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Abstract

Discovering sequence features that differentially direct cells to alternate fates is key to

understanding both cellular development and the consequences of disease related muta-

tions. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two

black-box methods that can interpret genome regulatory sequences for cell type-specific or

condition specific patterns. We show that these methods identify relevant transcription fac-

tor motifs and spacings that are predictive of cell state-specific chromatin accessibility.

Finally, we integrate these methods into framework that is readily accessible to non-experts

and available for download as a binary or installed via PyPI or bioconda at https://cgs.csail.

mit.edu/deepaccess-package/.

Author summary

Within the genome are the instructions to build all the cell types that make up the human

body. However, understanding these instructions and how and when these instructions

go wrong in cancer or genetically inherited disease is an open problem. Deep neural net-

works provide powerful models to learn the relationship between DNA sequence and

functional consequence across many different cell types, such as whether a particular

stretch of DNA is accessible and genes in that region can be expressed or is inaccessible

and therefore genes are inactive. Despite these advances, a major setback in deep learning

is that it is challenging to understand what patterns of DNA sequence that a deep learning

model has learned to associate with a particular genomic function, whether these patterns

are significant, and how to determine whether these patterns are specific to a particular

cell type or are general “housekeeping” patterns that function across many cell types. We

introduce Expected Pattern Effect and Differential Expected Pattern Effect, two methods

which allow us to evaluate the significance of particular patterns of DNA sequence fea-

tures on models trained to predict function across multiple cell types, and apply this to

problems of transcription factor binding and DNA accessibility across multiple cell types.
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This is a PLOS Computational Biology Methods paper.

Introduction

Neural networks have been increasingly helpful in understanding and predicting cellular func-

tion from genomic sequence in tasks such as transcription factor binding [1,2], chromatin

accessibility [3,4], and histone modification [5]. Previously, we showed that DeepAccess, an

ensemble of neural networks trained to predict chromatin accessibility, is able to identify de
novo DNA sequence motifs that influence local cell type-specific accessibility in the context of

a massively parallel reporter assay [6]. Here, we introduce an approach called the Expected Pat-

tern Effect, which can be used to predict the effect of DNA sequence patterns such as known

transcription factor motifs, combinations of motifs, or transcription factor spacing on the

chromatin state of specific cell states. We also introduce a method to compare Expected Pat-

tern Effects (EPE) between two conditions or cell states, which we call the Differential

Expected Pattern Effect (DEPE). While the scientific community has yet to come to a consen-

sus on a precise definition of cell state or cell type, for the purposes of this work we define cell

type as a shared characteristic gene expression profile. For example, motor neuron cells are

defined by characteristic expression of the motor neuron and pancreas homeobox gene Hb9

[7]. A cell state is similarly defined through gene expression response, but refers to a shared

change in gene expression as a response to external stimuli. We focus on cell type in this work,

but the methods we introduce are also readily applicable to analysis of cell state.

Results

Expected pattern effect identifies differential motif activity from neural

network models

Recovering interpretable biological hypothesizes from trained deep neural network models

has been a challenge given the complexity of the models. Contemporary approaches for inter-

preting deep learning models of genomic sequence features utilize three main approaches (Fig

1A):

1. Interpretation of model and individual sequences for important nucleotides using model

saliency and motif generation from input sequences [8–11] or saturating in silico mutagen-

esis [2,5,10].

2. Interpretation of model convolutional filters as position weight matrices [3,4,12,13].

3. Model response to in silico “designed” sequences [3,14–17].

Methods in class 1 such as DeepSHAP [8,18] and Enhanced Integrated Gradients [11] pro-

vide means to identify DNA sequence features associated with a single condition and differen-

tially between two conditions (Fig 1A), but these methods function to identify DNA sequences

features within an individual input sequence, so the importance of these sequence features is

dependent on the surrounding nucleotides within in the input DNA sequence and do not rep-

resent the overall expected effect of a particular pattern such as a transcription factor motif on

cell type-specific accessibility. Methods in class 2 can generate novel potentially important

motifs from the trained weights of convolutional filters, but filters have been known to repre-

sent partial motifs [13] and additional analysis is required to interpret the significance of these
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motifs on cell type-specific activity. In the case of models operating on DNA sequence, we

have knowledge a priori that particular combinations of features (patterns) that could have

important effects, such as transcription factor motifs. Interpretation methods make use of our

a priori knowledge about the patterns of features such as DNA motifs and relationships

between patterns such as spacing to investigate what features the model has learned are overall

most important through evaluating model response to “designed” DNA sequences in silico.

However, these approaches have yet to explore how to assign the significance of these effects

and how to interpret whether these effects are differential between two conditions, such as cell

types, when applied to multi-task classification models.

Here we present a method of assigning both effect scores and significance values to DNA

sequence feature patterns of interest, such as transcription factor motifs or grammars such as

particular transcription factor motifs and motif spacings, that differentiate between cell types

or conditions from a multi-task neural network (Fig 1B). Significant differential sequence fea-

tures can suggest hypotheses that relate specific DNA binding factors to cell state. Thus, these

factors can be candidates for follow up studies on their effectiveness in directed differentiation

protocols designed to produce specific cell types.

In contrast to methods that analyze a single input sequence or a model, we build upon the

use of “designed sequences” to create a computational method to measure the learned differen-

tial effect of a transcription factor motif or other DNA sequence pattern on the output of a

multi-task classification model (Fig 1A). These patterns can include a combination of tran-

scription factor motifs. Many deep learning models are multi-task models that simultaneously

predict more than one function. For example, they may simultaneously predict the binding of

multiple transcription factors or the chromatin accessibility of multiple cell types. The output

of these models is often a probability. Thus, for a binary measurement, y, over N training

examples, we can estimate the overall expected probability of y to be:

E y½ � ¼
1

N

XN

n¼1

1½yn¼¼ 1�

Since we intend to compare the effect of genomic sequence features with imbalanced class

data, we have to account for the relative effect of average class prediction probability. Thus, we

take into account the average class prediction probability in our formalization of the Expected

Pattern Effect, α, of a genomic pattern, p, such as a transcription factor motif (Fig 1B). Given a

model that predicts function from sequence F : x! y, where x is a sequence of nucleotides

and y represents a corresponding binary functional measurement, the effect of pattern, p, can

Fig 1. Expected Pattern Effect and Differential Expected Pattern Effect determine the significance of feature

patterns such as transcription factor motifs or transcription factor grammar for multitask models. (A)

Comparison of interpretation methods shows 3 categories of interpretation methods for deep learning models based

on input. Some methods operate on an individual sequence input, model pair, others turn learned convolutional filters

into DNA sequence motif position weight matrices and then must assign class relevance post-hoc, or methods Global

Importance Analysis and Expected Pattern Effect score the overall class importance of DNA sequence patterns such as

transcription factor motifs or grammar such as combinations or spacing of transcription factor motifs. (B)

Computation of Expected Pattern Effect and Differential Expected Pattern Effect starts by selection of a sequences that

represent a “background” from the natural distribution of sequences. A pattern of interest either a transcription factor

or combination or spacing of transcription factors is artificially inserted into each background sequence. (C) Model

predicts functional signal for “background” sequences and sequences with inserted transcription factor motif. In our

case we use a DeepAccess model, but principles for computing EPE and DEPE can be applied to any multi-task

classification model. (D) Average ratio between scores of background sequences with pattern of interest (in orange)

and without pattern of interest–i.e. background sequences (in grey) determines the Expected Pattern Effect. (E)

Differential Expected Pattern Effect can be computed by comparing Expected Pattern Effect between different classes–

i.e. conditions or cell types.

https://doi.org/10.1371/journal.pcbi.1009282.g001

PLOS COMPUTATIONAL BIOLOGY Differential genome sequence activity with interpretable and efficient deep learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009282 August 9, 2021 4 / 16

https://doi.org/10.1371/journal.pcbi.1009282.g001
https://doi.org/10.1371/journal.pcbi.1009282


be estimated by the impact of the insertion of p into the sequence x to make the new sequence

xp, both of which are within the data distribution D, and is given by the expectation of the

ratio:

ap ¼ Ex�D
FðxpÞ
FðxÞ

� �

While EPE is a general method that can be applied to any multi-task classification model,

here we apply it to investigate cell type-specific chromatin accessibility using a multi-task Dee-

pAccess model fc: x!yc, to approximate F , were yc denotes the model predictions on func-

tional task, c. DeepAccess can be trained and thus predict on one or more classes c. We select

M sequences to approximate D and estimate apc according to:

apc ¼
1

M

XM

m¼1

fcðxmpÞ

fcðxmÞ

We define the significance of the Expected Pattern Effect (EPE) as the signed-rank test sta-

tistic of the ratios:

W ¼
1

M

XM

m¼1

sign log
2

fcðxmpÞ

fcðxmÞ

� �� �

Rm

where Rm represents the rank of the absolute log ratio of sequences with the pattern insertion,

xmp, to sequences without the pattern insertion, xm.

We then compute the Differential Expected Pattern Effect between two classes c1 and c2
based upon the average log2 ratio of predictions:

DEPE apc1 ; a
p
c2

� �
¼

1

M

XM

m¼1

log
2

fc1ðxm
pÞ

fc1ðxmÞ

 !

� log
2

fc2ðxm
pÞ

fc2ðxmÞ

 !

In addition to computing the magnitude of the DEPE between two classes, we compute the

significance of this effect:

W ¼
1

M

XM

m¼1

sign log
2

fc1ðxm
pÞ

fc1ðxmÞ

 !

� log
2

fc2ðxm
pÞ

fc2ðxmÞ

 ! !

Rm

where Rm represents the rank of the absolute log ratio of the expected pattern effect of the pat-

tern, p, differentially between two classes c1 and c2, on a sequence m.

Our goal is to apply the DEPE to discover cell type-specific transcription factor activity

from chromatin accessibility, but to first validate that DEPE can correctly identify differential

transcription factor activity, we apply the DeepAccess architecture to predict DNA binding

from ChIP-seq data. In contrast to chromatin accessibility where multiple or specific combina-

tions of transcription factors may be responsible for activity, ChIP-seq should produce

sequences enriched by the binding of a single DNA binding protein. Therefore, if a DeepAc-

cess model has successfully learned differential DNA sequence patterns between two ChIP-seq

experiments, DEPE should identify the DNA binding motifs of those transcription factors.

We evaluated the effectiveness of the DEPE by evaluating how well it could identify

sequence motifs that were responsible for differential ChIP-seq binding. We trained a single

DeepAccess model to predict the DNA sequences bound by six ChIP-seq experiments for the

transcription factors ELF1, MEF2A, CTCF, USF1, TCF12, and NRF1 in mouse erythroleuke-

mia (MEL) cells from ENCODE [19]. The trained DeepAccess model takes as input a DNA
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sequence and outputs the predicted binding of six transcription factors to the input sequence

(six outputs). The DeepAccess model was trained with the 10,000 most significantly bound

genomic regions from GPS [20,21] binding event calls. Each region is classified as being

bound by either neither, one, or multiple transcription factors based on whether it overlaps a

GPS binding event. After successfully training the DeepAccess model, we ran our method for

DEPE to extract differential patterns which result in significant differential binding predic-

tions, using the HOCOMOCOv11 [22] database of transcription motifs as our patterns. The

transcription factor motifs matching the transcription factor ChIP are found to have signifi-

cant DEPE (Fig 2), except in the case of differential motif discovery between NRF1 and

Fig 2. Differential Expected Pattern Effect identifies condition-specific transcription factor activity from

DeepAccess models. DeepAccess trained on mouse ChIP-seq data identifies correct motifs driving differential

transcription factor activity for (A) ELF1 and MEF2A, (B) CTCF and USF1, (C) NRF1 and TCF12. In the scatter plot

each point represents one of 356 HOCOMOCOv11 transcription factor motifs. Orange points are significant

transcription factor motifs (p< 0.05) under Bonferroni multiple hypothesis correction. Venn diagrams show number

and overlap of ChIP-seq binding events used as training and testing data for DeepAccess.

https://doi.org/10.1371/journal.pcbi.1009282.g002
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TCF12, where the TCF12 motif was not discovered as a differential pattern between NRF1 and

TCF12 binding (Fig 2C). The DMRT1 and PO5F1 motifs had the strongest DEPE on TCF12

binding relative to NRF1, suggesting that TCF12 may be binding indirectly through partnering

with other proteins, including a transcription factor recognizing ACAAT DNA motif which is

shared by DMRT1 and PO5F1 in MEL cells. Despite the large overlap in binding sites between

NRF1 and TCF12, DEPE is able to identify the NRF1 motif as a differential pattern between

NRF1 and TCF12 binding, indicating that our approach is able to identify differential motifs

even when two classes share a majority of genomic regions (Figs 2C and S1). The number of

motifs that are identified as significantly differential is asymmetric for comparisons between

ELF1 and MEF2A (Fig 2A) and USF1 and CTCF (Fig 2B). This can be explained by the large

size of the bHLH-ZIP (USF1) and Ets (ELF1) transcription factor families, each encompassing

greater than 20 transcription factors with highly similar binding motifs within the HOCOMO-

COv11 transcription factor database [22]. However, the same is not true for NRF1 which also

has asymmetric differential transcription factor motifs when DEPE is computed between

NRF1 binding and TCF12 binding. It appears that NRF1 binding sites may frequently contain

binding motifs for other transcription factors such as Klf/Sp factors, and CTCF which may

indicate cooperative binding relationship. This in combination with the large number overlap

of Nrf1 and Tcf12 binding sites suggests Nrf1 and Tcf12 binding may be regulated by logic

beyond the presence or absence of their DNA binding motifs. We also show that under class

imbalanced data, EPE and DEPE generate robust estimates of transcription factor effects in

contrast to Global Importance Analysis [15], which takes a related approach but uses a differ-

ence instead of a ratio to estimate the effect of a pattern (S2 Fig).

DeepAccess trained on chromatin accessibility predicts preferred

transcription factor spacing and cell type-specific transcription factors

We then used EPE and Differential EPE to investigate chromatin accessibility. First, we

hypothesized that we can use EPE to investigate preferential spacing of Oct4 (Pou5f1) and

Sox2 motifs within accessible DNA in stem cells, as these two transcription factors are known

to cooperatively bind. We tested the EPEs for multiple spacings of Oct4 and Sox2 motifs (Fig

3A) and find the DeepAccess model predicts the highest Expected Pattern Effect from the

spacing of Pou5f1 and Sox2 that is consistent with the spacing between the DNA motifs of

Pou5f1 and Sox2 co-binding events from ChIP-seq binding data (Fig 3B). We then examined

Differential EPE for all transcription factor motifs in the HOCOMOCOv11 database between

stem cells and motor neurons (Fig 3C) and find homeobox transcription factors such as

Hoxc9, Meis1, and Hoxa9 are differentially important for motor neuron accessibility consis-

tent with the important role that Hox genes play in motor neuron development [23,24],

whereas transcription factor motifs for Maz and Sp5 are differentially important in stem cells,

with Sp5 and Maz sharing a similar DNA binding motif and Sp5 playing an established role

downstream of the WNT pathway to maintain self-renewal in stem cells [25,26]. We found

that EPE and DEPEs for transcription factors is generally not affected by the position of inser-

tion within the designed sequences, except when the site of insertion is at the very beginning

of the DNA sequence (S3 Fig). Thus, we used the center of the DNA sequence as our insertion

site for all subsequent experiments. Additionally, we examined how selection of background

sequences to approximate D affects EPE and DEPE, and found that EPEs are smaller when dis-

tribution-approximating sequences are selected from accessible or inaccessible parts of the

genome (S4 Fig) but are more or less invariant to specific annotations (i.e. promoters) com-

pared to randomly selected DNA. Since we are most interested in motifs driving accessibility,

we use randomly sampled closed DNA as our distribution sequences. We also examined
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Fig 3. Expected Pattern Effect and Differential Expected Pattern Effect identify preferential spacing and cell type-specific transcription factor activity from

DeepAccess models trained on chromatin accessibility data from ten cell types. (A) Testing all possible spacing between Sox2 transcription factor and Pou5f1 (Oct4)

transcription factor motifs input as patterns to compute Expected Pattern Effects from a DeepAccess model. (B) DeepAccess Expected Pattern Effect of Sox2 and

Pou5f1spacing on predicted stem cell accessibility (top) is consistent with highest score for preferred spacing of Sox2 and Pou5f1 motifs from ChIP-seq binding data of

Sox2 and Pou5f1 co-binding events. (C) Differential EPE of transcription factor motifs between stem cells (ESC) and motor neurons (MN) identifies known MN-specific

transcription factors such as Hox TFs and Meis. Scatter plot y-axis is unadjusted rank ratio statistic, x-axis is the Differential Expected Pattern Effect (log2 fold change in

Expected Pattern Effect between stem cells and motor neurons), with each point representing one of 356 HOCOMOCOv11 transcription factor motifs. Red points are
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Differential EPE between liver and fibroblast, identifying transcription factor motifs Hnf1a,

FoxD3, and Hnf1B as being differentially important to liver (Fig 3D), consistent with the role

of hepatocyte nuclear factors (Hnfs), including Fox, in liver differentiation [27–29]. Finally, we

compute the Differential EPE for each of the ten cell types relative to the other nine cell types,

for all 356 mouse core HOCOMOCOv11 transcription factor motifs (Fig 3E), and find that

Differential EPE of transcription factors identifies transcription factors that are known lineage

regulators, such as LIM homeobox transcription factors in dopaminergic neurons [DN]

[30,31] and motor neurons [MN] [32–34], as well as Hox transcription factors which are spe-

cific to spinal motor neurons. JUN/FOS/AP-1 family members c-Jun, c-Fos, and Fosl1are

likely to play a role in fibroblast [FIBRO] identity as knockdown of these transcription factors

facilitated reprogramming of fibroblast to stem cells [35] and over-expression led to reduced

reprogramming efficiency to stem cell state and the maintenance of accessibility of fibroblast-

specific enhancers [36]. Additionally, we find Fox transcription factors in both pancreatic

[aPN, bPN] and liver cells [LIV] which is consistent with the role of Fox in pan endoderm dif-

ferentiation and liver and pancreatic cell differentiation [28,37–39]. Finally, hierarchical clus-

tering using the Differential EPE for significant transcription factors showed relationships

between cell types such as alpha pancreatic and beta pancreatic cells, and motor neuron and

dopaminergic neurons which share more similar Differential EPEs (Fig 3E).

Executable allows for training and interpreting DeepAccess models for new

tasks

We have increased the utility of our method by providing an executable version of DeepAccess

for the Linux operating system as well as a python package available via PyPI and bioconda

(Fig 4A). Using Keras (v2.4.3) with a Tensorflow (v2.4) backend for neural network deploy-

ment, the DeepAccess package automatically parallelizes to take advantage of multiple cores

on a CPU or GPU. The DeepAccess system takes as input multiple bed files (Fig 4B), each

labeled by experimental condition (i.e., cell type, condition, genomic signal), or fasta files with

labels for each fasta input sequence (Fig 4C). The DeepAccess system then splits the data into

training and test data, performs training with early stopping criteria based on a held-out vali-

dation set of the training data (Fig 4D). Performance metrics and predictions are reported for

training and test data (Fig 4E). Finally, we include our methods for interpretation with testing

EPE and Differential EPE between conditions (Fig 4F) and differential importance of individ-

ual nucleotides (Fig 4G). Additionally, the DeepAccess system is also able to make predictions

on new input DNA sequences (Fig 4H).

The DeepAccess system, including methods for estimating EPE and Differential EPE, is

available as a PyPI package and on bioconda. We also provide a binary of the DeepAccess sys-

tem which avoids typical installation problems with the evolution of Python packages by pack-

aging all dependencies including the Python interpreter within our software. Even when using

package managers such as pip and conda which are present with frameworks such as Selene

[40], Kipoi [41], and pyyster [42], problems with incompatibility can still arise with typical

package managers as a consequence of python, package manager, and operating system

updates.

significant (p< 0.05) transcription factor motifs under Bonferroni multiple hypothesis correction. (D) Differential EPE of transcription factor motifs between fibroblasts

(FIBRO) and liver cells (LIV) identifies liver-determining factors such as Hnf1 and Fox transcription factors. (E) Transcription factors showing significant cell type-

specific EPEs for each of the ten cell types relative to all other cell types. Heatmap intensity indicates the log2 fold change in Expected Pattern Effect between each cell type

and the average of all other cell types.

https://doi.org/10.1371/journal.pcbi.1009282.g003
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Fig 4. Accessible and interpretable deep learning with DeepAccess. (A) Core DeepAccess model example trained to predict accessibility from 100nt DNA sequence

using ATAC-seq data from 10 mouse cell types. Input layer is one-hot encoding of DNA sequence. Convolutional layers scan for transcription factor motifs using

position weight matrices derived from the HOMER database. Ensemble of models with variable filter number and size in the second convolutional layer combine

transcription factor motifs. Global max pooling layer condenses results into maximally activating position for convolutional filter. Output is the multi-task accessibility

which can be interpreted as the probability that an input DNA sequence will be accessible in each cell type, state, or condition. The DeepAccess system takes as input

either (B) genomic regions from multiple conditions with labels, or (C) DNA sequences as fasta files and labels. (D) Data is split into training and testing, and model is

trained with early stopping criteria based on a validation subset of ATAC-seq data. (E) Model performance is computed. Finally, results of newly trained model can be
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Discussion

While previous work has explored the contributions of neural network architecture, training

methodology, and model interpretation to learn the relationship between DNA sequence and

differential DNA binding [10], these neural networks were trained to only predict cell type-

specific binding. In contrast, DEPE can be used to interpret DNA sequence features influenc-

ing differential accessibility in cases where models have been trained to predict accessibility

across tens, hundreds, or thousands of unique cell types. In these cases, explicitly training

models on each differential comparison between cell types would be computational expensive

and time-intensive. We also note that Expected Pattern Effect resembles other methods for

extracting pattern effects from deep neural networks [3,15], except that we compute Expected

Pattern Effect to permit the comparison of pattern effects between conditions, which is impor-

tant for identification of cell type-specific or condition-specific sequence features and show

that our use of ratio to compare effects is more robust to analysis of cell type-specific transcrip-

tion factor activity under class imbalance.

While DeepAccess was developed specifically for identifying cell type-specific sequence fea-

tures from chromatin accessibility, Differential Expected Pattern Effect can be used to discover

condition-specific sequence features from many types of experimental genome-wide sequenc-

ing data. We expect that DeepAccess will provide a useful approach for discovering sequence

features that drive differential cell fates, and that the system we provide will make this capabil-

ity accessible to a wide audience.

Methods

ChIP-seq / ChIP-nexus read processing and binding event calling

Reads were trimmed for adaptors and low-quality positions using Trimgalore (Cutadapt

v0.6.2) [43] and aligned to the mouse genome (mm10) with bwa mem (v0.7.1.7) [44] with

default parameters. Duplicates were removed with samtools (v1.7.2) [45] markdup, and ChIP

binding events were called with GPS (v3.4) [20,21] with default parameters.

DeepAccess ChIP-seq training

We used as input to DeepAccess 200bp regions centered at the GPS-called ChIP-seq binding

event. DeepAccess then uses these regions to create a training data set of 87,114 100bp

sequences which can be labeled as binding events for any combination of the 6 tested tran-

scription factors, including regions where none of the 6 transcription factors are predicted to

bind. We define a region as a ChIP binding event for a transcription factor if more that 50% of

the 100bp region overlaps the 200bp region centered at a GPS binding event. The DeepAccess

model was then trained for 5 epochs with default parameters.

DeepAccess model trained on ATAC-seq for 10 mouse cell types

Methods for DeepAccess and differential nucleotide importance with DeepAccess were previ-

ously described in Hammelman et al., 2020. Briefly, we trained DeepAccess on ATAC-seq data

from ten cell types: stem cell, fibroblast, hepatocyte, endoderm, beta pancreatic cell, alpha pan-

creatic cell, cardiomyocyte, skeletal muscle, dopaminergic midbrain neuron, and spinal motor

neuron (S2 Table) using binary cross-entropy loss (multi-task classification) with 4,220,507

interpreted using (F) ExpectedPatternEffect and DifferentialExpectedPatternEffect to evaluate activity of genomic patterns for a given condition or between conditions,

(G) per-base model differential importance scores between conditions and (H) predictions on new input sequences.

https://doi.org/10.1371/journal.pcbi.1009282.g004
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genomic regions for training: 3,220,507 regions were open in at least 1 cell type, and 1,000,000

regions were closed in all cell types (randomly sampled from the genome). Chromosome 18

and chromosome 19 were held out for validation and testing, respectively. To define training

regions for DeepAccess, we generate 100bp genomic windows across the entire mouse

genome. We define a region as accessible in a given cell type if more that 50% of the 100bp

region overlaps a MACS2 [46] accessible region from that cell type. The trained DeepAccess

model is available as a Zenodo record at https://zenodo.org/record/4908895#.YL6YpR0pDfY.

For ATAC-seq processing, reads were trimmed for adaptors and low-quality positions

using Trimgalore (Cutadapt v0.6.2) [43]. Reads were aligned to the mouse genome (mm10)

with bwa mem (v0.7.1.7) [44] with default parameters. Duplicates were removed with samtools

(v1.7.2) markdup [45] and properly paired mapped reads were filtered. Accessible regions

were called using MACS2 (v2.2.7.1) [46] with the parameters -f BAMPE -g mm -p 0.01—shift

-36—extsize 73—nomodel—keep-dup all—call-summits. Accessible regions that overlapped

Encode blacklist regions ENCSR535HHO were excluded from downstream analysis.

Preferential spacing of Oct4 and Sox2

ChIP-nexus binding data for Oct4, Sox2, and patch cap control [17] were downloaded as fastqs

from the Nucleotide Read Archive (see S1 Table for accession numbers). ChIP-seq processing

was performed as described (see ChIP-seq / ChIP-nexus read processing and binding event

calling). After, all GPS events where Sox2 or Oct4 binding sites were less than 50nt were con-

sidered as close co-binding events. using bedtools (v2.29.2) [47] intersect. Events were scanned

for the first instances of TTGT (Sox2 DNA sequence motif) and ATGCAA (Oct4 DNA

sequence motif), and the distance between the last nucleotide of the Sox2 DNA sequence motif

and the first nucleotide of the Oct4 DNA sequence motif was defined as our distance between

TF sites.

Selection of synthetic distribution of sequences

For all experiments we used as our synthetic distribution sequences 24 randomly selected

genomic locations that were not overlapping ATAC-seq accessible regions in all ten mouse cell

types. We provide these regions with the DeepAccess executable as default backgrounds for

new experiments.

DeepAccess executable

DeepAccess executable was generated with pyinstaller (v4.1).

Supporting information

S1 Table. ChIP-seq data used to test DeepAccess Differential Expected Pattern Effects and

for preferential spacing of Oct4 / Sox2 in stem cell accessible DNA.

(XLSX)

S2 Table. ATAC-seq data used for chromatin accessibility DeepAccess model.

(XLSX)

S1 Fig. All pairwise differential Expected Pattern Effects from ChIP-seq shows correct TF

motifs are identified in most comparative analyses.

(TIF)

S2 Fig. Stability of estimated motif effects with Global Importance Analysis (subtraction)

and Expected Pattern Effect (ratio) shows EPE more accurate on multi-task data sets with
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class imbalance. Scatter plots of GIA (A-C) or EPE/DEPE (D-F) of effect sizes of 356 HOCO-

MOCOv11 mouse motifs on predictions of CTCF binding from a trained DeepAccess model

on balanced class data (x-axis) compared to 2x, 10x, and 30x more CTCF binding sites: USF1

binding sites (y-axis) (A) GIA of CTCF binding (B) GIA of USF1 binding (C) GIA of CTCF vs

USF1 differential binding (D) EPE of CTCF binding (E) EPE of USF1 binding (F) DEPE of

CTCF vs USF1 binding.

(TIF)

S3 Fig. Effect of motif insertion position on EPE. (A) EPE of Hoxc9 motif on EPE from Dee-

pAccess model trained to predict motor neuron chromatin accessibility shows EPE of Hoxc9

motifs are low for positions in the beginning of the DNA sequence and high for positions at

the middle and end of the DNA sequence. (B) Scatter plot of EPEs for 356 HOCOMOCOv11

mouse transcription factor motifs when insertion is at position 0 compared to position 50 indi-

cate early insertion site in DNA sequence results in different EPE values for transcription fac-

tors, with some having lower EPEs and others having higher EPEs. (C) Scatter plot of EPEs for

356 HOCOMOCOv11 mouse transcription factor motifs when insertion is at position 70 com-

pared to position 50 indicate early insertion site in DNA sequence results in similar EPE values

for all transcription factors. (D) Heatmap of Pearson’s r of EPEs for DeepAccess motor neuron

accessibility for insertions at all starting positions within the DNA sequence shows most inser-

tion positions result in highly similar EPEs except for early insertion positions. (E) Heatmap of

Pearson’s r of DEPEs for DeepAccess motor neuron vs fibroblast differential accessibility for

insertions at all starting positions within the DNA sequence shows most insertion positions

result in highly similar EPEs except for early insertion positions. (F) Row z-score normalized

EPEs for DeepAccess motor neuron accessibility at each position show most motifs have

higher EPEs when inserted at a position in the center of the DNA sequence. Some motifs (like

Sp motifs) have higher EPEs at the beginning of the DNA sequence.

(TIF)

S4 Fig. Choice of M sequences approximating sequence distribution affects EPE scores. (A)

Estimates of EPE for 356 HOCOMOCOv11 transcription factor motifs on predicted motor

neuron accessibility from a learned DeepAccess model. M sequences are selected randomly

from regions closed in all 10 cell types, open in all 10 cell types, promoters which are closed in

all 10 cell types, and promoters which are open in all 10 cell types. Shade indicates distribution

size (M = 10, M = 25, M = 100). Boxplot box indicates median and quartiles and whiskers

extend to 1.5 times the inter-quartile range. Dots are outliers outside 1.5 times the inter-quar-

tile range. (B) Estimates of significance of EPE for size and type of sequence used to estimate

total sequence distribution. (C) Comparison of EPEs for 356 HOCOMOCOv11 transcription

factor motifs for default (randomly selected 24 closed) compared to randomly selected closed

(row 1), randomly selected open (row 2), promoter closed (row 3), and promoter open (row 4)

shows while values of EPE dependent on selection of sequence distribution, rank remains rela-

tively invariant.

(TIF)
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