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Abstract: Cancer has myriad effects on metabolism that include both rewiring of in-
tracellular metabolism to enable cancer cells to proliferate inappropriately and adapt 
to the tumor microenvironment, and changes in normal tissue metabolism. With the 
recognition that fluorodeoxyglucose-positron emission tomography imaging is an im-
portant tool for the management of many cancers, other metabolites in biological 
samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. 
Metabolomics is the global analysis of small molecule metabolites that like other 
-omics technologies can provide critical information about the cancer state that are 
otherwise not apparent. Here, the authors review how cancer and cancer therapies 
interact with metabolism at the cellular and systemic levels. An overview of me-
tabolomics is provided with a focus on currently available technologies and how they 
have been applied in the clinical and translational research setting. The authors also 
discuss how metabolomics could be further leveraged in the future to improve the 
management of patients with cancer. CA Cancer J Clin 2021;71:333-358. © 2021 The 
Authors. CA: A Cancer Journal for Clinicians published by Wiley Periodicals LLC 
on behalf of American Cancer Society. This is an open access article under the 
terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, 
which permits use and distribution in any medium, provided the original work is 
properly cited, the use is non-commercial and no modifications or adaptations 
are made.
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Introduction
In cancer cells, metabolism is dysregulated to support the demands of uncon-
trolled proliferation.1-3 This rewiring of cellular metabolism leads to character-
istic metabolic phenotypes that can be used for earlier cancer diagnosis, patient 
selection strategies for clinical trials, and/or as biomarkers of treatment response. 
Altered metabolism also results in unique metabolic dependencies that, in some 
cases, can be targeted with precision medicine and nutrition, including drugs that 
selectively target metabolic enzymes.4,5 Cancer and cancer therapies can also alter 
metabolism at the whole-body level and interact with the metabolic effects of 
diet and exercise in complex ways that may affect cancer outcomes and impact a 
patient’s quality of life.

In the past, much of the assessment of metabolic changes has been limited to 
measuring individual hormones and metabolites using imaging modalities and 
standard clinical laboratory tests. In contrast, metabolomics involves the systematic 
measurement of many metabolites, including nutrients, drugs, signaling mediators, 
and the metabolic products of these small molecules in blood, urine, tissue extracts, 
or other body fluids.6 Metabolomics is a powerful tool that can identify cancer 
biomarkers and drivers of tumorigenesis.7 The objective of this review is to provide 
an overview of current and future opportunities of metabolomics to improve the 
diagnosis, monitoring, and treatment of cancer. We begin with a review of how 
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metabolism and cancer interact at the level of cells, tissues, 
and the whole body (Fig. 1). We then introduce general 
technical aspects of metabolomics, instrumentation, and 
source material, including the pros and cons of different ap-
proaches. In the final section, we provide examples of how 
metabolomics has been used in the clinical and translational 
research setting as a way to guide potential future applica-
tions. Because the role of metabolism in cancer has been 
extensively covered, the reader is referred to other excellent 
reviews cited throughout this article for a more in-depth 
discussion of specific topics.

Metabolism in Tumors and Patients With 
Cancer
In this section, we explore the intersection between metabo-
lism, cancer, and therapy. We begin with a discussion of met-
abolic alterations in cancer cells and review drugs that target 
metabolic pathways. We then discuss the effect of cancer and 
cancer therapy on systemic metabolism. Finally, the role of 
diet and lifestyle factors in carcinogenesis and response to 
therapy is reviewed.

Cancer Cell Metabolism
One of the earliest and most recognized metabolic altera-
tions in cancer cells is increased glucose consumption by 
tumors. Elevated glucose uptake by tumors is detected by 
fluorodeoxyglucose-positron emission tomography (FDG-
PET) imaging for initial cancer staging, assessing response 
to therapy, and surveillance. Beginning with the initial ob-
servation by Otto Warburg and others nearly a century ago 
that tumor cells increase glucose uptake and produce high 
quantities of lactate, even in the presence of oxygen, it has 
been well established that cancer cells engage in altered 
metabolism.8-11 Through much of the genomic era, from 
the inception of gene cloning technologies and subsequent 
cancer gene discovery, cancer biology was focused on how 
signaling pathways and transcription factors control cancer 
growth and the cell cycle. However, in recent years, there 
has been a renewed interest in understanding how altered 
metabolism contributes to cancer pathogenesis. Many fac-
tors, such as tumor hypoxia, stromal composition, immune 
cell infiltration, and genetic alterations, play critical roles in 
defining cancer cell metabolism. Genetic and/or epigenetic 

FIGURE 1. Cancer and metabolism interact at many levels. Cancer causes metabolic alterations in cancer cells and normal tissues, which, in turn, interact 
with intrinsic and extrinsic factors to affect systemic metabolism. Metabolomics is a systems-based approach used to define these complex metabolic 
interactions for diagnostic and therapeutic gain. See text for details.

Medicine, the Ludwig Center at Massachusetts Institute of Technology, a faculty scholars grant from the Howard Hughes Medical Institute; and reports consulting 
fees from and owns stock in Agios Pharmaceutics, iTeos Therapeutics, Faeth Therapeutics, Aeglea Biotherapeutics, and Auron Therapeutics. Rutulkumar Patel 
reports no conflicts of interest.

doi: 10.3322/caac.21670. Available online at cacancerjournal.com

https://doi.org/10.3322/caac.21670
http://cacancerjournal.com


CA CANCER J CLIN 2021;71:333–358

335VOLUME 71 | NUMBER 4 | JULY/AUGUST 2021

alterations can provide a crucial survival advantage to can-
cer cells in a nutrient-starved environment. The renewed 
interest in cancer cell metabolism came initially from recog-
nizing that dysregulated signaling pathways and transcrip-
tional reprograming result in metabolic alterations in cancer 
cells.12-15 Subsequently, it has been shown that the induction 
of oncogenes and/or loss of tumor suppressors is/are suffi-
cient to drive metabolic changes in cancer cells.16-19 Indeed, 
tumor-associated metabolic alterations are recognized as an 
emerging cancer hallmark.1,20 In this section, we briefly re-
view select examples of how metabolism is altered in cancer 
cells to highlight the diversity of mechanisms underlying 
rewired metabolism in cancer cells. For further information, 
the reader is referred to several excellent reviews of cancer 
metabolism.12,13,15,21-24

Glucose is the single most abundant nutrient for most 
cells and can be a source of biomass and fuel for energy pro-
duction. Numerous signaling pathways altered in cancer af-
fect glucose metabolism through a variety of mechanisms. 
In one classic paradigm, receptor tyrosine kinases induced 
by insulin or other growth factors activate the PI3K-AKT 
signaling pathway to stimulate glycolysis.25 AKT (also 
known as protein kinase B) is a serine-threonine kinase that 
can increase glycolytic activity directly by phosphorylating 
hexokinase (the enzyme that catalyzes the first step in gly-
colysis) and indirectly by phosphorylation of substrates that 
regulate trafficking of glucose transporters 1 and 4 (GLUT1 
and GLUT4) to the plasma membrane.26-28 PI3K-AKT 
signaling also induces mammalian target of rapamycin com-
plex 1 (mTORC1), which results in increased expression of 
hypoxia-inducible factor 1α (HIF1α).29-32 HIFs are het-
erodimeric transcription factors consisting of an α-subunit 
(HIF1α and HIF2α), which is degraded in the presence 
of oxygen, and a stable β-subunit (HIF1β) (also known as 
ARNT).33 In the presence of hypoxia, HIFs are stabilized 
and activate a transcriptional response that allows adaptation 
to hypoxic stress, including increased expression of GLUT1 
and GLUT3, hexokinase 2 (HK2), and some isoforms of 
phosphofructokinase 2.34 HIF1α also promotes pyruvate de-
hydrogenase kinase expression, which inhibits pyruvate ox-
idation and shunts glucose metabolism toward lactate as an 
adaptation to hypoxic conditions.35 HIF2α regulates other 
aspects of anabolic metabolism and is a therapeutic target 
in clear cell renal cell carcinoma.36,37 Growth factor recep-
tor signaling also activates RAS proteins to promote glucose 
uptake, glycolysis, and the pentose phosphate pathway. For 
example, in pancreatic ductal adenocarcinoma (PDAC), on-
cogenic KRAS drives glycolytic intermediates into the non-
oxidative pentose phosphate pathway to support nucleotide 
production.38

Energy is maximally released when glucose is com-
pletely oxidized to CO2, a process that produces ATP 

through oxidative phosphorylation (OXPHOS). When  
oxygen is limiting in cells, glycolysis becomes uncoupled 
from OXPHOS, and the end product of glycolysis, pyruvate, 
is instead reduced to lactate. Interestingly, in many cancer 
cells, glucose is preferentially catabolized through fermenta-
tion to lactate even when oxygen is not limiting (the Warburg 
effect). The conversion of pyruvate to lactate appears to be 
an essential mechanism by which cancer cells maintain an 
appropriate balance of redox cofactors to support biosyn-
thetic functions.2,39 It has been shown that loss of TP53 ac-
tivity can push cells toward the glycolytic pathway instead 
of OXPHOS.40 As first demonstrated nearly a century ago, 
tumors net dispose of lactate through systemic circulation, 
from where it is taken up by the liver and re-converted to glu-
cose through gluconeogenesis (the Cori cycle).41,42. Recently, 
it has been reported that lactate may also be taken up by 
some cells in tumors to fuel the tricarboxylic acid (TCA) 
cycle,43-45 but how this relates to increased glucose uptake 
remains an open question.46

In addition to glucose, increased uptake of other nutri-
ents by cancer cells has been shown to support cancer cell 
survival, growth, and invasion. Oncogenic MYC has been 
linked to increased glutaminolysis, which results in gluta-
mine addiction in some cancer cells.47 Glutamine, like glu-
cose, can provide carbons for lipogenesis, and MYC has been 
shown to regulate fatty acid metabolism.48,49 Inactivation of 
the tumor suppressor retinoblastoma protein has also been 
shown to increase glutamine utilization because of the up-
regulation of glutamine transporter ASCT2 in human cancer 
cells.50 Although glucose and glutamine are the most abun-
dant nutrients in plasma and tissue culture media, the list of 
nutrients consumed by cultured cancer cells and tumors is 
vast. It is likely that, in most cases, the requirement for spe-
cific nutrients depends on tumor type and nutrient environ-
ment. For example, dependence on glutamine can be driven 
by high levels of extracellular cystine,51 and some tumors are 
less dependent on glutamine metabolism in vivo.52,53 As an-
other example, many prostate cancers are not FDG-avid, yet 
they demonstrate increased uptake of [18F]-fluciclovine (a 
synthetic analog of leucine) and [11C]-choline used in PET 
imaging to detect metastases that are otherwise occult by 
conventional imaging.54,55 How tumors balance glucose and 
glutamine metabolism with other nutrients available in their 
environment is an area of active investigation.

As demonstrated by the following examples, the cancer 
genomic era also brought the recognition that some met-
abolic enzyme are frequently mutated or amplified across 
a variety of cancer cell types. A recently published study 
analyzed a database from The Cancer Genome Atlas of 
>10,000 tumors across 32 cancer types and found at least 
one metabolic gene alteration per tumor with a varied num-
ber of metabolic gene alterations among cancer types.56 
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Germline mutations in 2 TCA cycle enzymes, fumarate hy-
dratase and succinate dehydrogenase, predispose to cancer 
syndromes hereditary leiomyomatosis and renal cell cancer 
and hereditary paraganglioma-pheochromocytoma, respec-
tively.57,58 Affected individuals show loss of heterozygosity 
(or mutation) of the wild-type fumarate hydratase and succi-
nate dehydrogenase allele in tumor tissue, which leads to the 
accumulation of fumarate and succinate, respectively. These 
metabolites, when present at high concentrations, inhibit 
DNA, histone demethylases, and prolyl hydroxylases, result-
ing in DNA hypermethylation, chromatin modification, and 
stabilization of HIF1α and HIF2α and other oncogenic fac-
tors.59-61 Therefore, mutations in a single metabolic gene can 
result in altered metabolite levels, leading to transcriptional 
changes in cancer cells that promote uncontrolled growth.

Another prominent example of a metabolic enzyme 
that is frequently mutated in cancer is isocitrate dehydro-
genase (IDH). Mutations in the IDH-1 and IDH-2 genes 
occur in a significant percentage of patients who have 
malignant glioma (60%-90%), chondrosarcoma (50%-
70%), cholangiocarcinoma (10%-20%), acute myeloid leu-
kemia (AML) (10%-20%), and, less frequently, in other 
cancers.62 In glioma, IDH mutations are prognostic and 
predictive of response to the DNA alkylating agent, te-
mozolomide.63,64 Cancer-associated IDH mutations occur 
exclusively in the enzyme’s active site, which creates neo-
morphic activity, resulting in excessive production of the on-
cometabolite D-2-hydroxyglutarate (D-2-HG).65,66 When 
D-2-HG levels build up in tumors, it blocks the activity 
of 2-oxoglutarate–dependent DNA and histone demethy-
lases. This, in turn, leads to hypermethylation and silencing 
of genes, including the enzyme O6-methylguanine-DNA 
methyltransferase, which reverses DNA damage caused by 
temozolomide.67-70 Therefore, a metabolite produced at 
high levels exclusively in IDH-mutant gliomas increases 
these cancers’ sensitivity to temozolomide.

As pointed out in the examples above, mutations or dele-
tions in metabolic enzymes can cause an abnormal accumu-
lation of intracellular metabolites that lead to altered protein 
function through allosteric regulation. In addition, genes 
encoding metabolic enzymes can also undergo amplification 
through copy number alteration. For example, amplification 
of phosphoglycerate dehydrogenase (PHGDH), the first rate-
limiting enzyme in the serine synthesis pathway, is observed 
in various cancer types, including a subset of melanomas and 
triple-negative breast cancers.71,72 Serine is a proteinogenic 
amino acid that is also a significant source of one-carbon 
units for the folate cycle, which is required for de novo syn-
thesis of purines and thymidine and, in some settings, has 
also been shown to contribute to NADPH production.73 
Some cancer cells require PHGDH amplification to obtain 
sufficient serine to support cancer cell proliferation.71,72

Cell lineage is also recognized as an important determi-
nant of cancer cell phenotypes, including metabolic activ-
ity, proliferative index, metastatic potential, and response to 
therapy. As organs and tissues are formed during develop-
ment, genetic programs are executed that determine cell fate. 
These developmental programs ultimately drive progenitor 
cells to become specialized cell types with unique metabolic 
activities designed to support the function of a given tissue 
type. During carcinogenesis, metabolic activity is rewired to 
support cancer growth, yet how cancer and associated stro-
mal cells adapt their metabolism depends on the tissue and 
cell of origin of the cancer.74-76 Cancer cells can maintain 
specific metabolic signatures, analogous to how cancer cells 
maintain lineage markers that reflect the tissue/cell type of 
origin.77 For example, it has been described that primary 
prostate cancer and prostate cancer metastases maintain in-
creased production of citrate, a metabolite that is secreted in 
high quantities by normal prostate glands.78

In addition to metabolic alterations that are intrinsic to 
cancer cells, it is also increasingly recognized that metabolic 
alterations occur in other cells within the tumor microenvi-
ronment; these changes can also contribute to cancer pro-
gression (reviewed by Elia and Haigis79 and Lyssiotis and 
Kimmelman80). Furthermore, cancer cell heterogeneity 
and plasticity can also manifest as metabolic heterogeneity. 
Several studies have attempted to characterize metabolic 
heterogeneity in cancers.81-83 However, this remains a chal-
lenging area of research given the inherent limitations of as-
sessing metabolism at the single-cell level.

Immuno-oncology is an active area of research that has 
increasing intersection with the field of metabolism.84,85 
Significant energy goes into the production of cytokines, 
chemokines, and immune mediators, immune cell activation, 
and expansion, suggesting that changes in energy availability 
can affect the immune response.86,87 Clinical studies have 
shown a clear connection between autoimmune diseases, 
such as rheumatoid arthritis and systemic lupus erythema-
tosus, and immune cell metabolism.88,89 Immune cells rely 
on specific metabolic pathways for activation, and manipu-
lating these metabolic dependencies could present a unique 
opportunity to target diseases. For instance, activation of 
the glycolytic pathway in CD4 T cells promotes an inflam-
matory phenotype, whereas increased fatty acid oxidation 
skews them toward a regulatory phenotype.90 B-cell and  
T-cell receptors directly activate transcription factors, such 
as c-MYC, HIF1α, PI3K, mTOR, and FOXO1, which play 
a critical role in immune cell metabolism and subsequent 
immune response.91-93 Similarly, M1 macrophages rely on 
glycolysis and glutaminolysis pathways, whereas M2 mac-
rophages prefer the oxidative phosphorylation pathway to 
meet the high demand for energy production during the 
activation phase.94 Of clinical interest, it has been shown 
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that blocking glutamine metabolism can enhance antitumor 
immune responses.95

In summary, there are multiple and often complex inter-
actions between metabolic pathways and signaling pathways 
that, together, result in metabolic reprogramming, a funda-
mental hallmark of cancer. Furthermore, both intrinsic fac-
tors (genomic/epigenomic alterations) and extrinsic factors 
(nutrients, drugs, hormones, and interactions with stromal 
cells, extracellular matrix, and the immune system) contrib-
ute to the metabolic reprogramming of cancer cells. For fur-
ther information, the reader is referred to recent reviews of 
these topics.2,79,96

Cancer Therapies That Target Metabolism
Although multiple mechanisms can contribute to meta-
bolic reprograming in cancer, regardless of the underlying 
mechanism(s), the altered activity of metabolic enzymes 
provides an opportunity for therapeutic intervention if such 
activity is required for tumor maintenance (often referred to 
as a metabolic dependency) and if inhibition of the activity can 
be tolerated by host metabolism. In this section we provide 
select examples of the major classes of cancer drugs that tar-
get metabolic enzymes (Table 1).97-143 For a more compre-
hensive discussion, the reader is referred to other excellent 
reviews of this topic.4,144-146

From the earliest days of cancer research, the increased 
proliferative index of cancer cells was recognized as a meta-
bolic vulnerability. The observation that rapidly proliferating 
cells can be killed by agents that interfere with DNA repli-
cation led to the development of the first chemotherapeutic 
agents, including small molecules with direct genotoxic ef-
fects, such as the nitrogen mustards and drugs targeting nu-
cleotide synthesis.147,148 Because of their structural similarity 
to native metabolites, this latter class, termed antimetabolites, 
saw early successes that led to the rapid expansion of drugs 
targeting enzymes involved in nucleotide metabolism. One 
of the earliest drugs to treat cancer was methotrexate, an an-
tifolate drug that inhibits thymidine synthesis.149 Similarly, 
the related folate analog, aminopterin, inhibits one-carbon 
metabolism necessary for de novo nucleotide synthesis and 
was found to be effective in children with acute lympho-
blastic leukemia.150 Early clinical successes with these agents 
paved the way for the rapid development of additional small 
molecule inhibitors of nucleotide synthesis enzymes, many 
of which continue to form the backbone of multiagent 
chemotherapy regimens, such as inhibitors of dihydrofo-
late reductase and other folate-using enzymes, thymidylate 
synthase, phosphoribosyl pyrophosphate amidotransferase, 
ribonucleotide reductase, and other enzymes involved in 
purine and pyrimidine synthesis and salvage (Table 1) (re-
viewed in Scott, 1970151; Chaber and Roberts, 2005152; and 
Parker, 2009153).

Apart from targeting nucleotide and DNA synthesis, 
early cancer treatments have also targeted other metabolic 
pathways. For instance, it was discovered that acute lym-
phoblastic leukemia cells rely on exogenous asparagine for 
growth,154 which led to the use of the bacterial enzyme L-
asparaginase to limit the availability of asparagine for leu-
kemia cell growth.130 More recently, efforts have focused on 
developing agents to deplete other amino acids and to target 
central metabolic pathways aberrantly regulated in cancer 
cells, including glycolysis, the TCA cycle, and lipogenesis. 
Many of these agents are still in preclinical stages; how-
ever, some are now undergoing evaluation in clinical trials 
(Table 1).

Targeting central metabolic pathways always raises ques-
tions about therapeutic window because the alteration of 
systemic metabolism can have harmful effects. For example, 
targeting glycolysis directly has proven to be challenging be-
cause of the low therapeutic index of glucose uptake inhibi-
tors such as 2-deoxyglucose, which affects glucose uptake in 
both cancer and normal cells.114,155 However, the recognition 
that cancer cells have altered regulation of central metabolic 
pathways led to renewed interest in this field.156 An example 
of this is pyruvate kinase (PK), which catalyzes the last step 
in the glycolytic pathway. Different tissues express different 
isoforms of PK.157 Most cancer cells express a PK isoform 
(PKM2) that is different from the one expressed in eryth-
rocytes (PKR), liver (PKL), myocytes (PKM1), and brain 
(PKM1). Multiple mechanisms have been proposed for why 
PKM2 is advantageous to cancer cells.158 Preclinical stud-
ies have shown that drugs targeting PKM2 can be effective 
in some cancer types, and, in early trials of those drugs for 
other indications, they have proven safe in patients.115,159-161 
Other drugs targeting glucose metabolism, such as GLUT1 
inhibitors (WZB117 and BAY876), GLUT4 inhibitors 
(silibinin and ritonavir), and a GLUT2 inhibitor (querce-
tin), are in various stages of clinical development.112,144,162 
In cancer cells, a significant proportion of glucose is me-
tabolized to lactate and secreted by monocarboxylate trans-
porters present on the plasma membrane. Inhibitors of 
lactate dehydrogenase A, such as quinoline, 3-sulfonamides, 
FX11, and PSTMB, are being investigated in preclinical 
settings.116,163 An monocarboxylate transporter 1 inhibitor, 
AZD3965, is in early phase clinical trials for patients with 
solid tumors, diffuse large B-cell lymphoma, and Burkitt 
lymphoma.119 GAPDH is another target with a therapeutic 
window determined by the extent of the Warburg effect on 
glycolysis.164,165

Amino acids are also important nutrients that support 
anabolic metabolism in cancer cells. Glutamine is the most 
abundant amino acid in the blood, and glutamine depen-
dence has been observed in many cancer cell lines.166 
Although glutamine is a nonessential amino acid, it is an 
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important nitrogen donor for the biosynthesis of diverse 
compounds, such as glutathione, hexosamine, nucleotides, 
fatty acids, and nonessential amino acids. Furthermore, 
glutamine carbon can feed directly into the TCA cycle. In 
fact, a glutamine antagonist, JHU083, produced a potent 
antitumor response in combination with immune check-
point blockade therapy in an animal model.95 One route of 
glutamine catabolism to supply carbon to cells involves the 
enzyme glutaminase. Drugs targeting glutaminase, such as 
CB-839 and IPN60090, have been effective in some pre-
clinical models and are now in trials for various malignan-
cies.120-122,167 Interestingly, targeting glutaminase appears to 
cooperate in preclinical settings with immune therapies, in-
cluding chimeric antigen receptor T-cell therapies.168 In ad-
dition, for several glutamine transporters, such as SLC1A5, 
LAT1, and SLC6A14, inhibition showed promising results 
in preclinical settings and are being actively pursued for fu-
ture clinical applications.123,131 Serine is another proteino-
genic amino acid essential for nucleotide biosynthesis via its 
role as a donor of one-carbon units for the folate cycle.169 As 
previously discussed, PHGDH, the enzyme that catalyzes 
the first step in the serine biosynthesis pathway, is amplified 
in some cancers, and, in this context is essential for prolif-
eration.71,72 Small molecule drugs targeting PHGDH are 
effective in some preclinical models, including inhibition of 
brain metastases.126-128,170 Indoleamine-2,3-dioxygenase-1 
(IDO1) is the critical enzyme in tryptophan catabolism, 
and elevated levels of IDO1 have been associated with poor 
outcomes in patients with cervical cancer and glioblastoma 
multiforme.171,172 The inhibitors of IDO1 (epacadostat and 
indoximod) are in clinical trials in combination with other 
anticancer agents.129

Compared with most normal tissues, cancer cells have 
an increased demand for fatty acids to generate lipid mem-
branes and precursors for signaling molecules. Fatty acids 
can be acquired exogenously through diet or synthesized en-
dogenously from glucose, glutamine, or acetate.173 Lipogenic 
enzymes are upregulated in many cancer cells, and de novo 
fatty acid synthesis has been viewed as a potential therapeu-
tic target in cancer cells.174,175 Three lipogenic enzymes have 
been a particular focus of drug development efforts, includ-
ing ATP-citrate lyase, acetyl-CoA carboxylase, and fatty acid 
synthase.136-140 The success of these agents in the clinic will 
likely depend on identifying tumors that are unable to take 
up sufficient lipids from their environment and thus require 
increased de novo fatty acid synthesis for survival. Although 
aberrant fatty acid metabolism helps cancer cells satisfy 
higher energy demand, it is also associated with increased 
lipotoxicity. Cancer cells need to maintain a proper ratio of 
saturated to unsaturated fatty acids to avoid mitochondrial 
dysfunction, excess reactive oxygen species, and endoplas-
mic reticulum stress.176,177 To overcome lipotoxicity, cancer 

cells overexpress different isoforms of stearoyl-CoA desatu-
rases (SCDs), which convert saturated to monounsaturated 
fatty acids. SCD1 is overexpressed in various cancer types, 
and SCD1 inhibitors are under investigation in preclinical 
studies.178-182

Although most drugs that target metabolism do not dis-
criminate between cancer and normal cells, in the case of 
IDH-mutant cancers, there is a unique opportunity to tar-
get cancer cells selectively. Indeed, several drugs have been 
developed that selectively target the mutated enzyme.183-185 
This strategy has been effective in treating IDH-mutated 
AML.141-143 IDH inhibitors are also in clinical trials for 
IDH-mutated solid tumors (glioma, chondrosarcoma, and 
intrahepatic cholangiocarcinoma); however, preclinical stud-
ies have suggested that IDH inhibitors may be less effective 
in solid tumors, and it has been suggested that this may be 
because mutant IDH activity is a driver of cancer initiation 
by altering epigenetic signatures, but it may be less import-
ant in tumor maintenance at later stages of tumor progres-
sion.4,186-188 It is worth pointing out that, across many solid 
tumor types, drugs that target metabolic enzymes are ef-
fective in slowing tumor growth in preclinical models, yet 
tumor regression is rarely observed, indicating that some of 
these agents may be most useful as part of multiagent regi-
mens or as maintenance therapy.

Systemic Metabolic Effects of Cancer
Weight loss is a common presenting symptom in patients 
with cancer, and more than one-half of patients who have 
cancer experience anorexia at baseline, the etiology of which 
remains poorly understood.189-191 Cancer cachexia is a se-
vere form of wasting characterized by loss of lean body mass 
or sarcopenia with or without loss of fat mass.192 This con-
trasts with starvation, in which liver mass and fat mass are 
lost while lean body mass is initially preserved. Numerous 
circulating factors, including cytokines, neuropeptides, ei-
cosanoids, and tumor-derived proteins, have been implicated 
in the pathogenesis of cachexia, and the underlying etiol-
ogy is likely multifactorial.193-195 Increased resting energy 
expenditure has been observed in some patients with cancer, 
and its prevalence may depend on cancer type, indicating 
that hypermetabolism may be a feature of some cancers that 
contributes to the wasting phenotype.196,197

Although anorexia likely contributes to cancer-associated 
weight loss and cachexia, hyperalimentation with parenteral 
nutrition does not improve treatment outcomes and only 
partially reverses the wasting phenotype, indicating that the 
pathophysiology of cachexia is more complex than simply 
reduced calorie intake secondary to anorexia.198,199 In a ran-
domized clinical trial of patients with small cell lung cancer, 
parenteral nutrition temporarily improved body fat yet had 
no effect on lean body mass or survival.200 Cachexia is an 
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early presenting sign in many patients with PDAC, and de-
creased exocrine function has been implicated as a contrib-
utory factor.201-203 Yet, surprisingly, despite reversing some 
tissue wasting, replacement of pancreatic enzymes did not 
improve survival in a murine PDAC model.202 Furthermore, 
in patients with PDAC, cachexia is not necessarily associated 
with worse survival.202 Nevertheless, pretreatment weight 
loss is a poor prognostic factor in several cancers,191 and the 
systemic metabolic effects of cancer are heterogeneous, with 
much left to understand.

Cancer cachexia and weight loss are also associated 
with systemic metabolic changes, including derangements 
in glucose, lipid, and protein metabolism.204-207 These sys-
temic metabolic alterations have been attributed to changes 
in host metabolism induced by the tumor rather than the 
metabolic activity of the tumor itself.208 This contrasts with 
animal models in which the tumor-to-host mass ratio is 
often large, and tumor metabolism can cause direct systemic 
metabolic changes.209 For the most part, early human stud-
ies failed to show significant metabolic changes in patients 
with early stage localized cancer, leading to the assumption 
that the metabolic changes were not because of cancer per 
se but rather a manifestation of a cancer-associated wasting 
phenotype.208 However, as discussed in further detail below, 
technological advances resulting in improved metabolite de-
tection and resolution have led to the discovery of distinct 
systemic metabolic signatures in patients with cancer, even 
at early stages and, in some cases, even before the disease 
becomes clinically apparent.210

Metabolic Effects of Cancer Therapy
In addition to the aforementioned cancer-induced systemic 
metabolic changes, treatment of cancer with surgery, radia-
tion, systemic therapy, or hormonal therapy causes acute and 
long-term side effects that also can affect metabolism. Not 
surprisingly, side effects involving the digestive system ac-
count for the majority of acute treatment-related toxicities 
affecting metabolism.211 Malnutrition and weight loss may 
result from nausea, vomiting, diarrhea, mucositis, and dys-
geusia, which are common in patients receiving treatment 
for head and neck and gastrointestinal malignancies. Resting 
energy expenditure initially decreases in patients undergoing 
chemoradiotherapy for head and neck cancer and increases 
toward the end of treatment.212 It has been suggested that 
the increased energy expenditure at the end of therapy is 
related to stress caused by the cumulative effects of chemora-
diotherapy.212 A systematic review of the literature on energy 
metabolism in patients who received chemotherapy for all 
cancer types showed no universal impact of chemotherapy 
on energy expenditure but suggested that patients receiving 
chemotherapy become hypometabolic during treatment.213 
Most studies have used indirect calorimetry, anthropom-
etry, and routine laboratory tests to assess metabolic status.  

There is comparatively little metabolomic data on changes 
that occur during cancer therapy. A small study using sta-
ble isotope tracers showed no significant difference in glu-
cose, lipid, or protein metabolism in patients undergoing 
radiotherapy for head and neck and lung cancer.214 Whereas 
combined modality therapy (surgery, radiation, and chemo-
therapy) for soft tissue sarcoma had significant acute nutri-
tional effects, patients who were disease-free after treatment 
showed minimal nutritional morbidity.215

Although acute metabolic side effects of aggressive can-
cer therapy can be pronounced, fortunately, long-term side 
effects tend to be more subtle. Incidence and severity de-
pend on treatment modality and interval since treatment.216 
Other than long-term sequelae of decreased endocrine/
exocrine function after surgery or radiation involving the 
pituitary, thyroid, adrenal, pancreas, and gonads, there are 
relatively sparse data on the long-term metabolic effects of 
these modalities.217 Nevertheless, even low doses of total 
body radiation in the pediatric population significantly in-
crease the risk of long-term endocrine disturbance and 
metabolic abnormalities.218 In contrast to local therapies, 
systemic therapy carries a higher risk of long-term metabolic 
derangements. The long-term metabolic effects of hormonal 
therapy in patients with breast and prostate cancer are well 
documented, including chronic effects on mineral and lipid 
metabolism.219-221 In addition, prior chemotherapy is asso-
ciated with chronic weight gain in breast cancer survivors, 
with the highest risk in premenopausal women.222 Long-
term metabolic effects of therapy in other cancers and po-
tential pathophysiologic mechanisms have been reviewed.216 
Unfortunately, much of the prior data are insufficient to 
establish causation. Broader use of metabolomic analysis 
in clinical trials and surveillance protocols could provide a 
better understanding of pathologic mechanisms and identify 
opportunities for intervention.

The Role of Diet and Lifestyle Factors in 
Carcinogenesis and Response to Treatment
Metabolism has also been the focus of research aimed at 
identifying risk factors for cancer. Epidemiologic studies 
demonstrate a positive correlation between cancer inci-
dence and deleterious metabolic states, including obesity 
and diabetes.223-225 In addition, dietary factors and physi-
cal inactivity have been implicated.226-228 Furthermore, in 
the postdiagnosis setting, the relevance of these factors to 
disease progression, recurrence risk, and mortality has been 
demonstrated for some cancers.229-236 Collectively, these 
data have led to the adoption of guidelines on healthy food 
choices and physical activity to reduce cancer risk.237

Conceptually, dietary composition can affect circulating 
nutrients and metabolic hormones, which may directly af-
fect metabolism within tumor cells.238,239 Whereas the ef-
fect of diet, exercise, and systemic metabolic status on cancer 
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initiation can be challenging to model experimentally, the im-
pact of diet on tumor progression has been extensively eval-
uated in mouse models of various cancers, including breast, 
prostate, lung, pancreas, liver, intestine, and others.240,241 In 
line with human data, laboratory studies in rodents gener-
ally support the notion that, in some cases, caloric restriction 
and ketogenic diet can slow tumor growth, whereas a high-
fat diet can promote tumor progression.242-246 However, as 
some studies show, this is a gross oversimplification, and 
the effect of diet on tumor progression likely also depends 
on tumor genetics and the tumor microenvironment.247,248 
Furthermore, mechanistically, it has been difficult to ascer-
tain the extent to which individual nutrients directly affect 
tumor growth instead of indirect effects on growth factor 
signaling. For example, insulin-like growth factor (IGF) sig-
naling has been implicated in many caloric restriction stud-
ies, yet direct activation of IGF only partially reverses the 
effect of caloric restriction on tumor growth.249-251 Because 
manipulating one dietary factor or nutrient can affect many 
others, future studies will need to address the effects of diet 
and exercise on the metabolomic landscape both systemi-
cally and ideally within the tumor microenvironment.

In addition to impacting carcinogenesis, diet and life-
style factors may also affect cancer therapy.252-254 A low-
calorie, low-protein diet improved objective tumor response 
in patients receiving neoadjuvant chemotherapy for breast 
cancer.255 In animal models, caloric restriction and other di-
etary perturbations have been shown to alter the efficacy of 
chemotherapy and radiotherapy via metabolite-specific ef-
fects on IGF signaling, oxidative stress, and nucleotide me-
tabolism.256-258 Although data from human observational 
studies and mechanistic studies in laboratory animals are 
compelling, results from human interventional trials, for the 
most part, have been disappointing and highlight the limita-
tions of a reductionist approach. It has been suggested that a 
more unified approach combining genomics, metabolomics, 
and biomarkers may be more effective at identifying mod-
ifiable risk factors in the context of heterogeneous dietary 
patterns and tumor characteristics.259 A conceptual frame-
work for investigating dietary effects on tumor metabolism 
has been proposed.260 The key elements build on clinical 
and laboratory observations that dietary manipulation can 
alter nutrients in the tumor environment, and this, in turn, 
can impact tumor metabolism, growth, progression, and re-
sponse to therapy. Indeed, depletion of specific amino acids 
can slow growth of some tumors,256,261-265 and, if we extend 
this framework to account for complex interactions between 
diet, exercise, stress, inflammation, and the microbiome on 
micronutrients and growth-activating/growth-inhibitory 
signals in the tumor environment, it is clear that a multio-
mics approach is needed to identify actionable diet and life-
style factors that can impact response to cancer therapy.

Defining Metabolomics
Historically, human disease has been studied using a reduc-
tionist approach to separate and identify individual factors 
that cause or contribute to a pathologic state. In contrast, 
systems biology seeks to understand complex biological sys-
tems by considering the sum of its molecular constituents 
and how they interact to define a phenotype.266 At the heart 
of systems biology is an ability to measure many aspects of 
cell state, which has been facilitated by advances in genom-
ics, transcriptomics, proteomics, and metabolomics.

In concept, metabolomics stands apart from the other -
omics, in that it provides a functional readout of metabolic 
processes and thus is a direct assessment of phenotype 
(Fig. 2). That is to say, metabolomics, if interpreted appro-
priately, can provide a readout of the sum of alterations oc-
curring at the DNA, RNA, and protein levels and, in some 
cases, may be the most sensitive way to identify pathologic 
variants because even small changes in protein expression or 
structure can lead to significant changes in protein activity 
and metabolite levels.267 Conversely, metabolites can alter 
protein activity and thereby affect nearly every biological 
process, including DNA replication, RNA transcription, and 
translation (Fig. 2). The term epimetabolites has been used 
to describe a subset of metabolites that function as active 
biomarkers and are involved in diverse biological functions, 
including epigenetic regulation, tumorigenesis, cancer cell 
invasion, cancer stem cell pluripotency, insulin sensitivity, 
and other cellular processes.268 Furthermore, metabolo-
mics also considers alterations in the tumor environment, 
including therapeutic interventions that can exert selective 
pressures on tumor subclones and thus shape the genome, 
transcriptome, and proteome.269 Understanding the meta-
bolic milieu thus has important implications for interpreting 
genomic, transcriptomic, and proteomic data.

In practice, metabolomics is defined as the analysis of 
small molecule metabolites (≤1500 Daltons and nonpep-
tide) in a biological specimen.270 It involves the simultaneous 
identification of hundreds to thousands of chemicals based 
in part on the chemical properties and/or weight of atoms 
within a molecule (described further in the section below). 
This contrasts with standard clinical measurement of me-
tabolites, such as glucose and urea, which relies on identify-
ing chemicals based on enzymatic reactions and requires a 
separate test for each metabolite. The field of metabolomics 
has benefitted greatly from relatively recent technological 
advances in instrumentation, resulting in more affordable in-
struments with a smaller footprint. In addition, vendors have 
focused on delivering more user-friendly acquisition soft-
ware and computational analysis tools. Validated data sets 
have made it easier to quickly and accurately process data. 
In addition there are many open-source software packages 
available for analyzing metabolomics data.271 Nevertheless, 
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appropriate experience and training of staff can still be a bot-
tleneck for smaller academic/clinical laboratories.

As discussed below, multiple methods exist for metab-
olomics analysis, each with its own advantages and disad-
vantages; however, the first decision point in selecting the 
appropriate method is whether an untargeted or targeted 
approach is desired. Generally, untargeted metabolomics is 
used for hypothesis generation and is used extensively in 
biomarker discovery, whereas a targeted approach (that is, 
defining the metabolites that will be measured before per-
forming the analysis) is used when testing a specific hy-
pothesis or in validation and implementation stages.272 In 
genomics, transcriptomics, and proteomics, the objective is 
to identify the macromolecular structure from a sequence 
of chemical constituents (nucleotides, amino acids) that 
are well defined and relatively limited in diversity. Because 
the chemical composition is constrained, a complete anal-
ysis is obtained by applying a single protocol. In contrast, 
metabolomics deals with a chemically diverse and complex 
set of molecules. Because lipids, sugars, organic acids, and 
other polar molecules have a wide range of physical char-
acteristics, multiple methods for sample preparation and 
data acquisition are needed for their analysis. Furthermore, 
metabolites that are annotated by software in untargeted 
experiments require subsequent validation with a chemical 
standard using a targeted method. Consequently, analyzing 

differences between groups detected by untargeted metabo-
lomics requires considerable expertise and effort, particularly 
if it is desirable to assign identities to each species measured. 
Therefore, the usefulness of untargeted metabolomics in 
aiding biological understanding and interpretation is limited 
by the ability to identify unknown metabolites.272

Methodology and Instrumentation
In this section, we introduce the major technologies that are 
used for metabolomics (Fig. 3). We focus primarily on meth-
ods involving mass spectrometry (MS) and nuclear magnetic 
resonance (NMR), which can both be used for compound 
detection in any biofluid or cell/tissue extract in the liquid 
phase. NMR can also be used with solid-phase samples, such 
as cell membranes or even intact cells and tissues. Other 
techniques involving analysis of metabolites in situ, such 
as matrix-assisted laser desorption/ionization mass spec-
trometric imaging (MALDI-MSI), or NMR-based in vivo 
imaging, such as magnetic resonance spectroscopic imaging 
(MRSI), are more limited in their application and have been 
reviewed elsewhere.273,274

NMR relies on measuring chemical properties of specific 
atoms in a molecule. NMR is a versatile method as it can be 
used with biospecimens in liquid, solid, or gas phase without 
prior processing. A sample is subjected to a strong magnetic 
field and then pulsed with radiofrequency waves. The energy 

FIGURE 2. The relationship between -omics approaches of systems biology. Cancer is caused by changes at the genomic level that result in altered RNA 
transcription, protein expression, and protein function. The metabolome provides a functional readout of these upstream changes. In turn, individual 
metabolites affect protein activity and thereby alter RNA transcription and DNA replication.
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from radiofrequency radiation is used to transiently excite 
certain nuclei in a molecule (such as 1H, 13C, 15N, or 31P), 
causing them to flip their spin state when aligned in a strong 
magnetic field. As these nuclei relax, they produce a char-
acteristic spectroscopic pattern (chemical shift) that reflects 
the type, location, and electromagnetic environment of ex-
cited atoms in a given molecule. Material is not consumed 
during NMR spectroscopy and thus can be used for subse-
quent analysis. The major drawback is the large footprint 
of NMR instruments and relatively low sensitivity (micro-
molar) compared with mass spectrometry (nanomolar).275 
Because most metabolites are relatively low-abundance in 
biological material, the diversity of chemical species that can 
be practically measured by NMR is also lower than for MS-
based techniques. NMR is capable of resolving several hun-
dred unique metabolites, whereas MS can be used to identify 
thousands of features with unique masses.

MS is the most widely used analytical technique in me-
tabolomics. It relies on determining the ratio of mass to 
charge (m/z) of a molecule and/or its characteristic frag-
ments. A sample in the liquid or gas phase is injected into 
the mass spectrometer, where metabolites become ionized 
and then separated by their m/z. Sample material is entirely 
consumed during this process. MS is typically coupled with 
an initial chromatographic stage, which increases the reso-
lution of isobaric (same mass) compounds and improves the 

detection of less abundant species by reducing signal sup-
pression by more abundant species. When coupled with gas 
chromatography (GC-MS), the technique is highly sensitive 
but generally requires initial chemical modification (derivat-
ization) of metabolites to increase their volatility and make 
them suitable for separation in the gas phase. GC-MS can be 
used to analyze most polar, nonpolar, organic, and inorganic 
compounds; however, phosphorus-containing compounds 
(many sugars, lipids, and nucleotides) are challenging to 
detect using GC-MS because of difficulty generating vol-
atile derivatives. In contrast to GC, liquid chromatography 
(LC) involves passing a liquid solution of metabolites over a 
solid-phase column, during which they are separated based 
on their chemical affinity for the solid phase. The chemical 
composition of the liquid phase is changed until all metabo-
lites are eluted from the column. LC-MS does not typically 
require chemical modification of analytes and is well suited 
for the analysis of biofluids and phosphorus-containing 
compounds; however, it is necessary to use different solid-
phase columns and different mobile-phase compositions for 
the optimal separation of compounds from different chem-
ical classes. For example, lipidomics, which focuses on the 
lipid subset of the metabolome, involves chromatographic 
techniques that are fundamentally different from techniques 
used to analyze polar metabolites such as sugars or organic 
acids.276 Nevertheless, given the combination of ease of use 

FIGURE 3. The optimal metabolomics workflow depends on source material and application. Various technologies and methods can be used to acquire raw 
data, which then provide the starting point for computational analysis. See text for details. CE indicates capillary electrophoresis; GC, gas chromatography; 
LC, liquid chromatography; MALDI-MSI, matrix-assisted laser desorption/ionization mass spectrometric imaging; MRSI, magnetic resonance spectral imaging; 
MS, mass spectrometry; NMR, nuclear magnetic resonance.
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with biofluids, high sensitivity, and broad range of metab-
olites that can be measured, LC-MS is the most compre-
hensive and widely used analytical method associated with 
metabolomics. Capillary electrophoresis-MS is a related 
technique in which charged compounds are separated based 
on electrophoretic mobility (charge-to-size ratio) and thus 
can be useful to detect intrinsically charged metabolites (eg, 
choline) present in low-abundance and very small sample 
volumes.277

Although compound separation before injection into a 
mass spectrometer significantly increases sensitivity to detect 
low-abundance metabolites, the time needed for sufficient 
chromatographic separation of a complex biological sample 
can limit the number of samples that can be analyzed in a 
finite period of time. The addition of system suitability and 
quality-control samples also increases the run time for untar-
geted metabolomics experiments.278 For example, a batch of 
50 samples could take several days of instrument time. To in-
crease throughput, biofluids can also be directly injected into 
a mass spectrometer without prior chromatographic separa-
tion. This technique, referred to as flow-injection MS, sub-
stantially increases throughput, allowing hundreds of samples 
to be run in a single day. The downside of flow-injection MS 
is that less abundant species can be missed; therefore, this 
technique is best suited for high-throughput, low-sensitivity 
analyses such as metabolic fingerprinting, in which the goal 
is to capture a snapshot of total metabolite content rather 
than identify individual metabolites. It can also be used as 
a screening tool for both untargeted metabolomics (when 
used together with optimized m/z scan ranges279,280), and 
-lipidomics (termed shot-gun lipidomics281). However, ulti-
mately, these methods must be combined with traditional 
LC-MS approaches if identification of the detected features 
is required. This is especially important in lipidomics because 
shot-gun lipidomics cannot separate isobaric/isomeric lipid 
species, of which there are many.

Source Material
Metabolomics can be performed on a wide range of bio-
logical materials, including cells and tissues cultured in the 
laboratory, specimens collected from laboratory animals, and 
either freshly obtained or appropriately archived clinical 
specimens, including tumors and biofluids. The quantity of 
starting material depends on the technique used. For NMR, 
samples volumes are typically in the 0.1 to 0.5 mL range 
for liquid samples. MS-based methods are more sensitive, 
with 10-fold to 1000-fold lower limits of detection com-
pared with NMR. Thus as little as a few microliters or mil-
ligrams of starting material can be sufficient to detect many 
metabolites.

In the laboratory, cells and tissues can be studied under 
controlled conditions in which levels of nutrients in the 

environment can be manipulated and isotope-labeled nutri-
ents can be used to assess nutrient fate and determine flux 
through metabolic pathways.282-284 Samples can be collected 
at predefined time points and rapidly processed. The acqui-
sition, handling, and storage of clinical specimens are more 
complex and require careful planning and coordination be-
tween clinical and laboratory staff; however, with careful 
protocols, even stable isotope-labeled metabolite tracing 
can be accomplished in patients with cancer.83,285 The most 
common types of clinical material that have been used for 
metabolomics analysis include blood, plasma, serum, urine, 
and extracts of biopsy or surgical specimens, examples of 
which are discussed in a section below. However, many other 
types of biofluids have also been used, including sputum, 
bronchial washings, saliva, sweat, tears, cerebrospinal fluid, 
pleural or ascitic effusions, fecal water, bile, breast milk, am-
niotic fluid, seminal plasma, expressed prostatic secretions, 
and others.270,286-290 Regardless of the material used, the 
methods of collection, storage, and processing must be ap-
propriately selected for the desired analysis. Many chemical 
species are labile or undergo rapid chemical modification by 
molecular oxygen or metabolic enzymes. Where applicable, 
appropriate quality controls are needed to ensure that chem-
ical decomposition is minimized. Guidelines for reporting 
biospecimen source, collection, and processing have been set 
forth by the Metabolomics Society.291

Clinical Implementation of Metabolomics
Although both untargeted and targeted metabolomics have 
huge potential in biomarker discovery and hypothesis test-
ing in the translational setting, several challenges still need 
to be overcome before metabolomics can become widespread 
in clinical research and practice. As described above, multi-
ple complimentary methods are required to cover the entire 
metabolome. Often, this requires multiple instrumentation 
platforms, which may not be available in many academic 
and clinical laboratories. Furthermore, there are multiple 
software packages for data processing and analysis, particu-
larly in untargeted metabolomics. Different peak-picking 
algorithms, for example, can yield slightly different results. 
Analyzing large metabolomics data sets also requires robust 
experimental design, which facilitates appropriate statistical 
analysis. Therefore, at a minimum, a successful metabolomics 
research study requires the combined efforts and expertise of 
analytical chemists, statisticians, and biologists. Furthermore, 
given the multiple methods and instrumentation platforms 
involved, as well as the various data processing algorithms, 
it is a logistical challenge to apply industry standards to the 
field in a way that is necessary in a clinical laboratory setting. 
Another major challenge for the clinical implementation 
of metabolomics is standardization of data analysis and re-
porting between institutions. Currently, most metabolomics 
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studies yield relative quantification. In order for standardi-
zation to happen across platforms, absolute quantification 
would be required. Additional challenges and suggestions 
for new strategies have been reviewed extensively by Pinu et 
al.292 In 2007, the Metabolomics Society launched a stand-
ards initiative to define the minimum reporting standards 
required for metabolomics data.246 However, many pub-
lished data sets still fall short of these minimum standards 
because of a lack of consensus across laboratories.

Clinical Applications
Metabolomics seeks to capitalize on the metabolic signature 
of cancer to assess disease risk or for earlier cancer detection, 
diagnosis of specific disease subsets, or treatment monitor-
ing. Metabolomics in principle may also help inform the ra-
tional selection of targeted therapies to match the metabolic 
dependencies of cancer. In this final section, we discuss these 
clinical applications of metabolomics and provide select ex-
amples to illustrate how the metabolomics field has opened 
new opportunities in cancer research and is beginning to im-
pact diagnosis and treatment.

Identifying Cancer Risk Factors
It is widely accepted that tumorigenesis involves sequential 
accumulation of genetic mutations that ultimately give rise 
to malignancy.293 Although some oncogenic mutations and 
predisposing polymorphisms are germline-encoded, envi-
ronmental factors promote the process of tumorigenesis by 
both inducing somatic DNA alterations and selecting for 
transformed cells. Small molecule carcinogens and ultravio-
let or ionizing radiation cause DNA alterations by directly 
interacting with DNA. In contrast, inflammatory and meta-
bolic factors contribute indirectly to tumorigenesis by induc-
ing reactive oxygen species and creating an environment in 
which oncogenic mutations and epigenetic alterations are 
selected. In addition, altered metabolism affects the avail-
ability of substrates used to modify chromatin, thereby in-
fluencing chromatin dynamics and epigenetic changes that 
drive tumorigenesis.294 Untargeted metabolomics on predi-
agnostic serum can uncover metabolic risk factors but re-
quires access to material from large population-based cohort 
studies. Several examples are discussed in this section.

Early epidemiology studies focused on the contribution 
of one or a few metabolic factors on tumorigenesis. In the 
1970s, multiple studies linked colorectal cancer to high-
fat diet intake, low serum cholesterol, and high fecal bile 
acids.295,296 Analysis of prediagnostic serum in prostate can-
cer cohort studies suggested a positive correlation between 
ω-6-polyunsaturated fatty acids and cancer risk, whereas 
ω-3-polyunsaturated fatty acids were inversely correlated 
with cancer risk.297 Likewise, some polyunsaturated fatty 
acids, but not others, were linked to increased breast cancer 
risk.298,299

More recently, metabolomics has been used to examine 
the association between a broader range of metabolites in 
prediagnostic serum and cancer risk. Prospective analysis of 
circulating metabolites in patients with breast cancer revealed 
that acylcarnitine and phosphotidylcholines were strongly 
associated with the risk of breast cancer, regardless of breast 
cancer subtype, age, fasting status, menopausal status, or 
adiposity.300 Similarly, higher circulating lysophosphatidyl-
cholines were correlated with lower risks of breast, prostate, 
and colorectal cancer.301 The examination of prediagnostic 
serum from the Prostate, Lung, Colorectal, and Ovarian 
(PLCO) Cancer Screening Trial (ClinicalTrials.gov iden-
tifier NCT01696981) was the first to identify serum me-
tabolites associated with coffee intake and found that some 
caffeine-related metabolites were inversely associated with 
colorectal cancer.302 Another study examined metabolites in 
prediagnostic serum from postmenopausal patients with in-
vasive breast cancer and matched controls from the PLCO 
trial and found that metabolites related to alcohol, vitamin 
E, and animal fats were associated with the risk of hormone 
receptor-positive breast cancer.303 Metabolomic analysis 
of fatal prostate cancer cases and controls from the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) 
Study (ClinicalTrials.gov identifier NCT00342992) found 
that higher levels of amino acids involved in redox metab-
olism (thioproline, cystine, and cysteine) were associated 
with a reduced risk of lethal prostate cancer.304 In contrast, 
leucylglycine and γ-glutamyl amino acids were associated 
with an increased risk of terminal prostate cancer, whereas 
3-hydroxybutyrate, acyl carnitines, and dicarboxylic fatty 
acids were higher in patients who presented with de novo 
metastatic disease.304 Other metabolomic studies using 
serum collected before cancer diagnosis in screening or pre-
vention trials found associations between branched-chain 
amino acids and pancreatic cancer210 and between pseudou-
ridine and ovarian cancer.305

Despite these associations, a contentious issue has been 
whether implicated metabolites play a direct causal role in 
tumorigenesis or are merely an early manifestation of pre-
clinical disease. For this reason, it has been suggested that 
incident cases occurring within 2 years of a nonlocalized 
cancer diagnosis be excluded from analyses searching for a 
direct causal role of metabolic factors in tumorigenesis.306

Identifying Biomarkers for Cancer Screening, 
Diagnosis, and Monitoring
Cancer detection techniques are essential not only for initial 
diagnosis but they also provide effective ways to screen ap-
propriate populations, guide initial treatment strategy, assess 
treatment efficacy, and track cancer progression over time. In 
recent years, there have been several comprehensive reviews 
of metabolic biomarker studies in common cancers.307-311 
Here, we review some of the metabolite-based tests with 
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established clinical applications and provide examples of 
metabolomic studies that are expanding the repertoire of 
metabolic biomarkers for cancer detection and surveillance.

Imaging techniques, including computed tomography, 
magnetic resonance imaging, PET, and radionuclide scans, 
are used extensively in the clinic for cancer detection and 
follow-up. One of the earliest metabolic markers used in 
cancer detection was FDG-PET.312 It takes advantage of 
elevated glucose uptake by cancer cells, but, because glucose 
uptake also increases during inflammation, this limits the 
use of FDG-PET in some settings.313 In addition to FDG, 
a wide range of radiolabeled carbohydrates, amino acids, and 
fatty acids have been used in preclinical and clinical settings 
to take the advantage of the high metabolic rate of tumors 
as a diagnostic tool. Other 18F-labeled sugars, such as D-
mannose, D-lactose, D-fructose, and D-galactose, have been 
developed and studied as PET tracers in preclinical settings 
and may allow the detection of some cancer cells that use a 
sugar molecule other than glucose for energy.314-317 Some 
cancer cells overexpress specific amino acid transporters 
such that radiolabeled amino acids can be used to detect 
these cancers. For instance, amino acid utilization has been 
evaluated by [11C]-tyrosine PET in soft tissue sarcomas and 
pituitary adenomas, whereas [11C]-methionine PET has 
been evaluated in brain tumors.318-320 To study the role of 
glutaminolysis in tumors, a series of glutamine-based PET 
tracers, including L-[5-11C]-glutamine, [18F]-(2S,4R)-4-
fluoroglutamine, and [18F]-(2S,4S)-4-(3-fluoropropyl)glu-
tamine, have been synthesized.321-323 A recent clinical study 
has shown high uptake of [18F]-(2S,4R)-4-fluoroglutamine 
in patients with glioma, suggesting increased dependence on 
glutaminolysis.324 Anti–1-amino-3-18F-fluorocyclobutane-
1-carboxylic acid, also known as [18F]-fluciclovine, is a 
synthetic analog of the amino acid leucine, the uptake of 
which is facilitated by amino acid transporters and is useful 
for the detection of recurrent prostate cancer.54,325 Apart 
from amino acids and sugars, cancer cells also engage in el-
evated lipid metabolism to sustain rapid cell proliferation 
and survival. 11C-fatty acids have been developed and used 
as PET radiotracers for studying β-oxidation in animals 
and humans.326 Radiolabeled forms of the phospholipid 
head group choline, [18F]-fluoromethylcholine and [18F]-
fluoroethylcholine, are used in the clinic for prostate cancer 
detection.55,327

In addition to PET imaging, MRSI is also emerging as 
a tool for noninvasive assessment of tumor metabolism.328 
For example, detection of D-2-HG by MR-spectroscopy 
in IDH-mutant glioma has been demonstrated in clinical 
studies and may have a role in monitoring patients receiving 
IDH-targeted therapy.329,330 The use of MRSI in the clinic 
will likely expand as protocols become more standardized 
and efficient and as new metabolic biomarkers are identified.

Despite its established role in the clinic, there are several 
limitations to PET imaging, including limited availability 
and short half-life of some radiotracers, poor image reso-
lution, inability to detect smaller tumors, and inability to 
distinguish tumors from nonmalignant hypermetabolic pro-
cesses. For example, a meta-analysis of 45 different studies, 
which assessed lymph node involvement in patients with 
nonsmall cell lung cancer, concluded that the sensitivity 
and specificity of PET-computed tomography was roughly 
75% and 90%, respectively.331 Progress in understanding 
metabolic differences between tumor, normal tissue, and 
nonmalignant disease states will hopefully facilitate the im-
plementation of tracers with greater diagnostic accuracy.

Compared with metabolic imaging, direct analysis of 
metabolites in clinical specimens and biofluids has the ad-
vantage of increased sensitivity and diversity of chemical 
species that can be monitored. When surgical specimens 
are available, metabolomic analysis of tumor and adjacent 
normal tissue can be used to identify metabolic pathways 
that are altered in cancer. For evaluating labile metabolites, 
rapidly collected and processed biopsy tissue is ideal; how-
ever, even formalin-fixed, paraffin-embedded archival tissue 
has been used for metabolic profiling.332 In lung cancer, 
one of the most commonly elevated metabolites in tumor 
tissue and serum is lactate.333-337 In fact, one study found 
that more aggressive lung cancers had higher lactate pro-
duction, suggesting that lactate levels can be used to assess 
disease aggressiveness.338 Similarly, glutamate is elevated 
in tumor and serum samples from patients with lung can-
cer.333,335,337,339,340 Studies have shown that the elevated glu-
tamate likely comes from a dependency of cancer cells for 
increased glutamine, which provides necessary nitrogen for 
the synthesis of nucleotides and amino acids.341 Glutamate 
enrichment is also seen in breast cancer tissue compared 
with normal breast tissue.342 In contrast, glutamine levels 
are lower in colon and stomach tumor tissue because of the 
high rate of glutaminolysis driving proliferation.343 A wide 
range of other metabolites, including amino acids, purines, 
pyrimidines, and intermediates of metabolic pathways, have 
been found to be altered in cancer relative to normal tis-
sue. For example, MS-based metabolomic analysis of human 
and mouse colorectal tumors identified 10 metabolites 
that were increased in tumor tissues compared with non-
tumor tissues (proline, threonine, glutamic acid, arginine, 
N1-acetylspermidine, xanthine, uracil, betaine, symmetric 
dimethylarginine, and asymmetric-dimethylarginine); fur-
thermore, these metabolites also showed detectable increases 
in urine of tumor-bearing mice.344

Metabolomic analysis of tumor tissue may also allow 
differentiation between tumor subtypes and aggressiveness 
of tumors.335,345-347 By analyzing tumor tissue, plasma, and 
urine, sarcosine was identified to play a role in prostate cancer 
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progression.348,349 The role of sarcosine as a biomarker of 
prostate cancer in urine, however, has not been replicated in 
other studies.350 In IDH-mutant AML, serum and urine D-
2-HG levels have been evaluated as a tool to assess disease 
activity and therapeutic response.351

Although tissue biopsy is critical for establishing the ini-
tial diagnosis, it is neither practical nor desirable for cancer 
screening, monitoring, or surveillance. In contrast, biofluids, 
such as blood, serum, urine, saliva, and sweat, are a conve-
nient source of material for biomarker detection. Serum 
antigen and hormone biomarkers exist for prostate adeno-
carcinoma, PDAC, ovarian cancer, nonseminomatous germ-
cell tumors, thyroid cancers, hepatocellular carcinoma, and 
others. However, most of these biomarkers are not specific 
for cancer and thus must be interpreted together with other 
clinical or laboratory findings. There is intense interest in 
developing improved prognostic and diagnostic biomarkers 
based on molecular analysis of circulating tumor cells and 
cell-free DNA, RNA, or protein. In recent years, remarkable 
numbers of studies have also explored the use of biofluids as 
a source of metabolic biomarkers for cancer detection, treat-
ment monitoring, and surveillance. For illustrative purposes, 
we discuss only a few examples and refer the reader to sev-
eral reviews for more comprehensive coverage of this topic 
in different cancers.310,352-354

In breast cancer, 4 metabolites (L-octanoylcarnitine, 
5-oxoproline, hypoxanthine, and docosahexaenoic acid) 
were identified as potential serum biomarkers.355 In pan-
creatic cancer, a panel of 5 serum metabolites, including 
glutamate, choline, 1,5-anhydro-D-glucitol, betaine, and 
methylguanidine, was able to distinguish patients with can-
cer from controls.356 Another study showed that 9 serum 
metabolites (histidine, proline, sphingomyelin d18:2, 
sphingomyelin d17:1, phosphatidylcholine, isocitrate, 
sphingosine-1-phosphate, pyruvate, and ceramide), com-
bined with the carbohydrate antigen CA 19-9, were able to 
distinguish between pancreatic cancer and chronic pancreati-
tis.357 In a study that focused on free amino acids in plasma, 
consistent changes were found across patients with lung, 
gastric, colorectal, breast, and prostate cancer compared with 
sex-matched and age-matched controls.358 Interestingly, el-
evated plasma levels of branched-chain amino acids are an 
early event in pancreas cancer development (when disease 
is still occult) and, at the time of diagnosis, they are predic-
tive of future tissue wasting.210,359 In patients with osteosar-
coma, serum and urinary metabolomics revealed a distinct 
phenotype compared with healthy patients, suggesting that 
downregulation of central carbon metabolism and increased 
glutathione and polyamine metabolism are characteristic 
features of osteosarcoma.360

Urine metabolites have also been evaluated as potential 
biomarkers for cancer detection. For instance, urine samples 

from patients with bladder cancer have a significantly lower 
level of citrate, 2,5-furandicarboxylic acid, ribitol, and ribonic 
acid compared with samples from healthy individuals.361-363 
In contrast, 2 independent studies have shown elevated tau-
rine levels in the urine of patients with bladder cancer.363,364 
Amino acids, such as citrulline, leucine, serine, tryptophan, 
and tyrosine, were found to be decreased in patients with 
prostate cancer.365,366 Urine metabolite analysis has also 
been used to detect malignancies that are not in close con-
tact with urine. For example, patients with hepatocellular 
carcinoma had higher urine creatine and carnitine levels and 
lower citrate and glycine levels compared with a healthy co-
hort.367,368 LC-MS analysis of urine samples collected from 
patients with lung cancer showed increased levels of amino 
acids tyrosine, tryptophan, and phenylalanine.369 Modified 
nucleosides have also been detected in the urine of patients 
with a variety of cancer types.370-372

In addition to tissue and biofluids, exhaled breath has 
also been explored as a potential source of cancer biomark-
ers. It has been shown that volatile organic compounds in 
exhaled breath can be used to differentiate patients with 
nonsmall cell lung cancer from noncancer controls.373-375 
Sensitivity and specificity were from 72% to 90% and from 
83% to 94%, respectively, which is comparable to the per-
formance of low-dose computed tomography in lung cancer 
screening trials.376

It is important to acknowledge that a key limitation of 
assessing global metabolic changes in biofluids is the inabil-
ity to differentiate cancer from other diseases that present 
with systemic metabolic alterations. Metabolomic analysis 
of tumor tissue is less subject to such confounding effects 
and, where appropriate, can be a valuable source of meta-
bolic biomarkers that can be leveraged in early treatment 
phases or during disease progression when tumor tissue is 
available.

Discovery of Targeted Therapies That Interfere With 
Cancer Metabolism
A growing area of research is the use of metabolomics to 
uncover metabolic dependencies of cancer that can point to 
novel drug targets. In this section, we discuss a few examples 
of how metabolomics directly contributed to the discovery 
of new targets for precision medicine. The reader is also re-
ferred to a recent review on this topic.377

Although cancer drivers have been detected through 
genomic, transcriptomic, or proteomic approaches, un-
derstanding which cancer-associated mutations, gene ex-
pression changes, and posttranslational modifications are 
functionally relevant is not always straightforward. As dis-
cussed above, changes in metabolite levels reflect the activ-
ity of metabolic enzymes in cancer cells and thus could be 
used to help identify which alterations at the DNA, RNA, 
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and protein levels result in functional changes in cellular 
activity. A classic example of this is the oncometabolite D-
2-HG, which was found to be markedly elevated in cells 
expressing cancer-associated IDH mutations and was sub-
sequently shown to be significantly elevated in cells, tis-
sues, and plasma from cancers with somatic mutations in 
IDH.351,378,379 These and other studies demonstrating that 
D-2-HG alters the activity of chromatin modifying en-
zymes and contributes to disease progression led to the de-
velopment of drugs targeting mutant IDH, which are now 
in clinical trials (see Losman et al183 and Wang et al185) 
(Table 1).

In androgen-driven prostate cancer, in which hundreds 
of androgen receptor-regulated genes can be differentially 
regulated in cancer, a combination of transcriptomics and 
metabolomics was used to identify calcium/calmodulin-
dependent protein kinase kinase 2 as a hormone-dependent 
modulator of anabolic metabolism.380 In clear cell renal cell 
carcinoma, multiomics data sets were compared to gain mo-
lecular insights beyond the sum of individual omics.381 The 
analysis revealed crosstalk within and between phosphopro-
teomics, transcriptomics, and metabolomics, includ-
ing known clear cell renal cell carcinoma drug targets.381 
Finally, a comprehensive analysis of expression patterns of 
metabolic genes across 22 diverse types of human tumors 
identified hundreds of tumor-specific expression changes, 
whereas corresponding changes in metabolite levels were 
used to highlight enzymes that could potentially serve as 
drug targets.77

Stable isotope tracing is another powerful tool to allow 
functional assessment of tumor metabolism in vivo285 and, 
when combined with genomics, transcriptomics, and pro-
teomics, can inform how altered metabolism relates to mo-
lecular drivers of cancer. Stable isotope resolved metabolomic 
analysis after infusion of 13C-glucose into patients with lung 
cancer showed that tumors had increased glycolysis and Krebs 
cycle activity relative to noncancer tissue and also processed 
glycolytic metabolites differently.333 Infusion of 13C-glucose 
also revealed that lung cancers display metabolic heterogene-
ity in nutrient utilization, which could have important impli-
cations for selecting therapies that target metabolism.83 It is 
noteworthy that a common theme throughout many of the 
studies presented here is that the best use of metabolomics 

is in combination with other omics data sets to uncover clini-
cally relevant and actionable drug targets.

Conclusions
Although it is used less compared with the other omics ap-
proaches, metabolomics has the potential to significantly 
impact core areas of oncology, including screening, diagno-
sis, and therapy. However, such applications require a better 
understanding of how these measurements are connected 
to human physiology and cancer biology. In biofluids that 
are readily accessible clinically, most notably plasma, our 
understanding of which metabolites can be measured to re-
flect cancer status is in its very early stages. Although some 
inroads have been made,210,382,383 it is still unclear to what 
extent a metabolite profile in plasma reveals the metabolic 
activity of the cancer. Additional studies conducting me-
tabolomics experiments in fluids that harbor the cancer and 
connect these measurements to both metabolism and the 
biology of the tumor is a promising new direction. Much 
remains to be learned about how to interpret cancer metabo-
lism from these measurements.

One of the challenges with metabolomics is the vast num-
ber and chemical complexity of metabolites that exist. For 
example, plasma metabolite composition is a manifestation 
of liver, muscle, and other organ-level metabolism, dietary 
intake, activity of the microbiome, and other factors. It is also 
important to recognize that metabolomics differs from other 
omics technology in that no one metabolomics approach can 
be completely comprehensive. We propose that, currently, 
the best use of metabolomics in research is in combination 
with other omics approaches and hypothesis-driven inves-
tigation to discover functionally and diagnostically relevant 
alterations in cancer cells. We anticipate that, as standardized 
protocols, affordable instruments, and user-friendly analysis 
platforms become more widely available, metabolomics will 
play an increasingly important role alongside other diagnos-
tic and prognostic tests in the clinic and at the bedside. ■
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