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Nanoscale vector AC magnetometry with a single nitrogen-vacancy center in diamond
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Detection of AC magnetic �elds at the nanoscale is critical in applications ranging from funda-
mental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy
center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector
AC magnetometry currently relies on using di�erent orientations of an ensemble of sensors, with
degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and
experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial com-
ponents of an AC magnetic �eld by tuning a continuous driving to distinct resonance conditions.
We map the spatial distribution of an AC �eld generated by a copper wire on the surface of the
diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity
to both coherent and stochastic signals, with broad applications in condensed matter physics, such
as probing spin 
uctuations.

I. INTRODUCTION

Mapping the vectorial information of AC magnetic
�elds with nanoscale resolution is an essential task in
both fundamental physics and practical applications.
Vector AC magnetometry reveals properties of spins and
charges in condensed matter, and can even elucidate
their dynamic properties, such as magnetic excitations,
spin 
uctuations, spin-waves, and current 
uctuations,
by probing their magnetic noise spectrum [1]. It is also
useful in microwave (MW) technology for MW device
characterization and optimization [2], and in the study
of materials’ response to MW �eld [3]. Sensors based on
a variety of platforms have been developed for di�erent
tasks [4], from neutron scattering [5], to micro-Brillouin
light scattering [6], superconducting quantum interfer-
ence devices (SQUIDs) [7], ultracold atoms [8, 9], and
scanning near �eld microscopy [10{12]. Most of these
sensors, however, are limited by their �nite sizes and can-
not reach the desired atomic scale resolution.

A complementary sensing technology is based on
nitrogen-vacancy (NV) centers in diamond, an atom-like
solid-state defect that can be used as a spin qubit [13].
NV center-based sensors are non-invasive and combine
advantages such as high sensitivity [14, 15], nanoscale
resolution [16{19], k-space resolution [1], in addition to
broad temperature and magnetic �eld working ranges
[1, 13]. The NV center has demonstrated exceptional
performance in both DC and AC magnetometry [4], al-
though most of the protocols focus on detecting only one
component of the vector magnetic �eld. In principle,
protocols tailored at measuring a given magnetic compo-
nent could be combined to extract the �eld vector, as it
has recently been done for DC sensing [18, 20]; however,
the di�erent control sequences required potentially intro-
duce biased systematic errors in the detection. Similarly,

� These authors contributed equally to this work.
y pcappell@mit.edu

one could exploit di�erent NV orientations (typically in
NV ensembles) to measure DC [21{26] or AC [27{29] vec-
tor �elds; however the existing protocols require complex
controls and introduce systematic errors since the sig-
nal is measured through di�erent NV centers. Moreover,
nanoscale resolution is di�cult to achieve in ensemble-
based sensors.

In this work, we propose and demonstrate a proto-
col for vector AC magnetometry based on a single NV
center. Inspired by spin-locking magnetometry [30, 31],
we apply a coherent MW drive with tunable strength 

as our ‘probe’ for the AC �eld with frequency !s. The
transverse and longitudinal components of the AC �eld
can be separately sensed under di�erent resonance con-
ditions with 
 = !s and 
 = !0�!s respectively, where
!0 is the static energy splitting of the NV center. We
perform the proof-of-principle experiment and reach a
� 1�T=

p
Hz sensitivity, mostly limited by our setup pho-

ton shot noise. More generally, we show that the sensitiv-
ity is ultimately limited by the coherence time of the NV
sensor and could reach to � nT=

p
Hz through optimiza-

tion of the photon collection e�ciency and MW control
stability. As a demonstration of our proposal, we map
the spatial distribution of the AC �eld generated by a
straight conducting wire on the surface of diamond. We
further use numerical simulation to identify that the dy-
namic range of the proposed protocol is a�ected by the
breakdown of the rotating wave approximation due to
strong MW strength and the interference e�ects between
di�erent components of the AC �eld. When taking into
account and correcting for these e�ects, we can achieve a
broad dynamic range comparable to !0. Finally, we show
that our proposed protocol allows the sensor to perform
nanoscale reconstruction of both coherent and stochastic
AC signals, which �nds broader applications in magnetic
noise spectrum detection in quantum materials such as
quantum magnets [1].
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II. RESULTS

Principle - We use a single NV center as a spin sen-
sor to perform vector AC magnetometry. The NV center
is e�ectively treated as a qubit by selecting two ground
state levels jmS = 0i and jmS = �1i as the logical j0i
and j1i. Recall that in Rabi magnetometry [27] an AC
�eld can be sensed via the rate of Rabi oscillations (of
an initial population state) induced by the �eld when
on-resonance with the qubit. Here, we monitor instead
the coherent oscillations of an initial \spin-locked" state
[30], prepared under continuous MW driving, and thus
detect the AC �eld by imposing the resonant condition in
the rotating frame. We thus call this detection method
rotating-frame Rabi magnetometry. Since the rotating-
frame transformation shifts the frequency of the trans-
verse (x; y) AC �eld while keeping the longitudinal (z)
AC �eld unchanged, their resonance conditions are dis-
tinct, and the two components can be separately probed
by appropriately tuning the MW strength on-resonance.
When measuring the transverse component, the signal
strength also depends on the azimuthal angle of the AC
�eld in the x � y plane, which enables the detection of
all 3 components of a vector AC �eld. In the following
we explain in details the protocol.

Our goal is to sense a linearly polarized AC mag-
netic �eld ~BAC = (Bxx̂ + By ŷ + Bz ẑ) cos(!st + �s),
which couples to the NV spin as 
e ~BAC � ~S, where

e; ~S are the gyromagnetic ratio and the spin opera-
tor of the NV center. The Hamiltonian of the sys-
tem is H = H0 + HAC : H0 describes a driven qubit,
H0 = (!0=2)�z + 
 cos(!t+�0)�x, where !0 is the qubit
frequency, 
 the MW strength, and ! = !0 the (on-
resonance) MW frequency. HAC is the signal Hamilto-
nian HAC = (gx�x + gy�y + gz�z) cos(!st + �s), with
gx;y = (
eBx;y)=

p
2 and gz = (
eBz)=2. In the rotat-

ing frame de�ned by (!=2)�z and neglecting counter-
rotating terms, the Hamiltonian includes a static term
HI

0 = (
=2)[cos�0�x + sin�0�y] and a signal term

HI
AC =

gx
2

�
cos(�!st+ �s)�x+sin(�!st+ �s)�y

�

+
gy
2

�
cos(�!st+ �s)�y�sin(�!st+ �s)�x

�
(1)

+ gz cos(!st+ �s)�z;

which contains two transverse components with shifted
frequency �!s = !s � !, in addition to an unchanged
longitudinal component, as shown in Fig. 1(b). Then
the resonance conditions for the longitudinal and the
transverse components are 
 = !s and 
 = j�!sj, re-
spectively, where we choose 
; !s < ! = !0 to avoid
unnecessary high MW power. Under the MW driv-
ing alone, the qubit will not evolve when initialized in
one of the spin-locked states j�0i = (j0i + ei�0 j1i)=

p
2,

j�?0 i = (j0i � ei�0 j1i)=
p

2, e.g., by a �=2 pulse. In the
presence of the signal AC �eld, a rotating-frame Rabi

oscillation is induced under either of the resonance con-
ditions mentioned above. The state evolution is then

j (t)i = cos(gt=2) j�0i+ iei� sin(gt=2) j�?0 i ; (2)

with g = gz, � = �s + � for the longitudinal case, and
g = g?=2 =

q
g2
x + g2

y=2, � = �g � �0 + �s for the
transverse case, where �g = arctan(gy=gx). The os-
cillations can be probed by measuring the population
P (j�0i) = j h�0j (t)ij2, yielding a signal

Sz(t) = [1 + cos(gzt)]=2; (3)
S?(t) = [1 + cos(g?t=2)]=2 (4)

for the longitudinal and transverse resonance conditions,
respectively. Thus the values of gz and g? can be deter-
mined.

The direction of the AC �eld in the transverse plane,
�g, can be further determined by observing the evolu-
tion not of the population, but of the coherence between
spin-locked states j�0i, j�?0 i that acquire a relative phase
� during their evolution (Eq. (2)). The relative phase,
which contains information about �g, can then be re-
vealed simply by measuring P (j0i) = jh0 j (t)i j2, ob-
taining

S0
?(t) = P (j0i) =

1
2

h
1+sin

�g?t
2

�
sin(�0��s��g)

i
: (5)

In addition, the phase of the AC �eld, �s, can be simi-
larly revealed by measuring P (j0i) under the longitudinal
resonance condition, yielding

S0
z (t) =

1
2

[1 + sin(gzt) sin�s] : (6)

In experiments, when measuring the transverse or lon-
gitudinal components, we set the interrogation time t to
satisfy (! � !s)t = 2�N or !st = 2�N , respectively,
where N is any positive integer, such that the popula-
tion in j0i is the same in all frames since the rotating
frame transformations become identity. We note that the
value of �g can also be revealed by measuring population
in other states rather than j0i or under a more general
condition when (! � !s)t = 2�N+’ (see supplemental
materials).

Proof-of-principle experiments. We demonstrate the
proposed vector AC magnetometry with our home-built
single NV setup shown in Fig. 2(a) and in Ref. [18]. The
qubit frequency is !0 = (2�)50MHz and a resonant MW
�eld with tunable amplitude 
 is applied by a straight
copper wire of 25 �m diameter. An AC �eld to be sensed
is applied by the same copper wire with !s = (2�)28MHz.
Direction z is de�ned along the NV orientation and di-
rection x is de�ned along the transverse projection of the
MW �eld in the NV frame, then gy; �g = 0. Sweeping
the MW strength 
 reveals two resonances at � 22MHz
and � 28MHz [Fig. 1(d)] corresponding to the transverse
and longitudinal components. In Fig. 1(e) we show the
signal oscillations when varying the AC �eld amplitude,
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FIG. 1. Vector AC magnetometry. (a) Pulse sequence. A green laser and a �=2 pulse prepare the qubit to state
j�0i = 1p

2
(j0i + ei�0 j1i), then a continuous MW �eld is switched on and the signal AC �eld is applied, followed by readout

of j0i or j�0i (obtained via another �=2 pulse.) (b) Rotating-frame components of the vector AC magnetic �eld in the lab
and rotating frame. (c) Conditions for Bx; By; Bz sensing. (d) Demonstration of distinguishing longitudinal and transverse
components by sweeping MW strength 
. Experimental parameters are gx = (2�)0:2MHz, !s = (2�)28MHz, �s = �=2,
!0 = (2�)50MHz, �0 = 0, and t = 2�s. (e) AC �eld amplitude sweep. 
 is set at the corresponding resonances measured in
(d). In experiments, gx is swept, and the values of Bx and Bz are obtained comparing to Eqs. (7) and (8) where corrections
�x = 1:12; �z = 0:95 due to the RWA breakdown are taken into account. (f) Transverse direction �g measurement. �0 is swept
under �s = 0; �=2 and the data is �t to Eq. (5), which gives �g = 0:9� � 10:2�;�10:1� � 7:2�, respectively. We note that the
results here deviate from the perfect sinusoidal shape (lines) due to the breakdown of the RWA, which are simulated in detail
in Fig. 3.

when sensing either the transverse or longitudinal com-
ponents. In addition to showing agreement with the the-
oretical predictions, these data can be used to extract
the sensitivity. While we cannot directly demonstrate
measurement of the y-component (since the signal AC
�eld and the probe MW �elds are applied by the same
copper wire and we’ve de�ned the direction of the MW
�eld to be along x) we can mimic such measurement by
sweeping the MW and AC relative phase. The results
in Fig. 1(f), obtained by sweeping the initial state phase
(also the MW phase) �0, are �t to Eq.(5) to extract �g,
and reveal that indeed �g = 0 since the maximum signal
variation is obtained at j�0 � �sj = �=2.

AC �eld mapping. To demonstrate our vector AC mag-
netometry protocol, we further implement experiments
to map out the spatial distribution of the AC magnetic
�eld generated by the copper wire as shown in Fig. 2(a).
With the diamond and microscope controlled by a piezo
stage and motorized stages, we can perform a 3D 
uo-
rescence scan with sub-�m resolution and observe NV
centers located at di�erent positions [Fig. 2(b)]. The
values of gx;z are measured by rotating-frame Rabi os-

cillations and the reconstructed AC �eld is plotted in
Fig. 2(e). In Figs. 2(c,d), we further compare the recon-
structed �eld direction and amplitude to the prediction
of a simple model - a straight conducting wire in classical
electrodynamics.

While until now we described the AC �eld in the
frame de�ned by the NV axes, xyz, since we are mea-
suring several NVs it is convenient to describe the �eld
in the lab frame, XY Z [Fig. 2(a)], where X is along
the crystallographic direction [110] of the diamond. In
this frame, the wire is along X at Y = 0, and at a
depth Z = �h � �38�m with respect to the confocal
plane (where the NVs are measured). Assuming a sim-
ple model for the magnetic �eld arising from an ideal,
in�nite wire, we can calculate the expected �eld ampli-
tude [j ~BAC j / 1=r, with r =

p
h2 + Y 2

NV , Fig. 2(c)]
and its projection along the NV z-axis [Bz=j ~BAC j =
�YNV =(

p
3r), Fig. 2(d)]. We note that in particu-

lar the z-projection allows distinguishing NVs along
di�erent crystallographic axes ([�111]; [1�11]) for which
Bz=j ~BAC j = (�

p
2h+ YNV )=(

p
3r) (we only address one
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FIG. 2. AC �eld mapping. (a) Simpli�ed schematic of the setup showing the lab frame XY Z de�ned with respect to
the diamond chip and the wire. In the inset, the �eld direction (light blue) arising from the wire (orange). The NV frame
has its z-axis along the [�1�1�1] direction for the selected NV family. (b) Confocal scan showing several NVs close to the wires.
The NV highlighted by circles were measured to reconstruct the vectorial �eld [see (e)]. (c) AC �eld amplitude. Data is �t
to BAC(r) = (52:8 � 1:1)=r (Gauss=�m) where r is the distance between the NV center and the copper wire. (d) AC �eld

direction. Data points are measured values of gz=
q

(gx=
p

2)2 + g2
z , in which the blue points measured gx; gz by rotating-frame

Rabi oscillations for varying measurement time, and the red points for varying �eld amplitudes. The data is �t to the in�nite
wire model, taking into account the NV orientation and assuming the wire is along X [see geometry in (a)]. The grey lines
are predictions from the wire model and two unobserved NV orientations, thus demonstrating that we can identify the NV
direction. The red dashed curve is shifted from the blue curve assuming wire is tilted from X by -15� in X � Y plane due to a
sudden change of the laboratory conditions. (e) Reconstructed vector AC �eld. The light blue arrows show the direction and
the strength of the AC �eld at NV positions highlighted by the white circle. An oscillating voltage with frequency 28MHz and
amplitude 0.007V, which is further ampli�ed by a 45dB ampli�er, is applied to generate the AC magnetic �eld, and g?, gz are
extracted by measuring the rotating-frame Rabi frequencies. Here the ‘wire tilted’ data is not included to keep a consistent
wire orientation for the reconstructed vector �eld.

class of NVs since the others are o�-resonance due to
the applied magnetic �eld). We use our sensing pro-
tocol to experimentally measure the �eld amplitude,
j ~BAC j =

p
2g2
? + 4g2

z=
e, and direction, Bz=j ~BAC j =
gz=
p
g2
?=2 + g2

z . For the direction measurement, we
extract gz;g? by both sweeping the AC �eld ampli-
tude and by varying the Rabi oscillation duration. Fit-
ting to the theoretical model gives BAC(r) = (52:8 �
1:1)=r [G=�m], which is consistent with the prediction
BAC(r) = �0I=(2�r) = 49:8=r [G=�m]. Finally, in
Fig. 2(e) we also show a 3D vectorial representation of
the reconstructed �eld, where the length and direction of
the (blue) �eld arrows are determined from the measured
gx;z.

We next evaluate the performance of the proposed vec-
tor AC magnetometer, including the dynamic range, sen-
sitivity, and its capability of probing stochastic �elds.

Dynamic range - Since measuring over a broad range of

signal frequencies is desirable, we should analyze poten-
tial limitations to the detectable !s. A potential limit is
due to the RWA breakdown, since at least one of the two
MW strengths 
 = !s, 
 = !�!s might be comparable
to the qubit frequency !0 = !. To investigate the RWA
breakdown e�ects, we simulate the exact evolution [with
the same experimental parameters as in Figs. 1(d,e,f)]
over a broad range of !s 2 [0; !]. Figure 3(a) shows
that when 
 > !=2 the resonance conditions for both
components deviate from the RWA prediction (dashed
lines), which is also experimentally observed in Fig. 1(d)
where the resonance for the z component appears at

 � (2�)28:4MHz > !s. Figures 3(c,d) show signal os-
cillations when sweeping gx;z. The simulations suggests
that the e�ective oscillation rate deviates from gx;z and
decreases as a function of !s. Still, numerical simulations
allow us to de�ne corrected expressions for the signals in
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FIG. 3. Dynamic range. (a) 
 sweep under di�er-
ent !s. The exact evolution is calculated with parameters
!0 = (2�)50MHz, t = 2�s, gx = (2�)0:2MHz, gy = 0,
gz = (2�)0:1MHz, and �0; �s = 0; �=2. The intensity of the
density plot is the value of population in j0i. The dashed
lines are the resonances under the RWA as a comparison.
Same parameters apply in (b,c,d) except for special noti�ca-
tion. (b) �0 sweep under the transverse resonance condition
under gz = 0. (c) gx sweep under the transverse resonance
condition and gz = 0. (d) gz sweep under the longitudinal
resonance condition and gx = 0. Resonance conditions in
(b,c,d) are obtained from the exact simulation in (a).

Eqs. (5) and (6):

S(t)0
x;c =

1
2

[1� sin(
�x(!s)gxt

2
)] (7)

S(t)0
z;c =

1
2

[1 + sin(�z(!s)gzt)]: (8)

Crucially, the correction factors �x;z(!s) are independent
of the AC �elds gx;z to be measured, and can be evaluated
independently through numerical simulations. We note
that these corrections are taken into account in Fig. 1(e)
and Fig. 2 to reconstruct the AC �elds. We thus demon-
strated that the breakdown of RWA due to strong driv-
ing does not limit the applicability of our methods, which
succeeds for most frequencies in the range (0; !0), except
for a small range as described below.

A factor that does limit the dynamic range is the in-
terference between the transverse and longitudinal com-
ponents. When sensing the transverse component, the
longitudinal component a�ects the state evolution in two
ways: (1) it drives a signi�cant evolution when gz � �
,
where �
 = j! � 2!sj is the frequency di�erence be-
tween two resonances; (2) it induces an AC stark shift,
g2
z=(2�
), and breaks the resonance condition of the

transverse component. As a result, gz has to satisfy
gz � �
 and g2

z=(2�
)� g?=2 to suppress the interfer-
ence from the longitudinal components. Similarly, when
sensing the longitudinal components, g? has to satisfy

g?=2� �
 and g2
?=(8�
)� gz=2.

Sensitivity - A key metric to evaluate the perfor-
mance of a sensing protocol is its sensitivity, the min-
imally detectable variation of the sensed quantity per
unit time. The sensitivity � to the AC �eld amplitude is
� = �S

p
t+ td=( dSdB ), where �S is the uncertainty of the

measured signal and t, td are the sensing time and dead-
time of the sequence [14]. Our setup has a low photon
collection e�ciency (� 0:009 photons/readout) and a sig-
nal contrast c = 0:3, thus the amplitude sensitivity of the
AC �eld is mainly limited by photon shot-noise. Though
our setup is not optimized, we still �nd comparable sen-
sitivities �x;z to the Bx;z components, by analyzing the
data in Fig. 1(d),

�x =
4
p

2�Sx

p
t+ td

c�x
et
� 1:1

�T
p

Hz
;

�z =
4�Sz

p
t+ td

c�z
et
� 0:95

�T
p

Hz

(9)

where �Sx � �Sz = 11 are calculated from the data error-
bar and the number of repetitions, and t; td = 2; 2:7�s.

Under ideal conditions, the ultimate limit of the sen-
sitivity, � / 1=

p
t, is set by the coherence time of the

rotating-frame Rabi oscillations T2��. In turns, T2�� is
bound by the coherence time T1�, when the AC �eld
is absent and the sensor stays in the spin-locked state
that is optimally protected against noise. More broadly,
these coherence times can be theoretically analyzed us-
ing the generalized Bloch equations (GBE) [32], where
the decay rate of the coherence is given by the power
spectral density (PSD) of the magnetic noise at the sys-
tem frequency [32{35]. In the presence of the AC �eld,
the coherence time T2�� is further a�ected by additional
PSD terms, including the noise of the AC �eld itself. By
generalizing the GBE model to the case of our sensing
protocol we obtain

1
T2��

�
1
4
Sg(0) +

1
8
S
(g) +

3
4
Sz(
) +

5
8
Sx(!0) (10)

where Sg;S
 are noise spectrum of the AC �eld and MW
driving, g = gx=2 or g = gz corresponding to the sensed
component, and Sx;z represent the transverse and longi-
tudinal magnetic noise of the spin bath (see detail in sup-
plemental materials). We experimentally measure T2��
to evaluate its dependence on the AC �eld. As shown in
Fig. 4(a), the coherence time increases for decreasing AC
�eld, which is due to the decrease of the term (1=4)Sg(0)
in Eq. (10). In an ideal situation where the AC �eld and
MW are noiseless, i.e., S
(g) = Sg(0) = 0, and assum-
ing that (5=8)Sx(!0) � 5=(8T1) is small, the dominant
terms in 1=T2�� becomes 3=4Sz(
) � 3=(4T1�). Thus the
optimal T2�� reaches the limit of spin-locking coherence,
as observed experimentally in Fig. 4. With further op-
timizations of the photon collection (� 6 photons/read-
out [36]), signal contrast (c � 0:8 [36]), and interrogation
time (� 1ms), we expect the sensitivity can at least reach
� < 1nT=

p
Hz.
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Though the coherence time reaches the spin-locking
limit, in our experiments [Fig. 4(b)], the signal contrast
decreases with smaller AC �eld, which also limits the
sensitivity. Such a decrease is due to slow variations
in the MW amplitude from one experimental repetition
to another, due to technical noise, which lead to o�-
resonance rotating-frame Rabi oscillations. This e�ect
can be simulated assuming a Gaussian distribution of the
MW amplitude f(�
) � N (0; ��
) and calculating the
average Rabi signal S(t) =

R
f(�
)(gx=2)2=[(gx=2)2 +

�
2] cos(
p

(gx=2)2 + �
2t)d(�
). In Fig. 4(b), the sim-
ulation shown in orange line reproduces the measured
contrast with a standard deviation ��
 = (2�)0:02MHz.
We note that such an issue can be easily improved with
a more stable MW source or more frequent calibrations.

Stochastic AC �eld - Though the discussion above fo-
cuses on sensing a coherent AC �eld ~BAC , our method
also works for a stochastic AC �eld; indeed, such a �eld
would contribute to the magnetic noise terms Sx;Sz dis-
cussed above. Due to the shifted frequencies of the trans-
verse and longitudinal components, they contribute to
the coherence time of the spin-locked state T1� under
di�erent MW strength 
 and can be distinctly detected.
We analyze the T1� with the GBE [30, 34, 35] and obtain

1
T1�

=
1
4

[Sx(!0 + 
) + Sx(!0 � 
)] + Sz(
) (11)

Thus the transverse and longitudinal spectrum compo-
nents of a stochastic AC �eld Sx(!s), Sz(!s) can be ob-
tained by measuring the coherence time T1� under MW
strengths 
 = !0�!s and 
 = !s, respectively. Further-
more, a full noise spectrum can be characterized through
T1� measurement while varying the MW strength.

III. DISCUSSIONS

In this work, we propose and demonstrate a protocol
for vector AC magnetometry based on a single NV center
in diamond. By tuning the MW to di�erent resonances
and measuring the rotating-frame Rabi oscillations, the
3D components of an AC �eld can be reconstructed. We
demonstrate the proof-of-principle experiment with the
AC �eld generated by a straight copper wire, and achieve
� 1�T=

p
Hz sensitivity. We then apply the protocol to

map the spatial distribution of the AC magnetic �eld,
which is consistent with the geometric analysis based on
a classical electrodynamics model. With numerical simu-
lations, including the e�ects due to the RWA breakdown,
we demonstrate a large dynamic range, comparable to
the qubit frequency !0. Based on the noise spectrum
analysis, we show that the ultimate sensitivity is limited
by the spin-locking coherence time T1�, and demonstrate
the capability of reconstructing the vector component of
a stochastic AC �eld by measuring the coherence time.

In our experiments, slow variations in MW amplitude
degrade the signal contrast, thus limiting the achievable
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FIG. 4. Coherence limit. (a) Rotating-frame Rabi os-
cillations. Parameters are ! = !0 = (2�)50MHz; !s =
(2�)45MHz;
 = ! � !s = (2�)5MHz. The correspond-
ing �tting values of gx and coherence times are shown in
text and di�erent data are shifted for visualization. The
inset plots the corresponding rotating frame electron spin
resonance (ESR) measurement with corresponding �-pulse
lengths 5; 10; 20; 40�s from top to bottom. (b) Coherence
time T2�� and oscillation contrast c of the data in (a). The
rotating-frame coherence T2�� is �t with the function S(t) =
c1+c=2 cos(0:5gxt+�0) exp(�(t=T2��)c2 )+c3 exp(�t=�2). The
simulation of contrast is performed with a model assuming a
Gaussian distribution of �
 with ��
 = (2�)0:02MHz. The
contrast c is normalized by the spin-locking contrast (gx = 0).

sensitivity. Beyond simple technical improvements to
achieve a more stable MW, a strategy to overcome this
problem is to use pulsed (instead of continuous) dynam-
ical decoupling (DD) [37, 38] where the resonance condi-
tions, �=� = !s or �=� = ! � !s, are set by the noise-
free pulse spacing � instead of the noisy MW strength

. We note however that the RWA breakdown and �nite
pulse-width a�ect more adversely the pulsed DD scheme
than our proposed vector AC magnetometry protocol,
thus limiting the dynamic range. Alternative strategies
such as rotary echo [31, 39] or a combination of pulsed
and continuous DD could be bene�cial. More broadly, a
systematic error correction scheme such as DD sequences
with modulated pulse phase is of interest in the future
study to improve the performance of the vector AC mag-
netometry and also other magnetometry protocols.

Since our protocol is capable of measuring both co-
herent and stochastic vector �elds, it �nds applications
in condensed matter physics, such as characterizing the
spin or current 
uctuations to reveal their correlation
functions, as well as detecting the dynamic susceptibility
[1, 40]. Previous work has utilized NV centers to probe
spin-wave in a ferromagnetic material by detecting the
MW-excited AC �eld [41, 42], as well as the stochastic
magnetic �eld induced by the intrinsic spin-spin corre-
lations [41, 43, 44]. Similar measurement of magnetic
noise spectrum with NV centers also revealed the chem-
ical potentials [45]. Recently, the capability of detecting
electronic correlated phenomena and studying the trans-
port behavior is also proposed [46, 47], where even more
directions pointed out such as the observation of local-
ization in 2D electron gases [46]. Our protocol provides a
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tool to perform a 3D detection of these phenomena such
as excitation in spin-wave [41, 42] and skyrmions [48], as
well as the 3D analysis of the electronic transport prop-
erties [46].
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Appendix A: Principle

1. Sequence of the vector AC magnetometry

(1) Initialize the qubit to j0i state by shining a green laser beam, then prepare the qubit state to j�0i = 1=
p

2(j0i+
ei�0 j1i) through a �=2 pulse about �x̂ sin�0 + ŷ cos�0.

(2) Apply a continuous microwave (MW) �eld 
 cos(!t+ �0)�x. We note that the z direction is de�ned as the NV
orientation N̂V , x direction is de�ned along the projection of MW �eld direction in the x� y plane.

(3,a) After evolution time t, measure the state population in j0i.
(3,b) After evolution time t, measure the state population in j�0i by applying a �=2 pulse before the population

readout in j0i.
Note that in (3,a), t is set to satisfy !st = 2�N or (!s � !)t = 2�N corresponding to sensing the longitudinal (z)

or transverse (x, y) components respectively such that population in j0i is the same in all rotating frames. There are
no restrictions on t in (3,b). However, for the transverse AC �eld, (3,b) can only reveal the �eld amplitude but not
the �eld direction.

2. Derivation

In the lab frame, the linearly polarized AC magnetic �eld has three components ~BAC = (Bxx̂+By ŷ+Bz ẑ) cos(!st+
�s), which couples to the NV spin as 
e ~BAC � ~S where 
e = (2�)2:802MHz/Gauss is the gyromagnetic ratio and ~S is
the spin operator of the NV center. Although the NV center is a spin-1 system, we select two of the ground states
jmS = 0i, jmS = �1i as logical j0i and j1i and treat it as a spin- 1

2 qubit. Then the Hamiltonian of the system is
H = H0 + HAC where H0 is the Hamiltonian of a driven qubit and HAC is the coupling between the qubit and the
sensed AC �eld, with

H0 =
!0

2
�z + 
 cos(!t+ �0)�x (A1)

HAC = gx cos(!st+ �s)�x + gy cos(!st+ �s)�y + gz cos(!st+ �s)�z

where !0 is the qubit frequency, 
 is the MW strength, ! is the MW frequency setting to the resonance condition ! =
!0 in this work, and gx = 
eBx=

p
2; gy = 
eBy=

p
2; gz = 
eBz=2. In the �rst rotating frame de�ned by (!=2)�z with

the rotating wave approximation (RWA), the interaction picture Hamiltonian is HI = ei !t
2 �z He�i !t

2 �z � (!=2)�z �
HI

0 +HI
AC where

HI
0 =



2

(cos�0�x + sin�0�y) (A2)

HI
AC =

gx
2

�
cos((!s � !)t+ �s)�x + sin((!s � !)t+ �s)�y

�

+
gy
2

�
cos((!s � !)t+ �s)�y � sin((!s � !)t+ �s)�x

�
(A3)

+ gz cos(!st+ �s)�z

In absence of the AC �eld, i.e., gx = gy = gz = 0, the spin is locked to the j�0i state in the rotating frame
after step (1) of the sequence in Sec. A 1, which is the spin-locking condition. Note that the other spin-locked state
is j�?0 i = 1=

p
2(j0i � ei�0 j1i). In the presence of the AC �eld, a population oscillation is induced in the rotating

frame. When 
 = j!s � !j or 
 = !s, only the transverse (x; y) or longitudinal (z) component is on-resonance and
contributes to the evolution signi�cantly while the other component can be neglected due to being o�-resonance. In
this work, we assume 0 < !s < ! = !0 to avoid unnecessary high MW strength thus the two resonance conditions
become 
 = ! � !s, 
 = !s corresponding to the transverse (x; y) and longitudinal (z) components of the AC �eld
respectively.

Note that in the experiment presented in this work, we apply both the MW and AC �elds with the same copper
wire. We de�ne the direction of the transverse MW as the x direction of the qubit in the NV frame with direction z
along the NV orientation, then gy = 0 and the Hamiltonian HI

AC becomes

HI
AC =

gx
2

�
cos((!s � !)t+ �s)�x + sin((!s � !)t+ �s)�y

�
+ gz cos(!st+ �s)�z (A4)
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Longitudinal (z) component sensing. When 
 � !s, de�ne �0x = cos�0�x + sin�0�y, �0y = cos�0�y � sin�0�x,
�0z = �z, then the Hamiltonian in the interaction picture becomes

HI �


2
�0x + gz cos(!st+ �s)�0z (A5)

where the transverse components are neglected due to being o�-resonance. In the second rotating frame de�ned by
(!s=2)�x, assuming gz � 
 and the RWA is valid, the Hamiltonian is

HI;(2) =

� !s

2
�0x +

gz
2

(cos�s�0z � sin�s�0y) (A6)

Under the resonance condition !s = 
, the state evolution in the �rst rotating frame becomes

j (t)i = e�i
! s t

2 �x

�
cos(gzt=2) j�0i+ iei(�s +�) sin(gzt=2) j�?0 i

�
(A7)

The population measurement on j�0i (which is the spin-locked state in absence of the AC �eld) yields a rotating-frame
Rabi oscillation with the signal

Sz(t) = P (j�0i) =
1
2

�
1 + cos(gzt)

�
(A8)

With !st = 2�N where N is integer, the second rotating frame transformation e�i(!s t=2)�x becomes identity and
population in cos(�f=2)j0i+ iei�0 sin(�f=2)j1i, where �f is the polar angle in y0 � z0 plane, yields

Sfz (t) = P (cos(�f=2)j0i+ iei�0 sin(�f=2)j1i) =
1
2

�
1 + sin(gzt) sin(�s + �f )

�
: (A9)

In this work, we choose �f = 0 such that the population in j0i is simply measured.
Transverse (x; y) component sensing. When 
 � ! � !s, the Hamiltonian in the interaction picture becomes

HI =


2
�0x +

gx
2

�
cos((!s � !)t+ �s � �0)�0x + sin((!s � !)t+ �s � �0)�0y

�
(A10)

+
gy
2

�
cos((!s � !)t+ �s � �0)�0y � sin((!s � !)t+ �s � �0)�0x

�

in which the longitudinal component is neglected. In the second rotating frame de�ned by ((! � !s)=2)�0x, assuming
gx; gy � 
 and the RWA is valid, the Hamiltonian becomes

HI;(2) =

� (! � !s)

2
�0x +

gx
4

(� sin(�0 � �s)�0y + cos(�0 � �s)�0z) +
gy
4

(cos(�0 � �s)�0y + sin(�0 � �s)�0z) (A11)

Under the resonance condition !s = ! � 
, the state evolution in the �rst rotating frame is

j (t)i = e�i
(! �! s )t

2 �x

�
cos(g?t=4) j�0i+ iei(�s��0+�g ) sin(g?t=4) j�?0 i

�
(A12)

where g? =
q
g2
x + g2

y, �g = arctan(gz=gx) are the amplitude and direction of the transverse component of the AC
�eld. The population measurement in j�0i yields a rotating-frame Rabi oscillation with the signal

S?(t) = P (j�0i) =
1
2

�
1 + cos(

g?t
2

)
�
: (A13)

With (! � !s)t = 2�N , the second rotating frame transformation e�i(!�!s )t=2�x becomes identity and population in
cos(�f=2)j0i+ iei�0 sin(�f=2)j1i, where �f is the polar angle in y0 � z0 plane, yields

Sf?(t) = P (cos(�f=2)j0i+ iei�0 sin(�f=2)j1i) =
1
2

�
1 + sin(

g?t
2

) sin(�0 + �f � �s � �g)
�

(A14)

which reveals the transverse direction �g given known or controllable �0, �f , and �s. We note that �s can be measured
with the signal shown in Eq. (A9). In the discussion of main text, we use �f = 0 such that the population in j0i is
measured to eliminate additional MW pulses in the population readout.

In summary, the 3D components of an AC �eld can be separately sensed at di�erent resonance conditions. As a
supplement to the experiment in the main text, in Fig. 5, we keep the MW unchanged while sweeping the frequencies
and amplitudes of the AC �eld, and observe similar behaviors as in the main text.
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FIG. 5. Principle demonstration of the vector AC magnetometry. (a) AC �eld frequency sweep. An AC �eld with gx =
(2�)0:2MHz;
 = (2�)22MHz; �s = �=2 is applied under !0 = (2�)50MHz; �0 = 0 and duration time T = 2�s. Two resonances
appear at !s = !�
 and !s = 
 corresponding to the x component and z component sensing respectively. (b) Field amplitude
sweep at transverse and longitudinal resonance conditions in (a). In practical experiments, gx are swept for both components,
the �eld amplitude is deduced from the corrected formula Eqs. (B1) and (B2) considering the correction due to the RWA
breakdown obtained by the exact simulation.

Appendix B: Dynamic range

1. RWA breakdown

Due to strong driving strength 
, the RWA breakdown has to be considered. To simulate the exact evolution,
we discretize the time to small steps dt and calculate the evolution by multiplying the time series of e�iHdt with
the Hamiltonian in Eq. (A1). The simulation parameters are ! = !0 = (2�)50MHz, t = 2�s, dt = 0:0001�s,
gx = (2�)0:2MHz, gy = 0, gz = (2�)0:1MHz, and calculate the population in j0i to obtain the signal S(t). As a
comparison, we also simulate the evolution under the RWA condition, where we numerically evolve the Hamiltonian
in the rotating frame in Eq. (A2) with the same parameters used above. Figure 6 shows a comparison between the
exact simulation and the RWA simulation.

The simulation shows that a larger deviation from the RWA prediction happens when MW strength 
 is large. The
resonance conditions of sensing both the transverse and longitudinal components are shifted as shown in Figs. 6(a,e).
In particular, such shifts become larger when 
 > !0=2. In Figs. 6(b,c), the exact simulations are closer to the RWA
simulations in Figs. 6(f,g) when !s is large and close to the value of !0 = (2�)50MHz, which corresponds to the
situation when 
 � !0 � !s is small. While in Fig. 6(d), the exact simulation is closer to the RWA in Fig. 6(h) when
!s is small, which also corresponds to the situation when 
 is small.

Since the exact simulations of the g sweep signals in Figs. 6(c,d) still show periodic properties where their periods
are dependent on !s and independent of g, we can express the corrected signal simply as

S(t)x;c =
1
2

�
1� sin(

�x(!s)gxt
2

)
�

(B1)

S(t)z;c =
1
2

�
1 + sin(�z(!s)gzt)

�
(B2)

with the !s-dependent �x; �z obtained from the simulation.
We note that a drastic change happens in Fig. 6(g) when !s is small and in Fig. 6(h) when !s is large. We now

analyze Fig. 6(h) as an example and the other one has the similar reason. As the increase of gz, its value soon becomes
comparable and even larger than the value of the MW strength 
 � !s when !s is small, which breaks the rotating
wave approximation of the second rotating frame due to large gz in comparison to 
, thus the RWA of the second
rotating frame is no longer valid and dynamics changes drastically.

2. Interference between transverse and longitudinal components

Both the transverse and longitudinal components exist in the Hamiltonian regardless of the experimental conditions,
which induce interference e�ects. In the previous discussion, such e�ects are neglected when sensing one component
of the AC �eld. Here, we brie
y discuss the regime where these e�ects become signi�cant.
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FIG. 6. Comparison between exact simulation and RWA. (a,b,c,d) are the same plots in the main text Fig. 3. (e,f,g,h)
are corresponding simulations with the assumption of RWA. In (b,c,d), the !s ranges are smaller than the full range [0; !0], this
is because the value of resonant 
 under each value of !s is obtained from the simulation in (a) which only sweeps 
 in [0; !0]
and cannot �nd resonances corresponding to !s in those blank areas. When 
 > !0, more high-order e�ects due to strong
MW strength become signi�cant [49] and is out of scope of this work. Note that under the transverse resonance conditions in
(b,c,f,g), we set gz = 0 such that the signal does not have interference from the z component. Similarly in gz sweep simulations
in (d,h), we set gx = 0.

Under the longitudinal resonance condition 
 = !s and assuming �0 = 0, �s = �=2, gy = 0, the Hamiltonian in
the �rst rotating frame is

HI;(1) =


2
�x � gz sin(!st)�z +

gx
2

sin((! � !s)t)�x +
gx
2

cos((! � !s)t)�y; (B3)

and the Hamiltonian in the second rotating frame de�ned by (!s=2)�x is

HI;(2) = �
gz
2
�y +

gx
4

cos((! � 2!s)t)�y +
gx
4

sin((! � 2!s)t)�z: (B4)

where the counter-rotating terms (gz=2)[cos(2!st)�y � sin(2!st)�z] + (gx=4)[cos(!t)�y � sin(!t)�z] and term
(gx=2) sin((! � !s)t)�x are neglected due to their fast oscillations. In addition to the static term �(gz=2)�y that
drives the rotating-frame Rabi oscillation, there are also oscillating terms with frequency �
 = j! � 2!sj that in-
troduce unwanted interference. To suppress the interference, the detuning �
 has to be much larger than gx=2. In
Fig. 7 we simulate the rotating-frame Rabi oscillation under the resonance condition of the longitudinal component

 = !s with di�erent gx. In each plot, we keep the AC �eld frequency unchanged !s = (2�)24MHz and sweep ! = !0
such that the detuning of the transverse component �
 are swept from -4MHz to 4MHz. In Fig. 7(a) we set gx = 0
such that no interference happens as a reference. In Figs. 7(b,c,d), three di�erent gx=(2�) = 0:2; 0:4; 0:8MHz are used
and �
 = �2gx are shown with dashed lines, within which the interference becomes signi�cant. The discussion here
also applies to the case of transverse resonance condition, which we do not show in detail. In conclusion, to avoid the
interference between the two components, the detuning �
 has to be much larger than gx=2 and gz.

In addition, the o�-resonance component can interfere through an AC Stark shift g2
z=(2�
) or (gx=2)2=(2�
)

which breaks the resonance condition. To visualize such an e�ect, we simulate the rotating-frame Rabi frequency with
di�erent o�-resonance terms. In Fig. 8, we choose parameters ! = !0 = (2�)50MHz; !s = (2�)28MHz; gy = 0 such
that �
 = (2�)6MHz. In Fig. 8(a), we choose the transverse resonance condition and simulate the rotating-frame
Rabi frequency under di�erent gz with the y axis plotted as the ratio of the simulated value of gx to its setting value.
As the increase of gz, the simulated gx increases due to the larger interference. Comparisons of di�erent curves show
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FIG. 7. Interference between two components through direct driving. Rotating-frame Rabi oscillations under
longitudinal resonance conditions with parameters !s = (2�)24MHz; �s = �=2; gy = 0; gz = (2�)0:1MHz; T = 2�s and 
 are
obtained from the longitudinal resonance condition through exact simulation. (a) Rotating-frame Rabi with gx = 0, ! varies
from (2�)44MHz to (2�)52MHz such that �
 = j!�2!sj varies from �(2�)4MHz to (2�)4MHz. �
 = �gx is plotted in dashed
line. (b) Rotating-frame Rabi with gx = (2�)0:2MHz. (c) Rotating-frame Rabi with gx = (2�)0:4MHz. (d) Rotating-frame
Rabi with gx = (2�)0:8MHz.

that for larger setting values of gx, the interference due to gz is better suppressed. Figure 8(c) shows the same data
with the x axis plotted as g2

z=(2�
) in units of gx=2. The overlap of di�erent curves in Fig. 8(c) shows a clear
evidence that such interference happens through the AC Stark shift. Figures 8(b,d) are similar simulations for the
longitudinal resonance condition. In conclusion, to avoid the interference between the two components, conditions
g2
z=(2�
)� gx=2 and (gx=2)2=(2�
)� gz have to be satis�ed.
We note that these restrictions are not strigent requirement for the vector AC magnetometry since one can always

try to correct these errors by comparing experimental data to the exact simulation.

Appendix C: Raw data for AC �eld mapping

In the AC �eld mapping experiment in the main text, we choose parameters ! = !0 = (2�)50MHz; !s =
(2�)28MHz; �0 = 0; �s = �=2. To extract the AC �eld directions, two types of experiments are implemented.
The �rst method [g sweep] keeps the sensing duration time t = 2�s unchanged and sweeps the AC �eld amplitude
under the transverse and longitudinal resonance conditions, which is equivalent to sweeping gx;z in Eqs. (B1) and
(B2). Such sweeps are achieved by sweeping the MW voltage amplitude Vs and measuring population in j0i such that
Eqs. (B1) and (B2) become

S(t)x;c =
1
2

�
1� sin(

�xgxt
2Vs

Vs)
�

(C1)

S(t)z;c =
1
2

�
1 + sin(

�zgzt
Vs

Vs)
�

(C2)

Thus the ratio gx=gz can be obtained by comparing the oscillation periods of two amplitude sweep experiments, which
is then used to reconstruct the direction of the vector AC �eld. Note that !st = 2�N or (!�!s)t = 2�N are satis�ed
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FIG. 8. Interference between two components through AC Stark shift. (a) Rotating-frame Rabi frequency under
di�erent gz under the transverse resonance condition. y axis plots the ratio of the measured gx to the setting gx0, and
di�erent curves represents di�erent setting gx0. Parameters ! = !0 = (2�)50MHz; !s = (2�)28MHz; gy = 0 are used such that
�
 = (2�)6MHz. (b) Rotating-frame Rabi frequency under di�erent gx=2 under the longitudinal resonance condition. y axis
plots the ratio of the measured gz to the setting gz0, and di�erent curves represents di�erent setting gz0. Other parameters
are the same as in (a). (c) Same data as (a) with x axis scaling as g2

z=(2�
) in the unit of 0:5gx. (d) Same data as (b) with x
axis scaling as (0:5gx)2=(2�
) in the unit of gz. Note that the rotating-frame Rabi frequencies are �tted from the simulated
rotating-frame Rabi oscillations.

where N is any integer such that the population in j0i is the same in all rotating frames. The second method [t sweep]
directly obtains the gx;z by measuring rotating-frame Rabi oscillations by projecting �nal state to j�0i such that the
signals are

S(t)x;c =
1
2

�
1 + cos(

�xgxt
2

)
�
; (C3)

S(t)z;c =
1
2

�
1 + cos(�zgzt)

�
: (C4)

Since the same AC �eld is measured in the [t sweep] experiments, such a method not only reveals the direction of the
vector AC �eld, but also reveals its amplitude distribution in the space, which forms a complete reconstruction of the
vector AC �eld.

Figure 9 shows the raw data for the AC �eld mapping experiment in the main text. In Figs. 9(a,b), the AC
�eld amplitude at di�erent NV positions is swept experimentally under longitudinal (a) and transverse (b) resonance
conditions by sweeping the MW amplitudes Vs = gx;setting [here we write Vs as gx;setting, which is proportional to
the MW amplitude and does not a�ect the measurement of gx=gz]. The g sweep data in the main text is obtained by
comparing the oscillation periods in Figs. 9(a) and (b) to Eqs. (C2) and (C1). Note that under the linear region of the
MW ampli�er, the ratio of gx to the voltage amplitude can be calibrated by a simple Rabi oscillation measurement,
thus experimentally we are able to set the value of gx according to such a ratio at each NV position [see example in
Fig. 14]. We use gx;setting obtained from Rabi calibration to distinguish from its real value gx. Ideally, gx;setting = gx
as in Fig. 9(b) where all the measurements show good consistency with the simulation assuming gx = gx;setting.

In Figs. 9(c) and (d), the rotating-frame Rabi oscillations are measured at di�erent NV positions. The t sweep data
in the main text are obtained by measuring the rotating-frame Rabi oscillation and �tting the corresponding gx, gz
with Eqs. (C3) and (C4).
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FIG. 9. Raw data for the AC �eld mapping experiments. Parameters are ! = !0 = (2�)50MHz; !s = (2�)28MHz; �0 =
0; �s = �=2. (a) and (b) sweep the AC �eld amplitude in terms of the setting values of gx;setting at di�erent NV positions under
longitudinal and transverse resonance conditions respectively. Evolution time t = 2�s and population in j0i is measured. (c)
and (d) measure the rotating-frame Rabi oscillations under the longitudinal and transverse resonance conditions respectively.
Population in j�0i = j+i is measured. The same AC �eld is generated by an oscillating voltage with amplitude 0.007V and
frequency 28MHz, further ampli�ed by a 45dB ampli�er before connecting to the copper wire input. gx; gz are extracted from
the Rabi frequency with a correction factor �x; �z obtained from the simulation in Fig. 6(c,d).

Appendix D: Coherence time

In this section, we treat the noise as a classical 
uctuating magnetic �eld and derive the coherence time in terms of
the power spectral density (PSD) of the magnetic noise following the model used in Refs. [32, 33, 35]. We analyze the
situation of sensing the longitudinal component as an example and point out that the transverse component sensing
has similar results.

Assuming �0 = 0 and gy = 0, the Hamiltonian in the lab frame can be written as

H =
!0

2
�z + (
 + �
) cos(!t)�x + (gz + �gz ) cos(!st+ �s)�z + (gx + �gx ) cos(!st+ �s)�x + �x�x + �z�z (D1)

where �x; �z are the stochastic noise terms due to the spin-bath coupling, and �
, �gz;x are the 
uctuations of the MW
and AC �elds. The frequency spectra of these noise terms Sj(�) (j = x; y;
; gz) can be obtained through a Fourier
transformation of their time correlations with

h�j(t1)�j(t2)i = Sj(t2 � t1) =
1

2�

Z 1

�1
d�Sj(�)e�i�t: (D2)

Under the resonance condition ! = !0 and neglecting the counter-rotating terms, the Hamiltonian in the �rst
rotating frame de�ned by H0 = (!=2)�z is

HI;(1) =
�


 + �

2

+ (gx + �gx ) cos((!s � !0)t+ �s) + �x cos(!0t)
�
�x

+
�
(gx + �gx ) sin((!s � !0)t+ �s)� �x sin(!0t)

�
�y +

�
(gz + �gz ) cos(!st+ �s) + �z

�
�z: (D3)
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1. Case 1: No coherent AC �eld with gx;z = �gx;z = 0

According to Eq. (D2), the PSDs in the �rst rotating frame S(1)
j can be expressed as a function of the PSDs in the

lab frame

S(1)
x (�) =

1
4
S
(�) +

1
4

�
Sx(� + !0) + Sx(� � !0)

�

S(1)
y (�) =

1
4

�
Sx(� + !0) + Sx(� � !0)

�
(D4)

S(1)
z (�) = Sz(�)

Then the decay along one axis is determined by the sum of the rotating frame spectra along the two other axes, i.e.,
decay rate �(1)

x is determined by the sum of the S(1)
y (
) and S(1)

z (
). Then

�(1)
x =

1
4

�
Sx(!0 + 
) + Sx(!0 � 
)

�
+ Sz(
)

�(1)
y =

1
2
Sx(!0) + Sz(
) +

1
4
S
(0) (D5)

�(1)
z =

1
2
Sx(!0) +

1
4

�
Sx(!0 + 
) + Sx(!0 � 
)

�
+

1
4
S
(0)

We then obtain the longitudinal and transverse relaxation times in the �rst rotating frame T1�; T2�, with

1
T1�

= �(1)
x =

1
4

�
Sx(!0 + 
) + Sx(!0 � 
)

�
+ Sz(
) (D6)

1
T2�

=
1
2

(�(1)
y + �(1)

z ) =
1
2
Sx(!0) +

1
8

�
Sx(!0 + 
) + Sx(!0 � 
)

�
+

1
2
Sz(
) +

1
4
S
(0) =

1
2T1�

+
1
T 02�

(D7)

where we de�ned the pure dephasing time T2�0 with 1=T 02� = (1=2)Sx(!0) + (1=4)S
(0) = 1=(2T1) + (1=4)S
(0).
When 
� !0, Sx(!0 � 
) � Sx(!0), then the coherence time T1�; T2� reduces to

1
T1�

=
1
2
Sx(!0) + Sz(
) (D8)

1
T2�

=
3
4
Sx(!0) +

1
2
Sz(
) +

1
4
S
(0) (D9)

We note that T1� is the coherence time of a qubit under spin-locking condition, while T2� is the coherence time of
a qubit under Rabi oscillation. Figure 10 shows the measurement of both T1�; T2� as a function of 
 with a single
NV center. In Fig. 10(a), the Rabi coherence T2� increases initially with 
 due to the decreasing of Sz(
), then the
increase of S
(0) results in the decrease of T2�. In Ref. [33], only the decrease of T2� is observed in qubit ensembles
due to the large inhomogeneity yielding much larger S
(0) than the single NV studied in this work. In Fig. 10(b), the
spin-locking coherence T1� increases with 
 due to the decrease of Sz(
), which is consistent with the observation in
qubit ensembles in Ref. [33].

2. Case 2: Coherent AC �eld applied

With the assumption of !0 = !, !s = 
, �s = ��=2, we enter into the second rotating frame de�ned by (
=2)�x
and drop the counter-rotating terms of the modulation �eld but keep the counter-rotating terms of the noise �eld.
The Hamiltonian in the second rotating frame is

HI;(2) =
gz
2
�y +

�
�

2

+ �x cos(!0t) + (gx + �gx ) sin((
� !0)t)
�
�x

+
�
�gz

2
(�1 + cos(2
t))� �x sin(!0t) cos(
t) + �z sin(
t)� (gx + �gx ) cos((
� !0)t) cos(
t)

�
�y (D10)

+
�
�
�gz

2
sin(2
t) + �x sin(!0t) sin(
t) + �z cos(
t) + (gx + �gx ) cos((
� !0)t) sin(
t)

�
�z
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FIG. 10. (a) Rabi coherence T2� as a dependence of the MW strength 
. (b) Spin-locking coherence T1� as a dependence of
the MW strength 
. (c) Raw data for Rabi coherence measurement. (d) Raw data for spin-locking coherence measurement.

Assuming terms corresponding to the o�-resonant component gx do not contribute signi�cantly and can be neglected
due to their small value and o�-resonance, the PSDs in the second rotating frame S(2)

j become

S(2)
x (�) =

1
4
S
(�) +

1
4

�
Sx(� + !0) + Sx(� � !0)

�

S(2)
y (�) =

1
4
Sgz (�) +

1
16

�
Sgz (� + 2
) + Sgz (� � 2
)

�
+

1
4

�
Sz(� + 
) + Sz(� � 
)

�
(D11)

+
1
16

�
Sx(� + !0 + 
) + Sx(� + !0 � 
) + Sx(� � !0 + 
) + Sx(� � !0 � 
)

�

S(2)
z (�) =

1
16

�
Sgz (� + 2
) + Sgz (� � 2
)

�
+

1
4

�
Sz(� + 
) + Sz(� � 
)

�

+
1
16

�
Sx(� + !0 + 
) + Sx(� + !0 � 
) + Sx(� � !0 + 
) + Sx(� � !0 � 
)

�

In the second rotating frame, the static �eld is along the y axis, and the decay rates can be analyzed in a similar way

�(2)
x = S(2)

y (0) + S(2)
z (gz)

�(2)
y = S(2)

x (gz) + S(2)
z (gz) (D12)

�(2)
z = S(2)

y (0) + S(2)
x (gz)
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De�ne the longitudinal and transverse relaxation times in the second rotating frame as T1��; T2��. Assume that
Sx(!0 � 
� gz) � Sx(!0 � 
) with gz � 
, then

1
T1��

= �(2)
y =

1
4
S
(gz) +

3
8

�
Sx(!0 + 
) + Sx(!0 � 
)

�
+

1
8
Sgz (2
) +

1
2
Sz(
)

=
1

2T1�
+

1
4
S
(gz) +

1
4

�
Sx(!0 + 
) + Sx(!0 � 
)

�
+

1
8
Sgz (2
) (D13)

1
T2��

=
1
2

(�(2)
x + �(2)

z ) =
1

2T1��
+

1
4
Sgz (0) +

1
8
Sgz (2
) +

1
2
Sz(
) +

1
8

�
Sx(!0 + 
) + Sx(!0 � 
)

�
=

1
T 02��

+
1

2T1��

(D14)

where 1=T 02�� = (1=4)Sgz (0) + (1=8)Sgz (2
) + (1=2)Sz(
) + (1=8)
�
Sx(!0 + 
) + Sx(!0 � 
)

�
is de�ned as the pure

dephasing rate in the second rotating frame.
With 
� !0 and Sx(!0 � 
) � Sx(!0), the coherence times in the second rotating frame simpli�es to

1
T1��

�
1
4
S
(gz) +

3
4
Sx(!0) +

1
8
Sgz (2
) +

1
2
Sz(
) =

1
2T1�

+
1
4
S
(gz) +

1
2
Sx(!0) +

1
8
Sgz (2
) (D15)

1
T2��

�
1
4
Sgz (0) +

1
8
S
(gz) +

3
16
Sgz (2
) +

3
4
Sz(
) +

5
8
Sx(!0) (D16)

When gz � 
, the approximation here is no longer valid and the coherence is dominated by Sz(
� gz), which is dis-
cussed in Ref. [33]. In the application of vector AC magnetometry, gz typically has small value and the approximation
above is always valid.

Although the derivations above focus on the situation of sensing the longitudinal component, a similar derivation
also applies to sensing the transverse component due to similar Hamiltonian in the second rotating frame as in
Eq. (D10). In the following and in the main text, we use g to summarize both cases with g = gz or g = gx=2
corresponding to sensing the longitudinal or transverse components.

Figure 11 is the longitudinal component sensing experiments as a supplement to the transverse component sensing
in the main text. As the decrease of g, the coherence time increases due to the decreasing of (1=4)Sg(0), and the
limiting coherence time reaches the scale of spin-locking coherence T1�. The raw data for both experiments in the
main text and supplemental materials are shown in Fig. 12.
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FIG. 11. (a) Rotating-frame Rabi oscillations. Parameters are ! = !0 = (2�)50MHz; !s = (2�)5MHz;
 = !s = (2�)5MHz.
The corresponding �tting values of gz and coherence times are shown in text and di�erent data are shifted for visualization. The
inset plots the corresponding rotating frame electron spin resonance (ESR) measurement with corresponding �-pulse lengths
are 5; 10; 20; 40�s from up to down. (b) Coherence time T2�� and oscillation contrast c of the data in (a). The rotating frame
coherence T2�� is �t with the function S(t) = c1 +c=2 cos(gzt+�0) exp(�(t=T2��)c2 )+c3 exp(�t=�2). The simulation of contrast
is performed with a model assuming a Gaussian distribution of �
 with ��
 = (2�)0:02MHz.

Discussion on the limiting T2�� when gt � 1. The derivation of T2�� here is based on the fact that the state
evolution in the second rotating frame (a spin precession about y axis) is signi�cant such that the transverse decay
rate is calculated by the average of �(2)

x and �(2)
z . Thus, the discussion both in the main text and in the supplemental
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 = ! � !s = (2�)5MHz; �0 =
0; �s = �=2 such that a transverse resonance condition is satis�ed. For each gx, the population on both j+i and j�i are
measured by applying a �=2 pulses about +x or -x before readout. Di�erential data (P (j+i) � P (j�i))=(P (j+i) + P (j�i)) is
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 =
!s = (2�)5MHz; �0 = 0; �s = �=2 such that a longitudinal resonance condition is satis�ed. The data processing procedure is
the same as in (a).

materials have an assumption that gt > 1 where t is the sensing duration time. However, when gt� 1 and the state
does not have signi�cant evolution in the second rotating frame, its coherence time should be only set by �(2)

x , which
is the decay rate in the MW �eld direction x, then

1
T2��

= �(2)
x � Sz(
) +

1
4

[Sx(!0 � 
) + Sx(!0 + 
)] =
1
T1�

(D17)

with Sg � 0. As a result, when gt � 1, the coherence time T2�� reaches the spin-locking coherence T1� rather than
(4=3)T1� as discussed previously. We note that due to hardware resolution, we are not able to perform experiment to
distinguish these two situations in our current setup.

Appendix E: Sensitivity calculation

Since our proof-of-principle experiment is not optimized for photon collection e�ciency and the collected photon per
readout is � 0:009, the sensitivity of the magnetic �eld amplitude is � = �S

p
t+ td=(dS=dB) where the signal readout

uncertainty �S is limited by the photon shot-noise [14]. We calculate the shot-noise-limited AC �eld sensitivity with
the amplitude sweep data in the main text. Considering the correction �x; �z due to the RWA breakdown and the
maximum contrast c of 
uorescence measurement, the measured signals are

S(t)x;c = (1� c) +
1
2
c
�
1� sin(

�xgxt
2

)
�

= (1� c) +
1
2
c
�
1� sin(

�x
eBxt
2
p

2
)
�

(E1)

S(t)z;c = (1� c) +
1
2
c
�
1 + sin(�zgzt)

�
= (1� c) +

1
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c
�
1 + sin(

�z
eBzt
2

)
�

(E2)

where c � 0:3; �x � 1:12; �z � 0:95; 
e = (2�)2:802MHz/Gauss. Since the amplitude sweep data are averages of
Nrep = 106 repetitions with data errorbars � 0:011, the readout uncertainty for each repetition is �Sx = �Sz �
0:011

p
Nrep = 11. Then the amplitude sensitivities for Bx and Bz are

�x =
�Sx

dSx
dBx

q
1
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=
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e
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4 t
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where td = 2:7�s is the dead time of the sequence for state preparation, readout and other wait times.
Taking the coherence time T2�� into consideration, the sensitivities of the transverse and longitudinal components

are

�x =
�Sx

c�x 
e

4
p

2
e�(t=T2�� )c 2 t

q
1

t+td

(E6)

�z =
�Sz

c�z 
e
4 e�(t=T2�� )c 2 t

q
1

t+td

: (E7)

Based on the T2�� data both in the main text and in the supplement, we calculate the sensitivities as a dependence of
the sensing duration time t for both data sets and plot them in Fig. 13. The oscillation contrast c, index c2, and T2�� are
obtained from the �tting of the oscillation with function S(t) = c1 +c=2 cos(gt+�0) exp(�(t=T2��)c2)+c3 exp(�t=�2),
and �S are obtained from the data errorbar and experimental repetitions 2� 106, where the factor of 2 is multiplied
because the di�erential data is used as shown in Fig. 12. In Fig. 13, we achieve optimal sensitivities of �x �
0:59�T=

p
Hz, and �z � 0:38�T=

p
Hz for our unoptimized setup.

With optimizations of the photon collection and interrogation time, we expect a limit of sensitivity � < 1nT=
p

Hz,
which comes from the following improvements. The interrogation time can be improved by a factor of 500 to reach
1ms as measured in Fig. 10(b), which brings a 22-fold sensitivity improvement. The contrast can be improved to
c = 0:8 � 0:9 [36], which brings a 3-fold sensitivity improvement. The photon collection e�ciency can be 640 times
larger than our current setup (0.009 photons/readout) as in [36], which brings a 25-fold sensitivity improvement.
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FIG. 13. (a) Sensitivity �x of the transverse component Bx calculated according to Eq. (E6) with the data in the main text.
The oscillation contrast c, index c2, coherence time T2�� are obtained from the �tting of the oscillation with the model (b)
Sensitivity �z of the longitudinal component Bz calculated according to Eq. (E7) with the data in the supplemental materials
in Fig. 11.

Appendix F: Ampli�er linearity

In Fig. 14 we plot the characterization of the ampli�er in our experiment, which shows the nonlinearity starting at
voltage amplitude Vamp � 0:15Volt. The measured NV center here is � 72�m away from the copper wire, and such
a voltage converts to a Rabi frequency 
 � (2�)25MHz. Note that for NV center that is closer to the copper wire,
the same Rabi frequency only needs a smaller MW voltage. In Fig. 2(d), most data points have their NV distances
to the copper wire smaller than 70�m, which are in the linear region of the ampli�er. Other data in this paper is also
taken with the ampli�er in the linear region.
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FIG. 14. Ampli�er nonlinearity. We measure the Rabi frequency of a single NV center under various voltage amplitude
Vamp, which is further ampli�ed by a 45dB ampli�er before connecting to the copper wire input. Note that the NV center we
measured here is � 72�m away from the copper wire.
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