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Abstract

Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each 

other (the network structure) is an important step to characterize the neural basis of cognitive 

processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and 

techniques that sift efficiently through a large number of possible network structures are needed 

(network discovery). This article introduces a novel modeling technique for network discovery 

(Dynamic Network Modeling or DNM) that builds on ideas from Granger Causality and Dynamic 

Causal Modeling introducing three key changes: 1) efficient network discovery is implemented 

with statistical tests on the consistency of model parameters across participants, 2) the tests take 

into account the magnitude and sign of each influence, and 3) variance explained in independent 

data is used as an absolute (rather than relative) measure of the quality of the network model. In 

this article, we outline the functioning of DNM, we validate DNM in simulated data for which the 

ground truth is known, and we report an example of its application to the investigation of 

influences between regions during emotion recognition, revealing top-down influences from brain 

regions encoding abstract representations of emotions (medial prefrontal cortex and superior 

temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital 

face area and fusiform face area) when participants are asked to switch between reporting the 

emotional valence and the age of a face.

New and Noteworthy

In this article we introduce a new analysis method (Dynamic Network Modelling or DNM) 

which performs efficient for network discovery by testing the consistency of vector 

autoregressive (VAR) model parameters across participants. DNM provides information 

about the direction and sign (inhibitory vs excitatory) of influences between brain regions, 

and generates measures of variance explained in independent data to evaluate quality of fit. 

The method is applied to brain regions engaged in emotion recognition, individuating a 

similar network structure across two separate experiments.
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1 Introduction

When we perform a task, such as recognizing a face, attributing mental states to others, or 

understanding a sentence, multiple brain regions are engaged (Ishai [2008], Gallagher and 

Frith [2003], Fedorenko and Thompson-Schill [2014]). Studying how these brain regions 

influence each other is an important step to understand the neural mechanisms underlying 

task performance. Influences between brain regions can be specific to the particular task a 

participant is performing. For example, face-selective brain regions might influence each 

other more when we recognize a face than when we recognize a scene. For this reason, we 

need a method that goes beyond measuring the presence of anatomical connections between 

regions, and to investigate the relations between the regions’ responses in the context of a 

specific experimental paradigm.

The direction of an influence can convey information about its function. For example, an 

influence from the ventral visual stream to prefrontal cortex is likely to convey bottom-up 

perceptual information to categorization and decision processes, while an influence from 

prefrontal cortex to the ventral visual stream is more likely to affect visual processing via 

top-down attentional selection(Buschman and Miller [2007]). Directed influences between 

brain regions can also contribute to characterize the functional role of a brain region by 

investigating how it receives inputs and conveys outputs to other regions with functional 

roles that are better understood.

Directed influences can be studied using temporal precedence: observing if earlier responses 

in a region contribute to predicting later responses in another region. Studying temporal 

precedence with functional magnetic resonance imaging (fMRI) presents unique advantages 

but also unique challenges. Data can be acquired noninvasively, with good resolution, and 

covering the entire brain, making fMRI well-suited to study long-range influences and 

investigate uniquely human aspects of cognition. At the same time, fMRI measures Blood-

Oxygen Level Dependent (BOLD) signal, whose timing is affected by the local properties of 

vasculature. Adequate steps must be taken to control for the variability in BOLD timing 

between regions.

Depending on the evidence already available, different approaches to studying influences 

can be more or less suitable. In some cases, the previous evidence can be used to restrict a-

priori the hypotheses about the influences between a set of brain regions, paving the way for 

confirmatory analyses. Often, however, limited evidence is available, and a very broad range 

of different influences are possible. Currently, the main techniques used to study influences 

between brain regions with fMRI are Granger Causality (GC, Roebroeck et al. [2005]) and 

Dynamic Causal Modelling (DCM, Friston et al. [2003]). Each of these techniques has 

important strengths, but also properties that may not be desirable in some data analysis 

contexts.

1.1 Granger Causality

In GC (Roebroeck et al. [2005]), the influence of one brain region on another is measured as 

a function of the variance in the responses in the latter region that is explained by earlier 

responses in the former, in addition to the variance explained by the latter region itself (see 
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Appendix II for a more formal description). GC thus offers an intuitive measure of 

influences between regions which is not computationally costly to obtain. Nevertheless, GC 

has some disadvantages when applied to haemodynamic responses measured by fMRI. First, 

in its current form Granger causality is difficult to apply to the modelling of influences in 

different conditions within fast event-related designs. Separate models are used for the 

different conditions that need to be compared, and in fast event-related designs this would 

require breaking up the timeseries in short chunks that would impair autoregressive 

modeling. Second, since standard GC is based on variance explained, it does not measure 

whether stronger responses in one region lead to stronger or weaker responses in another 

(i.e. the ‘sign’ of the influence), or even whether this feature of the influence is consistent 

across participants. Investigating the sign of interactions provides additional insights into 

their functional role, and its interpretation in terms of excitation and inhibition has been 

pioneered in the clinical literature in recent studies (Hamilton et al. [2011], Chen et al. 

[2009]).

1.2 Dynamic Causal Modelling

In DCM (Friston et al. [2003]), the change in neural response in each brain region is 

modeled as a function of the stimulus and the input from other regions using ordinary 

differential equations (see Appendix III for a more formal description). Given a set of brain 

regions and a set of conditions, there is a fixed number of possible parameters. A candidate 

model is specified by providing, for each possible parameter, a 1 if that parameter will be 

included in the candidate model (whether a connection ‘exists’ in that candidate model), and 

a 0 otherwise. The parameters that are included are then estimated with the expectation-

maximization (EM) algorithm, and the best candidate model is chosen using Bayesian model 

comparison. The presence of condition-dependent influences makes DCM suitable for the 

analysis of fast event-related designs, and the use of priors mitigates overfitting acting as a 

form of regularization. The proposed DNM approach adapts many of the strengths of DCM, 

but takes a different approach to two key challenges. The first challenge is network 

discovery. DCM is designed as a confirmatory technique, and therefore it is particularly 

suitable for choosing between models that have been identified on the basis of prior 

evidence. Searching through larger hypothesis spaces in DCM is computationally costly (but 

see Friston and Penny [2011] for an ingenious technique to increase speed); but more 

importantly, DCM computes the posterior probability of the best model, relative to the set of 

considered models. This estimate is most useful when researchers can be confident that their 

a priori hypothesis space includes most or all plausible models of the network. By contrast, 

DNM is designed as an exploratory or network-discovery approach. We propose that DNM 

can be used by researchers who cannot restrict their hypothesis space to a small set of 

models based on existing evidence, or who are unsure whether the limited temporal 

resolution of fMRI data is sufficient to reveal any robust inter-regional influences.

Whereas DCM compares full network models (each model is a description of the overall 

structure of the network), DNM assesses the variance in independent data explained by each 

individual parameter (or connection), using random effects statistical tests on parameter 

values to efficiently search all possible connections. A consequence of this difference is that 

whereas the best model chosen by DCM includes both the existing and the absent 
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connections, DNM (like traditional null-hypothesis tests) makes claims about the existing 

connections, but not about the absent connections. On the other hand, DNM provides an 

absolute, not relative, estimate of the variance explained by each connection in independent 

data. This intuitive measure of the quality of the model is especially useful for exploratory or 

network-discovery analyses.

Existing packages in DCM employ free energy to assess quality of the model fitting to the 

data. Although this function is based in the same data used for model selection, it is not 

biased in favour of complex models. DCM also offers the option to calculate variance 

explained by each model, but using the same data used for model selection. As a 

consequence, the variance explained by the selected model is overestimated. By contrast, 

DNM uses variance explained in independent data. Similarly to free energy, this is not 

biased by model complexity. However, variance explained in independent data has an 

important additional asset: it is an accurate estimate of the absolute measure of goodness of 

fit. Variance explained in independent data can be used to how well the model fits the 

current data (for example, making clear when even the best model provides a relatively poor 

fit), but also to compare model fits across experiments and populations. Therefore we chose 

variance explained in independent data as a key measure to evaluate quality of fit in DNM.

The second challenge is how to combine evidence across participants who may have 

individual differences in the strength of each connection. In DCM, each candidate model 

specifies the existence and direction of connections, but not their value (Stephan et al. 

[2010]). That is, in DCM, a connection is deemed present if it explains variance, regardless 

of whether the parameters are similar (or even the same sign, that is ‘excitatory’ vs 

‘inhibitory’) across participants. This approach grants DCM the flexibility to identify 

connections with highly variable strengths across participants, buthas consequences for the 

intuitive interpretation of the resulting model graphs. A high degree of variability in the 

parameter values across participants does not affect the probability of the model given the 

data. By contrast, DNM follows traditional null-hypothesis testing, in assessing the 

reliability of the magnitude (and sign) of each parameter across participants. This difference 

can be illustrated using methods for testing whether an experimental condition leads to a 

significantly greater response than baseline. In standard fMRI analyses, using a general 

linear model, a voxel is deemed to show a significant response if the magnitude (i.e. beta 

parameter) of response is reliable (similar in both magnitude and sign) across participants. A 

valid but different analysis would ask whether including the predictor for the experimental 

condition improves the fit of the model across participants (enough to compensate for the 

increased complexity of the model). In this case, the beta values might be highly variable, or 

even positive for some participants and negative for other participants, as long as they 

contribute enough to improving the model fit in each participant. Both of these analyses are 

valid, but address different questions. DCM takes an approach similar to the second analysis: 

when a model including is selected, we can infer that each included connection improved the 

quality of fit enough to compensate for the additional complexity, but the parameter value 

for that connection might be quite different across participants. This observation has been 

recently raised in the MEG literature using DCM (Pinotsis et al. [2016], Friston et al. 

[2016]), where it has been addressed using an approach based on hierarchical Bayesian 

models. In DNM, we adopt an alternative solution: using random effect statistical tests on 
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the parameter values. This solution is intuitive and lends itself to regularization-based 

solutions to perform network discovery within large networks.

1.3 Dynamic Network Modelling

Given the considerations outlined in the previous sections, we set out to develop a new 

conservative method for exploratory analysis to model influences between brain regions in 

fMRI, that would meet a set of criteria: 1) control for the differences in the shape of 

haemodynamic responses in different regions, 2) provide a computationally efficient method 

for network discovery, 3) provide rigorous estimates of the magnitude and the sign of 

influences (whether they are inhibitory or excitatory), and 4) offer absolute measures of 

goodness of fit (rather than relative to other models) in independent data. To satisfy these 

desiderata, here we propose a novel approach to modeling directed influences between brain 

regions that builds on insights from GC and DCM and introduces some new ideas. We begin 

with deconvolution as in DCM, and proceed with a regularized vector-autoregressive (VAR) 

modelling, obtaining a procedure that we refer to as Dynamic Network Modelling (DNM). 

This two-step procedure in which DCM-like deconvolution is followed by subsequent 

network modelling has been shown to successfully control for HRF shape (David et al. 

[2008]). Like GC, DNM models the effect on a region of the stimuli and of other regions 

with a system of linear equations. Like DCM, DNM includes parameters for fixed and 

condition-dependent connections as well as driving effects of the experimental conditions, 

and it can model independent connections in opposite directions between the same brain 

regions. Unlike both, DNM performs efficient network discovery with random effects tests 

on the stability of VAR model parameters across participants. DNM is validated with 

computer simulations, comparing an approach in which all parameters are fit 

simultaneously, with an approach in which autoregressive parameters, condition-dependent 

effects and inter-regional influences are fit sequentially in a hierarchical model. The 

hierarchical model can be used to generate conservative estimates of the additional variance 

explained in independent data by the inter-regional influences.

1.4 Empirical Application

We adopted DNM to investigate the influences between brain regions involved in the 

recognition of emotional valence: an ideal case study because recent studies (Peelen et al. 

[2010], Skerry and Saxe [2014]) identified multiple brain regions encoding information 

about valence, and because recognition of emotional valence is likely to engage species-

specific processes whose investigation necessitates noninvasive measurement. A brief glance 

at a person’s face provides rich information: about the person’s identity, age and gender, and 

also about their current emotional experience. Many brain regions are involved in extracting 

this information (Anzellotti and Caramazza [2015]). For example, the occipital and fusiform 

face areas (OFA and FFA) respond selectively to faces (Sergent et al. [1992], Kanwisher et 

al. [1997], Gauthier et al. [2000]) and encode information about many facial features, 

including the valence of the emotions communicated by facial expressions (Peelen et al. 

[2010], Furl et al. [2012], Skerry and Saxe [2014]). The posterior superior temporal sulcus 

(pSTS) and medial prefrontal cortex (MPFC) are sensitive to cues about another person’s 

emotional experience, whether conveyed in facial expressions or in body movements, vocal 
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tones, or even abstract desriptions of events (Narumoto et al. [2001], Winston et al. [2005], 

Fusar-Poli et al. [2009], Peelen et al. [2010], Furl et al. [2012], Skerry and Saxe [2014]).

A key open question concerns the interaction between these two kinds of information (see 

Ishai [2008], Bressler and Menon [2010]): how does the facial form processing in OFA and 

FFA interact with the more invariant representations of emotional valence in pSTS and 

MPFC? One possibility is that recognition of emotion in facial expressions is accomplished 

mainly by successive bottom-up feature extraction, building increasingly invariant 

representations at each stage. If so, one would expect influences mainly from OFA and FFA 

to pSTS and MPFC. Another possibility, however, is that higher-level representations of 

emotions influence the processing of the facial form. If so, one might expect that inter-

regional influences include, or are even dominated by, top-down influences from pSTS and 

MPFC on the processing in OFA and FFA.

Structural connectivity analyses suggest that although OFA and FFA are connected, there are 

no direct (i.e. monosynaptic) tracts connecting pSTS to the OFA or FFA (Davies-Thompson 

and Andrews [2011], Ethofer et al. [2011, 2013], Gschwind et al. [2011], Pyles et al. 

[2013]). Direct anatomical connections between MPFC and OFA/FFA are also unlikely. 

Nevertheless, the magnitude of spontaneous activity during rest (i.e. in the absence of any 

emotional stimuli) is correlated between FFA and pSTS (Turk-Browne et al. [2010]) 

suggesting at least indirect connectivity between these regions.

We applied DNM to data from two independent experiments in which participants viewed 

brief (4 sec) movies depicting a stranger’s positive or negative emotional experiences. Multi-

voxel pattern analyses of the first dataset suggested that information about the valence of 

these expressions is present in OFA, FFA, pSTS and MPFC (Skerry and Saxe [2014]). We 

therefore used these data, without a-priori restrictions on the connectivity profiles, to ask (1) 

how these regions interact during the recognition of emotions, and (2) whether DNM 

explains additional variance in independent data (as compared to a standard GLM) and 

produces reliable results (replicating connectivity profiles across different datasets).

2 Materials and Methods

2.1 Preprocessing and Deconvolution

Given a set of n ROIs, the mean BOLD signal is extracted from each of the ROIs, and 

detrended with the SPM function ‘spm detrend’ (http://www.fil.ion.ucl.ac.uk/spm/). Model-

based deconvolution was performed as in David et al. (2008), using DCM software based on 

a modification of the balloon model to obtain estimates of the shape of the haemodynamic 

response function (HRF; Friston et al. [2003]). This deconvolution method was shown to 

control successfully for variability in the HRF shape between different brain regions in fMRI 

data, leading to fMRI-derived estimates of connectivity that correspond to those obtained 

with intracortical EEG (David et al. [2008]). For this reason, we do not provide additional 

validation tests here for this deconvolution approach.
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2.2 Interaction Model

Deconvolution yields a deconvolved timeseries zi(t) for each ROI i = 1,…, n. The vector of 

deconvolved timeseries z(t) = [z1(t); …; zn(t)] is modelled with a bilinear vector 

autoregressive model. A bilinear model can model condition-dependent effects even in the 

context of fast event-related designs, and it does not require integration to estimate 

parameters thus reducing the computational costs. We have therefore

(1)

where k = 1, …, l are the time lags between predicted and predictor responses, the matrices 

A(k) contain parameters for fixed influences at lag k, uj(t) is 1 if condition j is presented at 

time t and 0 otherwise, the matrices Bj(k) contain parameters for condition-dependent 

influences in condition j at lag k, and C contains parameters for the effect of the conditions 

u(t).

2.3 Model Fitting

Two fundamental considerations were made in the context of model fitting. First, fitting all 

model parameters in a single stage could lead any shared variance between parameters for 

the influence of the regions on themselves (autoregressive parameters) and parameters for 

the influences between different regions to be split equally among them. Timecourses of 

fMRI data show a high degree of temporal autocorrelation (Woolrich et al. [2001]), and 

fitting all parameters in a single stage could attribute part of the variance explained by 

autocorrelation to influences between regions, and this might result in exceedingly liberal 

estimates of the influences between regions. For this reason, DNM in which model 

parameters were fit simultaneously was compared to DNM with a hierarchical fitting 

procedure, in which in a first stage the autoregressive parameters are estimated, subsequently 

the effect of conditions, and in the end the parameters for the influences between different 

regions. The hierarchical fitting procedure is made explicit in the following set of equations:

(2)

where , , and 

 are the residuals for the three modelling stages and the n 
ROIs. The first equation implements an autoregressive model, the second equation a linear 
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model with conditions as predictors, and the final equation models the remaining variance as 

a function of the influences between different brain regions.

The models’ time lag k can be determined using the Akaike Information Criterion (AIC), but 

in practice given the high number of parameters the selected k is equal to 1. One potential 

cost of DNM’s fitting procedure is that estimates of the shape of the HRF are generated 

before fitting the infulence parameters rather than simultaneously. However, previous studies 

found that the HRF could be estimated accurately even with such a sequential procedure 

(David et al. [2008]). Models were fit with ordinary least squares (OLS), regularization can 

be used when considering large networks.

3 Validation

The performance of the method was validated with computer simulations, by defining VAR 

processes and using them to generate data with added noise. We tested DNM’s ability to 

accurately infer the model parameters and to individuate influences that are stable across 

participants. The deconvolution approach has been validated extensively in previous work 

(Friston et al. [2003], David et al. [2008]), so the present validation focused on the VAR 

modeling component.

Data were generated using models of the following form:

For each simulation iteration, we first generated group-level matrices. The group-level 

matrix Ag was generated extracting diagonal parameters from a normal distribution of mean 

0.5 and standard deviation 0.1 (reflecting the high autocorrelation between a region and 

itself) and off-diagonal parameters from a normal distribution of mean 0 and standard 

deviation 0.1. The group level matrix Cg was generated extracting each parameter from a 

normal distribution with mean 0.5 and standard deviation 0.2. At a second stage, individual 

subject matrices (As1, …, Asn) were generated from normal distributions having as mean for 

each parameter the group-level value for that parameter. Stability of the simulated VAR 

processes was ensured by checking that the eigenvalues of the Asi matrices were all smaller 

than 1. For each choice of number of subjects n from 10 to 20, of number of regions m from 

3 to 5, we generated 10 different group-level models and performed DNM analysis with both 

the simultaneous and the hierarchical approaches. The initial timepoint z(1) was extracted 

from a multivariate uniform distribution on the hypercube [0, 1]m, and zero-mean gaussian 

noise was added to the data. Multiple levels of noise were tested, with standard deviations 

ranging from 0.1 to 1 respectively. For each simulation, we assessed the accuracy with 

which DNM could model the influences between regions, evaluating significance for each 

influence with a t-test over DNM model parameters across participants, and counting a 

significant inference for influence from region k to region j as accurate if 1) it corresponded 

to a true influence between regions that is stable across participants (the t-test performed on 

the true subject values Asi(j, k) was significant) and 2) the sign of the interaction was 

accurately inferred. In addition to the accuracy, we calculated the proportion of true 

influences that went undetected by the model.
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3.1 Simultaneous and hierarchical model fitting

As expected, the number of undetected true influences was higher in the hierarchical model 

than in the simultaneous model (Figure 1 A). However, importantly, this did not result in a 

lower accuracy of the simultaneous model, and in fact, the simultaneous model was overall 

more accurate than the hierarchical model across different numbers of participants and 

regions, and across different levels of noise (Figure 1 B). For this reason, in the analysis of 

real fMRI data we will use the simultaneous model fitting procedure to estimate influences 

between regions, and we will restrict the hierarchical fitting procedure to the purpose of 

estimating conservatively the additional variance explained by the inter-regional influences. 

Accuracy for the simultaneous model was very high across all noise levels, validating DNM 

as a technique to infer the presence and sign of influences between brain regions.

3.2 Comparison with Granger Causality

As an additional test of DNM’s ability of taking into account variability across participants 

in the sign of influences, we compared DNM with GC (as implemented) on two sets of 1000 

simulated datasets with 20 participants and 3 regions. The first 1000 datasets were generated 

as described in the validation analysis. In the remaining 1000, instead, the parameter values 

for off-diagonal entries of Asi(j, k) in individual subjects were extracted from normal 

distributions having as mean A(j, k) for even-numbered subjects, but −A(j, k) for odd-

numbered subjects. Since Granger Causality does not take into account the sign of 

influences, we expected it to perform well when participants had consistent signs, but to 

report consistent influences even in the presence of high intersubject variability in the sign 

of the parameters. This does not imply that the GC results are incorrect, but that great 

caution needs to be exerted when interpreting them: consistent GC across participants 

indicates that an influence plays a ‘similarly important’ role across participants, but the 

actual role of the influence might vary widely across participants, being excitatory in some 

and inhibitory in others. We will refer to inferences of significant influences when the t 

statistic calculated with the true values Asi(j, k) was non significant as ‘false positives’ - but 

it is important to emphasize that in the context of GC this set of inferences includes in part 

cases that may be validly interpreted to indicate significant unsigned ‘importance’ of an 

influence. Since GC is always positive, we could not use t-tests to assess significance, 

therefore we estimated the distribution of Granger Causality F values under the null 

hypothesis using an additional 1000 simulations in which the Asi matrices were generated 

independently for each subject. In the subsequent analysis, an influence was considered 

significant if it was strictly within the top 5% of the maxima of the connectivity matrices 

obtained under the null hypothesis. We set the thresholds for DNM using the same 

simulation-based approach and using the same set of simulations, to ensure that different 

numbers of false positives would not result from different approaches to determine 

significance. When participants had consistent signs, both GC and DNM showed a very 

small number of false positives (less than 1% of the total number of connections: 45 for GC 

and 0 for DNM, Figure 2 A). However, when participants had different signs, GC showed a 

large increase in the number of false positives (1121, that is 18.68% of the total number of 

connections), while DNM did not (14, that is 0.48% of the total number of connections 

Figure 2 B, note the scale of the y axis).
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4 Experimental Materials and Procedures

Two different experiments testing emotion recognition from visual stimuli were completed 

with two different groups of participants. In each experiment, videos prompting the 

attribution of an emotion to a target were shown to participants while fMRI data were 

collected. The blood-oxygen level dependent (BOLD) timeseries measured were used to 

model connectivity between face selective regions and regions encoding information about 

emotional valence (OFA, FFA, pSTS and MPFC, see Skerry and Saxe [2014], Kliemann et 

al. [2016]).

4.1 Experiment 1: Stimuli and Task

A total of 26 volunteers took part in experiment 1 (all right handed, n = 10 female, age 

range: 19–44, mean = 26.25, SD = 6.12). All participants had normal or corrected to normal 

vision and no history of neurological or psychiatric disorders. Participants gave informed 

consent in written form in line with the requirements of MIT’s institutional review board.

The experiment consisted of 8 runs, a face localizer, and a theory of mind localizer (Dodell-

Feder et al. [2011]; stimuli are available at http://saxelab.mit.edu/superloc.php). The theory 

of mind localizer was not analyzed for this article. In the 8 runs, participant viewed videos of 

faces expressing an emotion (‘expressions condition’) and of simple geometric characters 

experiencing an event eliciting emotions (‘situations condition’). Participants were asked to 

rate on a 1–4 scale after each video the intensity of the emotion experienced by the 

characters. Face stimuli involved a close-perspective view on single entity, therefore they 

were presented at 7.8 × 7.4° of visual angle, while the context animations were presented at 

16.7 × 12.5°. Videos of facial expressions were obtained from from movies, producing a set 

of relatively naturalistic stimuli, achieving a balance between external validity (see Zaki and 

Ochsner [2009], Spunt and Lieberman [2012]) and experimental control. Each trial consisted 

of the presentation of a 4s video followed by a 1.75s response screen and a 250ms blank. A 

fixation cross of variable duration (0–14s) was presented between trials.

In the face localizer, participants viewed videos of children’s faces and of moving objects 

(from Pitcher et al. [2011]). 30 videos were shown for each condition, grouped in blocks of 

6. Participants had to perform a 1-back task detecting repetitions of identical videos. Each 

video lasted 3s, and was followed by a blank screen presented for 333ms, for a total block 

duration of 20s. A 2s blank was shown between every two blocks, and 12s blocks of fixation 

were included at the beginning, middle and end of the run. Participants were shown 2 

localizer runs, each lasting 5 minutes. The order of conditions was counterbalanced within 

runs, across runs, and across participants.

4.2 Experiment 2: Stimuli and Task

A total of 28 volunteers took part to experiment 2 (all right handed, 11 female, age range: 

21–33, mean = 26.6, SD = 4.2). All participants had normal or corrected to normal vision 

and no history of neurological or psychiatric disorders. Participants gave informed consent 

in written form in line with the requirements of MIT’s institutional review board. The 
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experiment was composed of 8 functional runs (lasting 372s each) and a face localizer 

(184s) (Hariri et al. [2000]).

In the experimental runs, the facial expression videos from Experiment 1 were presented. 

Unlike in Experiment 1, however, participants were asked to perform two different 

judgements on the facial expression videos. In half of the trials, they were asked to assess 

the valence of the emotion (positive or negative), in the remaining trials they were asked to 

assess the age of the person in the video (younger than 40, older than 40). Each trial 

consisted of the presentation of a screen indicating the task to be performed (1s), a blank (4–

12s, mean = 8s), a video (4s), an additional blank (250ms) and a screen showing a plus and a 

minus arranged horizontally as a response cue (1.75s). Participants pressed the left or right 

button to select the plus (for positive emotions or for faces of people over 40) or the minus 

(for negative emotions or for faces of people under 40). At the end of each run, a 12s blank 

screen was presented. Participants were excluded if they performed below 83% accuracy in 

two or more runs, a criterion established before starting fMRI analysis. Data from three 

participants (1 female) were excluded due to this exclusion criterion.

The face localizer consisted in the presentation of 30s blocks of geometric shapes and blocks 

of faces. Each block consisted of 15 2s trials in which participant had to match the 

expression of a face (or the shape) in the upper part of the screen with one of two 

expressions (or shapes) in the lower part of the screen.

4.3 Data acquisition

Data acquisition parameters were identical in the two experiments. Data were acquired with 

a 3T Siemens Tim Trio scanner in the Athinoula A. Martinos Imaging Center at the 

McGovern Institute for Brain Research at MIT, using a Siemens 32-channel phased array 

head coil. A high-resolution (1mm isotropic voxels) T-1 weighted MPRAGE anatomical 

scan was followed by functional scans using a gradient-echo EPI sequence sensitive to 

blood-oxygen-dependent (BOLD) contrast (repetition time [TR] = 2s, echo time [TE] = 

30ms, flip angle = 90°, voxel size 3 × 3 × 3mm). 32 axial slices of 64×64 voxels aligned 

with the anterior/posterior commissure were acquired in each volume, covering the whole-

brain except the cerebellum.

4.4 ROI definition and Interaction Modelling

Data from the face localizers were preprocessed using SPM8 running on MATLAB R2010b 

and custom in-house software, and were modeled in both experiments with a standard GLM 

with regressors for each stimulus category. Regions of interest for the occipital face area 

(OFA), fusiform face area (FFA) and posterior superior temporal sulcus (pSTS) were defined 

in individual participants using group-defined search spaces (Figure 3). 1 of the 26 

participants in Experiment 1 did not complete the face localizer, in one OFA and FFA could 

not be localized, and in 1 pSTS could not be localized. In these cases ROIs were derived 

from group-level activation maps obtained from the localizers of the other participants. In 

addition to these face-selective ROIs, a region of interest was defined for MPFC at the group 

level, using a 12mm radius sphere centered in the peak of accuracy for classification of the 

valence of emotions in the study by Skerry and Saxe Skerry and Saxe [2014], at MNI 
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coordinates [−2, 50, 34]. Interactions between the ROIs’ mean timecourses were modelled 

using the method described in sections ‘Interaction Model’ and ‘Model Fitting’ above. In 

Experiment 1, faces and situations were used as conditions, in Experiment 2, age task and 

valence task were used as conditions.

4.5 Preprocessing

Each participant’s data were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) 

and custom software written in Matlab (www.mathworks.com; Natick, MA, USA). Each 

participants data were registered to the first image of the first run, and all functional runs 

were co-registered with the participants anatomical scan. All images (functional and 

anatomical) were normalized to a common brain space (Montreal Neurological Institute, EPI 

template).

5 Results

5.1 Experiment 1

In Experiment 1, the inter-regional influence parameters substantially improved the fit of the 

model, when added to the hierarchical model in the final stage. In the deconvolved 

timeseries, the influence parameters explained an additional 32.88% (SEM 2.02%) of the 

variance in left-out runs. A similar but weaker result was obtained without deconvolution, 

just predicting the original BOLD signal (additional variance 12.27%, SEM 0.9%, see 

Appendix I - Figure 5). In light of the validation simulations, network structure (Figure 4 A) 

was calculated modeling the deconvolved timeseries in the ROIs with a bilinear model and 

running a t-test on model parameters (see Materials and Methods for more details). Positive 

influences from OFA to FFA were observed (t(25) = 3.24, p = 0.0033), along with negative 

influences in the opposite direction (t(25) = −3.52, p = 0.0016). In addition to condition-

independent influences, in Experiment 1 a significant increase in the influence from OFA to 

FFA was observed in the face condition (t(25) = 2.28, p = 0.0314), but not in the situations 

condition (t(25) = −0.10, p = 0.9197).

5.2 Experiment 2

In Experiment 2 the inter-regional influence parameters (Figure 4 B) explained substantial 

additional variance in the deconvolved timeseries (33.97%, SEM 1.35%) and also, to a lesser 

extent, in the original BOLD signal (17.4%, SEM 1.28%, see Appendix I - Figure 5). These 

values are remarkably similar to the results of Experiment 1, suggesting that the importance 

of influence parameters is highly replicable, in this model, across participants and groups. To 

establish a baseline for the additional variance explained by influences between regions in 

deconvolved data, we ran an additional 1000 simulations. The connectivity matrices for the 

simulations were randomly generated for each subject and run using the same parameters as 

the DNM validation. We simulated 25 subjects and 4 ROIs, to match the numbers of 

participants and ROIs in our experiments. Across the 1000 simulations, the additional 

variance explained by the influences between regions was on average 4.84%, and it never 

equaled or exceeded 30%. The similarity of the influence matrices between the two 

experiments was quantified using Pearson correlation: the correlation between the influence 

matrices in Experiment 1 and Experiment 2 was r = 0.97. A direct comparison of the results 
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in the two experiments using unpaired samples t-tests did not yield any significant 

differences. In Experiment 2 (Figure 4), which requires task switching, significant influences 

were detected from MPFC to OFA and FFA (t(24) = 2.15, p = 0.0416 and t(24) = 2.28, p = 

0.0316 respectively), and from pSTS to OFA (t(24) = 2.82, p = 0.0095). A trend of influence 

from pSTS to FFA was also observed (t(24) = 1.89, p = 0.0703). In addition to condition-

independent influences, in Experiment 2 a significant decrease in the influence from MPFC 

to FFA was observed in the age task (t(24) = −2.08, p = 0.0484), and a significant increase in 

the influence from MPFC to OFA (t(24) = 2.47, p = 0.0209) and decrease from FFA to OFA 

were observed in the valence condition (t(24) = −2.58, p = 0.0163).

6 Discussion

We have introduced and validated Dynamic Network Modeling (DNM), a method to 

investigate time-lagged influences between brain regions with fMRI. DNM is an intuitive 

and accurate framework for network discovery, with sensitivity to the sign as well as the 

value of influences between brain regions. The quality of fit of DNM is measured with 

variance explained in independent data, which can be used to compare different models and 

also as a warning if the variance explained by the models tested is too low.

We sought to measure directional, time-lagged influences between cortical regions, using 

functional MRI. An important challenge to using fMRI to study interations is the temporal 

resolution: the blood oxygenated dependent (BOLD) signal is inherently slow, and is 

typically measured at 0.5Hz. Other neuroimaging techniques, including MEG and EEG offer 

much higher temporal resolution than fMRI, and therefore the potential to study 

interregional influences at the true frequency of neural computation (e.g. >100 Hz). On the 

other hand, fMRI has substantially better spatial resolution. Poor source reconstruction is a 

serious challenge for studying interregional influences, because misattributing distinct 

signals to a common source could create a false appearance of an influence where none 

exists. Also, over the past decade, the cognitive functions of many cortical regions, localized 

with fMRI, have been intensively investigated, in terms of the magnitude and pattern of 

responses to stimulus categories. Further theory building will require understanding how 

influences between these particular cortical regions support transformation of information 

(i.e. processing, Anzellotti et al. [2016a,b]).

Prior research investigating directional influences between brain regions in fMRI data has 

used two techniques: Granger Causality (GC, Roebroeck et al. [2005]) and Dynamic Causal 

Modelling (DCM, Friston et al. [2003]). While both techniques are powerful, and have been 

validated in some contexts (David et al. [2008]), both also have key limitations, especially in 

the context of network discovery, as identified in the introduction. Here we developed a new 

approach, building on the strengths of both GC and DCM, but also designed to satisfy novel 

criteria. Like DCM, we used deconvolution to address potential differences in the 

haemodynamic responses across regions, and simultaneously estimated parameters for 

interregional influences, and condition-dependent influences. These approaches address 

some limitations of the most common implementation of GC. On the other hand, compared 

to DCM, GC is conceptually intuitive and computationally efficient. In our case, we used 

random effects statistical tests on VAR model parameters for efficient network discovery. 
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Also, like GC, we aimed to provide a direct measure of variance explained, rather than the 

relative likelihood of a model (compared only to other models tested) provided by DCM.

Our approach (DNM) also goes beyond existing tools in multiple ways. First, we measure 

the variance explained by inter-regional influences, in independent left-out data. To measure 

the additional variance explained by inter-regional influences in a conservative manner, we 

used a step-wise regression, first greedily accounting for the stimulus-evoked responses and 

autocorrelations in the timeseries within region, before testing variance explained by inter-

regional influences. In two experiments, we found that adding parameters for interregional 

influences to the model explained more than 30% of the remaining variance in the 

deconvolved timeseries of left-out runs. Evaluating variance explained in independent data is 

critical because it ensures that models are not overfitting the training data (variance 

explained in independent data is not biased in favor of more complex models). As a 

consequence, an explicit penalization of model complexity is not necessary. Using variance 

explained in independent data is appealing also because it provides an absolute (not relative) 

measure of the goodness of fit of these models.

Second, we conduct statistical tests directly on the model parameters, across subjects, to 

preserve information about the sign of inter-regional influences (whether they are excitatory 

or inhibitory). In the absence of a reliable influence between two regions, the parameter 

corresponding to that influence in the model will be highly variable across runs and 

participants, and will not reach significance. Validation results show that this approach is 

effective: DNM can accurately infer the presence and sign of inter-regional influences, with 

very few false positives (1).

In a set of simulations with varying numbers of participants, regions, and levels of noise, we 

have shown that DNM can accurately infer the presence as well as the sign of interactions 

between regions (Figure 1). With increasing level of noise, DNM successfully mantained a 

high accuracy, erring on the conservative side by increasing the number of undetected 

influences. In a direct comparison with Granger Causality, we found that both methods were 

effective when influences between regions are consistent in sign across participants, but 

thanks to its sensitivity to the sign of influences, DNM, unlike GC, was able to discard the 

influences with highly variable sign across participants. This property of DCM can be an 

important asset when investigating heterogeneous populations, for example in a clinical 

setting.

We applied DNM to study influences between brain regions during emotion recognition in 

two experiments: an experiment on the recognition of emotions from videos of facial 

expressions and of situations, and an experiment on the recognition of the valence of the 

emotion and the age of a person from videos of facial expressions. In the two experiments, 

we found similar influences between brain regions involved in emotion recognition (r = 

0.97). In Experiment 1, we found a significant positive influence from OFA to FFA. A 

positive influence from OFA to FFA also observed in Experiment 2. In the opposite 

direction, a significant negative influence from FFA to OFA was observed in Experiment 1. 

This negative FFA to OFA influence was also observed in Experiment 2. A negative 

influence from FFA to OFA can be due to OFA responses starting to decline earlier than FFA 
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responses, so that an increase in FFA responses predicts an upcoming decline in OFA 

responses. This finding exemplifies the importance of distinguishing between positive and 

negative influences. In Experiment 1 the face condition, but not the situations condition, led 

to an even stronger influence from OFA to FFA, as is expected given the use of naturalistic 

face videos in the expression condition.

In Experiment 2, which required participants to switch tasks between recognizing the 

valence of a facial expression and the age of the person in the video, significant positive 

influences were observed from MPFC and pSTS, which are known to encode abstract 

representations of emotions (Skerry and Saxe [2014]) to ventral temporal face-selective 

regions (OFA, FFA). Given the greater ability of representations in MPFC and pSTS to 

generalize across different stimuli (Skerry and Saxe [2014]) than representations in OFA and 

FFA, we interpret these influences as top-down. A recent study (Kliemann et al. [2016]) has 

reported task-dependent changes in the patterns of response in ventral temporal face-

selective regions. Participants were asked to judge the age (in half of the trials) and the 

valence (in the remaining trials) of facial expressions, and found that patterns of response in 

the right FFA were more similar in the trials in which participants performed the same task 

than in trials in which they performed different tasks. By showing top-down influences from 

MPFC and pSTS to ventral temporal face-selective regions, the present results individuate a 

possible mechanism driving task-dependent changes in FFA during facial expression 

recognition.

In general, modulatory connections might be particularly amenable to detection by fMRI, 

since they could have relative slow temporal frequency, compared with bottom-up 

information processing. The temporal resolution of fMRI is low, therefore the physiological 

bases of the signal modelled in this study are probably not monosynaptic connections 

between neurons. Temporal variation in the BOLD signal is correlated with local field 

potentials, and more specifically with the power of the gamma band frequency oscillations 

and with slow cortical potentials (<4Hz) (He et al. [2008]). The power of gamma band 

frequency oscillations and slow cortical potentials account for different parts of the BOLD’s 

variance (Scheeringa et al. [2011]). Slow cortical potentials are mostly driven by synaptic 

activity at apical dentrites in superficial layers of cortex (Goldring [1974], Mitzdorf [1985], 

Birbaumer et al. [1990], He and Raichle [2009]), and activity in superficial layers depends 

on long-range connections (He and Raichle [2009]). High power in the gamma band usually 

co-occurs with gamma synchronization within a region (Fries [2009]). It reflects 

engagement of the region in a task (Pulvermüller et al. [1995]) and may need to be triggered 

by ‘modulatory network activation’, for instance top-down control (Fries et al. [2001, 2008], 

Bichot et al. [2005], Taylor et al. [2005], Womelsdorf et al. [2006]). Our results might 

depend on a combination of slow cortical potentials and gamma band power that reflect 

respectively low-frequency fluctuations in the activation state of a network and relatively 

faster sequences of responses due to engagement in a task.

Recent work has highlighted the importance of considering the multivariate structure of 

responses in the study of connectivity (Coutanche and Thompson-Schill [2013], Geerligs et 

al. [2016], Anzellotti et al. [2016a,b]). Expanding DNM to incorporate a treatment of 

multivariate structure within ROI responses is a very promising avenue for future research.
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In conclusion, we introduced an exploratory method (DNM) to model the directed and 

signed influences between brain regions while controlling for inter-regional differences in 

the hemodynamic responses; statistical tests on parameter values were used to perform 

efficient network discovery. We applied DNM to the study of the influences between brain 

regions encoding information about emotional valence during emotion recognition, showing 

how DNM has key assets as compared to other available methods and gaining new insights 

on the influences between brain regions processing emotional valence.
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Appendix I - Additional Figures

Figure 5. 
Additional variance explained in independent data by the influences between regions. The 

model using both deconvolution and regularization is compared to a model using 

deconvolution but not regularization and to a model using neither deconvolution nor 

regularization.

Appendix II - Granger Causality

Let a(t), b(t) with t ∈ 1, …., T be two timeseries, for example the timecourses of Blood-

Oxygen Level Dependent (BOLD) signal in two brain regions A, B. We can consider the 

autoregressive model

(3)

and the model
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(4)

where εb and εab are the residuals of the models. Here we focus for simplicity on a model 

between two regions that goes only 1 timestep in the past, but multiple regions and multiple 

timesteps in the past can also be considered. In Granger Causality, the influence from a brain 

region A to a brain region B is given by:

(5)

If earlier responses in region A explain additional variance in the responses of region B, the 

ratio var(εb)/var(εab) is greater than one; the logarithm remaps the range of possible values 

from [1, + ∞) to [0, + ∞). The suggested approach to control for differences in 

haemodynamic responses between regions consists in calculating the subtraction:

(6)

where  is the influence from A to B during condition C1, and  is the influence 

from A to B during condition C2.

Appendix III - Dynamic Causal Modelling

Let z = [z1(t),…, zn(t)] be a vector of neural responses at time t, where zi(t) is the response at 

time t in region i for each of n regions. In DCM, the change in neural responses ż(t) is 

modeled as

(7)

where A is a matrix of fixed connectivity parameters, Bj is a matrix of connectivity 

parameters during condition j for each of the m conditions, and uj(t) is 1 if condition j is 

presented at time t and 0 otherwise. The matrix C contains parameters for the effect of the 

conditions u(t) = [u1(t),…, um(t)]. A candidate model M is specified providing matrices of 

binary values Ã, ,  of the same size as A, Bj, and C, so that in M, parameter A(h, k) is 

allowed to vary if and only if Ã(h, k) = 1. The parameters of candidate models are estimated 

with the expectation-maximization (EM) algorithm, and the best model is chosen using 

Bayesian model comparison (Friston et al. [2003]).
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Figure 1. 
A) proportion of undetected influences and B) accuracy at inferring the presence and sign of 

the influences for the simultaneous models and hierarchical models.
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Figure 2. 
Ratio of ‘false positives’ for GC and DNM when participants have influences of the same 

sign (blue bars) and when participants have high variability in the sign of influences (red 

bars).
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Figure 3. 
Group-level search spaces for the regions of interest.
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Figure 4. 
A) Color-coded matrix of parameter values for the influences between regions in 

Experiment 1; B) color-coded matrix of parameter values for the influences between regions 

in Experiment 2.
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