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Measurements of production cross sections of WZ and same-sign WW boson pairs in association with 
two jets in proton-proton collisions at 

√
s = 13 TeV at the LHC are reported. The data sample corresponds 

to an integrated luminosity of 137 fb−1, collected with the CMS detector during 2016–2018. The 
measurements are performed in the leptonic decay modes W±Z → �±ν�′±�′∓ and W±W± → �±ν�′±ν, 
where �, �′ = e, μ. Differential fiducial cross sections as functions of the invariant masses of the jet and 
charged lepton pairs, as well as of the leading-lepton transverse momentum, are measured for W±W±
production and are consistent with the standard model predictions. The dependence of differential cross 
sections on the invariant mass of the jet pair is also measured for WZ production. An observation of 
electroweak production of WZ boson pairs is reported with an observed (expected) significance of 6.8 
(5.3) standard deviations. Constraints are obtained on the structure of quartic vector boson interactions 
in the framework of effective field theory.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The observation of a Higgs boson with a mass of about 
125 GeV [1–3] established that the W and Z gauge bosons ac-
quire mass via the Brout–Englert–Higgs mechanism [4–9]. Further 
insight into the electroweak (EW) symmetry breaking mechanism 
can be achieved through measurements of vector boson scattering 
(VBS) processes [10,11]. At the CERN LHC interactions from VBS are 
characterized by the presence of two gauge bosons, in association 
with two forward jets with large dijet invariant mass and large ra-
pidity separation, as shown in Fig. 1. They are part of a class of 
processes contributing to diboson plus two jets production that 
proceeds via the EW interaction, referred to as EW-induced dibo-
son production, at tree level, O(α

4
), where α is the EW coupling. 

An additional contribution to the diboson states arises via quan-
tum chromodynamics (QCD) radiation of partons from an incoming 
quark or gluon, leading to tree-level contributions at O(α

2
α

2
S ), 

where αS is the strong coupling. This class of processes is referred 
to as QCD-induced diboson production.

Modifications of the VBS production cross sections are pre-
dicted in models of physics beyond the standard model (SM), for 

� E-mail address: cms -publication -committee -chair @cern .ch.

example through changes to the Higgs boson couplings to gauge 
bosons [10,11]. In addition, the non-Abelian gauge structure of 
the EW sector of the SM predicts self-interactions between gauge 
bosons through triple and quartic gauge couplings, which can be 
probed via measurements of VBS processes [12,13]. The possible 
presence of anomalous quartic gauge couplings (aQGC) could re-
sult in an excess of events with respect to the SM predictions [14].

This letter presents a study of VBS in W±W± and WZ channels 
using proton-proton (pp) collisions at 

√
s = 13 TeV. For the WW

measurement, the same-sign W±W± channel is chosen because 
of the smaller background yield from SM processes compared to 
W±W∓ . The data sample corresponds to an integrated luminosity 
of 137 ± 2 fb−1 [15–17] collected with the CMS detector [18] in 
three separate LHC operating periods during 2016, 2017, and 2018. 
The three data sets are analyzed independently, with appropriate 
calibrations and corrections, to account for the various LHC run-
ning conditions and the performance of the CMS detector.

The measurements are performed in the leptonic decay modes 
W±W± → �

±
ν�

′±
ν and W±Z → �

±
ν�

′±
�
′∓ , where �, �′ = e, μ . 

Fig. 1 shows representative Feynman diagrams involving quartic 
vertices. Candidate events contain either two identified leptons of 
the same charge or three identified charged leptons with the to-
tal charge of ±1, moderate missing transverse momentum (pmiss

T ), 
and two jets with a large rapidity separation and a large dijet mass. 

https://doi.org/10.1016/j.physletb.2020.135710
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Fig. 1. Representative Feynman diagrams of a VBS process contributing to the EW-induced production of events containing W±W± (left) and WZ (right) boson pairs decaying 
to leptons, and two forward jets. New physics (represented by a dashed circle) in the EW sector can modify the quartic gauge couplings.

Fig. 2. Representative Feynman diagrams of the QCD-induced production of W±W± (left) and WZ (right) boson pairs decaying to leptons, and two jets.

The requirements on the dijet mass and rapidity separation reduce 
the contribution from the QCD-induced production of boson pairs 
in association with two jets, making the experimental signature an 
ideal topology for VBS studies. Fig. 2 shows representative Feyn-
man diagrams of the QCD-induced production. The EW W±W±
and WZ production cross sections are simultaneously measured 
by performing a binned maximum-likelihood fit of several distri-
butions sensitive to these processes.

The EW production of W±W± at the LHC in the leptonic decay 
modes has been previously measured at 

√
s = 8 and 13 TeV [19–

22]. The ATLAS and CMS Collaborations reported observations of 
the EW W±W± production at 13 TeV with a significance greater 
than 5 standard deviations using the data collected in 2016, corre-
sponding to integrated luminosities of approximately 36 fb−1. The 
EW WZ production in the fully leptonic decay modes has been 
studied at 8 and 13 TeV [23–25]; the ATLAS Collaboration reported 
an observation at 13 TeV with a significance greater than 5 stan-
dard deviations. The EW production of W±W± and WZ boson 
pairs has also been studied in semileptonic final states [26]. Limits 
on aQGCs were also reported in Refs. [27,28].

2. The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic field 
of 3.8 T. Within the solenoid volume are a silicon pixel and 
strip tracker, a lead-tungstate crystal electromagnetic calorimeter 
(ECAL), and a brass and scintillator hadron calorimeter, each com-
posed of a barrel and two endcap sections. Forward calorimeters 
extend the pseudorapidity (η) coverage provided by the barrel 
and endcap detectors up to |η| < 5. Muons are detected in gas-
ionization chambers embedded in the steel magnetic flux-return 
yoke outside the solenoid. A more detailed description of the CMS 
detector, together with a definition of the coordinate system and 
the relevant kinematic variables, is reported in Ref. [18]. Events 
of interest are selected using a two-tiered trigger system [29]. The 

first level, composed of custom hardware processors, uses informa-
tion from the calorimeters and muon detectors to select events at 
a rate of around 100 kHz with a latency of 4 μs. The second level, 
known as the high-level trigger, consists of a farm of processors 
running a version of the full event reconstruction software opti-
mized for fast processing, and reduces the event rate to around 
1 kHz before data storage.

3. Signal and background simulation

Multiple Monte Carlo (MC) event generators are used to simu-
late the signal and background contributions. Three sets of simu-
lated events for each process are needed to match the data-taking 
conditions in the various years.

The SM EW W±W± and WZ processes, where both bosons 
decay leptonically, are simulated using MadGraph5_amc@nlo

2.4.2 [30–32] at leading order (LO) accuracy with six EW (O(α
6
)) 

and zero QCD vertices. MadGraph5_amc@nlo 2.4.2 is also used 
to simulate the QCD-induced W±W± process. Contributions with 
an initial-state b quark are excluded from the EW WZ simu-
lation because they are considered part of the tZq background 
process. Triboson processes, where the WZ boson pair is accompa-
nied by a third vector boson that decays into jets, are included 
in the simulation. The simulation of the aQGC processes uses 
the MadGraph5_amc@nlo generator and employs matrix element 
reweighting to obtain a finely spaced grid of parameters for each 
of the probed anomalous couplings [33]. The QCD-induced WZ
process is simulated at LO with up to three additional partons in 
the matrix element calculations using the MadGraph5_amc@nlo

generator with at least one QCD vertex at tree level. The dif-
ferent jet multiplicities are merged using the MLM scheme [34]
to match matrix element and parton shower jets, and the inclu-
sive contribution is normalized to next-to-next-to-leading order 
(NNLO) predictions [35]. The interference between the EW and 
QCD diagrams is also produced with MadGraph5_amc@nlo. The 
contribution of the interference is considered to be part of the EW 
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production, leading to an increase of about 4 and 1% of the ex-
pected yields of the EW W±W± and WZ processes in the fiducial 
region, respectively.

A complete set of next-to-leading order (NLO) QCD and EW 
corrections for the leptonic W±W± scattering process have been 
computed [36,37] and they reduce the LO cross section of the 
EW W±W± process at the level of 10-15%, with the correction 
increasing in magnitude with increasing dilepton and dijet in-
variant masses. Similarly, the NLO QCD and EW corrections for 
the leptonic WZ scattering process have been computed at the 
orders of O(αSα

6
) and O(α

7
) [38], reducing the cross sections 

for the EW WZ process at the level of 10%. The predictions for 
the cross sections of the EW W±W± and WZ processes are also 
made after applying these O(αSα

6
) and O(α

7
) corrections to Mad-

Graph5_amc@nlo LO cross sections. These corrections have ap-
proximately 1% effect on the measurements and are not included 
at the data analysis level. Satisfactory agreement between pre-
dictions from MadGraph5_amc@nlo and various event generators 
and fixed-order calculations in the fiducial region is reported in 
Ref. [39].

The powheg v2 [40–44] generator is used to simulate the tt , 
tW, and other diboson processes at NLO accuracy in QCD. Pro-
duction of tt W, ttZ, ttγ , and triple vector boson (VVV) back-
ground events is simulated at NLO accuracy in QCD using the Mad-

Graph5_amc@nlo 2.2.2 (2.4.2) generator [30–32] for 2016 (2017 
and 2018) samples. The tZq process is simulated at NLO in the 
four-flavor scheme using MadGraph5_amc@nlo 2.3.3. The MC sim-
ulation is normalized using a cross section computed at NLO with
MadGraph5_amc@nlo in the five-flavor scheme, following the pro-
cedure of Ref. [45]. The double parton scattering W±W± produc-
tion is generated at LO using pythia 8.226 (8.230) [46] in 2016 
(2017 and 2018).

The NNPDF 3.0 NLO [47] (NNPDF 3.1 NNLO [48]) parton dis-
tribution functions (PDFs) are used for simulating all 2016 (2017 
and 2018) samples. For all processes, the parton showering and 
hadronization are simulated using pythia 8.226 (8.230) in 2016 
(2017 and 2018). The modeling of the underlying event is gener-
ated using the CUETP8M1 [49,50] (CP5 [51]) tune for simulated 
samples corresponding to the 2016 (2017 and 2018) data.

All MC generated events are processed through a simulation of 
the CMS detector based on Geant4 [52] and are reconstructed with 
the same algorithms used for data. Additional pp interactions in 
the same and nearby bunch crossings, referred to as pileup, are 
also simulated. The distribution of the number of pileup interac-
tions in the simulation is adjusted to match the one observed in 
the data. The average number of pileup interactions was 23 (32) in 
2016 (2017 and 2018).

4. Event reconstruction

The CMS particle-flow (PF) algorithm [53] is used to combine 
the information from all subdetectors for particle reconstruction 
and identification. The vector �pmiss

T is defined as the projection 
onto the plane perpendicular to the beam axis of the negative vec-
tor momentum sum of all reconstructed PF objects in an event. Its 
magnitude is referred to as pmiss

T .
Jets are reconstructed by clustering PF candidates using the 

anti-kT algorithm [54] with a distance parameter R = 0.4. Jets are 
calibrated in the simulation, and separately in data, accounting 
for energy deposits of neutral particles from pileup and any non-
linear detector response [55,56]. Jets with transverse momentum 
pT > 50 GeV and |η| < 4.7 are included in the analysis. The effect 
of pileup is mitigated through a charged-hadron subtraction tech-
nique, which removes the energy of charged hadrons not originat-
ing from the event primary vertex (PV) [57]. Jet energy corrections 

to the detector measurements are propagated to pmiss
T [58]. The PV 

is defined as the vertex with the largest value of summed physics-
object p2

T. Here, the physics objects are the jets clustered using the 
jet finding algorithm [54,59] with the tracks assigned to the vertex 
as inputs, and the associated pmiss

T , taken as the negative vector pT
sum of those jets.

The DeepCSV b tagging algorithm [60] is used to identify events 
containing a jet that is consistent with the fragmentation of a bot-
tom quark. This tagging algorithm, an improved version of previous 
taggers, was developed using a deep neural network with a more 
sophisticated architecture and it provides a simultaneous training 
in both secondary vertex categories and jet flavors. For the cho-
sen working point, the efficiency to select b quark jets is about 
72% and the rate for incorrectly tagging jets originating from the 
hadronization of gluons or u, d, s quarks is about 1%.

Electrons and muons are reconstructed by associating a track 
reconstructed in the tracking detectors with either a cluster of en-
ergy in the ECAL [61] or a track in the muon system [62]. Electrons 
(muons) must pass “loose” identification criteria with pT > 10 GeV
and |η| < 2.5 (2.4) to be selected for the analysis. At the final stage 
of the lepton selection, tight working points, following the defini-
tions provided in Refs. [61,62], are chosen for the identification 
criteria, including requirements on the impact parameter of the 
candidates with respect to the PV and their isolation with respect 
to other particles in the event [63]. For electrons, the background 
contribution coming from a mismeasurement of the track charge 
is not negligible. The sign of this charge is evaluated with three 
different observables that measure the electron curvature using 
different methods; requiring all three charge evaluations to agree 
reduces this background contribution by a factor of five with an ef-
ficiency of about 97% [61]. For muons, the charge mismeasurement 
is negligible [64,65].

5. Event selection

Collision events are collected using single-electron and single-
muon triggers that require the presence of an isolated lepton with 
pT larger than 27 and 24 GeV, respectively. In addition, a set of 
dilepton triggers with lower pT thresholds are used, ensuring a 
trigger efficiency above 99% for events that satisfy the subsequent 
offline selection.

Several selection requirements are used to isolate the VBS 
topology by reducing the contributions from background pro-
cesses. By inverting some of these selection requirements we 
can select background-enriched control regions (CRs). In the of-
fline analysis, events with two or three isolated charged leptons 
with pT > 10 GeV and at least two jets with pj

T > 50 GeV and 
|η| < 4.7 are accepted as candidate events. Jets that are within 
�R =

√
(�η)

2 + (�φ)
2

< 0.4 of one of the identified charged lep-
tons are excluded. Candidate events with four or more charged 
leptons satisfying the loose identification criteria are rejected.

In the WZ candidate events, one of the oppositely charged 
same-flavor leptons from the Z boson candidate is required to have 
pT > 25 GeV and the other pT > 10 GeV with the invariant mass of 
the dilepton pair m�� satisfying |m�� − mZ | < 15 GeV. In candidate 
events with three same-flavor leptons, the oppositely charged lep-
ton pair with the invariant mass closest to the nominal Z boson 
mass mZ [66] is selected as the Z boson candidate. The third lep-
ton with pT > 20 GeV is associated with the W boson. In addition, 
the trilepton invariant mass m��� is required to exceed 100 GeV.

One of the leptons in the same-sign W±W± candidate events 
is required to have pT > 25 GeV and the other pT > 20 GeV. The in-
variant mass of the dilepton pair m�� must be greater than 20 GeV. 
Candidate events in the dielectron final state with |m�� − mZ | <
15 GeV are rejected to reduce the number of Z boson background 
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Table 1
Summary of the selection requirements defining the W±W± and WZ SRs. The 
looser lepton pT requirement on the WZ selection refers to the trailing lepton from 
the Z boson decays. The |m�� − mZ | requirement is applied to the dielectron final 
state only in the W±W± SR.

Variable W±W± WZ

Leptons 2 leptons, pT > 25/20 GeV 3 leptons, pT > 25/10/20 GeV

pj
T >50 GeV >50 GeV

|m�� − mZ | >15 GeV (ee) <15 GeV
m�� >20 GeV —
m��� — >100 GeV

pmiss
T >30 GeV >30 GeV

b quark veto Required Required
max(z∗

� ) <0.75 <1.0
mjj >500 GeV >500 GeV
|�ηjj| >2.5 >2.5

events where the charge of one of the electron candidates is 
misidentified.

The VBS topology is targeted by requiring a large dijet invariant 
mass mjj > 500 GeV and a large pseudorapidity separation |�ηjj| >
2.5. The candidate W±W± (WZ) events are also required to have 
max(z∗

�) <0.75 (1.0), where

z∗
� =

∣∣∣η� − η
j1 + η

j2

2

∣∣∣/|�ηjj| (1)

is the Zeppenfeld variable [67], η� is the pseudorapidity of a lep-
ton, and ηj1 and ηj2 are the pseudorapidities of the two candidate 
VBS jets. In the case of more than two jet candidates, the two jets 
with the largest pT are selected.

The pmiss
T associated with the undetected neutrinos is required 

to be greater than 30 GeV. The list of selection requirements used 
to define the same-sign W±W± and WZ signal regions (SRs) is 
summarized in Table 1. The W±W± SR is dominated by the EW 
signal process, whereas the WZ SR has a very large component of 
the QCD WZ process, as seen in Table 4.

6. Background estimation

A combination of methods based on CRs in data and simula-
tion is used to estimate background contributions. Uncertainties 
related to the theoretical and experimental predictions are esti-
mated as described in Section 7. The normalization of the WZ
contribution in the W±W± SR is constrained by the data in the 
WZ SR, which is evaluated simultaneously for the extraction of 
results. The background contribution from charge misidentifica-
tion (wrong-sign) is estimated by applying a data-to-simulation 
efficiency correction due to charge-misidentified electrons. The 
electron charge misidentification rate, estimated using Drell–Yan 
events, is about 0.01 (0.3)% in the barrel (endcap) region [61,68].

The nonprompt lepton backgrounds originating from leptonic 
decays of heavy quarks, hadrons misidentified as leptons, and elec-
trons from photon conversions are suppressed by the identification 
and isolation requirements imposed on electrons and muons. The 
remaining contribution from the nonprompt lepton background is 
estimated directly from a data sample following the technique de-
scribed in Ref. [19]. This sample is selected by choosing events 
using the final selection criteria, except for one of the leptons for 
which the selection is relaxed to a looser criteria and that has 
failed the nominal selection. The yield in this sample is extrap-
olated to the signal region using the efficiencies for such loosely 
identified leptons to pass the standard lepton selection criteria. 
This efficiency is calculated in a sample of events dominated by 
dijet production. A normalization uncertainty of 20% is assigned 

for the nonprompt lepton background to include possible differ-
ences in the composition of jets between the data sample used to 
derive these efficiencies and the data samples in the W±W± and 
WZ SRs [63].

Three CRs are used to select nonprompt lepton, tZq, and ZZ
background-enriched events to further estimate these processes 
from data. The ZZ process is treated as background since the 
analysis selection is not sensitive to the EW ZZ production. The 
nonprompt lepton CR is defined by requiring the same selection 
as for the W±W± SR, but with the b quark veto requirement in-
verted. The selected events are enriched with the nonprompt lep-
ton background, coming mostly from semileptonic tt events, and 
further estimates the contribution of this background process in 
the W±W± SR. Similarly, the tZq CR is defined by requiring the 
same selection as for the WZ SR, but with the b quark veto re-
quirement inverted. The selected events are dominated by the tZq
background process. Finally, the ZZ CR selects events with four lep-
tons with the same VBS-like requirements. The three CRs are used 
to estimate the normalization of the main background processes 
from data. All other background processes are estimated from sim-
ulation after applying corrections to account for small differences 
between data and simulation.

Two sets of additional CRs are defined for the W±W± and WZ
measurements to validate the predictions of the background pro-
cesses. The first CR is defined by requiring the same selection as 
for the W±W± SR, but with a requirement of 200 < mjj < 500 GeV. 
The second CR is defined by selecting events satisfying the re-
quirements on the leptons, pj

T, and mjj , but with at least one of 
the other requirements in Table 1 not satisfied. Good agreement 
between the data and predicted yields is observed in all these re-
gions.

7. Systematic uncertainties

Multiple sources of systematic uncertainty are estimated for 
these measurements. Independent sources of uncertainty are 
treated as uncorrelated. The impact in different bins of a differ-
ential distribution is considered fully correlated for each source of 
uncertainty.

The uncertainties in the integrated luminosity measurements 
for the data used in this analysis are 2.5, 2.3, and 2.5% for the 
2016, 2017, and 2018 data samples [15–17], respectively. They are 
treated as uncorrelated across the three data sets.

The simulation of pileup events assumes a total inelastic pp
cross section of 69.2 mb, with an associated uncertainty of 5% [69,
70], which has an impact on the expected signal and background 
yields of about 1%.

Discrepancies in the lepton reconstruction and identification ef-
ficiencies between data and simulation are corrected by applying 
scale factors to all simulation samples. These scale factors, which 
depend on the pT and η for both electrons and muons, are deter-
mined using Z → �� events in the Z boson peak region that were 
recorded with independent triggers [61,62,71]. The uncertainty in 
the determination of the trigger efficiency leads to an uncertainty 
smaller than 1% in the expected signal yield. The lepton momen-
tum scale uncertainty is computed by varying the momenta of 
the leptons in simulation by their uncertainties, and repeating the 
analysis selection. The resulting uncertainties in the yields are ≈1% 
for both electrons and muons. These uncertainties are treated as 
correlated across the three data sets.

The uncertainty in the calibration of the jet energy scale (JES) 
directly affects the acceptance of the jet multiplicity requirement 
and the pmiss

T measurement. These effects are estimated by shifting 
the JES in the simulation up and down by one standard devia-
tion. The uncertainty in the JES is 2–5%, depending on pT and 
η [55,56], and the impact on the expected signal and background 
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Table 2
Relative systematic uncertainties in the EW W±W± and WZ cross section measure-
ments in units of percent.

Source of uncertainty W±W± (%) WZ (%)

Integrated luminosity 1.5 1.6
Lepton measurement 1.8 2.9
Jet energy scale and resolution 1.5 4.3
Pileup 0.1 0.4
b tagging 1.0 1.0
Nonprompt rate 3.5 1.4
Trigger 1.1 1.1
Limited sample size 2.6 3.7
Theory 1.9 3.8
Total systematic uncertainty 5.7 7.9
Statistical uncertainty 8.9 22
Total uncertainty 11 23

yields is about 3%. There is a larger JES uncertainty in the EW WZ
cross section measurement since a multivariate analysis is used 
for the measurement, which helps discriminate against the back-
ground processes, but also increases the corresponding uncertainty, 
as seen in Table 2.

The b tagging efficiency in the simulation is corrected using 
scale factors determined from data [60]. These values are esti-
mated separately for correctly and incorrectly identified jets. Each 
set of values results in uncertainties in the b tagging efficiency of 
about 1–4%, and the impact on the expected signal and background 
yields is about 1%. The uncertainties in the JES and b tagging are 
treated as uncorrelated across the three data sets.

Because of the choice of the QCD renormalization and factoriza-
tion scales, the theoretical uncertainties are estimated by varying 
these scales independently up and down by a factor of two from 
their nominal values (excluding the two extreme variations) and 
taking the largest cross section variations as the uncertainty [39]. 
The PDF uncertainties are evaluated according to the procedure de-
scribed in Ref. [72]. The statistical uncertainties that are associated 
with the limited number of simulated events and data events used 
to estimate the nonprompt lepton background are also considered 
as systematic uncertainties; the data events are the dominant con-
tribution.

A summary of the relative systematic uncertainties in the EW 
W±W± and WZ cross sections is shown in Table 2. The slightly 
larger theoretical uncertainty in the EW WZ cross section mea-
surement arises from the difficulty of disentangling the EW and 
QCD components in the discriminant fit.

8. Results

To discriminate between the signals and the remaining back-
grounds, a binned maximum-likelihood fit is performed using the 
W±W± and WZ SRs, and the nonprompt lepton, tZq, and ZZ CRs. 
The normalization factors for the tZq and ZZ background pro-
cesses are included in the maximum-likelihood fit together with 
the EW W±W± , EW WZ, and QCD WZ signal cross sections. The 
QCD W±W± contribution is small and is taken from the SM pre-
diction. The systematic uncertainties are treated as nuisance pa-
rameters in the fit [73,74].

The value of mjj is effective in discriminating between the sig-
nal and background processes because VBS topologies typically 
exhibit large values for the dijet mass. The value of m�� is also ef-
fective in discriminating between signal and background processes 
because the nonprompt lepton processes tend to have rather small 
m�� values. A two-dimensional distribution is used in the fit for the 
W±W± SR with 8 bins in mjj ([500, 650, 800, 1000, 1200, 1500, 
1800, 2300, ∞] GeV) and 4 bins in m�� ([20, 80, 140, 240, ∞] GeV).

A boosted decision tree (BDT) is trained using the tmva pack-
age [75] with gradient boosting and optimized on simulated events 

to better separate the EW WZ and QCD WZ processes in the WZ
SR by exploring the kinematic differences. Several discriminating 
observables are used as the BDT inputs, including the jet and lep-
ton kinematics and pmiss

T , as listed in Table 3. A larger set of dis-
criminating observables was studied, but only variables improving 
the sensitivity and showing some signal-to-background separation 
are retained. The BDT score distribution is used for the WZ SR in 
the fit with 8 bins ([-1, -0.28, 0.0, 0.23, 0.43, 0.60, 0.74, 0.86, 1]). 
The mjj distribution is used for the CRs in the fit with 4 bins ([500, 
800, 1200, 1800, ∞] GeV). The bin boundaries are chosen to have 
the same EW W±W± and WZ contributions across the bins as ex-
pected from simulation.

The distributions of mjj and m�� in the W±W± SR, and the 
distributions of mjj and BDT score in the WZ SR are shown in 
Fig. 3. The data yields, together with the numbers of fitted signal 
and background events, are given in Table 4. The table also shows 
the result of a fit to the Asimov data set [76]. The significance 
of the EW WZ signal is quantified from the p-value using a pro-
file ratio test statistic [73,74] and asymptotic results for the test 
statistic [76]. The observed (expected) statistical significance of the 
EW WZ signal is 6.8 (5.3) standard deviations, while the statisti-
cal significance of the EW W±W± signal is far above 5 standard 
deviations.

8.1. Inclusive and differential fiducial cross section measurements

The fiducial region is defined by a common set of kinematic 
requirements in the muon and electron final states at the genera-
tor level, emulating the selection performed at the reconstruction 
level. The measured distributions, after subtracting the contribu-
tions from the background processes, are corrected for detector 
resolution effects and inefficiencies. The leptons at generator level 
are selected at the so-called dressed level by combining the four-
momentum of each lepton after the final-state photon radiation 
with that of photons found within a cone of �R = 0.1 around 
the lepton. The W±W± fiducial region is defined by requiring two 
same-sign leptons with pT > 20 GeV, |η| < 2.5, and m�� > 20 GeV, 
and two jets with mjj > 500 GeV and |�ηjj| > 2.5. The jets at gen-
erator level are clustered from stable particles, excluding neutrinos, 
using the anti-kT clustering algorithm with R = 0.4, and are re-
quired to have pT > 50 GeV and |η| < 4.7. The jets within �R < 0.4
of the selected charged leptons are not included. The WZ fidu-
cial region is defined by requiring three leptons with pT > 20 GeV, 
|η| < 2.5, a pair of opposite charge same-flavor lepton pair with 
|m�� −mZ | < 15 GeV, and two jets with mjj > 500 GeV and |�ηjj| >
2.5. MadGraph5_amc@nlo is used to extrapolate from the recon-
struction level to the fiducial phase space. Electrons and muons 
produced in the decay of a τ lepton are not included in the defini-
tion of the fiducial region. Nonfiducial events, i.e., events selected 
at the reconstructed level that do not satisfy the fiducial require-
ments, are included as background processes in the simultaneous 
fit.

Inclusive cross section measurements for the EW W±W± , 
EW+QCD W±W± , EW WZ, QCD WZ, and EW+QCD WZ processes, 
and the theoretical predictions are summarized in Table 5. To per-
form absolute and normalized differential production cross section 
measurements, signal templates from different bins of differential-
basis observable values predicted by the event generator are built. 
Each signal template is considered as a separate process in the 
simultaneous binned maximum-likelihood fit. In the normalized 
cross section measurements, the individual cross sections in every 
fiducial region and the total production cross section are simul-
taneously evaluated, reducing the systematic uncertainties. The 
signal extraction at reconstruction level and the unfolding into the 
generator level bins are performed in a single step in the simulta-
neous fit. The bin migration effects due to the detector resolution 
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Table 3
List and description of all the input variables used in the BDT analysis for the WZ SR.

Variable Definition

mjj Mass of the leading and trailing jets system
|�ηjj| Absolute difference in rapidity of the leading and trailing jets
�φjj Absolute difference in azimuthal angles of the leading and trailing jets

pj1
T pT of the leading jet

pj2
T pT of the trailing jet

η
j1 Pseudorapidity of the leading jet

|ηW − η
Z | Absolute difference between the rapidities of the Z boson and the 

charged lepton from the decay of the W boson
z∗
�i

(i = 1 − 3) Zeppenfeld variable of the three selected leptons
z∗

3� Zeppenfeld variable of the vector sum of the three leptons
�R j1,Z �R between the leading jet and the Z boson

| �pT
tot|/∑

i pi
T Transverse component of the vector sum of the bosons and tagging 

jets momenta, normalized to their scalar pT sum

Fig. 3. Distributions of mjj (upper left) and m�� (upper right) in the W±W± SR, and the distributions of mjj (lower left) and BDT score (lower right) in the WZ SR. The 
predicted yields are shown with their best fit normalizations from the simultaneous fit. Vertical bars on data points represent the statistical uncertainty in the data. The 
contribution of the QCD W±W± process is included together with the EW W±W± process. The histograms for tVx backgrounds include the contributions from tt V and 
tZq processes. The histograms for other backgrounds include the contributions from double parton scattering and VVV processes. The histograms for wrong-sign background 
include the contributions from oppositely charged dilepton final states from tt , tW, W+W− , and Drell–Yan processes. The overflow is included in the last bin. The bottom 
panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The gray bands represent the uncertainties in the predicted 
yields.
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Table 4
Expected yields from SM processes and observed data events in W±W± and WZ SRs. The combination of the 
statistical and systematic uncertainties is shown. The expected yields are shown with their best fit normaliza-
tions from the simultaneous fit to the Asimov data set and to the data. The signal yields do not include the QCD 
and EW NLO corrections.

Process W±W± SR WZ SR

Asimov data set Data Asimov data set Data

EW W±W± 209 ± 26 210 ± 26 — —
QCD W±W± 13.8 ± 1.6 13.7 ± 2.2 — —
Interference W±W± 8.4 ± 2.3 8.7 ± 2.3 — —
EW WZ 14.1 ± 4.0 17.8 ± 3.9 54 ± 15 69 ± 15
QCD WZ 43 ± 6.7 42.7 ± 7.4 118 ± 17 117 ± 17
Interference WZ 0.3 ± 0.1 0.3 ± 0.2 2.2 ± 0.9 2.7 ± 1.0
ZZ 0.7 ± 0.2 0.7 ± 0.2 6.1 ± 1.7 6.0 ± 1.8
Nonprompt 211 ± 43 193 ± 40 14.6 ± 7.4 14.4 ± 6.7
tVx 7.8 ± 1.9 7.4 ± 2.2 15.1 ± 2.7 14.3 ± 2.8
Wγ 9.0 ± 1.8 9.1 ± 2.9 1.1 ± 0.3 1.1 ± 0.4
Wrong-sign 13.5 ± 6.5 13.9 ± 6.5 1.6 ± 0.5 1.7 ± 0.7
Other background 5.0 ± 1.3 5.2 ± 2.1 3.3 ± 0.6 3.3 ± 0.7
Total SM 535 ± 52 522 ± 49 216 ± 21 229 ± 23
Data 524 229

Table 5
The measured inclusive cross sections for the EW W±W± , EW+QCD W±W± , EW WZ, EW+QCD WZ, and QCD 
WZ processes and the theoretical predictions with MadGraph5_amc@nlo at LO. The EW processes include the 
corresponding interference contributions. The theoretical uncertainties include statistical, PDF, and scale uncer-
tainties. Predictions with applying the O(αSα

6
) and O(α

7
) corrections to the MadGraph5_amc@nlo LO cross 

sections, as described in the text, are also shown. The predictions of the QCD W±W± and WZ processes do not 
include additional corrections. All reported values are in fb.

Process σ B (fb) Theoretical prediction 
without NLO corrections (fb)

Theoretical prediction 
with NLO corrections (fb)

EW W±W± 3.98 ± 0.45
3.93 ± 0.57 3.31 ± 0.47

0.37 (stat) ± 0.25 (syst)

EW+QCD W±W± 4.42 ± 0.47
4.34 ± 0.69

3.72 ± 0.59
0.39 (stat) ± 0.25 (syst)

EW WZ 1.81 ± 0.41
1.41 ± 0.21 1.24 ± 0.18

0.39 (stat) ± 0.14 (syst)

EW+QCD WZ 4.97 ± 0.46
4.54 ± 0.90 4.36 ± 0.88

0.40 (stat) ± 0.23 (syst)

QCD WZ 3.15 ± 0.49
3.12 ± 0.70 3.12 ± 0.70

0.45 (stat) ± 0.18 (syst)

are negligible. The measurement is compared with the Mad-

Graph5_amc@nlo predictions at LO. The MadGraph5_amc@nlo

predictions including the O(αSα
6
) and O(α

7
) corrections in the 

EW W±W± and WZ processes are also included in Table 5. The 
measured absolute and normalized W±W± differential cross sec-
tions in bins of mjj , m�� , and leading lepton pT (pmax

T ) are shown 
in Fig. 4. The absolute cross sections are shown in fb per GeV, 
while the normalized cross sections are shown in units of 1/bin. 
The pmax

T differential cross section measurements are performed 
by replacing the m�� variable by the pmax

T variable in the W±W±
SR in the simultaneous fit. The measured absolute and normalized 
WZ differential cross sections in bins of mjj are shown in Fig. 5. 
The mjj differential cross section measurements are estimated by 
replacing the BDT variable by the mjj variable with 8 bins ([500, 
650, 800, 1000, 1200, 1500, 1800, 2300, ∞] GeV) in the WZ SR in 
the simultaneous fit. The measured cross section values agree with 
the theoretical predictions within the uncertainties.

8.2. Limits on anomalous quartic gauge couplings

The events in the W±W± and WZ SRs are used to constrain 
aQGCs in the effective field theory (EFT) framework [77]. Nine 
independent charge-conjugate and parity conserving dimension-8 
effective operators are considered [14]. The S0 and S1 operators 

are constructed from the covariant derivative of the Higgs doublet. 
The T0, T1, and T2 operators are constructed from the SUL(2) gauge 
fields. The mixed operators M0, M1, M6, and M7 involve the SUL(2) 
gauge fields and the Higgs doublet.

A nonzero aQGC enhances the production cross section at large 
masses of the W±W± and WZ systems with respect to the SM 
prediction. The diboson transverse mass, defined as

mT(VV) =
√(∑

i
Ei

)2

−
(∑

i
pz,i

)2

, (2)

where Ei and pz,i are the energies and longitudinal components of 
the momenta of the leptons and neutrinos from the decay of the 
gauge bosons in the event, is used in the fit for both W±W± and 
WZ processes. The four-momentum of the neutrino system is de-

fined using the �pmiss
T , assuming that the values of the longitudinal 

component of the momentum and the invariant mass are zero.
A two-dimensional distribution is used in the fit for the W±W±

process with 5 bins in mT(WW) ([0, 350, 650, 850, 1050, ∞] GeV) 
and 4 bins in mjj ([500, 800, 1200, 1800, ∞] GeV). The SM WZ
contribution is considered to be background. Similarly, a two-
dimensional distribution is used in the fit for the WZ process with 
5 bins in mT(WZ) ([0, 400, 750, 1050, 1350, ∞] GeV) and 2 bins in 
mjj ([500, 1200, ∞] GeV). The mjj distribution is used for the non-
prompt lepton, tZq, and ZZ CRs in both fits with 4 bins ([500, 800, 
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Fig. 4. The measured absolute (left) and normalized (right) W±W± cross section measurements in bins of mjj (upper), m�� (middle), and pmax
T (lower). The ratios of the 

predictions to the data are also shown. The measurements are compared with the predictions from MadGraph5_amc@nlo at LO. The shaded bands around the data points 
correspond to the measurement uncertainty. The error bars around the predictions correspond to the combined statistical, PDF, and scale uncertainties. Predictions with 
applying the O(αSα

6
) and O(α

7
) corrections to the MadGraph5_amc@nlo LO cross sections, as described in the text, are also shown (dashed blue).

1200, 1800, ∞] GeV). The distributions of mT(VV) in the W±W±
and WZ SRs are shown in Fig. 6.

No excess of events with respect to the SM background predic-
tions is observed. The observed and expected 95% confidence level 
(CL) lower and upper limits on the aQGC parameters f /�4, where 
f is the dimensionless coefficient of the given operator and � is 
the energy scale of new physics, are derived from a modified fre-
quentist approach with the CLs criterion [73,74] and asymptotic re-

sults for the test statistic [76]. The expected cross section depends 
quadratically on aQGC, therefore the expected yields are calculated 
from a parabolic interpolation from the discrete coupling param-
eters of the simulated signals. Table 6 shows the individual lower 
and upper limits for the coefficients of the T0, T1, T2, M0, M1, 
M6, M7, S0, and S1 operators obtained by setting all other aQGCs 
parameters to zero for the W±W± and WZ channels, and their 
combination. The results are sensitive to the number of data events 
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Fig. 5. The measured absolute (left) and normalized (right) WZ cross section measurements in bins of mjj . The ratios of the predictions to the data are also shown. The 
measurements are compared with the predictions from MadGraph5_amc@nlo at LO. The shaded bands around the data points correspond to the measurement uncertainty. 
The error bars around the predictions correspond to the combined statistical, PDF, and scale uncertainties. Predictions with applying the O(αSα

6
) and O(α

7
) corrections to 

the MadGraph5_amc@nlo LO cross sections, as described in the text, are shown (dashed blue). The MadGraph5_amc@nlo predictions in the EW total cross sections are also 
shown (dark cyan).

Table 6
Observed and expected lower and upper 95% CL limits on the parameters of the quartic operators T0, T1, T2, M0, M1, M6, M7, S0, and S1 in W±W± and WZ channels, 
obtained without using any unitarization procedure. The last two columns show the observed and expected limits for the combination of the W±W± and WZ channels. 
Results are obtained by setting all other aQGCs parameters to zero.

Observed (W±W±) Expected (W±W±) Observed (WZ) Expected (WZ) Observed Expected

(TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4)

fT0/�
4 [-0.28, 0.31] [-0.36, 0.39] [-0.62, 0.65] [-0.82, 0.85] [-0.25, 0.28] [-0.35, 0.37]

fT1/�
4 [-0.12, 0.15] [-0.16, 0.19] [-0.37, 0.41] [-0.49, 0.55] [-0.12, 0.14] [-0.16, 0.19]

fT2/�
4 [-0.38, 0.50] [-0.50, 0.63] [-1.0 , 1.3] [-1.4, 1.7] [-0.35, 0.48] [-0.49, 0.63]

fM0/�
4 [-3.0, 3.2] [-3.7, 3.8] [-5.8, 5.8] [-7.6, 7.6] [-2.7, 2.9] [-3.6, 3.7]

fM1/�
4 [-4.7, 4.7] [-5.4, 5.8] [-8.2, 8.3] [-11, 11] [-4.1, 4.2] [-5.2, 5.5]

fM6/�
4 [-6.0, 6.5] [-7.5, 7.6] [-12, 12] [-15, 15] [-5.4, 5.8] [-7.2, 7.3]

fM7/�
4 [-6.7, 7.0] [-8.3, 8.1] [-10, 10] [-14, 14] [-5.7, 6.0] [-7.8, 7.6]

fS0/�
4 [-6.0, 6.4] [-6.0, 6.2] [-19, 19] [-24, 24] [-5.7, 6.1] [-5.9, 6.2]

fS1/�
4 [-18, 19] [-18, 19] [-30, 30] [-38, 39] [-16, 17] [-18, 18]

Table 7
Observed and expected lower and upper 95% CL limits on the parameters of the quartic operators T0, T1, T2, M0, M1, M6, M7, S0, and S1 in W±W± and WZ channels by 
cutting the EFT expansion at the unitarity limit. The last two columns show the observed and expected limits for the combination of the W±W± and WZ channels. Results 
are obtained by setting all other aQGCs parameters to zero.

Observed (W±W±) Expected (W±W±) Observed (WZ) Expected (WZ) Observed Expected

(TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4)

fT0/�
4 [-1.5, 2.3] [-2.1, 2.7] [-1.6, 1.9] [-2.0, 2.2] [-1.1, 1.6] [-1.6, 2.0]

fT1/�
4 [-0.81, 1.2] [-0.98, 1.4] [-1.3, 1.5] [-1.6, 1.8] [-0.69, 0.97] [-0.94, 1.3]

fT2/�
4 [-2.1, 4.4] [-2.7, 5.3] [-2.7, 3.4] [-4.4, 5.5] [-1.6, 3.1] [-2.3, 3.8]

fM0/�
4 [-13, 16] [-19, 18] [-16, 16] [-19, 19] [-11, 12] [-15, 15]

fM1/�
4 [-20, 19] [-22, 25] [-19, 20] [-23, 24] [-15, 14] [-18, 20]

fM6/�
4 [-27, 32] [-37, 37] [-34, 33] [-39, 39] [-22, 25] [-31, 30]

fM7/�
4 [-22, 24] [-27, 25] [-22, 22] [-28, 28] [-16, 18] [-22, 21]

fS0/�
4 [-35, 36] [-31, 31] [-83, 85] [-88, 91] [-34, 35] [-31, 31]

fS1/�
4 [-100, 120] [-100, 110] [-110, 110] [-120, 130] [-86, 99] [-91, 97]

with large mT(VV) values. These results are about a factor of two 
more restrictive than the previous analyses of the leptonic decay 
modes of the W±W± and WZ processes [21,24]. However, the re-
sults are less restrictive than the analysis using the semileptonic 
final states [28]. No unitarization procedure is applied to obtain 
these results.

The EFT is not a complete model and the presence of nonzero 
aQGCs will violate tree-level unitarity at sufficiently high energy. 
More physical limits can be obtained by cutting the EFT integra-
tion at the unitarity limit and adding the expected SM contri-

bution for generated events with VV invariant masses above the 
unitarity limit [78]. The unitarity limits for each aQGC parameter, 
typically about 1.5 TeV, are calculated using vbfnlo 1.4.0 [79–81]
after applying the appropriate Wilson coefficient conversion fac-
tors. Table 7 shows the individual lower and upper limits for 
the coefficients of the T0, T1, T2, M0, M1, M6, M7, S0, and 
S1 operators by cutting off the EFT expansion at the unitar-
ity limit. These limits are significantly less stringent compared 
with the limits in Table 6, where the unitarity violation is not 
considered.
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Fig. 6. Distributions of mT(WW) (upper) in the W±W± SR and mT(WZ) (lower) in 
the WZ SR. The gray bands include uncertainties from the predicted yields. The SM 
predicted yields are shown with their best fit normalizations from the correspond-
ing fits. The contribution of the QCD W±W± process is included together with the 
EW W±W± process. The overflow is included in the last bin. The bottom panel in 
each figure shows the ratio of the number of events observed in data to the total 
SM prediction. The solid lines show the signal predictions for two illustrative aQGC 
parameters.

9. Summary

The production cross sections of WZ and same-sign WW bo-
son pairs in association with two jets are measured in proton-
proton collisions at a center-of-mass energy of 13 TeV. The data 
sample corresponds to an integrated luminosity of 137 fb−1, col-
lected with the CMS detector during 2016–18. The measurements 
are performed in the leptonic decay modes W±Z → �

±
ν�

′±
�
′∓

and W±W± → �
±
ν�

′±
ν , where �, �′ = e, μ . An observation of 

electroweak production of WZ boson pairs is reported with an 
observed (expected) significance of 6.8 (5.3) standard deviations. 
Differential cross sections as functions of the invariant masses of 
the jet and charged lepton pairs, as well as the leading-lepton 
transverse momentum, are measured for W±W± production and 
are compared to the standard model predictions. Differential cross 

sections as a function of the invariant mass of the jet pair are also 
measured for WZ production. Stringent limits are set in the frame-
work of effective field theory, with and without consideration of 
tree-level unitarity violation, on the dimension-8 operators T0, T1, 
T2, M0, M1, M6, M7, S0, and S1.
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