a root of qs - qi = 0 in Eq. 2.47. Due to the
symmetrical property of the integrand of Eq. 2.47, the snap-through

free vibration solution can be obtained from Eq. 2.48 with Iqul > V2 .

The numerical results of the exact free vibration solutions
are shown in Fig. 15 plotted with r, = .5(qu-q£) versus 2 = w/w;.
(ilote the gap between the two solutions at 2 = 0 reflects the
transition from one-sided vibrations to symmetric, equal-sided
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vibrations once snap-through has been achieved.) Figure 15 also
shows the approximate solution for the vibrations without snap-

through as obtained from the 'backbone curve' of Egq. 3.32. The

agreement is seen to be good here. The approximate solution of

free vibrations with snap-through can be obtained from Egs. 3.28
by setting AF =¥, =T = 0 and neglecting r3 component and its

associated Equation 3.28d, which gives

i =3‘j‘<2 (U°-K,) (3.49)

where Q = w/wl and w is the nonlinear frequency of snap-through

case. These results are also shown in Fig. 15. It is seen that
#
the approximation is good for r, > 1.8.

3.4 Numerical Analysis of Steady State Solutions

Here, the Runge-Kutta numerical integration method is
employed to investigate the steady state periodic solutions of
Eq. 3.27. The initial conditions for solving Eg. 3.27 are taken
from the steady state solutions obtained in Section 3.2, and a
time increment AT = .05 radians was used. Some typical steady
state responses obtained numerically are shown in Fig. 16-19.
From these figures it is seen that two solutions (upper and lower
branches) exist at a certaln frequency &, depending on the initial
conditions. The steady state response of the upper branch solution
can be obtained by using the numerical results presented in Section
3.2 as the initial conditions for all values of amplitude Iril up
to about 0.4. When the initial conditions corresponding to a
value of amplitude |ri| greater than 0.4 are used, however, the
response solution to the upper branch becomes unobtainable, and
the resulting solution goes to the lower branch solution at the
same Q. This implies that the steady state solution obtained in
Section 3.2 is a good approximation for those cases where the
maximum amplitude is less than 0.4,

For lower values of r,, the r3 component should be included in
the free vibration so}ution.
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SECTION 4
STABILITY CONDITION OF THE PERIODIC SOLUTIONS

4.1 Stability Condition of the Periodic Solutions

The periodic steady state solutions determined by the
method in Sections 2 and 3 are not always existent, but are
actually able to exist cnly so long as they are stable. To
investigate the stability of the equilibrium states, one may
employ the variational method.7

One assumes,

7= G +7 (4.1)

where Q4 is the steady state solution Eq. 2.19 which satisfies
Eq. 2.17, and n 1is the infinitesimal variation from equilibrium
state. Substituting Eq. 4.1 into Eq. 2.17 and only keeping the
first order terms in & gives

2
d7
ac?
Now, placing the steady state solution U4 which is Eq. 2.19 into

Eq. 4.2 and using new variable T = 1/2, will result in the ex-
tended form of the Mathieu-Hill equation,

47
Azl

y2ng/@ ZL p (KA 3KTE)T =0 (42

d7 J . =
+4ngWl = "'[904‘21% (g, 4n27V2

> = (4.3)
+ 8, 02v7)]7 =0
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where
6, = 47K, +15 KLy 11+ 26 )]
g, = 6nKX (24X, -x% +9% - %4 +4%)
g, = 67°KN (2420 + XY +9% X% )

g,= €M KA(242 + X4, + 4 %)

3

AN

=6k (Y + 4%+ %4)

6, € P haod (G +4%)

8, = 6K XY, (4.4)
96,=6721K20((2%Z+1,12+ZZ+'1’213+ZZ)

G,=6 0K (54 - 52 +204+ X% +4%)

Q,=6n k(244 -%2%+41)

g, =6 Ko (SY -55+8h-X%)

g, =6 ko (-%G+44)

g, =37 Kol ( Y- x)
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Following the same procedures as in Hayashi7, except here more
terms are involved for the general purpose and better accuracy,
the unstable solutions of Egq. 4.3 of the form

7= TS b ainA-DELG, GiGADT] s

will result if

Aodd =

o-1-g, | g -] -4, 16,76, %G 18 -6,
Qs,+4nfﬂ| 99 -/ +9c/ I %/ + 952 I 9&/ + 9C2 | 95‘2 t 633 l 962—!—@3
aCI— GCZ l 95'/ + 952 I ga —7-9C3 l 933 —lzngﬁl 96'/ - 6"4 l 934- 66'/

.-, la+a, |etemele-7+a: |86, 16+4,
&, s | 6.+8; | &~ &y | @ + 6y |6,-25-65 | §5-20n5&
%3 =62 | €.t €5 | Gu ~ Gy | &, * & I@-s'f‘.?(mfj&"l 90’257"@5'"

D

, T

K

£ 0. (4.6)

Similarly, unstable solutions of the form

7 - eﬂf[f [é£M2£2-: +(2;€ coa'z;(?']‘j] (4.7)

will result if
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even

6, I &, | &, I G2 I 2] | Eks | €3
20| 6-4-6,18,-8nsix| @,-@;5 | Gs- Iéz-ﬁw | 6u-8,
29| g, +8n3i5 | 4,-4+ 4, | & /+@a | &+ z+%¢ | &.* &y
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Utilizing the above results, it is seen that small disturbances to
the steady-state solutions n(?) will grow if elther Aodd or Aeven
is negative. This defines an unstable steady-state solution. All
of the steady-state solutions studied in Sections 2 and 3 have been
examined by this stability analysis. The unstable steady-state
soiutions are shown by dash-lines in the previously mentioned
figures.

4.2 Stability Analysis of the Second Mode Solution

As mentioned in Section 3.1, to insure the only existence
of the first mode solution q;> the second mode solution as in
Eq. 3.25 must not bte parametrically excited by the first mode os-
cillations. To investigate the stability of a5 in Eq. 3.25, one
may employ the method used by Lock,17 Van Gulick, 20 etc., in which
q, is taken as an infinitesimal variational variable. Substituting
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the steady-state solution a4 which satisfies Eq. 3.27 into Eq. 3.25

and neglecting its higher order term, qg, one can obtain the same

equation as Eq. 4.3 with the same time variable T, except here one

has now,
_ 305
K/ - az —/404
K, = .468 (4-9)

Then the stability criterion for q, can be easily obtained by
substituting the new variables of Eq. 4.9 into Eqs. 4.4, 4.6, and
‘4.8.

Numerical evaluations of these stability determinants, Egs.
4.6 and 4.8, were carried out for the SHM, SPHM order 3, and
SPHM order 2 solutions. These were evaluated for the range § < 1.2,
Iril < 0.4, and the initial static deflection variable 'a' = 0.5 to
5.0. These numerical results showed that unstable solutions of a5
appeared ocnly when 'a' > 2.0. For all experimental and theoretical
cases considered here, 'a' was less than 2.0 and hence, the second
mode did not play any role here.

In order to better understand this effect of the initial
static deflection 'a' on the stabllity of the second mode a5 the
following simplified stability investigation for the no damping,

z = 0, case was made. Assuming the SHM motion for the first mode,

Zs =Y + X, 4n T (4.10)

the stability equation for the second mode will be Eq. 4.3 where

eo, esl’ and 6c2 are given by Egs. U4.l4 and all other 6's are zero.

From Eq. 3.3la, one has
2 2

4 =/ - zi)-’, (4.11)

and this together with K, and K2 from Eq. 4.9 ylelds



_ 20.2 X 6
60 = Z——ZJ—?-Z — ng/ . (4.12a)

O = 6_-,%46 X,/ /-15%? (4.12b)
- (404 2
ecz =T T X, (4.12¢)

Using the simplified, uncoupled forms for the stability determi-
nants of Eqs. 4.6 and 4.8, the stability boundaries for g = 0 can

be expressed roughly as,7

8 =n"*8 for n=/,2,3 (4.13)

n

where 9@

6 =[(q.+ 4]

These give the conventional V-shaped instability regions in the
en, eo plane. One may replot these en, eo stability boundaries

onto the x 8 plane of the qQ, solution by solving Egs. 4.12 to-

gether witi,Eqs. 4.13. For n = 1, this gives the boundaries

2° = 202 56/6()( tx [/-/527 ) (4.14)
while for n = 2, it gives

n° = ‘2025 - /404 1,2(/ 1.25) (4.15)

Typical results of this approximate analysis are shown in Fig. 20
for 'a' = 2. For higher values of 'a', it can readily be seen from
Eqs. 4.14 and 4.15 that both of these unstable regions will move
further to the left and cause instability of the a5 mode at lower
frequencies Q.
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A similar stability analysis can be made assuming SPHM
motion for the first mode to be either

= Y + X un3T (4.16)
or
Fo =+ 8 con2® (4.17)

For both of these cases, the results for the stability boundaries
reduce to the exact same form as Egqs. 4.14 and 4.15, but with 92
replaced by (kQ)2 where k = 2 for SPHM order 2 and k = 3 for SPHM
order 3. Since the amplitude-frequency curves for these SPHM
responses are essentially "shifted backbone" curves themselves,
these criteria will again show that the SPHM responses cannot
cause instability of the a5 mode for a < 2.25.

The preceding approximate analyses indicate clearly the
trends to be expected from the more complete numerical analysis
using the complete stability determinants, Egs. 4.6 and 4.8. It
is of interest to recall that at a = 2.25, the natural frequency
of the first mode w
Figure 9.

1 equals that of the second mode Wy e See
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SECTION 5

SNAP-THROUGH ANALYSIS

5.1 Numerical Analysis of Snapping Phenomena

According to the previous stability analysis, one can al-
ways find two stable steady-state solutions for the buckled beam
at frequencies just below Q@ = 1/k, where k = 1, 2, 3, ... etc.

In reality, the upper-branch solution may not be obtained due to
the dynamic overshoot which causes the beam to snap through dur-
ing its attempt to achieve this upper-branch solution. This snap-
ping phenomenon generally occurs near jump points. To study this
phenomenon, one has to solve Eq. 3.27 directly by numerical me-
thods. Here, the Runge-Kutta numerical integration method is em-
ployed using a time increment At = 0.05 radians. The calculations
were performed at the vicinity of jump points. 1In the majority of
the cases treated, the damping coefficient g = 0.001 was considered,
and the following initial condition (I.C.) was employed:

£ =lo jf’:a ; at T=0 . (5.1)

The snap-through region is shown in Fig. 21 plotted with
the nondimensional forcing amplitude AF versus Q2. The boundary
of the snap-through region is defined as follows. If one in-
creases Q from zero to the first occurrence of snap-through while
keeping AF constant, then the first frequency & for which snap-
through occurs is taken as a point on the boundary for that AF'
The locus of these points is the boundary of snap-through.

Some typical snapping behavior is given in Figs. 22 through
24. 1In Fig. 22, the predominant SHM component before the taking
place of snap-through is noted. This kind of response is called
SHM snap-through. The values of AF for this SHM snap-through case
are 0.0<Z < AF < 0.25, which correspond to the Q's lying in the
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range 0.91 > @ > 0.63. For the AF < 0.02 case, there is no SHM
snap-through and the upper branch solution can always be obtained.
Similarly from Figs. 23 and 24, one can see the SPHM order 3 and 2
snap-through responses in which the components of SPHM order 3

and 2, respectively, become significant before the occurrence of
snap-through. These SPHM snap-through boundaries together with
SHM snap-through can be clearly seen in Fig. 21.

The inclusion of the small damping coefficient ¢ = 0.001,
will not affect the critical snap-through values of AF~for the
cases of SHM and SPHM order 2 as compared with the nondamping
case, but it will greatly affect the critical values of AF for
the SPHM order 3 case. The damping effect on the SPHM order 3
case can be seen by the comparison of Figs. 23 and 25. In order
to obtain the SPHM order 3 snap-through, the damping coefficient
¢ must be less than 0.001l. For the case Z < 0.001 considered
here, the critical values of AF are the same as those of the non-
damping case.

It 1s interesting to compare the static snap-through load
(see Appendix B) to the dynamic ones found here. The static
force-deflection relation, as obtained in Appendix B, 1is shown
in Fig. 26. For the dynamic case, the amplitude of external
load, Fyis (1b/in), is
£o= mw;a;{/l,; (5.2)

and the critical static load, FS » (1b/in), which is uniformly
. crl
distributed on the beam, is (see Eq. B.10)

E = f maak (5.3)

cr/ Srr

From Egqs. 5.2 and 5.3 one can obtain

by
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cty Scry

= R (5.4)

The dynamic to static force ratio, R, can be obtained by substi-
tuting the critical value AF with the corresponding Q on the

snap-through boundary and is shown in Fig. 27. It is to be noted
that ratios of R much less than unity can cause SHM snap-through.

Employing the Runge-Kutta numerical integration method,
the free vibration solution of Egq. 3.27 can also be obtained by
setting @ = 1.0 (or ¢ = 1) and AF = 0. One typical numerical

solution is shown in Fig. 28 with ¢ = 0.001 and initial condition:

25 =/5 , j;f? =.0 ; al T=0 |

From Fig. 28, it is easily seen that the response of very large
amplitude vibrations with snap-through has the hard-spring-type
behavior in which the frequency increases with increasing ampli-
tude. Contarily, the response of smaller amplitude vibrations
without snap-through has the soft-spring-type behavior in which
frequency decreases with increasing amplitude. This agrees with
the frequency behavior shown in Fig. 15.

The state-plane diagram of the free vibration solution
alsc can be obtained directly by the Runge-Kutta numerical inte-
gration method. The diagram is shown in Fig. 29 in which one can
see the almost pericdic harmonic oscillation at amplitude less
than 0.4. This fact leads to the conclusion that the steady-state
solutions obtained in Section 3 are sufficiently accurate only
when the amplitudes Iril are less than 0.4 approximately.

The vibrational behavior of the straight and the buckled
beam are summarized in Fig. 30. These show the vibration motion
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superimposed on the nonlinear static force-deflection curves for
each beam case. For the buckled beam, the transition from the
soft spring case at low amplitudes to the hard spring case at
large amplitudes is clearly apparent.

5.2 Continuous SHM Snap-Through

The discussion of the preceding Section 5.1 related to
the first onset of snap-through, and the response was characterized
by an intermittent snap-through behavior. 3ee Figs. 22 to 24,
This intermittent snap-through behavior also persists generally
at higher forcing amplitudes AF and higher frequencies Wp e However
under certain conditions, a well-defined, continuous snap-through
behavior may exist. This will be discussed briefly here for the
case of SHM motion.

An approximate solution for continuous SHM snap-through
can be obtained from Eqs. 3.28 by setting Yo = Tp = 0 and neglect-
ing r3 component and its associated Eq. 3.28d. This gives simply,

(K -/ +§-/(zo(ﬁ)r;‘ = K3 Ae (5.5)

Numerical results for this continuous SHM snap-through solution

Eq. 5.5 are shown in Fig. 31, together with the previous without
snap-through SHM solution Eq. 3.31b. Only the stable branches

of each solution are shown. It is to be noted that the condition
|P1| = Iyol acts as a cut-off to the without snap-through solution,
since above this |r1|, the one-sided vibrations spill over tc the
other side and cause snap-through.

A typical continuous SHM snap-through response is shown in
Fig. 32. This was obtained as before by using the Runge-Kutta
numerical integration method to solve Eq. 3.27 directly. The
development of a continuous SHM snap-through is readily apparent.
Another response at the same forcing frequency £ but with a
higher AF took a much longer time to get to the continuous SHM
snap-through solution.
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SECTION 6

EXPERIMENTAL INVESTIGATION

6.1 Test Setup

The overall test setup for the nonlinear vibrations of
the straight and buckled beams is shown in Fig.33 . The schematic
sketch fbr the overall éetup is given in Fig. 34. A spring steel
beam (see Fig. 33) with 18-in. length and 0.021-in. x 0.5-in.
cross section was rigidly mounted on a shake table. This was the
only specimen used for the experimental work. In order to reduce
the gravitational effect, the beam was placed such that the axis
of the maximum bending rigidity was perpendicular to the gravita-
tional direction. The shake table was oscillated horizontally, and
generated a harmonic excitation over a frequency range from 2 to
50 cps. The amplitude and frequency of the shake table was mea-
sured by using strain gages mounted on a thin auxiliary beam which
was bolted on one end to the shake table and the other end to a big
steel channel bar. The response of the test beam specimen was
measured by using a capacitor probe at the midpoint of the beam.
A two channel Sanborn recorder was used to record the responses of
the table and of the beam specimen.

6.2 Test Procedures

6.2.1 Straight Beam Vibration

The clamped-clamped beam, which had a basic frequency w, =
13.4 cps, was subject to some small initilal tension to give a
natural frequency Wy of about 20 cps. It was found that some
small tension in the beam was practically unavoidable and the
presence of initial tension would reduce the change in natural
frequency wy during the test. To obtain the minimum change in
natural frequency Wy the test period was taken as short as pos-
sible in order to have reliable data. The output of strain gages
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was calibrated by using a dial gage to measure the actual amplitude
of the table under very low frequency oscillation. By this method,
the output of the strain gages appeared to be linearly proportional
to the amplitude of the table (see Fig. 35). The static output of
the capacitor probe was also calibrated by using a dial gage to
measure the distance between the probe and the beam -- with only
the probe position being varied. After completing the calibration,
the probe was fixed at an appropriate position which had a cor-
respondingly calibrated position on the recorder paper. This cor-
respondingly calibrated position on the recorder paper was called
the center position. The center position generally would drift
down initially about 1 unit of recording paper out of a total of

10 units in abscissa, but then remained approximately at this

final position. Checking the center position drift, it was found
that all the first calibration points had drifted down equal units
along the abscissa (see Fig. 36). With this drift phenomenon in
mind, one can obtain the correct test data so long as one knows

the center position before each test run. From Fig. 34, one also
can see the insensitive portion of calibration line at the large
probe-beam distance. In order to obtain more accurate data, the
experimental results, amplitudes of oscillation, were taken ac-
cording to the sensitive portion -- from center position up to the
higher unit of the recording paper. This method had been proved to
be valid by checking the small amplitude oscillation which showed
symmetry about the center position. During a test run, the experi-
mental data was collected within a very short period, say 2 to 4
minutes, in order to obtain almost constant natural frequency Wy
during the test.

The static load-deflection was obtained by applying a load
at the midpoint of the beam. This is shown in Fig. 37, and one
can see the symmetry about the straight line position. The criti-
cal damping ratio ¢ was found from a transient decay test to be
¢ = 0.0006 approximately, and is shown in Fig. 38 . It was observed
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that the natural frequency of the beam for the large amplitude
agreed well with the nonlinear theory relation,

w=¢, [1+.49F (6.1)

where r, is the nondimensional amplitude of the oscillations. The

1
experimental results of nonlinear frequency are shown plotted in

Figs. 2 and 8, where now @ = w/wl.

Some typical responses of SHM, SPHM, and SBHM as obtained
experimentally are shown in Fig. 39. The top trace shows the
beam response, while the lower trace shows the base motion. All
frequencies are in cps, and the top scale is nonlinear because
of the capacitor probe characteristics. Experimental steady-
state amplitudes from these responses are shown plotted versus
frequency 9 in Figs. 3 through 7, together with the previous theo-
retical results. In some cases, different superharmonic motions
were found to exist at the same forecing frequency Wps depending on
the initial kick given the beam. The experimental results of
SBHM order 3 were not able to be obtained due to the limit fre-
quency of the shake table.

6.2.2 Buckled Beam

The same beam as in the straight beam case was also used
here. The beam was compressed to buckle with the nondimensional
initial static deflection 'a' approximately equal to 1.5. Check-
ing the symmetric property about the straight beam position, it
was found that the initial static deflection 'a' was equal on
either side and so was the natural frequency of either side. The
test procedure was taken the same as mentioned previously, except,
here an almost linear calibration line of the capacitor probe was
used by taking advantage that the amplitude was small before the
occurrence of snap-through.

The damping coefficient g was found to be approximately
0.0007 from a transient decay test. The natural frequency of the
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beam for large amplitude but without snap-through agreed well with
the nonlinear theory relation

w=w, [/-1875¢> (6.2)

The experimental results of nonlinear frequency without and with
snap-through are shown plotted in Figs. 10 arnd 15 where now,

Q = m/ml. Also, Fig. 40 shows an experimental record of the free
vibration response in which one can see the hard and soft spring-
type responses with and without snap-through, respectively.

Some typical responses of SHM and SPHM,as obtained~ex-
perimentally, are shown in Fig. 41. Again, the top trace is the
beam response, while the lower trace is the base motion. Experi-
mental steady-state amplitudes from these responses are shown in
Figs. 11 to 14, together with the previous theoretical results.
Also, some typical snapping-through responses of SHM and SPHM
obtained experimentally are shown in Figs. 42 through 45,



SECTION 7

COMPARISON OF THEORY AND EXPERIMENT

7.1 Straight Beam Case

The experimental results of nonlinear frequency relation
given in Figs. 2 and 8 show that the backbone curve solution is
a good approximation. In Fig. 3, one can see that the SHM steady-
state amplitudes obtained experimentally agree well with theory
for Irll < 1.0, and for lrll > 1.0, the experimental results give
a little higher IrlI than the theory. Also from Fig. 3, the good
agreement of experiment with theory for the case of SPHM order 2,
3 and 3/2 is seen. The bifurcation from SHM solution is noticed,
and one can see the amplitude of the component corresponding to
the forecing frequency decreases as Q increases. It can also be
seen that at the same Q, multiple solutions can be obtained ex-
perimentally. Some experimental results for the case of SPHM
order 3 and 2 are shown in Figs. 4 and 6 in which one can see€
the components of SPHM are very close to the shifted backbone
curve with some small correction as given by theory

o 4ERK)
& 3K,

where k = 2, 3, 3/2, etc.

2
-2 0 (7.1)

The larger the external forcing amplitude AF, the 1lzss
dominant is the amplitude of the SPHM component in comparison to
the forcing frequency component. This is not obviously seen
from Fig. U4, due to the small rq component present, but can be
seen easily in Fig. 6. Some experimental results of SHM, SBHM order
2/3 and 1/2 are given in Fig. 7 which shows that the agreement be-
tween experiment and theory is reasonable. Some typical experi-
mental responses of SHM, SPHM and SBHM are shown in Fig. 39 where
the simple ratio between the response and forcing frequencies can
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be counted as 1, 3/1, 2/1, 3/2, 2/1, and 2/3. In the SPHM case,
due to the small effective external force, QZAF, the SPHM com-
ponent is dominant. In the SBHM cases, one can see the SBHM com-
ponent is not so dominant, and is not much greater than the ex-
ternal forcing frequency component because of the large effective
external force.

7.2 Buckled Beam Case

The experimental points of linear natural frequency versus
initial static deflection 'a' agree well with theory as seen in
Fig. 9. No experimental points with a > 2.0 was obtained due to
the second mode becoming unstable. Ficgures 10 and 15 show good
agreement of the experimental results for nonlinear frequency with
the theory. An experimental and a theoretical record of free vi-
bration response are shown in Figs. 40 and 28, respectively. Both
figures show the similar behavior, i.e., hard-spring-type responses
at large amplitudes with snap-through and soft-spring-type responses
at smaller amplitudes without snap-through.

The experimental steady-state amplitudes of SPHM order 3
and 2 are shown in Figs. 11 and 13, respectively. Good agreement
with theory is obtained.* Figure 41 shows some typical experi-
mental responses of SHM, SPHM order 3 and 2. The simple ratio
between response and forcing frequencies is counted as 1/1, 3/1,
and 2/1.

Figure 42 shows an experimental record of the SHM snap-
through phenomenon with strong SHM component before the occurrence
of snap-through. This SHM snap-through phenomenon can also be ob-
tained theoretically by numerical integration method as shown in

*For the SPHM order 3 case, the complete solution, Egqs. 3.28,
shown in Fig. 12 agrees better with the experimental points than
the approximate solution, Eqs. 3.34, 3.38, and 3.39 given in
Fig. 11. This is because the approximate solution is good for

AF < 0.2 while the present results are for AF = 0.3.
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Fig. 22, Similarly, Figs. 43 and 44 show the experimental results
of SPHM order 3 and 2 snap-through, and the predominant components
of SPHM order 3 and 2 before snapping through are obvious. These
SPHM snap-through phenomena also appear in theoretical results

as given in Figs. 23 and 24. The experimental SHM and SPHM snap-
through boundaries are shown in Fig. 21, and they seem to match
reasonably the theoretical boundaries obtained by numerical inte-
gration. Basically, these boundaries appear to be the jump points
of SHM and SPHM steady-state solutions. Fig. 45 shows an experi-
mental record of continuous SHM snap-through. This behavior also
appears in the theoretical results shown in Fig. 32. At higher
amplitudes AF and the same forcing frequency Wps the snap-through
became intermittent.

1
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SECTION 8

CONCLUSIONS

8.1 Straight Beam Case

1'

In addition to the conventional SHM response for the
Duffing equation, there exist other solutions of SPHM
order k = 3/2, 2, 3, ... and SBHM order k = 2/3, 1/2,
1/3, ... at @ > 1/k. These additional solutions give
superharmonic and subharmonic component amplitqdes

near the "shifted backbone curve," i.e., replacing
by kQ in the basic backbone curve, r2 = M(Qz-kl)/(3k2).
For small forcing amplitudes AF and very small damping,
all these additional solutions are dominated by the
superharmonic and subharmonic components, and tend to
have the system oscillate near its own natural frequency

w For larger AF’ these additional solutions involve

l.
substantial forcing frequency components as well as

the superharmonic and subharmonic components.

In the SPHM cases, theoretical and experimental results
show that with fixed Ap the amplitude |r, |
to the external forcing frequency decreases as

corresponding

increases. This behavior is opposite to the conven-

8,9,11,12 which assumes

tional perturbation assumption
= 2 2 2
|P1| = |Ap wp/(w] - wF)l with wp < w, and gives

monotonically increasing Irll as wg (or Q) increases.

These solutions of SPHM and SBHM are stable over a
significant range of their amplitudes. They seem to
bifurcate from the main SHM solutions near where the
"shifted backbone curve" intersects the SHM solution.
For small forcing amplitudes AF, this bifurcation point
would be near € = 1/k. The SHM solution itself is
unstable near these bifurcation points.
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4, Multiple solutions may exist at a fixed Q@ depending
on the initial conditions.

5. The present analysis agrees well with experiments
which were performed for relatively small forcing
amplitudes AF.

8.2 Buckled Beam Case

1. In the present case, the solution is a soft-spring type
at small amplitudes before snapping through, and a
hard-spring type at large amplitudes after snapping
through.

2. For small amplitudes without snap-through, there exist
in addition to the conventional SHM solution for the
governing differential equation, other solutions of
SPHM order k = 2, 3, .... For small AF,
solutions give SPHM component amplitudes near the

these additional

"shifted backbone curve order k," i.e., replacing Q

by k in the basic backbone curve, ri = —4(92 + 2k1)/
(15 k2). For small AF and very small damping, all
these additional solutions are dominated by the SPHM
components, and tend to have the system oscillate near
its own natural frequency Wy . For large AF’ these
additional solutions involve substantial forcing

frequency components as well as the SPHM components.

3. These solutions of SPHM are stable over a significant
range of their amplitudes. They seem to bifurcate
from SHM solution near where the "shifted backbone
curve" intersects the SHM solution. For small Ap,
these bifurcation points would be near @ = 1/k. The
SHM solution itself is unstable near these bifurcation

points.
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4. Multiple solutions may exist at a fixed Q de-
pending on the initial conditions.

5. One mode approximation is good for initial static
deflection 'a' < 2.0 and @ < 1. Second mode has
to be included in the solution for 'a' > 2.0 case,
since it may be parametrically excited by the
first mode oscillations at Q@ < 1.

6. Linear natural frequency wy is linearly proportional
to the initial static deflection 'a', with wy = 0 at
a = 0 and Wy = W, at a = 2.25. -

7. The steady state solution is valid for the maximum
response amplitude to be less than 0.4.

8. Dynamic overshoot in transient period will cause
the beam to snap-through. The snapping phenomenon
generally occurs at jump points of SHM and SPHM

solutions.

9. The snap-through behavior is usually intermit-
tent. Under certain conditions, a well-defined,
continuous SHM snap-through may exist.

10. The present analysis agrees well with the experi-

ments.

8.3 General

In the present investigation, it has been attempted to show
the importance of superharmonics, subharmonics, and snap-through
in understanding the vibration behavior of straight and buckled
beams. The techniques and the results obtained here can be ex-
tended to plates, curved panels, and shells in order toc better
understand their vibration behavior.
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APPENDIX A

NEWTON ITERATION MEWTHOD

Let X be an n-dimensional column vector with components
Xqs X5 sees X and G(X) an n-dimensional column vector valued

functions with components gl(X), g2(X),.. The system to be solved
is '

X = G(X) _ ) (A.1)

The solution (or roots) of Eq. A.l is some vector, T, with
components Yis Yos ce0 Yy which, of course, is some point in the
n-dimensional space. Starting with a point x° = [xg, xg, .o xg],

then the iteration scheme is proceed as
(i+1) 0)
X = G(X ) 1=0,7,23 (A.2)

provided that the solution of A.l is convergent for a sufficient
close guess of XO. (For convergent criteria, see Isaacson and
Keller3l).

In general case, the system to be solved is of the form

(X)) =0 (A.3)

where F(X) = [fl(X), f2(X), cen fn(X)J is- an n-dimensional column
vector. Such a system can be rewritten in the form of Eq. A.l
with

G(X)=X-AX)FX) (h.1)

where A(X) is an n square matrix. The Egs. A.1 and A.4 will have
the same set of solutions if A(X) is nonsingular [since in the
case A(X) F(X) = 0 implies F(X) = 01].
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In Newton's method one chooses

AX) = TU(X) (r.5)

o o .. of
= X, 39X, X,
b L
3% 0 - :
AN :
: ! \
o o ___._ .12k
2%, 9z, (A.6)

whose determinant is the Jacobian of the function fJ(X). Placing
Eq. A.5 into Eq. A.4 the iterationc for the Newton's method are:

X XTI FX | =02 o

From Eq. A.7 one can easily obtain the Newton's iteration for a
single function f(x), in which Eq. A.T7 reduces to

x4 = X9 - fex “’)/(——J-f(xm (A.8)
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APPENDIX B

STATIC SNAP-THROUGH LOAD

The governing differential equation of a static problem,
having a load uniformly distributed on the buckled beam, can be

directly obtained from Eq. 3.1 discarding all the time derivative

terms in the right hand side of the equal sign and replacing
m’dsz/dt2 by a static force FS - 1lb/in, which leads to

o

£l < (W+W;) - f‘i[N ——(W+W)]=—F (B.
dx* °/  dx ° S

X 24X
_ EA (frd 2 .
/ﬂéz —'—/2 + 2:?‘4( [EZZT<\A/‘+‘VN§)] a4z (B.
Now substituting Egs. 3.3, 3.5, 3.6 and 3.7 into Egs. B.1l and
B.2 and following the same expressions and procedures as in
Section 3.1 one can obtain (as Egs. 3.21 and 3.22)
CUZ; 3 257 /25 2,5 "2__ %5 (B
PR A DAL O A A
5.05 ’225’ £ 2}?3 4 42602(552 2?““;;_ (B
B W L T6356 W74, + 140 (£ +2F)F =0 .
wi - same as Eq. 3.23a
With ﬁl = q; - 1, 62 = a,, Egs. B.3 and B.4 becomes
/ / g3 :_ 4
2?-55 - 2;‘2? '+4242615’Zgj% - 3 ]é (B.
3.0 3 2 _
afiz FE356 8 +1404 (8 -NE =0 (B.
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_ 2
where fs = FS/(mahwl)

In Eds. B.5 and B.6, ~ne can easily see that one solution is

G, = 0 which gives
3_ 8
Z'Zzg—f (B.7)

Equation B.7 is the deflection-loading relation of the first mode
solution, and is plotted in Fig. 26. The first mode snap-through

occurs at

2% ¥ ~
- =0 and < O | (B.8)
a4z a4z’
which gives
£ =44, at (3) =577 (B.9)
crl
or
_ 2 _ Ezr4a’
= matw = /2.2 ==Z= (B.10)
/iéﬂ Z;v A’ ! Vs '

To obtain the second mode snap-through load, one can solve
Eqs. B.5 and B.6 with q, # 0. Equation B.6 becomes,

S 4 6356 3" + 1404 (2°-7) =0 (B.11)

Solving Egs. B.5 and B.1ll gives

z = | T42 Q’27§ (B.12a)
Zf =,22/ - '—Z—f- — .72/ a“{ (B.12b)
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The numerical results of Egs. B.12 with varying initial
imperfection 'a' are also shown in Fig. 26. The second mode
snap-through will take place before the first mode one, if and
only if the bifurcation point, (ql)B (the intersecting point of
Egqs. B.7 and B.l2a) is greater than (ql)crl’ that is,

(Z)B: /—3'Q620 > .577 (B.13)

From Eq. B.13, one can easily obtain that the second mode snap-
through occurs only at

o > 2.32 (B.14)

The corresponding (fs)B to the (ql)B of Eq. B.13 is

_ /35 [/, _ 360
(fS)B = 5z // o at a >2.32 (8.15)

In summary, the snap-through load 1is fs for the a < 2.32
crl

case; and becomes (fs)B at a > 2.32.



10.

REFERENCES

McLachlan, N.W. Theory and Application of Mathieu Functions.
Dover Publications, New York, N.Y., 1964,

Bolotin, V.V. Dynamic Stability of Elastic Systems. Holden-

Day Inc., San Francisco, California, 1964,

Weidenhammer, F. "Das Stabilitatsverhalten der nichtlinearen
Biegeschwingungen des axial pulsierend belasten Stabes,"
Ingenieur Archiv, Bd. 24, pp. 53-68, 1956.

Minorsky, N. Nonlinear Oscillations. D. Van Norstrand -Co.,

Princeton, New Jersey, 1962.

Dugundji, J. and Chhatpar, C.K. Dynamic Stability of a
Pendulum under Parametric Excitation. Massachusetts Institute

of Technology, Aeroelastic and Structures Research Laboratory
Report TR 134-4, Air Force Office of Scientific Research
AFOSR 69-0019TR, December 1968.

Stoker, J.J. Nonlinear Vibrations. Interscience Publishers,
1966.

Hayashi, C. Nonlinear Oscillations in Physical Systems.
McGraw-Hill Book Co., Inc., New York, N.Y., 1964,

Caughey, T.K. "The Existence and Stability of Ultraharmonics
and Subharmonics in Forced Nonlinear Oscillations." J. of
Applied Mechanics. pp. 520-525, December 1957.

Kronauer, R.E. and Musa, S. "Necessary Conditions for Sub-
harmonic and Superharmonic Synchronization in Weakly Nonlinear
Systems." Quarterly J. Applied Mathematics, pp. 153-160,

Vol. XXIV, No. 2, 1966.

Tondl, A. "On the Internal Resonance of a Nonlinear System
witn Two Degrees of Freedom." Nonlinear Vibration Problems

(Second Conference on Nonlinear Vibrations, Warsaw, 1962),
Vol. 5, pp. 205, 1964,

62



11.

12.

13.

14,

15.

16.

17.

18.

19.

Mettler, E. "Stability and Vibration Problems of Mechanical
Systems under Harmonic Excitation." Dynamic Stability of

Structures, Proceedings of an International Conference held

at Northwestern University, Evanston, Illinois, October 1965,
Pergamon Press, pp. 169-188, 1967.

Tamura, H. "Higher Approximation on Nonlinear Steady Oscilla-
tion." Proceedings of the Fourteenth Japan National Congress
for Applied Mechanics 1964, Tokyo, Japan, Sept. 7-8; Tokyo,
Japan, Central Scientific Publishers, pp. 205-213, December
1965.

Atkinson, C.P. "Superharmonic Oscillations as Solutions to
Duffing's Equation as Solved by an Electronic Differential
Analysis." J. of Applied Mechanics. pp. 520-525, December
1957.

Szemplinska-Stupnicka, W., "Higher Harmonic Oscillations in
Heteronomous Non-Linear Systems with One Degree of Freedom."
International J. Non-Linear Mechanics, Vol. 3, pp. 19430,

Pergamon Press, 1968.

Herrmann, G. Dynamic Stability of Structures, Proceedings of

an International Conference held at Northwestern University,
Evanston, Illinois, October 18-20, 1965. Pergamon Press, 1967.

Humphreys, J.S. "Dynamic Snap Buckling of Shallow Arches."
AIAA Journal, pp. 878-886, May 1966.

Lock, M.H. "Snapping of a Shallow Sinusoidal Arch under a
Step Pressure Load." AIAA Journal, pp. 1249-1256, July 1966.

Humphreys, J.S. "The Adequacy of Energy Criterion for Dynamic
Buckling." AIAA Journal, pp. 921-923, May 1966.

Gjelsvik, A. and Bodner, S.R. "The Energy Criterion and Snap-
Buckling of Arches." J. Eng. Mech. Div., AM. Soc. Civil Engrs.
pp. 89-134, October 1962.

63



20.

21.

22.

23.

24,

26.

27.

28.

29.

Van Gulick, L.A., Flexural Arch Vibrations, Princeton

University, Department of Aerospace and Mechanical Sciences,
Report 833, June 1968.

Fitch, J.R. The Buckling and Postbuckling Behavior of
Spherical Caps under Concentrated Load." International J. of
Solids and Structures 4, No. U4, pp. 421-446, April 1968.

ziegler, H. Principles of Structural Stability, Waltham, Mass.
Blaisdell Publishing Co., 1968.

Anderson, D.L. and Lindberg, H.E. "Dynamic Pulse Buckling of
Cylindrical Shells under Transient Lateral Pressures." AIAA
Journal, Vol. 6, No. 4, pp. 589-598, April 1968.

Pian, T.H.H. and Bucciarelli, L.L. Jr., "Buckling of Radially
Constrained Circular Rings under Distributed Loading."
Internal. J. of Solids and Structures, Vol. 3, No. 5, pp. 715-
730, Sept. 1969.

Navaratna, D.R., Pian, T.H.H., and Witmer, E.A. "Stability
Analysis of Shells of Revolution by the Finite-Element Method."
AIAA Journal, Vol. 6, No. 2, pp. 355-361, Feb. 1968.

Budiansky, B. and Roth, R.S. "Axisymmetric Dynamic Buckling
of Clamped Shallow Spherical Shells." Collected Papers on
Instability of Shell Structures - 1962, NASA Langley Research
Center TND-1510, December 1962.

Lindberg, H.E. and Herbert, R.E. "Dynamic Buckling of a
Thin Cylindrical Shell under Axial Impact." American Society
of Mechanical Engineers Paper 65 - APMW-17, August 1965.

Goodier, J.N. and McIvor, I.K. "The Elastic Cylindrical Shell
under Nearly Uniform Radial Impulse." J. Appl. Mech., Vol. 31,
pp. 259-266, 1964,

Abramowitz, M. and Stegren, I.A. Handbook of Mathematical
Functions, AMS 55, National Bureau of Standards, June 1964,

6U



30.

31.

Bisplinghoff, R.L. and Pian, T.H.H. On the Vibrations of
Thermally Buckled Bars and Plates. Proc. 9th Internationzal
Congress of Applied Mechanics, Vol. 7, pp. 307-318, Brussels,
1957. Also Massachusetts Institute of Technology, Aeroelastic
and Structures Research Laboratory, Technical Report 25-22,
Office of Naval Research Contract N 5 ori-07833, ONR Project

NR-064-259, Sept. 1956,

Isaacson, E. and Keller, H.B. Analysis of Numerical Methods.
John Wiley and Sons, Inc., New York 1966.

65



Note: Gravitation force L paper.
W,=0 for the straight beam case.
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FIG.1 BASIC CONFIGURATION
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FIG.33 OVERALL EXPERIMENTAL SETUP
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