
Using LEGO Robots to Explore Dynamics

by

Mario Octave Bourgoin

B.Sc., University of Ottawa
(1978)

Submitted to the Media Arts and Sciences Section
School of Architecture and Planning

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1990

@ Massachusetts Institute of Technology 1990
All Rights Reserve4->

Signature of Author

Certified by

e1 ia Arts nd ciences Section
June 17, 1990

Seymour A. Papert
LEGO Professor of Learning Research

Thesis Supervisor

Accepted by
Stephen A. Benton

Chairman, Departmentpigonpittee on Graduate Students

0OT 0 1990
USR,.ARIES

%-1%% - # , - - - .4- -V

Using LEGO Robots to Explore Dynamics

by

Mario Octave Bourgoin

Submitted to the Media Arts and Sciences Section
School of Architecture and Planning

on June 17, 1990, in partial fulfillment of the
requirements for the Degree of

Master of Science

Abstract

A system for programming LEGO robots was created for children's use in learning how
patterns can emerge in the activities of systems of interacting elements. A group of nine
6th and 7th grade children took part in a workshop involving programming the robots
to locate, capture, and then release a source of light. The children were observed in their
process of learning how to make patterns emerge in the robot's activity. The children's
notes and videotapes of them both at work and reflecting on their work were used to
analyze how they accomplished it.

Thesis Supervisor: Seymour A. Papert
Title: LEGO Professor of Learning Research

Contents

1 Introduction 9

2 Dynamics and LEGO Robots 12

2.1 Emergence and Dynamics 13

2.2 Using LEGO Robots 20

2.3 Related W ork . 22

2.4 Prelim inary Study . 22

3 The Materials 26

3.1 The Robots' Bodies . 26

3.1.1 The Workshop . 26

3.1.2 The Competition . 29

3.2 The Robots' M inds . 33

3.2.1 The Editor . 33

3.2.2 The ACT Language . 33

3.2.3 Debugging Programs ... 36

3.2.4 The Initial Program . 38

3.3 Related W ork . 39

3.3.1 The Subsumption Architecture 39

3.3.2 Cybernetics and LEGO Robots 40

3.3.3 Robot Odyssey 41

3

3.3.4 A gar . 42

3.3.5 MACNET . 44

4 The Workshop 46

4.1 Overview 46

4.2 The Participants . 47

4.3 Workshop Time Line . 48

4.4 The Sessions . 49

5 Observations and Analysis 53

5.1 Research Questions . 53

5.2 The Children . 54

5.3 Learning About the Workshop . 55

5.4 Learning About the Tools . 71

5.5 Learning About Emergence . 73

6 Conclusions and Future Work 82

6.1 Summary of the Thesis . 82

6.2 Children's Thinking About Emergence 85

6.3 Improving the Materials . 88

6.4 Future Explorations 92

A Resources Used in this Study 96

B Example Programs 97

B.1 Sample Light Seeking Programs 97

B.2 MOVEAROUND . 101

B.3 The SMART Robot's Program . 102

C ACT Language Reference 104

C.1 Basic Language Structure 104

C.2 Primitive Action Statements . 104

C.3 Prim itive Actions 105

C.4 Primitive Operations . 105

C.5 Special W ords . 106

D The ACT Keyboard Hotkeys 107

D.1 Editor Command Keys 107

D.2 Compiler and Debugger Keys 109

E The ACT Compiler 110

E.1 The Parser 110

E.2 Intermediate Representation 111

E.3 Run-Time Environment . 111

E.4 Code Generation . 112

Acknowledgments

I owe everything that is good in this research to people who cared; I will never be able to

thank all of them enough. Amongst the hundreds of people who helped me in this work,

I must thank above all my advisor, Seymour Papert, for his support, his inspiration,

and his confidence in me. Philip Agre gave me central idea for this research and Fred

Martin, Allan Toft, Steve Ocko, and Mitch Resnick gave me the materials I needed to

carry it out. Andy diSessa and Idit Harel were my flawless readers, they helped me see

what was important and kept me focussed. Steve Benton, Linda Peterson, and Ilze Levis

were this project's midwives. Susan Cohen of the Brookline Schools helped me find a

place and people with whom to work, and Hillel Weintraub helped me find Susan Cohen.

Edith Ackermann provided academic support that was essential to the development of my

research. The masters students of the Media Laboratory, particularly those of the Thesis

Prep class of fall 1989, helped me with their support and company. I owe equally great

thanks to each of the Epistemology and Learning Group's members, because they fostered

my intellectual growth over the last five years. My office mates, Carol Strohecker and

Aaron Falbel, gave me their spirit to get it done but with care. Kevin McGee showed

me the way with his uncompromising will to do it right. Fred Martin, P.K. Oberoi,

and Randy Sargeant led this year's MIT Robot Design Competition that provided such

special excitement to the children in the workshop. I must also thank the Hennigan

School teachers and those of the Science and Whole Learning schools for sharing with

me their thoughts and ideas and for showing me the teacher's side of life. The Media

Lab's researchers and support staff were responsible for the exciting and inspiring life

that led to this work. I owe special thanks to Nicholas Negroponte and Jerome Wiesner

for making this work possible by creating the Lab. I owe equal thanks to Michael Travers

and Alan Ruttenberg for caring enough to champion the cause of academic freedom for

us all. The pictures in this thesis would not have happened without the generous help of

Brian Anderson, Trevor Darrell, Elaine McCarthy, and Laura Teodosio. Larry Ward and

Ray Hinds helped me assemble the LEGO and electronic materials. I must thank my

parents, my sister, and her family for their unfailing and prodigal love, care, and help. I

owe very special thanks to Susan Scott who made me love life enough to live it this hard.

All of the help I've gotten is enough to make anyone's life fantastic, but what made it

glorious were the children with whom I've worked. I want to thank them for sharing

their ideas, thoughts, and feelings with me, but above all for the time that brought us

all together.

The research reported here was conducted at the MIT Media Laboratory and was

supported in part by the National Science Foundation, the McArthur Foundation, and

InterLEGO/SA.

To all the children of the world.

The young, the old,

The great and especially the small.

I love you.

Chapter 1

Introduction

To those accustomed to the precise, structured methods of conventional

system development, exploratory development techniques may seem messy,

inelegant, and unsatisfying. But it's a question of congruence: precision

and flexibility may be just as disfunctional in novel, uncertain situations as

sloppiness and vacillation are in familiar, well-defined ones. Those who admire

the massive, rigid bone structures of dinosaurs should remember that jellyfish

still enjoy their very secure ecological niche.

Beau Sheil, "Power Tools for Programmers"

A system for programming LEGO robots was created for children's use in learning

how patterns can emerge in the activities of systems of interacting elements. A group

of nine 6th and 7th grade children took part in a workshop involving programming the

robots to locate, capture, and then release a source of light. The children were observed

in their process of learning how to make patterns emerge in the robot's activity. The

children's notes and videotapes of them both at work and reflecting on their work were

used to analyze how they accomplished it.

This thesis presents a micro-genetic study of the process that the group went through

to use the emergent properties of a robot's interactions with its environment to program

it for a simple task. This study was done in the context of an eight week after-school

workshop in the programming of robots made from LEGO materials. The workshop's

purpose was to engage a group of children into exploring how regularities can be made

to emerge in the activity of the robots. In doing this kind of work, the children looked at

phenomena that was emergent from the particulars of the situations they were creating.

The inspiration for this work came from Philip Agre's doctoral research [Agre 1988].

Agre and David Chapman had worked on understanding the patterns that arose in the

interactions between Pengi, the game player, and Pengo, the game, and had programmed

Pengi so that it would take advantage of them. In his doctoral thesis, Agre named those

patterns of interaction "dynamics." What results from this kind of work is often called

"emergent phenomena."

Chapter 2 will describe some of the ideas that influenced the design of this study. The

phenomenon called emergence will be described and the idea of dynamics will be related to

the concept of emergent phenomena. Some aspects of the approach to learning developed

by the Epistemology and Learning Group MIT's Media Laboratory will be discussed, and

different project to develop tools for learning about emergence will be presented. Finally,

a preliminary study of adults observing robot activity will be described and some of its

results will be discussed.

Chapter 3 will discuss the LEGO and electronic materials that were provided to

the children, both for the workshop and for the Robot Design Competition. It will

also describe the ACT parallel programming language that was used by the children to

program robots and will talk about the facilities that were available for creating programs

and debugging them. Five other robot construction systems will be discussed.

Chapter 4 will talk about the structure of the workshop and will give an overview of

the events that happened in each of the eight sessions and in the post-interviews.

Chapter 5 will discuss the process through which the children appropriated the tools

that were provided and the interactionist ideas for programming robots. Selected tran-

scripts from the sessions will be used to show how the children thought about the mate-

rials and ideas as the workshop progressed.

Chapter 6 will reflect on the children's use of dynamics to control the robot. It will

also look at how the ACT system and the workshop's goals could be changed to facilitate

their appropriation by the children. New directions for exploring emergence that are

suggested by this research will be discussed.

Chapter 2

Dynamics and LEGO Robots

Two family of ideas informed the design of this study. The first one concerns the study

of patterns that can emerge in the activity of systems of interacting elements, and the

second one supports the view that learning can often best be done through building.

Emergence is a phenomenon that is receiving a lot of attention these days in such forms

as theories of activity, chaotic systems such as those that produce our weather, and

self-organizing systems such as colonies of ants. The aim of this attention is to find

ways of understanding these phenomena and to develop formal theories to explain them.

By looking at how we already work with such phenomena, we can improve our tools

for thinking and learning about it. Constructionism claims that learning is best done

through a process of self-directed building that involves ideas and facts that we desire to

learn. This view of learning motivated the use of a workshop as the context in which to

explore thinking about emergence.

The first section of this chapter will look at emergence, the second one at Construc-

tionism, the third one will present a project currently underway that explores emergence

in self-organizing systems, and the final section will present an example of adults observ-

ing emergent phenomena.

2.1 Emergence and Dynamics

In the workshop, the children worked with emergence that arises from the interactions of

an agent in an environment. In this section, the idea of emergence will first be explored

in general, and then with respect to the specific kind of emergence that was created by

the children.

What is Emergence?

A survey of articles that address the concept of emergence shows that it is difficult to

define. Often, people will see some definitions as excluding obviously emergent phenom-

ena while they will see others as being so broad as to include all phenomena. Still, by

using a range of examples of systems that exhibit what people call emergence, a view of

this concept can begin to be assembled.

* A triangle emerges from the interaction of your brain with a picture of blackened

circles with cutout arcs and angles (see Figure 2-1.)

* Zigzag motion patterns emerge from the reactions of a robot to features of its

environment (see Figure 2-2.)

* Eyes and other organs emerge from the growth of clumps of undifferentiated cells.

* A colony of ants emerges from the interactions of the ants, both chemical and

mechanical; it builds a hill and will act to defend it.

e In cellular automata, "flowers", "gliders", and other structures emerge from the

interactions of many simple machines.

One striking feature that these examples have in common is that a structure emerges

without the intervention of central control, be it a designer, a plan, a circuit, or anything

else that directly puts the structure in place. Rather, this structure is the consequence

of the interactions of a number of parts. And while the particulars of the parts seem

Figure 2-1: Subjective Contour

Figure 2-2: Emergent Zig Zag Motion

14

to have a great influence on the details of the structures that emerge, the character of

those structures often seems to remain the same if the parts change. These structures

are robust, yet in a way that is hard to define.

Often, people will remark on their surprise upon seeing emergent structures, but not

everything that we call emergent is unexpected. For example, Maja Materic designed

a robot named Toto and programmed it with only four rules of action so that when

it moves it displays, amongst other emergent phenomena, boundary-tracing behavior

[Materic, 1990]. This shows that emergent phenomena can be sought out, actually de-

liberately assembled. Perhaps this surprise we experience comes from the fact that we

do not expect anything to happen in such systems because we do not understand how it

could happen.

Intelligence as an Emergent Phenomenon

Emergence is an idea that often cited when talking about intelligence. Part of this comes

from our knowledge that intelligence is based on the brain, a huge collection of simple

parts none of which alone can do what the brain can do. Sherry Turkle speaks about

the idea of the emergence of intelligence in her book The Second Self [Turkle 1984].

She points out that while emergence may seem like magic, nature is rich in examples

that can serve as a metaphor for it. In talking about emergence, she describes systems

where higher order comes from the interactions of parts without there being anything

in the systems that directly specifies what the order should be. She applies this idea

to programming and contrasts the view that computers can do no more than what they

are programmed to do, which she calls the "Lovelace" model, to a view that says that

heuristically programmed computers will do what emerges from the interactions of their

parts, the "Society" model.

The idea of a computer as a "society" of competing programs is one of

several key ideas from the AI community that challenge the image of the

computer as following step-by-step instructions in a literal minded way...

[Turkle 1984] pg. 277

According to Turkle, in the Lovelace model results come from systematic rules and or-

dered instructions, and what these results will be can known in advance. She contrasts

the results of the Society model as emerging from the interactions of independent parts,

almost through a democratic process. She adds that those results can only be known in

advance in a vague way and depend greatly on the program's environment.

Danny Hillis describes systems made from many simple components but that as a

whole are more organized than each of the individual parts [Hillis 1988]. In doing this, he

focuses on the different scales at which the components and the emergent phenomenon

operate. In talking about emergence he uses the example of ice crystals forming as a

consequence of the rules of interaction of water molecules. But he quickly points out

that the connection between the rules and the crystals is not obvious. He then considers

the possibility that intelligence might be due to an emergent phenomenon.

It would be very convenient if intelligence were an emergent behavior of

randomly connected neurons in the same sense that snowflakes and whirlpools

are emergent behaviors of water molecules. It might then be possible to build

a thinking machine by simply hooking together a sufficiently large network

of artificial neurons. The notion of emergence would suggest that such a

network, once it reached some critical mass, would spontaneously begin to

think.

[Hillis 1988], pg. 175

His view brings out the statistical character of many emergent systems: that if enough

elements are brought together, something will emerge from their interaction, although

often no one is quite sure what. But Hillis criticises the notion of emergence as offering

"neither guidance on how to construct such a system nor insight into why it would work"

([Hillis 1988], pg. 176). In the end, he returns to the problem of connecting the rules to

the patterns that emerge from them. He concludes that:

The emergent behaviors exhibited by these systems are a consequence of

the simple underlying rules defined by the program. Although the systems

succeed in producing the desired results, their detailed behavior are beyond

our ability to analyze and predict.

[Hillis 1988], pg. 188

In "Waking up From the Boolean Dream", Douglas Hofstadter also looks at the

relationships between emergence and intelligence. In talking about ant colonies as a

metaphor for emergent symbol systems, he says that "...what keeps [the team of ants]

coherent is ... the regular patterns that are sure to emerge out of a random substrate when

there are enough constituents. Statistics in short" ([Hofstadter 1985] pg. 653). So, like

Hillis, Hofstadter hopes that if enough elements are put together, emergent phenomena

will result. To get at the issues underlying the emergence of intelligence, Hofstadter

contrasts two kinds of models to explain the existence of limits to how many different

things people can remember in the short term. One model is the view that ascribes

the number of things that can be remembered to people possessing a limited number

of "registers" in which to store representations of objects. In this model, short-term

memory is explicit and its limits are clear. If some people can remember more than

others, it's because they have more registers; you only need to add registers to a system

for it to be able to remember more things. In the other model, the limits of short-term

memory are a consequence that emerges out of the design of a thinking system. It is

"...a product of many interacting factors, something that was not necessarily known,

predictable, or even anticipated to emerge at all" ([Hofstadter 1985] pg. 641). If some

people can remember more than others, the system must be somehow different, but it

makes much less sense to think that just adding a something to the system will increase

how much it can remember. The lower level is the substrate out of which emerges the

activity seen at the higher level; the higher level describes what the system appears to

do while the lower level describes what is actually happening. In Hofstadter's example,

believing that short-term memory is the product of explicit memory structures in the

head is to confuse these two levels of description.

What is a Dynamic?

In his doctoral thesis, Philip Agre looks at emergence from what seems to be a very

different perspective from the three just mentioned [Agre 1988]. While Turkle, Hillis,
and Hofstadter examined interactions in systems composed of a large number of simple

and similar elements, Agre considers the patterns that emerge in the interactions of a few

different elements. Yet, as with the other examples, these systems lack a central control

structure and the emergent activity described at the higher level is absent from the lower

levels.

Agre uses the word "dynamic" to refer to descriptions of the patterns that emerge

from the interactions between certain kinds of agents and certain kinds of worlds. In his

doctoral thesis, Agre analyzed the dynamics that arose in the interactions of a mostly

reactive agent with a video game. A mostly reactive agent is one whose next action is a

response to immediate stimuli and not due to some change of internal state such as the

advance of a program counter.

Dynamics are a part of talking about the interactions of an agent with the particulars

of a world; we say that a robot is situated in a world. In an earlier paper [Bourgoin 1990],
an example of a dynamic is shown as giving the means to explain why a person tripped

daily at the same place in his morning trip to the subway.

If I want to explain this tripping, I must talk about my interactions with

that particular broken part of the sidewalk; after all, I do not trip all the

time, and not everyone I have seen pass by the break tripped. In fact, I only

tripped at that spot in the morning when there was a lot of traffic in the

streets and there was a stream of pedestrians going from the T station to

the Government buildings that were behind me. The only way I can explain

this tripping is by describing my relationship with my environment at that

particular time: my situation.

[Bourgoin 1990] pg. 141

Because dynamics describe something that arises from the combination of an agent and

a particular world, they are different from behavioral descriptions that talk about some-

thing that mostly arise from the nature of an agent alone.

What is gained in the difference between Agre's systems and the other ones is that

their relative simplicity makes the process through which the patterns emerge from the

interactions of the parts more accessible to an observer. As a means for studying this

kind of emergence, Agre counsels:

It seems like an interest in emergence requires the ability to move back

and forth between the robot's perspective and an observer's perspective; emer-

gence, it seems to me, has precisely to do with the difference between those

two perspectives, the kinds and degrees of orderliness that the observer can

see but the robot itself is not in whatever sense aware of.

Agre, personal communication

As Agre points out, emergent phenomena is understood as a consequence of the interac-

tions of the parts when a comparison is made between different levels of description. An

observer can see the zigzag patterns formed by a robot as shown in Figure 2-2, but the

robot that makes them only moves in straights and turns in reaction to stimuli.

2.2 Using LEGO Robots

MIT's Epistemology and Learning Group, of which the author is a member, is the center

for the Constructionist approach to education. We believe that people learn by recon-

structing knowledge, and that this process is facilitated when done in the context of

building meaningful objects.

Constructionism is a synthesis of the constructivist theory of developmen-

tal psychology and the opportunities offered by technology to base education

for science and mathematics on activities in which students work towards the

construction of an intelligible entity rather than on the acquisition of knowl-

edge and facts without a context in which they can be immediately used and

understood.

[Papert 1986], pg. 8

This view of learning is synergistic with the approach to exploring emergence sug-

gested in the previous section by Agre. In keeping with this approach, a set of tools was

created so that children could build systems of interacting elements and observe patterns

of activity that emerge from them. Some of the elements in this set of tools were actions

to be programmed into agents by the children, while others were physical structures in

the world in which the agents were situated. The agents were chosen to be pre-built

robots made from standard LEGO Technics parts combined with a portable computer

called the Programmable Brick. The computer was to be programmed using the ACT

programming language. These tools will be described in greater detail in Chapter 3.

The world with which the robots interacted included stationary and moving lights, other

agents, both robots and children, and a corridor, a pair of rooms, and their contents all

located within an elementary school in Brookline.

The Epistemology and Learning Group is also concerned with the children "appro-

priating" the tools and ideas so that they feel comfortable with them.

Much of our research is based on the working hypothesis that children ...

will learn science best if they use it ... right now. ... And we do not mean

that they use it only to perform activities imposed on them ... We mean that

they use it for purposes they experience as their own.

[Papert 1986] pg. 9

And as part of this appropriation, we want to foster the development of a community of

ideas that can serve its members not only as a resource on how to think about the tools

and how to use them but as a group with which new ideas for applying the tools can be

developed.

For these reasons, an after-school workshop setting was chosen as the most suitable

context in which to use the tools to explore emergence. The children who participated

in the workshop were not bound to see it through to its end, possibly doing something

that was not of their choosing or in line with their interests. In addition, they were

presented with the opportunity to do something which had not been done before to the

knowledge of the author, a feature which helped foster in them a sense of excitement

and of personal accomplishment. In a workshop setting, the children could work at their

own pace because they were not under the usual school constraint of having to remain

on a particular subject for an entire session or to change to a different one according to a

set schedule. Finally, while the children were split into pairs to program the robots, this

did not diminish their interactions, in particular since they were encouraged to help one

another complete their projects. In fact, this allowed the children to compare a number

of different programs for controlling the robot.

Because of limits on available time and equipment, the workshop was not as open-

ended as would have been desirable for a Constructionist environment. Some suggestions

for a different use of these tools and ideas in future workshops will be given in Chapter 6.

2.3 Related Work

The author knows of only one other research project that combines education and the

study of emergence. Mitchel Resnick has proposed to build a programming system that

children can use to explore self-organizing systems [Resnick 1989]. Self-organizing sys-

tems exhibit the statistical emergence that was described in Section 2.1. Resnick's system

will include a programming language called *Logo (pronounced star-Logo), a version of

Logo that allows the "control the concurrent actions of (at least) hundreds of "objects"

(e.g., ants or molecules or automobiles)" ([Resnick 1989] pg. 6).

Resnick has many goals in developing this tool. He intends *Logo to be an accessible

tool with which non-expert programmers will be able to use the Connection Machine,

a massively-parallel computer with at least 16,000 processors. He also wants to use it

to argue that the study of self-organizing behavior deserves a place in pre-college educa-

tion. He intends "to trace how students' understanding of self-organization develops and

evolves" ([Resnick 1989] pg. 2). Finally, he wants to develop new ways of categorizing,

classifying, and thinking about self-organizing behavior.

Chapter 6 will consider the relevance of the results presented in this thesis to the kind

of emergence that Resnick intends to study.

2.4 Preliminary Study

While constructing the environment and the agents for use by the children, a preliminary

study was done with adults to find out what kind of language they used when describing

robot activity they observed. The information presented here was also included in a

previous publication of preliminary results [Bourgoin 1990]. This study used a robot

that could find a source of light using only a sensor which reports the intensity of the

light that reaches it from the direction in which it is pointed. During the experiment, the

robot was made to find a light six different times, each time following a procedure chosen

at random from a set of four different procedures for finding a source of light. Every

procedure included a method for making the robot back up and turn towards the left if

its front bumper detected that it had run into an obstacle. Three of the procedures made

use of the light sensor to locate the light, while the fourth moved about at random. Three

equal implementations of one of these light-using procedures, each written in a different

language, can be seen in Section B.1. The first implementation is in Logo, the second is

in ACT, and the third is in the form of a logic circuit. These implementations will allow

the reader to compare these different languages. With this procedure, the robot moved

in a straight line as long as its sensor reported an intensity which either stayed the same

or increased. If the intensity dropped, the robot turned left by an eighth of a circle.

However, if the robot ran into an obstacle, it would back up even though it may have

been moving towards increasing light beforehand. The Logo version of this procedure

was used for the preliminary study.

The robot was set in a large open-top square box, and a light was placed in one corner

of the box. The participants were given the following written directions (in this protocol,

the robot is referred to as a "turtle"):

The turtle's task is to reach the light. It will have six tries. You will

first observe all six tries. Each time, you will be asked to describe aloud the

activity that you see. After the sixth try, you will be given a sheet on which

you will be asked to write in what order you rank the tries according to the

turtle's ability at reaching the light at each attempt. I will then ask you some

questions related to how you ranked the tries. Before each try, I will check

the turtle to see that it's physically ok. I will place the turtle in the center of

the pen, facing away from the light. I will then press a button that tells the

turtle to begin that try. Each try will end when you are satisfied that you

have seen enough of that attempt. I will then press a button that tells the

turtle that it's the end of that try. During a try, you may ask me to move the

turtle back to its starting position, particularly if you think it's stuck. You

can walk around the turtle pen during an attempt to get different views of

the activity in the pen.

After the above procedure was completed, at the end of the six tries, the participants

were asked the following questions:

1. In some of the tries, the turtle isn't seeking the light. Do you know which tries?

2. Would you like to know which tries? Now that you know which tries were random,

would you like to change your ranking of the tries? How would you change them?

Why?

3. In two of the tries, the turtle used a method it had already used in two earlier tries.

Do you know which tries?

4. Would you like to know which tries? Now that you know which tries were repeats,

would you like to change your ranking of the tries? How would you change them?

Why?

5. The turtle is equipped with only two sensors: a switch attached to its front bumper,

and a light sensor that reports the intensity of light in roughly a third of a circle in

front of the turtle. Can you devise a method that the turtle can use to reach the

light? How is your method like those the turtle used during the tries?

6. Would you like to see the methods the turtle used during each of the tries? Now

that you've seen the methods, would you like to change the method you described?

How would you change it? Why?

It was found that during the observation of the turtle, most subjects first gave local

descriptions of the robot's actions such as "it turns away from the light" and "it takes

smaller steps when getting closer to the light." One subject also observed how the robot

would make large steps when it was far away from the light. After observing the activity

for a while, some of the subjects began to give overall descriptions of the actions of the

robot such as "it moves in a zigzag pattern towards the light," as was previously shown

in Figure 2-2. The subjects' way of talking about the pattern of motion indicated they

believed that it had been built into the robot.

This study was also used as a means of getting the subjects to talk about the kinds

of actions they would program into the robots to accomplish the goal. It was found that

they extracted simple actions from the overall descriptions and related them to the local

information available to the robot. For example, one subject talked about what the robot

would "see" as it was moving at right angles to the light and used that information to

decide what the robot should do next.

These results showed that some adults have a tendency of moving from local descrip-

tions of action to global descriptions of activity-which are dynamics. However, their

development of procedures showed they had some trouble in separating out the elements

that came together to make up the activity they described. If they had been able to

implement these procedure in a working robot and incrementally improve their design,

they might have gotten a better understanding of how to make a robot reach a light.

A version of this study was used to introduce the children to light-seeking robots as

detailed in Section 4.4.

Chapter 3

The Materials

The materials used in this workshop combined hardware and software components. The

hardware consisted of LEGO robots controlled with pocket-size portable computers. The

software consisted of a programming language embedded within a development environ-

ment that included an editor, a debugger, and an example program. After these materials

are described, alternative materials for constructing and programming robots will be re-

viewed.

3.1 The Robots' Bodies

The robots were built using materials from LEGO Technics construction kits. The robots

used during the workshop were controlled with a 65C02-based computer and their elec-

trical and electronic parts came from LEGO TC logo kits. The robots used during

the competition were controlled with a 68H11-based computer and their electrical and

electronic parts were provided by the contest organizers.

3.1.1 The Workshop

LEGO TC logo is a set of tools that children can use to explore the design and con-

struction of machines. It combines the LEGO Technics as building materials with the

Logo language for programming the machines. In addition to the beams, axles, gears,

and wheels of the standard LEGO Technics kits, the LEGO TC logo kits include motors,

switches, threshold light sensors, and an interface box through which a desktop personal

computer can control the electrical components.

The Programmable Brick To get robots free of cables that would run to to a fixed

location, this workshop substituted the Programmable Brick for the desktop computer.

The computer in this LEGO brick is often described as being equivalent in power to an

Apple II computer. It is three and a half inches long by two and a quarter inches wide and

one and a quarter inches high and it weighs almost three and a half ounces. It must be

used with a battery pack which weighs almost nine and a half ounces so that the entire

control system comes to under a pound. The Programmable Brick includes a 65C02

microprocessor, 8K of ROM, 32K of RAM, a serial communication port, and an interface

board compatible with the LEGO TC logo materials. Using this board, the brick can

receive inputs from four sensors numbered from 0 to 3 and can drive four bidirectional

effectors lettered from A to D. The sensors used in this workshop were on/off switches

and analog light sensors. The effectors used were bidirectional motors.

The Light Sensor The kind of light sensor used for the workshop was based on a

light-sensitive resistor, and reported values on a scale of 0 for low or no light to 255 for

the maximum light intensity that it could sense. This maximum amount was close to

the intensity of light received by the sensor when put against a 60-watt light bulb. The

sensor was able to detect ambient light in about a third of a circle (120 deg) in front

of it. Readings from this light sensors were unreliable for a number of reasons. First,

the Programmable Brick's way of using an analog sensor made readings from them vary

wildly when the value reported dropped below 192. A second source of unreliability was

variation in the components used to build light sensors. One result of this variability was

that different sensors used during the workshop had different light intensity resolution

in the top of their scale, some reporting a change from 254 to 255 when moving an inch

Figure 3-1: A Turtle Capturing a Light

towards a bulb, while others required a move of a foot. One finally source of unreliability

came from variation in the intensity of the light because of the use of different kinds of

sources of light.

The Turtle The first kind of robot available to the children was called a "turtle". One

of these slow-moving robots is shown in Figure 3-1 face to face with the ball containing

light bulbs that was used as a moving source of light in the workshop. The turtle is

driven by two independent motors, each controlling one of the side wheels. Each of these

motors is geared down through a combination of a pulley, a worm gear, and a sixteen

tooth gear, so that the turtle's maximum speed does not exceed a quarter of a foot per

second. The turtle has one touch sensor mounted under a wide swing-arm bumper that

is located at the front of the turtle.

The Beetle The beetle was the second kind of robot available to the children and

was not introduced until the workshop's fourth session. The children named this kind

"beetle" because of its profile and speed. A beetle can be seen in Figure 3-2. Like the

..........

.........

r: :-mv

..

.........

X" X.:

.7 W!

Figure 3-2: A Beetle Capturing a Light

turtle, the beetle is driven by two independent motors and has one touch sensor located

under a front bumper. However, the beetle gears the motors down only through a pulley

and a sixteen tooth gear so that it's maximum speed exceeds two feet per second. This

extra speed made the children confident that the beetle could be efficient at capturing a

light.

3.1.2 The Competition

The MIT 6.270 Robot Design Competition is described in Section 4.4. Every contestant in

the competition was provided with an identical set of materials. While the competition

used the same LEGO materials as the workshop to make the structure of the robot's

bodies, its electrical and electronic components were provided by the contest organizers

and came from a variety of sources. The motors had to be fitted with LEGOs so they

could be mounted onto the robot, and the computer and sensors had to be assembled

from discrete parts.

The Contest Computer The contest's computer was a 68H11-based microcontroller

with 8K of ROM, 256 bytes of RAM, a serial communication port, and an interface

that could have eight digital sensors, four analog sensors, and eight unidirectional driver

ports. The driver ports could be paired to control up to four bidirectional effectors. Two

types of effectors could be plugged into them: a solenoid and a bi-directional motor.

The driver ports were attached to current-sensing circuitry that allowed the controlling

program to know how much strain was put on the effectors at any moment. Other

sensors included switches, analog light sensors, and four 40KHz infra-red detectors. Only

assembly language could be used to program the robots.

The Contest's Puck Sensor The 40KHz infra-red sensor was the equivalent of the

workshop's analog light sensor. It was used to detect the contest's "puck", a regular

hockey puck with a one foot stem that carried 40KHz infra-red emitters. While this

sensor could reliably detect the puck at a distance of more than six feet, it would only

report whether or not it was detecting 40KHz infra-red and not the intensity of what

it was detecting. In this respect, it provided the same information that the children

eventually obtained from the workshop's sensor.

The SMART Machine Basing themselves on their analysis of contest rules and of

the layout of the playing field, the children conceived of a robot which they named the

Super Massachusetts Artificial Robot Trophy winner, or SMART for short. The robot

that entered the competition is shown in Figure 3-3 face to face with the contest puck.

The robot's design was similar to that of the Beetle, except that it sported a fall-down

arm which was to be used by the robot in the last second of the contest and its hooper

had tall sides. In Figure 3-4, the robot is shown with its arm having fallen onto the

puck. Because the Robot Design Competition required its participants to make their

own sensors from electrical parts, the author assembled the SMART machine according

to the children's design. He also hand-translated the children's program from ACT to

68H11 assembler. Some parts of the children's machine could not be constructed as

: itA0AMA

IA

Figure 3-3: The SMART machine and the "puck"

wo

..
..

....

....
......

........................
..

...............
.......

....

..
..:.

..

....
..

..........

..

........................... II

..
.....

:7:

......... ..

..

...

.... %

.

..............................

........
.....

...

..

...

.......
....

Figure 3-4: SMART touches the puck with its axm

32

planned in the week between the time the children finished their design and the night of

the contest. However, the children were able to make changes on the day of the contest.

3.2 The Robots' Minds

ACT is a system for programming the reactions of robots to their environment. It includes

an editor, a programming language, and debugging tools.

3.2.1 The Editor

The ACT editor is closely modeled after the editor of the LogoWriter programming

environment available for personal computers. LogoWriter uses the metaphor of pages in

a scrapbook for organizing different programs on a same disk. It was chosen as a model

on the assumption that many children would have encountered it in school and that

they would have some understanding of how to use it. In practice, eight of the children

had worked with LogoWriter before the workshop. In Chapter 6, some of the children's

difficulties with using the ACT editing environment will be discussed.

3.2.2 The ACT Language

The ACT language makes it easy to write parallel programs; sequential actions are possi-

ble but they must be explicitly created. ACT was designed to be an approachable version

of the arbitration macrology language developed by Chapman for describing the control

circuitry of the videogame players Pengi and Sonja (see [Agre 1988] and [Chapman 1990]).

A description of Chapman's system can be found in Section 3.3.5.

The central organizing structure in ACT is the action. A typical action is shown in

Figure 3-5. Actions can enable or inhibit motors from turning, or sensors from reporting

their value, or even the functioning of other actions. Actions can also be used to abstract

away from the details of a situation by joining a number of separate actions under a

name, or by hiding the details of implementation of a set of actions. While actions seem

action back-away-from-obstacle

(propose move-a direction: odd power: 7

propose move-b direction: odd power: 3)

touching-obstacle?

Figure 3-5: A Typical Action

like the procedures of more conventional languages because both serve as a means of

abstraction and both can have parameters that modify what they do, it is a mistake to

think of actions as procedures. A procedure serves as a pattern of action for different

invocations of the procedure, each of which possesses a local version of the procedure's

parameters. In the process of executing a program written in a procedural language, the

calling of any procedure causes the creation of a new invocation and so of a new set of

parameters. By contrast, in ACT each action is a unique object and so there never exist

more than one instance of its parameters.

ACT is built on a model of argumentation so the rule for determining which actions

should be done can be stated thus: every action which is proposed and has no opposition

is done. An action that can be done is called valid. ACT has no rule for weighing propo-

sitions against oppositions, but it allows opposing an opposition and therefore defeating

it.

One way an action can be proposed is if its condition is true. This condition can be

any logical expression and can involve the reports from sensors or from other actions.

Such conditions allow ACT programs to get "off the ground" so they can act.

If an action is valid, every act described in its body is done simultaneously. There are

five kinds of acts that can be described in the body of an action. An action can:

* propose another action,

* set another action's parameters without proposing it,

action move-a direction power

(propose power-a power: power?

propose spin-a direction: direction?)

Figure 3-6: An Abstract Action

* oppose another action,

* prefer one action to another without proposing either, and

e report a value.

These acts serve to control other actions. For example, by using a propose, an action

says that another action should be done. If it had used an oppose, it could have said that

that other action should not be done. By using a prefer, an action can say that given a

choice between two possibly valid actions, the second one should be opposed.

The most basic actions, the ACT primitives, are those that control the functioning

of motors; for example, action SPIN-A sets the direction of spin of the motor plugged in

bidirectional port A to either ODD or EVEN'. Other basic actions are those of reporting a

sensor's state; for example, SENSOR-0 reports whether a switch plugged in port 0 is on

or off.

As was said above, actions can be used to combine other actions under one name. In

Figure 3-6, the action MOVE-A combines under one name the actions of setting the power

output and the spin direction of a bi-directional port. This abstract action does not have

a condition under which it might be proposed. Proposing an abstract operation is to be

done by whatever actions use it.

A short reference manual for ACT is given in Appendix C.

'Because the Programmable Brick cannot determine how a LEGO motor is plugged into its interface
board, there is no way to guarantee that a particular direction of spin will happen for a particular
setting. For example, that setting a direction of EVEN will make a motor spin clockwise. This is why the
relatively neutral terms of ODD and EVEN were chosen to represent the directions.

3.2.3 Debugging Programs

The ACT debugger is a way for a user to make visible the functioning of programs. There

are at least two situations in which information useful for debugging can be gathered:

either while the robot is actually working in the target environment, or while the robot

is on the bench and the user stimulates its sensors directly. The ACT debugger supports

the second method which allows the users to know that their program is at least reacting

as they had expected.

The debugger is used with the Programmable Brick plugged into the computer run-

ning the ACT development system. It can be used to see changes in the parameters of

selected actions as the sensors are manually stimulated. In particular, it is possible to see

the actions going between the active and inactive states. The user can directly change

what the sensors report by, for example, shining a light into a light sensor or pushing a

bumper's switch. Using this method, the children were able to find program bugs such

as actions contending for the use of the motors.

For example, below is a program a child could have written to control a robot with

a single motor attached to port A and a switch attached to port 0. The child wants the

robot to normally move forward, but to backup when it hits something. The comments

listed on the right give a running description of the meaning of the actions listed on the

left.

action forward ; Always propose to make the motor move
(propose move direction: even) ; forward.

always

action backward ; Propose to move the motor backwards when
(propose move direction: odd) ; bumping into an obstacle.

bumping?

action move direction ; Port A has a motor. Name 'move' the action
(propose spin-a direction: direction?) ; of setting its direction.

action bumping ; Port 0 has a switch. Name 'bumping' the

(report sensor-0) ; action of reporting its state, and always
always ; propose to make that report.

action live

(propose power-a power: 7 ; Always propose that the motor have power

propose sensor-0) ; and that sensor 0 report.

always

When the child downloads the program to the robot and runs it, she finds out that

the robot doesn't back up when it runs into an obstacle. To see why, she plugs the robot

into the development system, and tells the system she wants to watch the FORWARD and

BACKWARD actions. Every action has local variables called parameters, and two of these

parameters are automatically there for every action: active and report. Active is TRUE

when the action is valid, and FALSE otherwise. Report is the value the child said the

action reports if active is TRUE, and is 0 when active is FALSE. When the child tells

the robot to take a "step", it computes what it would do next, given the current sensor

inputs. After the decision has been made the debugger prints out what FORWARD and

BACKWARD ' s parameters values are:

backward> active: false report: 0
forward> active: true report: 0

The child can see that FORWARD is active, and BACKWARD isn't. Then, she pushes the

bumper switch and tells the robot to take another step, and sees:

backward> active: true report: 0
forward> active: true report: 0

So both BACKWARD and FORWARD are active at the same time, and therefore they're con-

tending for the use of the MOVE action. This is a problem because BACKWARD wants MOVE' s

DIRECTION to be ODD and FORWARD wants it to be EVEN. Because EVEN wins out over ODD 2,

FORWARD wins out over BACKWARD.

2Because the motor direction settings that FORWARD and BACKWARD propose are internally combined
with a logical OR function.

To fix this problem, the child adds the action:

action backward-before-forward
(prefer backward forward)

always

which says that if the robot must choose between doing either FORWARD or BACKWARD,

BACKWARD wins out. She recompiles the program, downloads it to the Programmable

Brick, and steps it once again with the bumper pushed, getting:

backward> active: true report: 0
forward> active: false report: 0

Now that the contention is eliminated, she can let the program run on its own, and try

out her robot.

3.2.4 The Initial Program

The children were given an initial ACT program named MOVEAROUND that allowed

a robot to move in a straight line until hitting an obstacle and then back up away from

it. A copy of this program can be found in Section B.2. This program was intended

to be an example of how the robot could be programmed to move about an area and

react to obstacles. The program included two abstract actions, MOVE-A and MOVE-B,

the first controlling the robot's left motor and the second controlling its right motor.

The actions touching-obstacle and brightness showed how actions could be used to

provide meaningful names to sensor ports. The actions back-away-from-obstacle and

move-f orward showed how these abstract actions could be used, and how actions could

be grounded into the input from sensors. Finally, back-away-bef ore-move showed how

a prefer act could be used to choose between to possibly conflicting actions.

3.3 Related Work

There are at least two kinds of systems for constructing and controlling robots: the first

kind of system uses actual robots, and are called robot construction systems, and the

second kind simulates the robots and their worlds, and are called virtual-world systems.

Two examples of robot construction systems are Brooks' subsumption architecture robots

controlled with state-machines, and the Epistemology and Learning's LEGO/Logo robots

controlled by Logo programs. Examples of virtual-world systems are the sensory turtles

controlled by Logo programs shown in Abelson and diSessa [Abelson and diSessa 1980),

Robot Odyssey which is an adventure game where players build logic circuits to control

game playing robots, Mike Travers' Agar which is an animal construction kit where each

robot is controlled through a society of interacting agents, and Chapman's video game

playing system.

3.3.1 The Subsumption Architecture

The Subsumption Architecture was designed in reaction to difficulties experienced while

using Artificial Intelligence planning- techniques for constructing robots [Brooks 1986].

Brooks noted that the classical approach resulted a sequential decomposition of tasks

into processing modules. As a result, the entire activity of the system depended upon

the correct functioning of every processing module. Instead, he proposed to "decom-

pose the desired intelligent behavior of a system into a collection of simpler behaviors"

([Brooks 1986] pg. 6). Furthermore, each behavior should independently produce "ob-

servable phenomenon in the total behavior of the system" ([Brooks 1986] pg. 6). These

behaviors should together provide the robot with some level of competence. The be-

haviors can be seen as arranged in layers that can subsume one another's actions. The

system's performance in a situation no longer depends on the weakest link in a processing

chain, but rather on the strongest relevant behavior for the situation.

In her masters thesis, Maja Materic describes the Behavior Language that is used for

creating Subsumption Architecture robots [Materic, 1990].

The Behavior Language is a real-time rule-based parallel programming

language, an extension of the subsumption architecture. In contrast to the

subsumption architecture language, which was programmed with intercon-

nected augmented finite state machines (AFSMs), the Behavior Language

groups AFSMs into behaviors. Each behavior is a coherent collection of re-

lated real-time rules producing a related set of responses.

No information was available to the author at the time of writing this thesis about what

debugging facilities were available for use with the Behavior Language.

3.3.2 Cybernetics and LEGO Robots

In 1987 and 1988, Fred Martin conducted an exploratory study of the uses of the Pro-

grammable Brick as a controller for LEGO robots [Martin 1988]. As described at the

start of this chapter, the Programmable Brick combines the controlling computer and

LEGO interface box into one, and can, when combined with a battery, allow the creation

of free-moving robots. Martin's study was centered on the concept of feedback in the

control of processes and involved programming pre-built robots for tasks such as follow-

ing a light and sequencing the action of light bulbs to control the paths of robots. He

worked with two groups of children, one from an Boston inner city school, and the other

from a school the outer community of Newton.

Martin's materials for building robots were identical with those used in the study

described in this thesis. However, he used the Logo programming language as a means to

control the robots. Logo is a conventional sequential-procedural programming language

invented in the sixties that is currently widely available in elementary schools. Because

of its nature, any parallelism had to be either explicitly managed by the program written

by the children, or came from using more than one Programmable Brick at a time. There

was no debugger available for use with the Logo.

3.3.3 Robot Odyssey

Robot Odyssey is a logic game marketed by The Learning Company [Wallace and Grimm 1984].

It was created by Mike Wallace and Leslie Grimm and includes a tutorial, a construction

and experimentation environment, and a game. The tutorial invites directed exploration

by putting the users in an environment somewhat like the one they will be in in the

game, providing them with instructions on what to do, and leaving enabled every feature

of the robot that will be learned even though a particular feature might not be strictly

necessary to following the instructions at a given moment. Using the tutorial, users can

learn the basics of the robot's construction, how to use the circuit building tools, and

how to create new circuits inside of a couple of fun hours.

The robots that are available to the user are pre-built. They have four bumpers

and four thrusters, one per side. Robots have a hand that can be told when to grab

and reports when it has grabbed. They have an antenna that can be told to broadcast

and reports when it senses a broadcast. Robots are powered by a battery and can be

controlled through enabling or disabling power to the thrusters. The robots move around

rooms that are probably better called screens because they aren't a closed area. There

can be more than one room in a screen, and a room can, and often does, spill over into

another screen. The robot can have sensors specialized for particular kinds of objects.

There can be three kinds of sensors for each kind of object: one that reports whether

the robot is touching that kind of object, another reports whether there is at least one

object of that kind in the room where the robot is located, and the last one reports in

a North-East-West-South format the direction of an object of that kind located in the

room.

Circuits can be assembled during the game out of basic components and microchips

can be designed before the game, but new microchips can't be created during the game.

Once a particular kind of circuit is designed in the construction lab, it can be compiled

into a unit (burned microchip) that can be used as a component in other circuits. This

is the only method of abstraction given in the game. Chips can communicate through 8

pins and these can simultaneously be inputs and outputs. During the game, players can

select microchips designs to be used from a library of designs that they have previously

created, but they are limited to using them by reprogramming whatever microchips they

can scrounge up during play. The only way of debugging a circuit is by observing the

passage of signals over the wires connecting the circuit's components.

The dependability of the game world and the limits of the construction environment

makes Robot Odyssey a game played by a user who makes some use of automatic ma-

chines, basically semi-automatic tele-operators. It is not a game construction kit and is

not a full robot construction environment.

3.3.4 Agar

Agar is an animal construction kit whose ideas come in part from Marvin Minsky's

Society Theory of Mind [Travers 1986].

The Society of Mind refers to a broad class of theories that model mental

functioning in terms of a collection of communicating agents. An agent is

a part of a mind that is responsible for some particular aspect of mental

functioning. Agents communicate with and control each other, coordinating

their activity to produce a coherent mind.

[Travers 1986] pg. 19

As a virtual world system, Agar provides the tools for the creation of both creatures

composed of agents and the worlds they live in. This thesis will only look at the means

of creating the creatures.

Agar was originally written on a Symbolics Lisp Machine and made use of its object-

oriented programming facilities as a means of making creatures. A creature is a com-

putational object created using a def creature form that specifies amongst other things

what kinds of sensors the creature possesses. Motor functions of the creature are defined

as methods for the creature that can be called by agents. The agents themselves are

defined using a def agent form that associates the agent with a particular creature and

specifies its behavior.

An agent consists of a condition (if part) and action (then part), plus a

gating mechanism that decides when the rule is to be run. The condition

part of a rule is typically a sensor predicate, and the action is either a motor

function or a command to activate or inhibit other agents.

[Travers 1986] pg. 30

Most agent-to-agent communication is done by simple activation although Agar has mech-

anisms by which an agent can be more specific about what it wants another agent to

do.

Debugging of societies of agents in Agar can be done using the Symbolics Lisp Machine

facilities. Travers also provided various tools to facilitate novice usage of Agar. From

Travers' thesis:

* the ability to select a particular creature with the mouse. Subsequent

commands and debugging displays would then pertain to the selected

creature.

o the ability to start, stop, and single-step the agents.

o a continuously updated display of the internal state of the selected crea-

ture or of one of its agents.

o a facility for displaying the sensitive range of individual sensors (as a

circle surrounding the creature, for example).

o a facility for manually disabling particular agents.

o a facility for displaying and editing an agent's definition while the crea-

tures are running.

[Travers 1986] pg. 42

3.3.5 MACNET

MACNET is the system used by David Chapman to build Sonja and is direct descendant

of system used by Chapman and Agre to build Pengi ([Agre 1988], citechapman). It is a

language for constructing clocked digital circuits and it provides its user with constructors

for the basic logical operations and for latches. MACNET is a language embedded in

a Lisp environment so that circuits are built by running Lisp programs. The results of

running these programs can then be run on a circuit simulator.

MACNET's primitives are the logic gates org, andg, and invert, and the state element

latch. Each of these primitives returns an object which represents its output wire and

requires as inputs either constants or other wires. Higher order constructs can be built

using Lisp functions; for example, exclusive-or could be implemented with:

(defun (xorg a b)
(andg (org a b)

(invert (andg a b))))

MACNET was made to create the central circuitry of a game player. This circuitry

controls a limited number of operators whose parameters it can set and from which it

receives information. Some of the operators represent the available motor effectors but

many control of the processing of sensor information.

For reasons of modularity and to keep the complexity of circuit descriptions under

control, Chapman developed a set of macros for writing a game player in MACNET.

This arbitration macrology includes statements for creating proposers for the values of

the parameters of operators, declaring conditions under which a proposer is valid and

overrides of one valid proposer by another, and default proposers that are automatically

overridden by valid proposers. It also includes mechanisms for lumping a set of proposers

under one abstract proposer and for creating abstractions of a set of operators under one

name. There can be supports and objections to proposals, either naming the proposals

or the operator states involved. They are mostly used in conjunction with the instruc-

tion buffers, a mechanism that allows someone observing a game player to interact with

it. Supports and objections are different from overrides in that they do not guarantee

that a particular proposal will be valid or invalid but rather bias the choice the arbitra-

tion circuitry will make in cases where it has no basis for choosing between conflicting

proposals.

As the arbitration macros build the circuits they represent, they also create addi-

tional circuitry for detecting arbitration errors: cases when even after arbitration there

still is more than one proposal that wants to set a particular operator. The additional

circuitry triggers an error condition that causes the circuit simulator to enter a debugging

environment. To facilitate debugging, it is possible to name any circuit that is created.

This name can be used to find out why that circuit produces the output that it has at a

particular moment. Another debugging tool allows the printing of the values of named

circuits as the program runs. It is also possible to cause the system to enter a debugging

loop when a particular named circuit changes state. An operator's state can be displayed

including the state of the proposers, whether valid or invalid, that would like to set its

inputs. Finally, the contents of the instruction buffers can be listed.

Chapman's arbitration macrology language inspired the design of ACT, so that lan-

guage has most of the capabilities of the macrology. ACT sought to make these capabili-

ties more approachable for novice, so it introduced the action as construct around which

they could be organized. Actions also subsume the macrology's specialized constructs

for creating abstract operators and proposals, and the facility for naming language con-

structs for debugging. However, ACT does not include capabilities beyond those of the

macrology so it does not represent a technical advance over it.

Chapter 4

The Workshop

The workshop was done in the context of the Brookline Public Schools' Gifted and Tal-

ented Program. Approval for doing this project in a the context of the program was

obtained from the Brookline Public Schools' Testing, Research, and Evaluation Commit-

tee. An overview of the workshop's activities will be given. Then, the means by which

the participants in the workshop were chosen will be described. Finally the workshop

time-line and a sketch of its sessions will be given.

4.1 Overview

The schedule of events as described in this chapter might give the impression that the

workshop was mostly composed of lectures. Nothing could be further from the truth.

While in the first session the author provided an ultimate goal for the workshop, its

schedule was not fixed beforehand, but rather emerged from the rate at which new

materials became available and from the choice of pace of work made by the children.

But this does not allow qualifying the workshop as being child-directed because this

would not take into account the participation of the author.

Workshop sessions would typically begin with a half-hour to forty-five minutes of

socializing where the students and the author would discuss their experiences during

the previous week and many other subjects. Then the author would suggest that the

discussion turn to the programming of robots. In the first few sessions of the workshop,

new materials were often introduced and demonstrated at the start of the session. Then,

the rest of session would consist mostly of the children integrating the materials into

their work. In those sessions, the author's role consisted in responding to the children's

requests for help and advice, and in asking the children to describe what they were doing.

Towards the end of the workshop, after the children accepted to participate in the MIT

Robot Design Competition, the start of a session consisted mainly in deciding how to

best use the rest of that session to complete the work at hand.

The children did not work uninterruptedly towards their goal for a session. Rather,

work would often be interrupted by discussions of many different subjects, especially

towards the end of the workshop. The subjects the children discussed were diverse and

included their views on school, education, the nature of intelligence and whether machines

could ever be said to be intelligent, computer viruses, shareware, and who exactly would

be their competitors in the MIT contest and how good they would be. A full recounting

of these discussions if beyond the scope of this thesis.

4.2 The Participants

The children who took part in the workshop were from a variety of schools in the Brookline

Public School System and knew each other from previous Gifted and Talented Program

workshops or other school-related programs, such as Math League or Spelling Bee com-

petitions. They were selected by Susan Cohen, the director of the program, because of

the interest they expressed in the workshop based on the description of its goals as out-

lined in a handout prepared for their parents. The workshop began with a group of eight

children, three boys and five girls. The children were Ben, Debbie, Julie, MatthewP,

MatthewS, Meagan, Sarah, and Sargeant. A new boy, Misha, came to the workshop at

the second session, but he and Meagan stopped coming by the fourth session from lack

Date Main Event

Nov 29, 1989 Observing light seeking turtle robot
Dec 6, 1989 Editing and programming in ACT
Dec 13, 1989 Compiling and debugging programs
Jan 3, 1990 Using the Beetle robot
Jan 10, 1990 Using a moving light
Jan 17, 1990 Children's robot competitions
Jan 24, 1990 Programming the 6.270 competition robot
Jan 31, 1990 Designing the 6.270 competition robot
Feb 7, 1990 MIT's 6.270 Robot Design Competition
Mar 7, 1990 Post-interviews

Figure 4-1: Schedule and Main Event by Session

of interest. Susan Cohen attended the first session of the workshop but only some of

the sessions that followed. She would not always be present for the entire duration of a

session but rather would arrive in its middle and depart before its end. The author was

present at every session.

4.3 Workshop Time Line

The workshop was composed of nine sessions each lasting two and a half-hours and

happening on a Wednesday immediately after school. Between the eight and the ninth

session, five of the children attended the MIT Robot Design Competition to watch a

robot they had constructed compete as an exhibitor. The ninth session happened a

month after this contest. A listing of each session's date and of its main event is given

in Figure 4-1.

In the first session, the children were introduced to the LEGO robots and the ACT

programming language. In the following session the children were introduced to the ACT

programming environment and were given a model of how the ACT language behaved.

In the third session, the children were given the ACT compiler, were taught how to

find and fix syntax errors, and were taught how to use the ACT debugger. The fourth

session, the first one after the Christmas and New Year vacation, had a refresher in what

had been covered, and the new LEGO robot, the "Beetle", as introduced. At the fifth

session of the workshop, the children were told they could participate as an exhibitor in

the MIT Robot Design Competition. This yearly contest involves building a robot that

competes against three other robots without human intervention (see Section 4.4). At

the sixth session of the workshop, the children ran a contest to determine which of their

program was the fastest at reaching a light, and chose it to control their entry in the MIT

competition. The seventh session focussed on determining how the competition robot

would act in the contest. The eighth session, the last one before the competition, was

used to complete the design of the machine to be built for the contest. A final session

was held after the competition to get the children's reflections on the workshop and on

their designs.

4.4 The Sessions

Session 1

The children were introduced to the workshop's goals and materials. It was emphasized

that the workshop was not a class, did not have grades, and that the children were free

to stop coming at any time. The children were shown the Turtle, Programmable Brick,

and light sensor and their operation was demonstrated. The idea of the ACT language

was introduced and its parallel nature was discussed. The children were walked through

a written example of an ACT program that makes a robot move in a straight line and

backup and turn when it hits an obstacle (see Section B.2.) Then, they observed the

interaction of a robot with a light in a similar manner as was done for the preliminary

experiments outlined in Section 2.4. Although in the preliminary study the adults were

not allowed to handle the robot, in the children in the introductory session were allowed

to move robot themselves. They were asked to write their observations about the robot's

activities and to describe aloud what they believed the robot was doing. After having

observed the robot, the children were given the correspondence between the different

procedures and the trials and were given descriptions of what each made the robot

do. Then, they were asked to describe what procedure they would make the robot

follow in order to reach the light. After each of the procedures had been discussed, the

children were asked if they had seen patterns in the robot's activity. At the end of the

session, the children were asked to list what previous experiences they had had with

Logo, LogoWriter, and LEGO/Logo. They were also asked if they had regular access to

computers like those used in the workshop (Apple II GS).

Sessions 2 and 3

In session 2, the children were split into groups of two. They were given the ACT

editor and taught how to operate it. They were given a model to think about what an

ACT program would make a robot do. In session 3, the completed ACT compiler and

debuggers were introduced to the children. They were shown how to compile a program

they had written, how to interpret the syntax errors that the compiler reported, and how

to correct them. Once they were able to compile programs, they were shown how to send

them to the Programmable Brick and each team was encouraged to try out whatever

program they had up to then. Then, they were introduced to the debugger and were

shown how to see what actions were triggered by a selected stimulus. They were shown

how to correct the bugs they encountered.

Sessions 4, 5, and 6

Session 4, was the first session after the Christmas and New Year vacation. The children

were given a refresher in how to use ACT system with the Programmable Brick. A new

model of a floor robot was introduced, and MatthewP promptly named it "Beetle". The

children were encouraged to try out this beetle. Those children who already had working

programs were encouraged to help those who were having difficulties working with the

ACT system.

At session 5, a transparent plastic ball that held a battery and three light bulbs was

introduced and the children were asked to make their robots find it while it was rolling

about the floor. Also, the children were told they had they had the opportunity to

participate in the MIT Robot Design Competition, a challenge which they immediately

accepted. A brainstorming session was held about what kinds of methods could be used

to win the competition.

In session 6, the children held a contest to determine which of two machines was the

most efficient at finding a fixed light. They analyzed the rules of the competition and

were told how the competition equipment differed from the equipment that was used

for the workshop. Another brainstorming session was held on the method by which the

robot would win the competition, with a special emphasis put on how it would know how

it had captured the competition light.

Sessions 7 and 8

In the final two sessions, the children worked on designing and programming the robot

that would take part in MIT's Robot Design Competition. This robot would have to

compete against other robots to be the last one to touch a source of infrared light.

The Robot Design Competition

A week after the end of the workshop, the children participated in the MIT 6.270 Robot

Design Competition as exhibitors. This MIT event has happened every February for the

past five years. It is the Electrical Engineering Department's version of the famous Me-

chanical Engineering Department's 2.70 Machine Design Competition. The 2.70 contest

requires the participants to design, build, and control their own tele-operator devices

starting from the same simple set of parts. That course is designed to emphasize the

principles of mechanical design.

In contrast with the 2.70 course, the 6.270 contest stresses the electrical, electronic,

and computer science aspects of building a device. For this reason, the robots must be

able to compete without any human intervention whatsoever. In early competitions, the

robots were only programs that competed in virtual world environments. The February

1989 competition was the first one where the robots were actual machines that were built

out of LEGO parts'. The February 1990 competition was the first one where the robots

were controlled through an on-board computer similar in capability to the Programmable

Brick used by the children (see Section 3.1.2). Preparation for the competition happened

over a three week period in January, and included a robot design course where MIT

students could learn about batteries, assembling electronic components, and designing

LEGO machines. The children did not attend the MIT class.

On the day of the contest, Sarah and MatthewP were able to see the machine and make

final changes. Five of the children, Julie, MatthewP, MatthewS, Sarah, and Sargeant were

able to attend the event and observe their robot in action. Their robot won competing

against the three other robots that were in their category.

Session 9

A month after the robot design competition, the children reviewed a tape of some of the

competition's events. Then, they were asked to reflect on the activity they observed and

to re-think the design of their contest robot as if they would be able to compete one more

time.

'LEGO parts were used to minimize the mechanical engineering aspects of the design process.

Chapter 5

Observations and Analysis

5.1 Research Questions

There are two directions that can be taken in the analysis of the workshop. One looks

at the children's appropriation of interactionist ideas while programming the robots, and

the other looks at the difficulties the children had in using the ACT system that had been

created to support this activity. In the beginning, the children were uncertain about the

nature of the task they were asked to accomplish and did not know what they could do

with the tools. As the workshop progressed, the children came to understand what they

could do with the tools and this knowledge allowed them to elaborate and transform the

goal of the workshop and create solutions that they found satisfactory. This chapter will

reflect this progression by beginning with a focus mostly on the children's mastery of the

tools and then moving to analyzing the children's assimilation of the ideas.

The question that was at the fore in this analysis of the data from the workshop was

about the nature of the process through which the children were able to use dynamics.

When looking at the introductory session of the workshop, this question was worded so

as to ask whether the children could recognize and construct emergent phenomena. In

analyzing the events in the workshop, the question became one of finding out whether

the children learned that something had emerged, whether they could identify what

had created the emergent phenomena, and how they transformed this phenomena to

accomplish their goal. Overall questions included whether the ways of looking at emergent

phenomena used by the children varied over the course of the workshop, and what were

the difficulties the children experienced while using the tools and how could they be

removed. These questions will be taken up in Chapter 6.

Transcript Conventions

The transcripts in this chapter will be indented from the normal text and printed in a

smaller font: "It's going to find a brighter". Each utterance will be preceded by the

name of the person who said it; when it was not possible to attribute the utterance, the

name "Unknown" will be used. Descriptions outside the transcript will be bracketed and

italicized: "[correcting herself] ". The symbol "()" will be used to indicate an untimed

pause. Stressed words or parts of words where relevant are shown by underlining the

affected text: "brighter". Connected additions to words will be shown with the use of

a long dash: "bright-er". Simultaneous utterances are not indicated. The symbol "..."

will be used to indicate an ellipsis. Each participant will be referred to using their given

name. The first letter of the family name will be used to disambiguate cases where the

given names are identical. In the transcript as well as in the text, the author is referred

to as "Mario".

5.2 The Children

Of the nine children who took part in the workshop, eight had worked with LogoWriter

before and those same eight had worked with a different version of Logo. Only Misha

had no previous computer experience, but he reportedly excelled in mathematics'. The

other children had encountered Logo as part of their classroom activities. Only one child,

MatthewP, had worked with LEGO/Logo before the workshop, and this had happened

'Susan Cohen, personal communication.

as part of a program offered by the Boston Museum of Science. MatthewP was also an

experienced BASIC programmer and had a number of games written in BASIC to his

credit. Debbie had previously encountered an activity involving observing LEGO robots

as part of a science class she had attended in the Fall of 1989. Of the children at least

three had regular access to personal computers. MatthewP had an IBM PS/2, Meagan

had an IBM PC, and MatthewS had a Macintosh.

5.3 Learning About the Workshop

In the first session the children were introduced to the LEGO and electronic materials,

and were shown a light-seeking robot in action. There were eight children present at this

session: Ben, Debbie, Julie, MatthewP, MatthewS, Meagan, Sarah, and Sargeant. Mario

led the session, and Susan Cohen, the director of the Gifted and Talented Program, also

participated.

Introduction to the Materials

The children were told about the sources of the ideas for this workshop; Martin's work

with the Programmable Brick and Agre and Chapman's work with game-playing pro-

grams were mentioned. The children were asked to draw on their experiences while

programming the robot: "imagine what you would do were you the robot, then tell the

robot to do that."

The Programmable Brick was introduced as the equivalent of an Apple II+ computer

with less than the usual amount of memory but with a LEGO interface board. This

last part was introduced as something in which sensors could be plugged in, and sensors

were defined as being switches or a light sensor. One of the light sensors that was to be

used in the workshop was brought out and shown to the children. It was introduced as

something the robot could use to see in front of itself the brightness in a cone about one

third of a circle wide. The light sensor was plugged into the brick's number 2 port2 and

the children were told the computer could be asked "what do you see out of this port?"

The brick's sensor ports were shown with their numbers, and the driver ports and their

letters were shown. The children were told that the command LEVEL 2 could be used to

find out what was the brightness reported by the sensor. The children were told that both

motors and lights could be plugged into the brick and that the brightness with which

such lights shone could be set. The children were asked if they're ever had experiences

with LEGO/Logo, and only MatthewP had had ones. LEGO/Logo was described and

the role the Programmable Brick could play in that context was explained.

The Nature of the Light Sensor

At that moment, MatthewP asked for more details about what the light sensor could do.

MatthewP: [unintelligible] light sensor. How wide is the tracking?

Mario: The () light sensor?

MatthewP: Yah.

Mario: ... it senses the brightness in about a third of a circle in front of it. [Mario's

hands are in front of his face and splayed about 120 degrees apart.] So if you

hold your hands about a hundred and twenty degrees apart, somewhere in there

[his right hand sweeps the angle between the hands], is something as bright as the

brightness [the sensor] reports.

That explanation is not quite correct as the brightness reported will be proportional to

the light that reaches the light sensor and not really that of a bulb emitting that light.

However, it is simpler to understand than the true situation, and, as is shown later in

this section, it will later be corrected.

2 Ports are places on the Programmable Brick where electrical and electronic equipment is plugged.
3As explained in Section 5.2.

MatthewP shows he already has something in mind about how to use the sensors

when he asks how to control them.

MatthewP: Can you set how narrow that be?

Mario: No, it's not possible to ()

MatthewP: Cause then, it can turn around until it sees a light.

Mario: No. Ah. No, it's () What you could do is () you could put baffles[blinders]

on it [his hands show blinders on the sides of his head] like like you do for a horse,

if you only want a horse to look in one direction. Does somebody ride horses?

Julie, Sargeant, MatthewS, Unknown: No, no.

Ben: I know what those are.

Meagan: Blinders, yah.

A problem with the Programmable Brick allows the discussion of the experimental

nature of the materials. In particular, that their unreliability is bound to show up in the

children's future experiences with them.

The object of the workshop isn't completely solid for the children. Sargeant asks

Mario to clarify the link between finding lights and the light sensor, and he answers:

Mario: This robot can be set free to move around, and with the flight sensor] it can

see brightness and the eye senses about a third of a circle in front of it. [He holds

his hands out in an angle slightly more than 120 degrees.] So that means that if

there's a bright light right besides it, it won't see it [His left hand is still out, and

he plants his right fist behind the line that used to be shown with this right hand.]

But if there's a bright light here [his right hand moves out into the 120 degree area]

[the robot will] be able to tell that there's a bright light somewhere in front of it.

[His right hand sweeps out an area 120 degrees wide starting at his left hand.]

Sarah is not satisfied with this explanation and wants to know the resolution capabilities

of the sensor.

Sarah: But can it tell can it tell say this is the area it can see out of, [she holds

out her hands in front of herself, 120 degrees apart] and there's a bright light here.

[Her right index finger stabs into the 120 degrees, in the top right corner.] Will it

be able to tell there's a bright light, you know, the right corner of it [her right hand

points straight from her body towards the point where the right index finger used to

be] or will it just be able to tell that somewhere where it can see [her right hand

waves vaguely over the 120 degree area] there's a bright light.

Mario: Somewhere where it can see there's a bright light.

Meagan asks about the sensitivity of the sensor.

Meagan: But does it have to be a bright light? Can it be () like if the room is dark,

can it be even the dimmest light?

Mario: Yes, yah.

Meagan: So any amount of light?

Mario: Weellll, almost any amount. I mean it () it it () it it it can't it gives you a

number from zero to two hundred and fifty-five, ah zero begin the brightest number

and two fifty-five being the darkest number4 , so ah ()

Julie is not sure whether this means that the report is absolute.

Julie: You mean how how how bright the light is?

Mario: Yah, it tells you how bright it can see.

Julie: Oh!

4This changed at the third session to bring it in line with the motors: the greater the amount of light
sensed, the higher the number

Mario's answer is ambiguous, and this might have caused Julie's comment in the final

third of the session that the robot should be told how bright the light it was seeking

would be.

Once the machine is working, the programmable brick is set to continuously print out

the intensity reported by the light sensor. This makes the children return to the question

of how the light sensor works. In particular, they want to know if it can locate a bright

light in a field of darkness.

Meagan: If it sees really dark and really bright, which one does it print out?

Mario stresses that the light sensor is not like their eyes in that it can't locate an object.

He uses the example of a frosted glass to explain that the light intensity reported will be

in between dark and bright. This helps straighten out some of the incorrect aspects of

the model that Mario had previously given to the children.

The Programmable Brick and the Turtle

The Programmable Brick is then shown to run on batteries, and is then installed on the

back of a turtle. Mario downloads a program that makes the turtle move forward until it

runs into an obstacle, and then back up while turning away from the obstacle. The turtle

is unplugged from the Apple IIGS workstation and made to run around on a table which

makes Sarah remark that she now understands that the programmable brick remembers

programs even when unplugged. Susan tells Mario that Debbie has told her that she's

had a recent experience in school observing LEGO robots and taking notes about them.

When Debbie was later asked where she had had this experience, her answer showed that

she has worked with Nira Farber's Weird Creatures [Farber 1990].

Mario puts the programmed turtle into the children's hands and shows them how to

turn it on and off. While they experiment with it and pass it around, he explains that

the turtle can be made to remember information and report it through the workstation.

Mario also adds that it can be made to remember more than one program, so long as the

programs have different names. This introduces the idea that multiple programs may be

included in one computer and prepares the way for the observation part of the session.

Mario uses the fact that the subject is programs to introduce the children to the

idea of the parallel ACT language. He contrast this parallelism to Logo's one thing at a

time process, and gives the children the central evaluation rule of ACT. He leads them

through a printout of the MOVEAROUND program pointing out the potential conflict

between the MOVE-FORWARD and MOVE-BACK actions and telling them how the

PREFER action is used to choose between them. Susan asks Mario if the text between

the parenthesis is a comment on the program, but he replies that that text is the program.

Julie says that the ACTION line is how actions get named, and Sarah likens it to Logo's

TO line.

Mario hands out to the children notebooks and asks them to use it to keep a record

of their thoughts and work in this project. Susan is also offered a notebook but she

refuses it. The children will use the notebooks at least today to record their observations

of light-seeking turtle actions. There is no record of them using it at any of the later

sessions.

Initial Program

Before the children observed a light-seeking robot in action but after they had been told

of the task to be done in the workshop and heard descriptions of the light sensors, one

child, MatthewP, showed the author a pseudo-BASIC program that was intended to make

a robot find a light. This program and the two-sensor robot it was to control are pictured

in Figure 5-1. Figure 5-2 has a paraphrase of this program. The robot was to have one

sensor mounted so that it faced the direction of motion, and the other mounted so that

it was at right angles, pointing to the right of the direction of motion. The front sensor

was to have blinders that would prevent it from registering light from the side of the

robot. MatthewP said he assumed that a sensor reading of less than 7 meant that the

sensor was detecting a light, although he said he wasn't certain that the test was correct.

Ar k A w

I 144
Vw J4 /-

Mm.v. ~

Figure 5-1: MatthewP's Light-Seeking Robot

10 FORWARD 1 INCH

20 IF SENSOR-1 < 7 THEN 10

30 IF SENSOR-2 < 7 THEN RIGHT 2 DEGREES ELSE LEFT 2 DEGREES

40 GOTO 20

Figure 5-2: Paraphrase of MatthewP's Light-Seeking Program

In describing the statements in his program, MatthewP said that it was important that

"you don't go forward until you make sure your light is forward of you." This program

serves as a base measure of how some of the children were thinking about the task before

they started observing the light-seeking robot.

MatthewP's program was different from the ones he was about to observe in several

important respects. It did not detect possible obstacles in the path of the robot. Also,

the program showed that at that time MatthewP's model of the light sensor was that

it was able to sense light in a half-circle (180 deg), although he had been told in the

introduction session that the sensor was limited to a third of a circle (120 deg). This

limit in combination with MatthewP's sensor arrangement could make his robot have

a heading in which it would be paralyzed, oscillating between two actions. Because

MatthewP's forward sensor has blinders, his robot would have had a heading in which

both SENSOR-1 and SENSOR-2 would not report sensing a light in that direction, although

his program assumes that it does make such a report. If the light were directly to the

right of the turtle, SENSOR-2, the right-pointing sensor, would report light, and this would

cause the program to make the robot turn right until both sensors would not detect light.

Then the program would make the turtle turn left, but this would make SENSOR-2 report

it saw light once more. As a result, the turtle would alternately turn right and left while

never stepping forward.

Learning About ACT

After MatthewP showed Mario his program, he turned to the question of how ACT

programs work. He wondered whether proposing an action would cause it to be done

"until you say stop". Mario specified that an action is done as long as it is proposed but

stops being done the moment it stops begin proposed. MatthewP changed his question

to how the action might stop being proposed, so Mario gave as an example that if

MatthewP had proposed an action, he might stop proposing because he in turn would

not be proposed. This recursive explanation did not appear to satisfy MatthewP so he

became more concrete about what he wanted to do. He asked how to make the motor

stop, and Mario told him he could set the motor's power to zero. MatthewP then asked

how an IF statement, one of two control structures in BASIC program, could be done

in ACT. Mario explained that while there was no IF statement per se, the same result

could be gotten by saying that a given action could be done under a specified condition.

Then Mario explained how actions could be made to report values.

Children's Observations of the Robot

About one hour in the session, Susan suggested that the group move on to watching the

robot in action, and Mario agreed. Susan specified that she expected that the group

would come back afterwards and see "where in the program [the robot] was doing what

[the group] recorded seeing." Mario downloaded to the turtle robot the set of programs

used in the preliminary experiments described in Section 2.4 and the group headed out

to a corridor of the school.

There is no record of the first twenty minutes of observations because of a camera

problem. Notes taken after the session indicate that in this time, the children worked

with the turtle on the landing of a stairwell of the school because that area was not

carpeted and this would give the turtle good traction. Through prompting from Mario,

they began making descriptions of the turtle's activity. They soon asked to move to

a carpeted corridor and, after trying the turtle on this floor, Mario accepted to move.

Susan found a desk lamp to serve as a source of light for the turtle to work with and

placed it on the floor near a wall outlet. By the time the camera is recording again, the

children have observed the robot following two different programs for locating the light.

Often in the course of the observation period, Susan would ask the children if they were

ready to "make an observation," and the children sometimes took this as an indicator

that she thought a particular turn had tun its course. Sometimes, after such a request,

the children would ask to move on to the next program.

Before the observation of the turtle using the third procedure begins, Sarah asks if the

robot could be using over again one of procedures it had used previously. Mario replies

that that's possible although he wants to leave it up to the children to decide whether

that is the case. MatthewS asks if every turtle uses the light sensor, and Mario replies

once again that that's up to the children to decide.

As the children observe the turtle moving about, MatthewP casually waves his hand

near its light sensor while keeping his eyes on the turtle as if he wants to see if it reacts in

any way. While the children moved the robot about before, the notes do not show them

intervening with its activity before this moment in this way. As the session progresses,

the children will move from relatively passive observation to direct intervention in the

activity. The floor light is off and the children decide to turn it on, but Ben asks them to

wait until the turtle is pointed away from the light. When asked why he wants it done

this way, he begins to answer but his words are drowned out by Sarah as she offers the

explanation:

Sarah: [unintelligible] if it steps towards the light then it won't be a coincidence.

A minute later Mario asks the children to venture a guess as to what the turtle is

doing. Cutting off Meagan, Sarah says "maybe it's looking for something dark," and

Meagan chimes in with a "yeah". Thus, the children are already forming hypothesis

about what in the environment causes the robot to move, and they are beginning testing

them by directly interfering with the ongoing activity.

Sargeant moves up to the turtle and puts her hand directly in front of it, moving it as

the turtle changes heading. As Meagan puts her hand over the light sensor, she mumbles

something to Sargeant. MatthewS asks Sargeant why she is putting her hand in front of

the turtle:

MatthewS: What are you looking for?

Sargeant: [Continuing to block the turtle's path,] I'm seeing if it's not have if it

doesn't have anything to do with the light () if it has something to do with the 0
objects in front of it.

But Susan brings to the children's attention that the turtle turns even when there's

no object nearby.

Susan: But it's turning even when there isn't anything in front of it, isn't it?

As the children continue to interact with the robot, Susan asks:

Susan: Is it turning is it going forward a set number of steps before it turns?

She will later come back with this comment and prompt the children to take notes

about the turns and steps of the turtle. In this stage of their observations of the robot,

the children have established that they can make it react. They are now testing their

hypothesis about what directs its activity. However, they are only beginning to focus

their efforts on particular parts of the robot and instead are mostly acting as controllable

features of the robot's environment.

Later, while observing the turtle being controlled by a different procedure, MatthewP

takes the turtle's light sensor in his hand and puts his thumb over it and then off again.

MatthewP: Look at this. It's seeing light and then I darken it and it turns () and

then it goes forward. I make it see light again and () it turns?

Finally, they are stimulating the robot directly to control the direction it moves in and

the stimulus it receives. They have drawn some conclusions about to which modalities

in the environment the robot is reacting, and about what parts of the robot mediate this

sensation. Later, they focus on the robot's program that invisibly connects its sensations

to its actions.

Sargeant: ... if it sees the same amount of light if it's taking in the same thing ()

then it'll go towards it and it will keep on going forward and it won't move but if

there's some change at all, it'll turn and then when it finds something that's set,

it'll keep going forward.

This description is from the viewpoint that the robot is following the goal of finding a

set light, and Sarah rewords it to be from the viewpoint of an observer:

Sarah: ... when there's a change of light occurs () it turns [Brings her left hand

down.] then goes forward [Turns her left hand to the right and move forward.]

until another change of light.

Mario asks them if by using such a procedure, the turtle could find a light, and the

children interpret this as asking what is the goal of the robot.

Mario: Do you think it could find a bright light using using a rule like that?

Sarah: No.

Meagan: I don't think that's what it was

Sargeant: It wasn't going towards a light or a darkness.

Meagan: And it wouldn't go.

Sargeant: It was going towards some type of lightness that was () that wasn't chang-

ing.

Sarah agrees with their evaluation of the robot's apparent goal and states what she

believes if the rule that controls the robot's actions.

Sarah: I don't think it was actually going towards a light. I think if it sees a change,

[Brings her left hand down.] it turns [Turns her left hand to the right.] and just

goes straight [Her left hand moves across the front of her body.] () and then another

change occurs [Her right hand moves up and down in front of the left hand.] () it
turns again [Her left hand turns to the right.] and just goes keeps going straight.

But MatthewS has noticed something about the robot's actions during the manipulations

that this rule doesn't cover.

MatthewS: No () cause when [MatthewP] put his finger on it [the light sensor] 0
and took it off[He holds his left hand up close and brings his thumb down and then

up], it didn't change direction. But when he put his finger back on [He brings his

thumb down once more], then it changed direction again.

This causes MatthewP to hypothesize that it is steps into darker areas that make the

robot turn, and MatthewS agrees.

MatthewP: Maybe it it gets darker

MatthewS: Yeah.

MatthewP: That's true. Maybe if it gets darker, it turns.

After Sarah confirms that she and MatthewS have in mind the same description of the

rule, the children seems all in agreement about the rules that govern the robot in this

try. They have effectively gone from outside the machine to discover what is inside of

it. Yet, as the next section will show, there is still more for them to discover about the

robot's interactions with its environment.

Relating Observations to Programs

After the observation session, the children were able to look at the various programs

that had controlled the robot during each of the trials. The programs were shown to

the children, and the functioning of each one was described in turn. When the children

saw the programs that had controlled the robots, they showed that they could identify

emergent activity.

In one particular instance, they attributed previous observations of the robot circling

under a light to the interactions of the light sensor, the light, and the program the robot

was using at that time. First, the robot's program was described thus:

Mario: () it remembers what the brightness was the last time it looked () at the

sensor. So it compares what the brightness was with what the brightness is now.

And if it used to be in brighter light, then it tries to find a brighter light now. Now

in other words, if it went from bright to dark-er ()

And Sargeant jumps to the conclusion that the robot's action is going to be to directly

move towards brighter areas.

Sargeant: So it's going to try to go back to the bright.

Mario: It's going to try to do something.

Sargeant: [Correcting herself] It's going to to find a brighter.

Meagan immediately connects this description of the program to what they observed

earlier.

Meagan: That's what causes it to go in circles.

At first, Sarah thinks that Meagan is confusing the try being discussed with a different one

where the robot turned repeatedly in place, but Sargeant clears up the misunderstanding

by adding to Meagan's realization the element of the floor light that was used with the

robot.

Sarah: No, no, no. No wait, wait, wait. No wait. Ugh. This is the second one that

we saw.

Sargeant: I know. It would () Remember it would go under the light and go around

and around, right?

Sarah: Right.

And the three of them complete the explanation that Meagan started.

Meagan: That's because it was looking for the light. [unintelligible]

Sargeant: But the light was right above it.

Sarah: And it can't see above. It can only see () ahead.

But Sarah is not sure that the robot can only see ahead. Mario clarifies the un-

derstanding of the sensor by specifying that it sees light in a cone, so that it can see

somewhat above itself, but not directly above. This explanation could challenge the chil-

dren's certainty about the model they just presented, but they use the extra information

to elaborate their view.

Sarah: Especially since the eye was right here. [She holds her left hand in front of

herself to show the sensor at the front of the robot and puts her right hand above

her left hand to show the light.]

Sargeant: So it would move towards it, [She moves her right hand in a straight line

directly towards Sarah's right hand] and then ()

Sarah: And then it would turn around looking for the brighter light so it couldn't find

it () So then it would start like trying you know to go forward a little, remember?

However, this description is not correct because the program does not say that the

robot should step forward a little. The robot steps forward because in the process of

turning, its sensor goes from a darker area to one that is brighter or the same. The

program only says that the robot should turn when light gets darker. Mario gives the

children this description of what the robot does, and MatthewS notices that there's no

mention of stepping forward so he prompts for that element.

Mario: For seeker number 0, finding a brighter light was simply turning left. All it

would do was turn left a little bit () turn left one eight of a circle.

MatthewS: And then keep going forward?

Mario: And then it would look at the light again. Was it brighter before than it is

now?

But while they are aware of the discrepancy, they do not move to correct it, but express

a desire to have more data.

Sargeant: Oh () We should have counted the times it was under the light and it

turned in a circle. One, two, three, four, five, six

Sarah: Hmmm.

They are able to explain the dynamics they observed in terms of the elements of the

robot's situation, but they are not able to use the finer details to complete their expla-

nations.

Creating Emergence

Later, when the children were asked to create a program that could find a light, they

designed a sequential program, a plan that would make the robot capture the light. In

particular, they wanted to use the light sensor as a reliable source of information.

During the description of a program whose actions the children had found particularly

frustrating to observe, MatthewP comments that that procedure is bad for finding lights

because it wastes a lot of time looking around.

MatthewP: The only problem with that is if it was trying to find a rolling ball of

light ()

Mario: Yes?

MatthewP: It would have () it would take it forever. It would never catch up with

it.

Mario: Because?

MatthewP: Because it would () it takes the time to actually go around and check

each time before going around again.

This prompts Mario to ask him what the computer should do instead. This makes

MatthewP repeat the rule they had previously concluded the robot used to move about.

Mario: So you think () what does it have to do () in order to find the rolling ball of

light?

MatthewP: Either go really fast or go keep turning until it finds a very () well a

brighter [unintelligible].

Julie shows that she would like to have the turtle know directly what it is seeking in the

environment by asking:

Julie: Tell it wha what how bright the what it's supposed to find is.

but this may be due to her having a model that the light sensor can report an absolute

brightness. And Sarah would like the robot to take greater chances in finding the light

by taking larger steps.

Sarah: And set off like you know how it says it turns around until it picks up the

brightest spot? When it picks up the brightest spot, don't just ask go forward 2

steps. Go forward until it chan gets a different reading in light. [Her right hand

moves in a straight line away from her body.]

Mario: Ok.

Sarah: And then it would be able to tell like you know like whether the ball had

gone out of view and then it could you know [Her right hand twists around in a

circle]pick it up.

Many of these descriptions are identical to those they just heard about the programs that

controlled the robot they observed. In particular, while Sarah focussed in the preliminary

session on how the light sensor worked, her comments imply that she is thinking of them

as being like human eyes that can locate a light inside the field of view.

5.4 Learning About the Tools

Over the four following sessions, the children worked on learning how to use the tools

at the same time as getting the robot to find the light. The children had to become

comfortable using the ACT language before they could use it to create emergence in the

robot. There were some features of the language and of how it was presented that caused

problems in its appropriation.

Action Priority

One problem came from creating actions that would contend for the use of the motors. If

two or more valid actions propose settings for a motor's POWER or DIRECTION, either

a choice is made between which of these action will take place, or the robot's actions will

be unpredictable. The children were able to use the debugger to detect these situations

and learned to use PREFER to choose between the conflicting actions.

PREFER as IF-THEN-ELSE

Another common source of problems in the children's ACT programs involved the use

of the PREFER command which sets the priority of execution between two actions.

MatthewP expected PREFER to act as a conventional IF-THEN-ELSE. A PREFER

statement is always located inside an action and so has a condition for when it should

be applied. In the case of PREFER as IF-THEN-ELSE, he expected that saying that

one action should be preferred to another one would make the first action happen if

the condition of the PREFER statement was TRUE, and not just give preference to

doing it if it was already proposed. This showed up in particular with the use of actions

without conditions where the children expected the PREFER to propose the alternative

actions. When he saw this bug, MatthewP complained about the lack of an IF-THEN-

ELSE in ACT, which supports the assertion that the some of the children's problem

with PREFER was due to assimilating it with IF-THEN-ELSE. This interpretation is

plausible in the light of the fact that most of the children had had previous experiences

with programming languages such as Logo. Eventually, the children developed a style

where the most basic actions were always proposed, and the actions of preferring were

exhaustive and conditionalized.

Action Persistence

The children also had problems with correctly using the PERSIST primitive which sets

the number of tenths of seconds for which a program will persist in doing the last se-

lected set of actions. PERSIST was intended to provide an easy out to the problem of

making the robot make a large turn after hitting an obstacle even though the sensor

for detecting collisions would no longer be triggered almost as soon as the robot started

to backup. PERSIST was originally called REACT and was explained in terms of the

robot's reactions to external conditions. While this is an accurate description of what

PERSIST will do, it caused the children to always set the PERSIST time to 0 to get

the machine to react quickly to changing conditions. This meant that their robot used

a large number of small turns instead of a few large ones to get away from an obstacle.

While Mario urged the children to put a PERSIST within their backup actions and even

demonstrated this possibility once, this idea never caught on with them. However, while

observing the backup actions of their contest robot in the rink, MatthewP remarked that

it would have been important to have some persistence at those times.

5.5 Learning About Emergence

From the fifth session on, the children were often asked to explain what were the sources

of the robot's knowledge about its environment. But while questions such "How does the

robot know it has bumped into a wall?" are valid, their answer appears direct and trivial:

the robot knows it has run into a wall because its touch sensor is triggered. However,

the reliability of the answer depends upon the reliability of the touch sensor at reporting

a contact, and the digital nature of the interaction: either the robot touches wall or it

does not.

A more difficult question to answer was "How does the robot know it has captured the

light?" This question came partly from the observations of the children's early desire to

make the robot stop when it reached the light. The children first used a direct approach to

answer to this question. The robot would know because they would encode the right level

of brightness for this situation in its program. But this was not a viable answer because

the light sensor was not a reliable source of information and could not be calibrated'. As

a result, the children had to rely on emergent properties of the interaction of the robot

with its environment to formulate a reliable and robust answer to the question. The

5 1t can be shown that if a calibrated light sensor had been used, robot behavior could have been used
to calculate such things as the intensity of a sensed light source, its distance, and location.

children's final answer to this question was created in the context of solving the problem

of having the robot act differently when it had caught the light. The example presented

here was selected as a case of reasoning in emergent terms. We will look closely at how

the children worked with this particular case.

The Parts for an Answer

As the children became comfortable with working with the development system, some

interest in the work was lost. The introduction of the Robot Design Competition at

the fifth session made them enthusiastic once again. The children realized that for this

contest, it was important to have the robot act differently when it had caught the light.

At this time, Mario asked the children if the robot could somehow know it had caught the

light, something that the children themselves had asked in the beginning sessions of the

workshop. The children attempted to encode in the robot a sensor reading corresponding

to the light being in the robot's scoop. But they discovered that the sensor's operation

made it impossible to find a reliable value that would correspond with that situation.

At the sixth session, the children are testing a robot that can capture a light in a

hallway. They focus on the property that the light was caught against the wall.

MatthewP: Let it go Mario.

Mario: Ohhh I see. Cool.

MatthewS: Its goal is to trap it.

Mario: The moment it catches it, it goes off the wall.

Later in the same session, Sarah uses this property as part of the strategy being

designed to catch the contest puck.

Sarah: Look, we get the beacon and we move to the wall and no one else can be it

because we are there. [Because the robot is in front of the contest puck or "beacon".]

But a few minutes later, when the children are asked about whether the robot would

know it's even touched the puck, they think that that's not possible.

Mario: How do we know whether we've touched the puck?

MatthewS: We don't.

Yet, at the end of the session, in talking about what to do in case their robot doesn't

get to the wall first, Sarah continues with:

Sarah: Assuming we get the puck, we will have hit the wall. So let's say by 70

seconds we have yet to hit the wall, and sensor 2 [the light sensor] is not active, we

go in a wild mad frenzy and attack everyone.

which holds the seeds for a way of making the robot know it's caught the puck.

The Emergence of an Answer

In the next session, session 7, the children experiment with encoding in the program

a value that would allow the robot to know that it was roughly pointed towards the

workshop's light while at a distance of at least six feet, the width of the rink in which

the contest was to happen. They are no longer trying to find a setting that could be

used to know the robot is in contact with the light, but rather are seeking an indicator

for guiding the robot in the right direction. They found this without difficulty.

Once they are satisfied they have a program with which the robot can find a light,

they begin a session to determine the strategy to be used in the contest. But Sarah

points out a problem with how the robot will work in the contest.

Sarah: [She is holding up one hand with two fingers in a "V".] Here is the robot.

[Her other hand's index finger is acting as the light.] Robot comes, robot pushes

it [the light], it hits it to the wall, right? But you know what happens when our ()

when our robot does () when it hits the wall.

Julie: It backs up.

Sarah: It backs up. So it's going to back up and its going to go on, and we don't

want it to do that.

Her hands are showing the robot turning away from the wall and taking the light with

it. She probably means that she doesn't want the robot exposing the light to the other

contest robots. A couple of minutes later Julie has a solution to this.

Julie: Mario, can we say if its touching an obstacle then it stays if it has here () if

it has the light? Cause then it would hold the light in itself and would () nobody

else would be able to get it.

Sarah has been trying to speak and she follows up on Julie's idea.

Sarah: We search, we find it, we go for it, we go pushing it forward. Then, look we

encase this in the wall.

She picks up a robot and uses it to illustrate her point as she continues:

Sarah: So they can't get to it because we're blocking them. So this way only we can

get it and we've touched it last. But the problem is when it hits the wall its going

to go whirr whirr whirr [She makes the robot turn with the puck.] turn around. We

don't want it to do that. But what we want it to do is if it doesn't have the sensor

[She means the puck.] and it bams into the wall, we want it to turn around.

Mario: So how do we make a difference?

Sarah: We don't know.

An instant later she's struck by an insight. She wants to change the program to

remove the constraint on the robot that backing away from an obstacle takes precedence

over tracking the light.

Sarah: I've got it. I've got it. I've got it. No, no no. I've got it. We can put it in

the program. If it sees the light, instead of having prefer ah () um back away from

object over seeing the light, we have it prefer seeing the light over back away from

object. So that way, if it sees the light and we assume it's hit a wall then we can

assume it's hit a wall and it's where we want it to be.

This takes the chance that the robot might get stuck running into a wall if it's seeing the

puck but hasn't captured it. Mario will ask her about this possibility at the next session.

At this point, the children turn to discussing back up plans in the case their does not

catch the light first.

Twenty minutes later, Mario asks the children whether the robot can know it's gotten

the puck. In doing this, Mario is speaking as an observer, discussing the knowledge as

something the robot can be shown to possess. But the children return to the details of

the robot's interactions to explain how the robot can appear to have this knowledge.

Mario: ... do we need to know we've gotten to the brick? [By which Mario means

the puck.]

Sarah: Yes because 0

Mario: How do we know that?

Sarah: Because when we read the light, it goes forward. No, we don't have to. Look,

what happens is we read the light. It goes forward, ok? Now that it's gone () ab

() one it () it will go forward to a point then it will reach a wall. When it can see

the light and it's reached the wall, then we know that () then it just keeps trying

to go forward but it can't so it'll stay in one place and we'll have our barrier you

know like I showed you.

Mario then paraphrases her sentence, completing the rule that she elaborated, and

asks her to say what the robot would do once it has that knowledge.

Mario: Ok, so then the rule that you want is that if it's reached the wall and it still

sees the light, that means it's got the light?

Sarah: Yes.

Mario: And using this rule, the robot knows it's caught the light?

Sarah: Yes.

Mario: So what does it do then?

Sarah: It keeps trying to go forward.

She has established a connection between the stimulus and how the robot reacts to it.

Implementing this Answer

In session 8, Sarah restates this connection but Mario challenges it by asking what hap-

pens if the robot is running into a wall and sees the light but hasn't captured it.. Sarah

states that she is assuming that the condition of both seeing the light and running against

a wall means the robot has caught the light. To support this assumption, she describes

the worst case of what could happen when the robot is running into a wall and sees the

light. She helps her explanation by drawing on a whiteboard.

Sarah: Here is our view [Draws a quarter circle.]

Mario: Yes.

Sarah: Ok? () Now if we're rammed into a wall () and our eye is up here [She draws

a dot near the wall.] we can see this [She draws a much smaller half circle within

the large one.] Ok?

Mario: Ok.

Sarah: Now we're going to assume we have our things out there [She draws the

robot's scoop arms inside the smaller half circle.]

Mario: Ok.

Sarah: () Unless the puck () is like () there [She draws a dot inside the smaller half

circle but outside the scoop.]() which () the chances of it being there are so very

very slim.

Mario: Ok.

Sarah: We will not be able to see it unless it's it's we have it.

Sarah is showing her awareness that the effectiveness of the capture rule depends on the

relationship between the active radius of the sensor and the position of the scoop's arms.

As will be shown below, her awareness of this constraint will play an important role in

the session after the contest when she will be asked to explain the robot's activity.

Later, Sarah changes the program the group has created to embody the capture rule.

She changes the action:

action move-back-before-move-forward

(prefer move-back move-forward)

sensor-3?

by adding to the condition that makes move-back be preferred to move-f orward:

action move-back-before-move-forward

(prefer move-back move-forward)

and sensor-3? not more level-2? 230

which makes move-back be preferred only when the robot is not following the light.

Accounting for the Activity

In the final session after the Robot Design Competition, the children were asked to reflect

upon the dynamics that emerged in their robot's activity in the contest. Sarah focussed

on the robot's difficulty at catching the puck in its scoop. During the contest, the robot

would move up until its scoop was to one side of the puck. Then, it would turn towards

the puck, pushing it around much as a hockey player's stick pushes a real puck. Sarah

came up with an explanation that drew on the details of robot's construction to account

for the activity.

Sarah: They would see it and they'd go for it but the range [of the sensor] wasn't

small enough to pick out where it was [As Sarah speaks of the puck, her hands are

on the sides of her head acting like blinders.]

Sarah is ascribing the difficulty in part to the properties of the robot's sensor, and then

she weaves that property into the activity.

Sargeant: [Sarah asks Sargeant to act as the puck for a demonstration, and she

places herself a couple of feet away with her arms held out in front of herself as if

they were the scoop's sides.] I can see Sargeant but if I go straight forward [Sarah

moves towards Sargeant] I don't get it [She comes up to one side of Sargeant].

She has shown that because of it's sensor arrangement in combination with the length of

the scoop's sides, the robot can move up besides the puck while still acting as if the puck

is directly in front of itself. Then, she explains how the robot pushes the puck along.

Sarah: So then I keep on trying to see her and I see her [She turns to the right

pushing Sargeant along.] And I'm going for her but you see I'm not [She stops

talking and looks towards Mario.]

Sarah has shown that she understands the robot's activity as the result of the com-

bination of the angle of view of its sensor and the length of its scoop. The angle of

view of the sensor causes the robot to act as if it is moving straight for the puck until

it is very close to it. So close, in fact, that the robot's scoop is directly besides the

puck when it falls out of the sensor's range. Then, the robot acts to bring the puck into

view by turning towards it but this action only pushed the puck along. In other words,

Sarah's explanation shows that she understands that the dynamic came not only from

what was directly programmed in, but emerged from the program's combination with

the properties of its sensor and scoop.

Summary

The children's answer to how the robot would know it had captured the light ranged

over time going from a simple "I don't know" until the answer they finally used for the

6.270 robot. This answer uses emergent property of interaction between the robot, its

program, the light, and the surrounding world. The children formulated it as a rule much

like "the robot knows it has captured the light when it can still sense the light but it has

run into a wall." If the robot sees the light while it's bumping into a wall, it must mean

that the light is caught between it and the wall: that the robot has captured the light.

In formulating such rules, the children viewed the robot's knowledge as emerging from

its interactions with its environment.

The children used this answer to change the program they had developed for finding

the light. They conditionalized the robot's preference for backing up from obstacles to

make it inactive in its usual triggering situation if the robot can still see the light. They

did not add an element of control state to the robot's program that would encode that

it had captured the light, and this kind of change could allow the robot to react flexibly

in case some other robot would take the captured light away.

Chapter 6

Conclusions and Future Work

The thesis up to now will be summarized. The micro-genetic pattern followed by the

children as they evolved an emergent solution will be reviewed and recommendations

will be made for further studies. The children's difficulties in using the materials will

be examined and appropriate solutions will be proposed. Finally, different contexts and

materials in which the results of this study could be reproduced will be suggested.

6.1 Summary of the Thesis

This thesis has shown the micro-genesis of an emergent solution by a group of children.

To arrive at this solution, the children had to understand the dynamics of a system

made of a robot, its program, and its environment. They understood the functioning of

electronic and software parts that were provided to them, built a new program, observed

how it interacted with its environment, and modified their construction to take advantage

of the interaction.

There were two ideas that informed this study. The first idea is the emergence from

simple parts of greater patterns and the second idea is learning through building. While

the emergence is being invoked to explain many important phenomena, we are only

beginning to develop formal ways of understanding it. It was argued that in order to

develop a better means of understanding emergence, it is important to see how people

already think about such phenomena. Five examples of emergence were given, and some

of the features they have in common were described. It was argued that these systems

lack a central control structure to account for the phenomenon being exhibited, and that

this emergent activity exists only at a high level of description of the system and is absent

from the lower levels describing the parts of which the system was seen to be made. The

views of Turkle, Hillis, and Hofstadter on the possibility that intelligence is emergent from

a large number of simple parts were discussed, and the difficulty in understanding this

kind of emergence, emergence in self-organizing systems, was emphasized. In contrast

with this kind of emergence, that found in systems of agents situated in worlds as those

studied by Agre were shown to be simpler and, it was argued, easier to understand.

However, it was shown that they had many of the essential characteristics that identify

self-organizing systems as emergent. It was argued that in order to understand how

emergent phenomena happens, it is necessary to make a comparison between levels of

description, and that this is best done with the kind of emergence studied by Agre.

The basic tenet of the Constructionist approach to education was presented, and it

was argued that it is synergistic with the approach to understanding emergence suggested

by Agre. The concept of a tool kit for exploring emergent phenomena in agent-world

interaction was introduced. The idea of "appropriation" and of the development of a

community of ideas was presented, and it was shown how these argued for using the tool

kit in a workshop environment. The importance to the workshop participants of doing

something truly new was stressed.

A tool kit being developed by Resnick for exploring self-organizing systems was

sketched and some of the goals that Resnick intends to achieve with this tool kit were

presented.

A mini-study of adults observing agents situated in worlds was presented, and it was

argued that these adults had a tendency to progress from local to global descriptions of

the agent's activity. An example was given of an emergent phenomenon identified by

some of the observers as being built in.

The materials of the workshop were described in detail. The LEGO robots and their

sensors were described, as was the ACT environment for programming it. Five alternative

system for building robots were described and contrasted. The way the participants of

the workshop were chosen and the events of the workshop were sketched. Then, a sketch

of each of the workshop's nine sessions was given.

The direction for analysis of transcripts from the workshop were given, and the re-

search questions were presented. The transcripts showed how the author presented a

group of children with the idea of making a robot capture and release a light. The chil-

dren were given a robot equipped with a scoop and sensors, an initial program, and a tool

for writing new programs. While the children had some ideas of how to go about making

a robot capture a light, they did not fully understand the constraints of the problem

at hand. The children's process of determining why a robot acted in a particular way

was shown. While they could partly understand how the behavior they had observed

emerged from the interactions of the underlying parts, their initial reaction to making

a robot find a light showed they thought its activity should be directly programmed in.

Some of the children's milestones in learning how to use the tools of the workshop were

shown.

The children were shown thinking about the question of how the robot could know

it had captured the light in its scoop. Their first answer was to encode into the robot's

program a light level corresponding to the distance of the robot from the light, but the

light sensor's unreliability made this not possible. Later, in working with the robot,

they noticed that it could capture the light against a wall but that it would then move

away from it. When the goal of the workshop changed to making a robot win the MIT

Robot Design Competition, the goal in designing the robot became how to protect the

light from their opponents. The children then realized that what they needed to do is to

change the robot's reactions so that it would not back up if the light is between it and

the wall thereby isolating it from the other contestants. The children knew what kinds

of problems could arise from this approach but they believed it to be their best chance

to win the contest. It was shown that if the robot was built this way, it would be as if

it could know it had captured the light. The children's reflections on how their robot

performed in the contest were used to argue that they could now fully relate the dynamics

of the robot's activity to the relationship between its parts and its environment.

6.2 Children's Thinking About Emergence

The children's thinking about emergent phenomena falls into at least two categories:

recognition and construction. In the first category, the children are presented with a

phenomenon and they must relate it to the underlying elements that are described. In

the second category, the children are presented with a set of parts and are asked to make

them exhibit a particular effect.

Recognizing Emergent Phenomena

The transcripts showed in three cases where the children analyzed a phenomenon emerg-

ing from a substrate. This is not to say that they called this phenomenon emergent, but

rather that they were able to relate two levels of description of the same events.

During the first session, the children observed a pattern of motion in robot's light

seeking behavior. When the robot was interacting with a floor lamp that rested above its

light sensor, it's action was described by the children as circling under the light. Later,

the children were given a low-level description of what controlled the robot's actions:

that the robot would turn when a a motion causes it to go from a bright area to a less

bright one. They used this information in combination with their knowledge of how the

robot's sensor operated and of the robot's situation to explain how the pattern in the

robot's motion would arise.

While they were seeking to make the robot know it had captured the light in its

scoop, they observed that the robot could push the light into a wall and then move back.

They were able to modify the robot's program so that it would not move back in but

only in that particular situation. This showed that they understood what elements from

the situation combined to give rise to the activity.

Finally, during the contest, they observed the robot sliding up to the puck. They

were able to describe the robot's actions in terms of its program and ascribed the robot's

activity to the interactions of its program, its sensor's angle of view, and the length of

its scoop.

Creating Emergent Phenomena

In the workshop, the children's first reaction when faced with the problem of achieving

an effect was to attempt to produce it through direct means. Only after they has decided

that such an approach would not work would they turn to emergent phenomena as a

source of solutions.

The direct approach stands in sharp contrast with the light-seeking feedback system

that they encountered in the first session. That program used the difference between

the currently sensed light intensity and the intensity measured at the robot's previous

position as a means of deciding whether to seek a new heading; getting to the light was an

emergent property of this process. Yet, even though they had seen this process in action

and they knew how it had been implemented, the children's design of a light-seeking

robot was to make it turn towards a light of a certain brightness and then move in its

direction.

This tendency to use a direct approach was evidenced in the children's answer to the

question of whether the robot could know it has captured a light. The wanted to tell

the robot the intensity of the light it would register when it was close to the light. But

when the children attempted to use this direct method, they saw that the sensor's way

of working made the method unusable. Only then did the children resort to using the

emergent properties of the system to solve the problem.

The way they did this is best described as opportunistic: the children took advantage

of a dynamic they encountered accidentally in the process of observing their program in

action. The children first observed the dynamic of the robot pushing the light against

the wall. Later, they reformulated the problem from capturing the light to keeping it

against the wall. Only after having done this did they understand that the dynamic

could be modified into a solution to their problem. Then, they were able to use their

understanding of the system to make the needed modification.

Summary

In the beginning of the workshop, the children showed that they were able to relate levels

of description of an activity to identify emergent phenomena. This ability remained

unchanged throughout the workshop. But in the beginning, the children were not able to

create emergent phenomena, instead seeking direct methods through which they could

achieve their goals. Only after having worked with the robot for many sessions and

having failed at using direct methods to achieve an effect did they turn to using emergent

phenomena to provide a solution.

There is no indication in the transcripts that the children were aware of engaging

in this process. And, because of its opportunistic nature, it seems unlikely that having

this awareness would improve their ability to take advantage of the dynamics of the

situation because which dynamics are seen will depend upon elements unique to the each

situation. There are no constants in this process that the children can learn to seek out;

there can only be a general knowledge that something might be found. However, Agre

provides some indication that an improvement in the children's rapidity in seeking out

and modifying the dynamics of the interaction might result from an awareness that this

process is happening. In his study of the evolution of routines in the daily activity of

persons, he found that people's awareness that they were engaging in an evolving routine

would speed up the improvement of the routine [Agre 1985]. This suggests that in a

second phase of a project such as the one discussed in this thesis, the children should

become aware of the process through which they solved the problem before proceeding

to solving another such problem.

6.3 Improving the Materials

The Hardware

The most frustrating aspect of the project were the difficulties with working with real

hardware instead of more reliable software components. In particular, the LEGO mate-

rials made robots that broke often, the sensors were noisy, and the Programmable Bricks

were easy to burn out. Of course all of these troubles were expected, and some of them,

such as noisy sensors and fragile robots, were the welcome sign of a real world experiment.

Nonetheless, while the children were understanding of the experimental nature of

the materials available during the workshop, they have a right to expect that future

Programmable Bricks and their sensors will be more robust. Fortunately the Brick's

creators have gone through a second cycle of design and have assembled a much improved

portable computer with more sensor capabilities. This new machine was designed for the

Robot Design Competition and has eight digital ports and four analog ports. This last

capability should allow more reliable reports from analog light sensors because measuring

their state will not be subject to the software interactions that caused variation on the

Programmable Brick.

Unfortunately, little can be done to improve the reliability of the LEGO materials.

Their weaknesses comes hand in hand with their approachability by children. While it is

certain that with more work, more reliable machine designs can be created, quite a bit of

time can be spent on making reliable a machine that will only be used for a short while.

In order to understand the capabilities of the sensors, the children had to rely on

the metaphors provided by the author or to create their own and relate them to their

experience using the robots. For example, when the children first encountered the turtle,

it took a while for the limits of its light sensor to be understood. The children readily

understood the picture of the sensor's field of vision as being a "cone a third of a circle

wide," but, as was shown in Section 5.3, they acted for a while as if the robot could

localize the brightest light within this cone. If the sensor could have been hooked up

to a screen whose overall brightness would vary according to the intensity of the light

reported by the sensor, the capabilities of the sensor might have been understood more

rapidly. It seems natural to think that being able to sense the world as the robot senses

it would make it easier to develop an understanding of what triggers the robot's actions.

More will be said about this while discussing improvements to the program debugging

tools.

Many researchers have maintained that the interestingness of the tasks that can be

undertaken in a robotics enterprise is tied to the richness of the information that can be

gleaned from the sensors ([Brooks and Flynn 1989], [Chapman 1990], [Materic, 1990]).

For example, in commenting upon an early description of this project, Chapman stated:

I think that your major stumbling block will be in finding adequate sen-

sors. That's been the principal issue in all the mobile robot projects I know

of. Unless you have pretty high quality sensing, there's not much interesting

you can make an embedded device DO.

Chapman, personal communication

While this cannot be denied, the work the children did with the LEGO robots showed

that an understanding the robots' situation can go a long way towards making their

activity interesting. Furthermore, arriving at this understanding is at the center of the

kind of activity that this thesis explored and there is no substitute for it. Once again,

more will be said about this while discussing improvements to the program debugging

tools.

The Software

The basic editor functions such as inserting and deleting text, moving around a program

with the arrow keys, and naming, saving and deleting pages were readily mastered by the

children. However, they were never comfortable with using the more advanced functions

such as text block movement with cut, copy, and paste operations, and interactive text

search and substitution operations. Certainly, having the most of the advanced functions

on hot-keys did not help their accessibility or help make the children aware that they

were available. Although in the short time of the workshop the basic functions were

sufficient for the children's purposes, having a direct-manipulation environment like that

of the Macintosh might have made a difference in this respect.

PERSIST was a difficult primitive for the children to use, and in the end they chose to

ignore it. It was created because it provided a simple solution to two problems: backing

up from an obstacle and achieving quiescence in the digital circuit. Clearly, the latter

use was not a good idea, and better code generation would have allowed determining

quiescence without it. But also, PERSIST was a bad tool for controlling actions because

of its lack of granularity: the current time setting of PERSIST applied to all valid actions.

A better solution would be to have PERSIST be a statement that applied only to actions

that contained it. However, even if PERSIST had not existed, its effects could have been

achieved by creating a sequence of actions, so it was not really required.

Many times during the workshop, the children created programs with actions that

contended for the control of the same effector. This was amongst the most difficult bugs

for them to detect. But in all of those situations it was possible to find the source of

the contention by using the debugger to trace selected actions. While it might seem

possible to detect possible contentions for actions while compiling the program, only

those contentions between actions with commensurable valid conditions can be detected

correctly. For example in Section 3.2.3, the contention between BACKWARD and FOR-

WARD could have been detected because the latter is always valid while the former will

be valid only when the bumper sensor is triggered. The case of two actions that contend

because their stated activation conditions effectively overlap without involving a logical

combination of the same predicates cannot be detected as faulty. For example, contention

between an action that is valid when the bumper is triggered and an action that depends

on the light sensor reporting a value above a particular intensity cannot be guaranteed

to happen. At best, the user can be advised of actions that use the same effectors, but

this might result in a large number of messages warning about conditions that will never

occur. Chapman has reported that his arbitration macrology detects contention prob-

lems as the program is acting and allows the user to trace their source [Chapman 1990].

It is possible to implement this feature in the ACT system but it would complicate its

use. The difficulties of dealing with this complexity was weighed against the difficulty of

finding arbitration bugs in programs', and it was chosen to leave this kind of error for

the user to discover by other means.

One important improvement to the software might be to allow debugging the robot's

activities using data obtained from a run. Gathering the information for this kind of

debugging requires that the robot's sensor inputs be stored for later use, at which time

the data is to be interpreted in terms of its effects on the robot's activity. It can be

useful to feed back these inputs to the robot in a controlled way and observe its pro-

gram's operation. But because the robot's sensor data comes from its interactions with

its environment, this method will only be useful to explain the robot's activity if the

data can be related to features of the environment. Videotapes of the robot in action

can help the designer make these relations, but videotape analysis is a difficult task. An-

other possibility is to feed the sensor information into transductors that would allow the

children to view the world as the robot saw it. This might make it easier for the children

to use the videotapes to reflect upon the connections between the robot's activities and

its interactions with its environment.

'Chapman's program is more than a hundred times the size of the children's programs

6.4 Future Explorations

A More Open-Ended Activity

Because of the eight week limit on the amount of time available for the workshop, the

children had been provided with a goal to be achieved. This goal served as a challenge and

a milestone that informed much of the structure that emerged from the workshop. The

author's belief that this goal had yet to be accomplished, and its apparent importance

fostered the children's appropriation of it. Yet, more open-ended activity than what was

used for this workshop would be better adapted to the Constructionist view of education.

The goal of the workshop was not appropriated equally by all the children. For

example, one of the children wanted the robot to use a sound sensor instead of a light

sensor, but while such a sensor was available at that time, the child felt that he did not

have enough time to learn to use it and to develop his own activities around it. Had the

workshop had much more time allocated to it, or better yet had no time limits imposed

on it, that child would have been able to explore the possible uses of the sound sensor

and decide for himself whether that was a fruitful area for discovery. As it was, time

made that choice for him.

The workshop began with an introductory session where the author spoke a lot at

the children, and the introduction of new materials usually involved a twenty-minute

session where their capabilities were sketched. It is important to stress that this activity

did not make the workshop any less Constructionist. The purpose of the introduction

session was to communicate to the children the range of ideas, activities, and materials

that they would encounter during the workshop. It was not expected that through this

session, the children would gain an understanding of the ideas or activities that had been

imagined they might encounter or in which they might engage during the workshop. It

was considered more important to get the materials into the children's hands, to provide

them with some experiences through which they could begin to build their own picture

of the goals of the workshop, and to establish the beginnings of a relationship with the

author. The goals of the sessions introducing the new materials were similar to those of

the first session.

Different Kinds of Emergence

It is important to relate the results obtained in this study to the possible study of other

kinds of emergence. In Section 2.3, Resnick's proposal for the study of emergence in

self-organizing systems was introduced. It is not clear how the results presented in this

thesis can be used to help Resnick's future work with self-organizing emergence. One

possible approach would be to reduce the size of the systems with which he will be

working to simplify them, but not all kinds of simplification will be of help. For example,

reducing the size of the matrix in the Life Game (a cellular automata that gives rise to

many different structures,) until it had only tens of elements instead of hundreds would

certainly make it simpler but only at the cost of removing the emergent phenomena that

makes it interesting. However, slowly varying the size of the matrix until a particular

phenomenon begins to happen might yield important clues to how the structures emerge.

The best help this study can provide to Resnick is in its pointing out the oppor-

tunistic character of the activity in which the children engaged to develop the emergent

phenomenon. The opportunities arose only because the children were able to work freely

and extensively with the materials. By choosing particular goals and seeking out related

phenomena, the children should be able to eventually negotiate with the system to obtain

the results they seek.

Bibliography

[Abelson and diSessa 1980]

[Agre 1988]

[Agre 1985]

[Bourgoin 1990]

[Brooks and Flynn 1989]

[Brooks 1986]

[Chapman 1990]

[Farber 1990]

[Hillis 1988]

[Hofstadter 1985]

Abelson, H. & diSessa, A. (1980). Turtle Geometry: The
Computer as a Medium for Exploring Mathematics Cam-
bridge, MA: MIT Press.

Agre, P. E. (1988). The Dynamic Structure of Everyday
Life Cambridge, MA: MIT AI Lab TR #1085.

Agre, P. E. (1985). Routines Cambridge, MA: MIT AI Lab
Memo #828.

Bourgoin, M. (1990). Children Using LEGO Robots to Ex-
plore Dynamics in Constructionist Learning Harel, I. ed.
Cambridge, MA: The MIT Media Laboratory.

Brooks, R. A. & Flynn, A. M. Fast, Cheap and Out of
Control Cambridge, MA: MIT AI Lab Memo #1182

Brooks, R. A. (1986). Achieving Artificial Intelligence
Through Building Robots Cambridge, MA: MIT AI Lab
Memo #899

Chapman, David (1990). Vision, Instruction, and Action
Cambridge, MA: MIT AI Lab TR #1204.

Farber, N. G. (1990). Puzzled Minds and Weird Creatures:
Spontaneous Inquiry and Phases in Knowledge Construc-
tion in Constructionist Learning Harel, I. ed. Cambridge,
MA: The MIT Media Laboratory.

Hillis, D. (1988) Intelligence as an Emergent Behavior; or,
The Songs of Eden. in the Winter 1988 issue of Daedalus.

Hofstadter, D. R. (1985) Waking Up From the Boolean
Dream, or, Subcognition as Computation in Metamagical
Themas. New York: Basic Books.

[Martin 1988]

[Materic, 1990]

[Papert 1986]

[Resnick 1988]

[Resnick 1989]

[Suchman 1987]

[Travers 1986]

[Turkle 1984]

[Wallace and Grimm 1984]

Martin, F. G. (1988). Children, Cybernetics, and Pro-
grammable Turtles Unpublished Masters Thesis, Cam-
bridge, MA: The MIT Media Laboratory. A condensed ver-
sion of this thesis can be found in Constructionist Learning
Harel, I. ed. Cambridge, MA: The MIT Media Laboratory.

Materic, M. J. (1990). A Distributed Model for Mobile Robot
Environment Learning and Navigation Cambridge, MA:
MIT AI Lab TR #1228.

Papert, S. A. (1986). Constructionism: A New Opportunity
for Elementary Science Education Cambridge, MA: Pro-
posal to the National Science Foundation.

Resnick, M. (1988). MultiLogo: A Study of Children
and Concurrent Programming Unpublished Masters Thesis,
Cambridge, MA: Department of Electrical Engineering. A
condensed version of this thesis can be found in Construc-
tionist Learning Harel, I. ed. Cambridge, MA: The MIT
Media Laboratory.

Resnick, M. (1989). A Computational Environment for Ex-
ploring Self-Organizing Behavior Unpublished Thesis Pro-
posal, Cambridge, MA: Department of Electrical Engineer-
ing.

Suchman, L. A. (1987). Plans and Situated Actions New
York, NY: Cambridge University Press.

Travers, M. D. (1986). Agar: An Animal Construction Kit
Unpublished Masters Thesis, Cambridge, MA: The MIT
Media Laboratory.

Turkle, S. (1984). The Second Self: Computers and the Hu-
man Spirit. New York: Simon and Schuster.

Wallace, M. and Grimm, L. (1984). Robot Odyssey I Menlo
Park, CA: The Learning Company.

Appendix A

Resources Used in this Study

Quantity Equipment
4 Apple II GS with at least 1 Megabyte of RAM.
1 High-speed shutter videotape recorder.
1 Freeze-frame videotape player.

10 Sets of wheels, axles, motors, switches.
3 Sets of P-Brick, light and sound sensors, binary sensor

multiplexor, light and sound sources.
1 Ball of light.

Miscellaneous LEGO materials (bricks, beams).
GSLisp and related software.

Appendix B

Example Programs

This section has the text of all the programs that are referenced in this document. The
ACT programs have been altered to reflect the state of the ACT language as presented
here.

B.1 Sample Light Seeking Programs

Below are three implementation of the same program, first in Logo, then in ACT, and
finally directly as a logic circuit. This program causes a robot to act as a light-seeking
machine that is much like those observed by the children in the workshop's first session.

Logo Version of Procedure

TO SEEKER

SEEKERLOOP 255 BRIGHTEST

END

TO SEEKERLOOP :OLD.BRIGHTNESS :BRIGHTNESS
IFELSE TOUCHING?

[BACK 10 LEFT 8]
[IFELSE BRIGHTER? :OLD.BRIGHTNESS :BRIGHTNESS

[LEFT 8]
[FORWARD 5]]

SEEKERLOOP :BRIGHTNESS BRIGHTNESS

END

TO FORWARD :TIME

TALKTO [A B]

SETEVEN

SETPOWER 7

ONFOR :TIME

END

TO BACK :TIME

TALKTO [A B]
SETODD
SETPOWER 7
ONFOR :TIME

END

TO LEFT :TIME

TALKTO "A
SETODD
TALKTO "B
SETEVEN

TALKTO [A B]
SETPOWER 7

ONFOR :TIME
END

TO TOUCHING?
OUTPUT SENSOR
END

TO BRIGHTNESS
OUTPUT LEVEL

END

TO BRIGHTER? :BRIGHTNESS1 :BRIGHTNESS2
OUTPUT (:BRIGHTNESS1 - :BRIGHTNESS2) > 2
END

ACT Version of Procedure

action back-away-before-seek
(prefer back-away-from-the-obstacle

look-for-a-bright-light
prefer back-away-from-the-obstacle

go-towards-the-bright-light)
always

; When having a choice between
; backing up from an obstacle and
; any other action, back away.

action back-away-from-the-obstacle ; Back away from an obstacle by
(propose move-a direction: odd power: 7 ; spinning both motors backwards

propose move-b direction: odd power: 3); only making one go slower

touching-obstacle? ; than the other.

action look-for-a-bright-light
(propose move-a direction: odd power:
propose move-b direction: even power:

lost-the-bright-light?

action go-towards-the-bright-light
(propose move-a direction: even power:
propose move-b direction: even power:

not lost-the-bright-light?

action lost-the-bright-light

(report more 2
subtract old-brightness?

brightness?)

always

action old-brightness
(report remember brightness?)

always

action brightness

(report level-2?)

always

action touching-obstacle
(report sensor-3?)

always

action move-a direction power
(propose power-a power: power?

propose spin-a direction: direction?)

action move-b direction power

(propose power-b power: power?

propose spin-b direction: direction?)

; Look for a new source of
7 ; light by spinning both

7); motors in opposite
directions.

Move towards a source of

7 ; light by spinning both
7); motors forward with equal

; power.

; Report that the source of
; light was lost when the old
; sensor reading was more than
; the current on by 2 units.

; Report the previous value of
; the light sensor.

; Report the current value of
; the light sensor.

; Report the current state of
; the front bumper.

; Move the left motor by
; setting port A's power and
; spin direction.

; Move the right motor by
; setting port B's power and
; spin direction.

action live
(propose persist time: 1

propose sensor-3
propose level-2)

always

; Set a tenth-second persistence.
; Enable the sensor reports.

Logic Circuit Version of Procedure

LEGEND: LEVEL-2 Sensor Element

IPOWER-B Primitive Action

Logic Element

0) Constant

100

B.2 MOVEAROUND

MOVEAROUND is the ACT program that was given to all the children at the beginning

of the workshop. It is described in Section 3.2.4.

action back-away-before-move
(prefer back-away-from-obstacle
move-forward)
always

action back-away-from-obstacle
(propose move-a direction: odd power: 7

propose move-b direction: odd power: 3)

touching-obstacle?

action move-forward
(propose move-a direction: even power: 7

propose move-b direction: even power: 7)

always

action touching-obstacle
(report sensor-3?)
always

action brightness
(report level-2?)

always

action move-a direction power

(propose power-a power: power?
propose spin-a direction: direction?)

action move-b direction power

(propose power-b power: power?
propose spin-b direction: direction?)

action live

(propose react time: 1

propose sensor-3

propose level-2)

always

101

B.3 The SMART Robot's Program

This ACT program was written by the children to control their entry in the Robot Design
Competition. It was hand-translated by the author into 68H11 assembly language.

action move-forward
(propose move-a direction: even power: 7

propose move-b direction: even power: 7)
always

action turn
(propose move-a direction: even power: 0
propose move-b direction: even power: 7)

always

action move-back
(propose move-a direction: odd power: 7

propose move-b direction: odd power: 1)

always

action move-forward-before-turn
(prefer move-forward turn)
more level-2? 230

action turn-before-move-forward
(prefer turn move-forward)
less level-2? 231

action move-back-before-move-forward
(prefer move-back move-forward)
and sensor-3? not more level-2? 230

action move-back-before-turn
(prefer move-back turn)

sensor-3?

action move-a direction power
(propose power-a power: power?
propose spin-a direction: direction?)

action move-b direction power
(propose power-b power: power?

102

propose spin-b direction: direction?)

action live
(propose react time: 0
propose sensor-3

propose level-2)

always

103

Appendix C

ACT Language Reference

C.1 Basic Language Structure

An ACT program is composed exclusively of ACTION definitions. This statement is the
basic abstraction mechanism of the ACT language.

ACTION name <parameters>

(actions)
predicate

Action name is proposed when predicate is
satisfied and no other action opposes it. In
turn, name proposes the actions that com-
pose it. If predicate is absent, a NEVER is
assumed to be intended.

C.2 Primitive Action Statements

Each action that is part of an ACTION's actions, must be in the form of one of these
statements. For convenience, if an action name isn't preceded by one of these words, it's
assumed that it is meant to be preceded by a PROPOSE.

PROPOSE action <settings>

SET action <settings>

OPPOSE action

PREFER preferred overridden

Propose that action be done with its pa-
rameters set to settings.

If action is to be done, it should be with
its parameters set to settings.

Action should not be done.

If both preferred and overridden are pro-
posed, oppose overridden.

104

REPORT value Set the value reported by the action con-
taining the REPORT statement to value,
when the action is done. If the action isn't
being done, or if it doesn't have a RE-
PORT statement, it reports zero.

C.3 Primitive Actions

These are the simplest actions found in the version of ACT language used by the children.
Versions of the ACT language can contain different sets of primitive actions depending
on the details of the machine they are meant to control.

PERSIST time

SENSOR-N

Set for how long the currently active ac-
tions are to remain active.

Reports as a predicate the state of a signal
at input port N.

Reports as a numerical value the duty cycle
at input port N.

Sets the duty cycle of the signal output at
port N.

Sets the direction of the signal output at
port N.

C.4 Primitive Operations

These operations can be used to construct complex conditions for proposing actions, or
to compute the value that an action is to report.

NOT predicate

BOTH predicate1 predicate2

EITHER predicate1 predicate2

MORE value1 value2

Reports the logical negation of the predi-
cate.

Reports the logical conjunction of the
predicates.

Reports the logical disjunction of the pred-
icates.

Reports whether value1 is numerically
greater than value2.

105

LEVEL-N

POWER-N power

SPIN-N direction

LESS value1 value2

SAME value1 value2

ADD value1 value2

SUBTRACT value1 value2

REMEMBER value

Reports whether value1 is numerically less
than value2.

Reports whether value1 is numerically
equal to value2.

Reports the sum of the values.

Reports the difference of the values.

Report next time the value being remem-
bered now.

C.5 Special Words

These constants are defined to facilitate the reading of ACT programs: ALWAYS,
NEVER, TRUE, FALSE, ODD, EVEN.

106

Appendix D

The ACT Keyboard Hotkeys

editor is modeled after the Apple II version
is a compiled language, some keys were added
of programs.

of LogoWriter 2.0. However,
to control the compilation and

D.1 Editor Command Keys

Note: Having Caps-Lock down is the
letter and arrow keys are being used.

same as holding the Shift key down when the

LogoWriter-like Keys

Save the current buffer to a file, and show
a menu of the files on the disk.

Select

Cut

Copy

Paste

Cut to End of Line

Move Up to the Edit Buffer.

Move Down to the Command Center.

Move Right

107

The ACT
since ACT
debugging

Escape

Apple-1

Apple-2

Apple-3

Apple-4

Apple-6

Apple-u

Apple-d

Apple---+

Apple-<-

Apple-T

Apple-I

Apple-b

Apple-e

Apple-o

New Keys

Apple-Shift-u

Apple-Shift-d

Apple-f

Apple-Shift-f

Apple-r

Move Left

Move Up

Move Down

Next Screen

Previous Screen

Top of Buffer

Bottom of Buffer

Beginning of Line

End of Line

Open a New Line

Widen the Edit Buffer window.

Widen the Command Center window.

Find a string.

Find the same string again.

Replace one string with another, asking for
a yes. Both Y and Space mean yes, and
Escape means stop.

Replace one string with another without
asking.

Load a file into the Edit Buffer.

Name the Edit Buffer.

Save the Edit Buffer to a file.

Wipe a file from the disk.

Clear the Command Center

Apple-Shift-r

Apple-Shift-l

Apple-Shift-n

Apple-Shift-s

Apple-Shift-w

Apple-c

108

D.2 Compiler and Debugger Keys

Launch the program currently residing in
the Programmable Brick.

Apple-Control-a

Apple-Control-c

Apple-Control-d

Apple-Control-s

Apple-Control-w

Apple-Control-q

Compile the current buffer.

Send the compiled program to the Pro-
grammable Brick.

Single step the program currently residing
in the Programmable Brick.

Ask for the name of an action in the cur-
rent program and set a watch point on it.

Ask for the name of an action in the cur-
rent program and remove the watch point
that is on it.

109

Appendix E

The ACT Compiler

The ACT compiler was written in GSLisp, a dynamically scoped Lisp interpreter. Nonethe-
less, the code was adapted so that it could work in a lexically scoped environment.

E.1 The Parser

For simplicity's sake, the lexical analyzer is that of GSLisp, so ACT's symbols and
numbers are equivalent to GSLisp symbols and numbers. The grammar for the ACT
language is:

program - action program | j

action -+ action aname parameters (body) expression

aname -+ symbol

parameters -+ pname parameters | E

pname -+ symbol

body - statement body I e

statement -+ aname settings

| propose aname settings
set aname settings

| oppose aname
| prefer aname aname
| report expression

settings - pname: expression settings | e

expression - constant

| pname?

110

aname?
active aname

| operation

operation -> not expression

| and expression expression

or expression expression

more expression expression

less expression expression

same expression expression

both expression expression

I either expression expression

add expression expression

subtract expression expression

| remember expression

constant -> number I always I never I true I false odd | even

E.2 Intermediate Representation

In their intermediate representations, actions are sets of named expressions with latches.

Each name corresponds to one of the parameters of the action, with each action pos-

sessing at least two parameters: active and report. Active names the expression that

computes whether the action is valid for this cycle. Report names the expression that

computes the value reported by the action on this cycle. This expression is anded with

the value of the active expression so that an action reports 0 when it is not valid.

E.3 Run-Time Environment

The ACT language is made to produce a digital circuit with timing elements and latches

from a program specification. Unfortunately, this project did not have access to the

current programmable gate array technology. Therefore, the functioning of an ACT

circuit had to be simulated on a serial processor, a 65C02 with 32K of RAM to be exact.

The system's software is separated into three parts. The first part, the updating

mechanism, transforms the sensor signals into input values and output values into con-

trol signals, the second part represents the combinatorial logic elements, and the last part

represents the latches. The updating mechanism is driven by a regular system interrupt

to accurately maintain the relationship between the computer's state and external condi-

tions. The logic circuit code is executed repeatedly until the reaction-time clock indicates

that the next action should be done. At that moment, the latch code is executed causing

the latches to be updated, which results in new control and sensor information being

available. Then, the cycle begins anew.

111

E.4 Code Generation

The action language specifies an ordinary logic circuit which is simulated on a 65C02
processor, so speed was a central consideration in the choice of representation. Wires
are represented as bytes and circuit elements and their connections are represented as
machine code. For example, an ADD gate adds the values stored in the bytes representing
its input wires and stores the result in the byte representing its output wire:

LDA WIRE1 ; Get the value on wire 1.
ADD WIRE2 ; Add the value on wire 2.
STA WIRE3 ; Store the result on wire 3.

With this representation scheme, a circuit simulated on a Programmable Brick has
a maximum size of three thousand elements and can in theory run once every fifty mil-
liseconds. While the representation of wires could have been designed so as to allow for a
larger number of elements in circuits, the resulting simulations would have been slower.
The straightforward representation provides the additional advantage of simplifying the
compiler's code generation phase.

The implementation of the ACT compiler used in the workshop did not allow the
simulations to run at the above theoretical maximum rate. The compiler did little to
optimize the generated code and did not try to order the execution of the gates associated
with actions to reduce the time to quiescence of activity in the circuit. This quiescence
was established by letting the simulation run for a minimum of a tenth of a second. Also,
the run-time overhead for maintaining the relationship between the state of the sensors
and the state of the circuit's inputs was higher than had been expected. The compiler
was written this way to keep its development simple and to facilitate its integration with
a debugger. In the end, these considerations did little to affect the execution programs
written by the children as the circuits that were generated by them had at a maximum
three hundred gates.

112

