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By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure 
the branching fractions for the hadronic decays D+ → K 0

S K 0
S K +, D+ → K 0

S K 0
Sπ

+, D0 → K 0
S K 0

S and D0 →
K 0

S K 0
S K 0

S . They are determined to be B(D+ → K 0
S K 0

S K +) = (2.54 ± 0.05stat. ± 0.12sys.) × 10−3, B(D+ →
K 0

S K 0
Sπ

+) = (2.70 ± 0.05stat. ± 0.12sys.) × 10−3, B(D0 → K 0
S K 0

S ) = (1.67 ± 0.11stat. ± 0.11sys.) × 10−4 and 
B(D0 → K 0

S K 0
S K 0

S ) = (7.21 ± 0.33stat. ± 0.44sys.) × 10−4, where the second one is measured for the first 
time and the others are measured with significantly improved precision over the previous measurements.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Hadronic decays of D mesons open a window to probe for the 
physics mechanisms in charmed meson decays, e.g ., CP violation, 
D0 D̄0 mixing and SU(3) symmetry breaking effects. Since the dis-
covery of D mesons in 1976, the hadronic decays of D mesons 
have been extensively investigated [1]. However, the existing mea-
surements of the D hadronic decays containing at least two K 0

S
mesons in the final state are still very poor due to limited statis-
tics [1].

In this Letter, we report the measurements of the branch-
ing fractions for the hadronic decays D+ → K 0

S K 0
Sπ

+ , D0 →
K 0

S K 0
S , D+ → K 0

S K 0
S K + and D0 → K 0

S K 0
S K 0

S . Throughout this Letter, 
charged conjugate modes are implied. These decays have simpler 
event topologies and suffer less from combinatorial backgrounds 
than other decay modes containing two K 0

S in the final state. The 
comprehensive or improved measurements of three-body decays 
will benefit the understanding of the interplay between the weak 
and strong interactions in multibody decays where theoretical pre-
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8 Also at Istanbul Arel University, 34295 Istanbul, Turkey.
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dictions are poorer than two-body decays. The improved measure-
ments of two-body decays can serve to better explore the contri-
butions of W-exchange diagrams and final-state interactions [2–5], 
as well as SU(3)-flavor symmetry breaking effects [6–10] in D
meson decays. In addition, these measurements will also help to 
improve background estimations in the precision measurements of 
D and B meson decays.

The data sample used for this analysis, which has an integrated 
luminosity of 2.93 fb−1 [11], was taken at the ψ(3770) resonance 
peak with the BESIII detector [12]. The D0 D̄0 and D+D− pairs 
produced in ψ(3770) decay provide cleaner D0 and D+ meson 
samples than those used in previous studies at ARGUS [13,14], 
CLEO [15,16] and FOCUS [17]. To optimize the precision for these 
measurements, we use a single-tag method, in which either a D
or D̄ is reconstructed in an event. We combine the yields mea-
sured with previously reported values of the cross sections for 
e+e− → D0 D̄0 and D+D− at the ψ(3770) resonance peak [18].

2. BESIII detector and Monte Carlo simulation

The BESIII detector is a magnetic spectrometer that operates at 
the BEPCII collider. It has a cylindrical geometry with a solid-angle 
coverage of 93% of 4π . It consists of several main components. 
A 43-layer main drift chamber (MDC) surrounding the beam pipe 
performs precise determinations of charged particle trajectories 
and measures the specific ionization (dE/dx) for charged parti-
cle identification (PID). An array of time-of-flight counters (TOF) 
is located outside the MDC and provides additional PID informa-
tion. A CsI(Tl) electromagnetic calorimeter (EMC) surrounds the 
TOF and is used to measure the energies of photons and electrons. 
A solenoidal superconducting magnet outside the EMC provides a 
1 T magnetic field in the central tracking region of the detector. 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. (a) Comparison of the Mπ+π− distributions of the D0 → K 0
S K 0

S candidate events between data (dots with error bars) and inclusive MC (histogram). The pairs of the 
solid (dashed) arrows denote the K 0

S signal (sideband) regions. (b) Distribution of Mπ+π−(1) versus Mπ+π−(2) for the D0 → K 0
S K 0

S candidate events in data. (c) Distribution 
of Mπ+π−(1) versus Mπ+π−(2) versus Mπ+π−(3) for the D0 → K 0

S K 0
S K 0

S candidate events in data. In these figures, all selection criteria have been imposed except for the K 0
S

mass requirement and MBC is required to be within 5 MeV/c2 around the D nominal mass [1].
The iron flux return of the magnet is instrumented with 1272 m2

of resistive plate muon counters (MUC) arranged in nine layers 
in the barrel and eight layers in the endcaps for identification of 
muons with momentum greater than 0.5 GeV/c. More details about 
the BESIII detector are described in Ref. [12].

A GEANT4-based [19] Monte Carlo (MC) simulation software 
package, which includes the geometric description and response 
of the detector, is used to determine the detection efficiency 
and to estimate background for each decay mode. An inclusive 
MC sample, which includes the D0 D̄0, D+D− and non-D D̄ de-
cays of the ψ(3770), initial-state-radiation (ISR) production of the 
ψ(3686) and J/ψ , the e+e− → qq̄ (q = u, d, s) continuum process, 
the Bhabha scattering events, the di-muon events and the di-tau 
events, is produced at 

√
s = 3.773 GeV. The equivalent luminos-

ity of the MC sample is ten times of data. The ψ(3770) decays 
are generated by the MC generator KKMC [20], which incorpo-
rates both ISR effects [21] and final-state-radiation (FSR) effects 
[22]. Known decay modes are generated using EvtGen [23] with 
input branching fractions from the Particle Data Group (PDG) [1]. 
Unmeasured decays are generated using LundCharm [24].

3. Data analysis

All charged tracks used in this analysis are required to be 
within a polar-angle (θ ) range of | cos θ | < 0.93. The good charged 
tracks, except when used to reconstruct K 0

S mesons, are required 
to originate within an interaction region defined by V xy < 1.0 cm 
and V z < 10.0 cm, where V xy and V z are the distances of closest 
approach of the reconstructed track to the interaction point (IP) 
perpendicular to (xy) and along (z) the beam direction.

The charged kaons and pions are identified by the dE/dx and 
TOF measurements. The combined confidence levels for pion and 
kaon hypotheses (C Lπ and C LK ) are calculated, respectively. The 
charged track is identified as kaon (pion) if C LK > C Lπ (C Lπ >

C LK ) is satisfied.
K 0

S candidate mesons are reconstructed through the π+π− de-
cay mode. Charged pions used in K 0

S candidates mesons are re-
quired to satisfy V z < 20.0 cm. The two oppositely charged tracks 
are assumed to be a π+π− pair without PID requirements. To 
reconstruct K 0

S , the π+π− combination is constrained to have a 
common vertex. The candidate is accepted if it has an invariant 
mass Mπ+π− within 12 MeV/c2 of the K 0

S nominal mass [1] and 
satisfies L/σL > 2, where L is the measured flight distance and σL

is its uncertainty.
To identify D candidates, we use two selection variables, 

the energy difference �E ≡ Ebeam − E D and the beam-energy-

constrained mass MBC ≡
√

E2 /c4 − |�pD |2/c2, where Ebeam is 
beam
Table 1
�E requirements (in MeV) for data and MC samples.

Decay modes Data MC

D+ → K 0
S K 0

S K + (−17,+19) (−16,+16)

D+ → K 0
S K 0

S π
+ (−17,+17) (−17,+16)

D0 → K 0
S K 0

S (−19,+17) (−17,+14)

D0 → K 0
S K 0

S K 0
S (−14,+16) (−13,+13)

the beam energy and E D and �pD are the energy and momen-
tum of the D candidate in the e+e− center-of-mass system. For 
each signal decay mode, only the combination with the minimum 
|�E| is kept in events where more than one candidate passes the 
selection requirements. Mode-dependent �E cuts are determined 
separately for data and MC based on fits to the respective �E dis-
tributions. These are set at ±3σ , where σ is the �E resolution 
(Table 1).

The combinatorial π+π−|non−K 0
S

pairs with invariant mass in 
K 0

S signal region may also satisfy the K 0
S selection criteria and 

contribute peaking background around the D mass in the MBC
distribution. This peaking background is estimated with events in 
the K 0

S sideband region, defined as 0.020 < |Mπ+π− − MK 0
S
| <

0.044 GeV/c2. Fig. 1(a) shows the comparison of the Mπ+π− distri-
bution for D0 → K 0

S K 0
S candidates in data with the corresponding 

distribution for the inclusive MC. In the figure, the solid (dashed) 
arrows delineate the K 0

S signal (sideband) regions.
In the analyses of the D0 → K 0

S K 0
S , D+ → K 0

S K 0
S K + and 

K 0
S K 0

Sπ
+ decays, two-dimensional (2D) signal and sideband re-

gions are defined. Fig. 1(b) shows the distribution of Mπ+π−(1)

versus Mπ+π−(2) for the D0 → K 0
S K 0

S candidate events in data. 
The solid box, in which both of the π+π− combinations lie in 
the K 0

S signal regions, denotes the 2D signal region. The dot-
dashed (dashed) boxes indicate the 2D sideband 1 (2) regions, in 
which one (two) of the π+π− combinations lie in the K 0

S side-
band regions and the others are in the K 0

S signal region. For the 
D0 → K 0

S K 0
S K 0

S decay, Mπ+π−(1) versus Mπ+π−(2) versus Mπ+π−(3)

of the candidate events in data is shown in Fig. 1 (c). The region 
in which all three π+π− combinations lie in the K 0

S signal regions 
is taken as the three-dimensional (3D) signal region. The 3D side-
band i (i = 1, 2, 3) regions denote those in which i of the three 
π+π− pairs lie in the K 0

S sideband regions and the rest are lo-
cated in the K 0

S signal regions.
The resulting MBC distributions of the accepted candidate 

events in the 2D or 3D signal region, sideband 1 region and side-
band 2 region are shown in the sub-figures of the first, second 
and third rows of Fig. 2, respectively. By fitting these MBC distri-
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Fig. 2. Fits to the MBC distributions of the (a) D+ → K 0
S K 0

S K + , (b) D+ → K 0
S K 0

S π
+ , (c) D0 → K 0

S K 0
S and (d) D0 → K 0

S K 0
S K 0

S candidate events. The dots with error bars are 
data, the solid curves are the total fits, and the dashed curves are the fitted backgrounds. The first, second and third rows correspond to the fits to the candidate events in 
the 2D or 3D signal region, sideband 1 region and sideband 2 region, respectively.

Table 2
Input quantities and results for the determination of the branching fractions as described in the text. The uncertainties are statistical only.

Decay modes NK 0
S sig Nsb1 Nsb2 Nsb3 Nb

other Nnet ε (%) B (×10−4)

D+ → K 0
S K 0

S K + 3616 ± 66 97 ± 19 6 ± 8 – 18 ± 2 3551 ± 67 8.27 ± 0.04 25.4 ± 0.5

D+ → K 0
S K 0

S π
+ 5643 ± 88 1464 ± 68 69 ± 19 – 31 ± 3 4897 ± 94 10.72 ± 0.04 27.0 ± 0.5

D0 → K 0
S K 0

S 888 ± 36 626 ± 31 3 ± 6 – 0 576 ± 39 16.28 ± 0.30 1.67 ± 0.11

D0 → K 0
S K 0

S K 0
S 622 ± 27 24 ± 8 14 ± 6 0 16 ± 3 597 ± 27 3.92 ± 0.05 7.21 ± 0.33
butions as shown in Fig. 2, we obtain the fitted yields of D signal 
in the 2D or 3D signal region, sideband 1 region and sideband 
2 region, NK 0

S sig, Nsb1, Nsb2, which are given in Table 2. In the 
fits, the D signal is modeled by a MC-simulated shape convoluted 
with a Gaussian function with free parameters accounting for the 
difference of detector resolution between data and MC. The com-
binatorial backgrounds are described by an ARGUS function [25]
with an endpoint of 1.8865 GeV/c2. In the MBC fits for the 2D 
or 3D sideband events, the parameters of the convoluted Gaussian 
function are fixed at the values determined for the signal region. 
For the D0 → K 0

S K 0
S K 0

S decays, the peaking backgrounds from side-
band 3 region are negligible since few events survive.

In this analysis, the combinatorial background in the Mπ+π−
distribution is assumed to be flat, which implies that the ratio of 
background yields between the K 0

S signal and sideband regions is 
0.5. Thus, the net numbers of the D0 → K 0

S K 0
S , D+ → K 0

S K 0
S K +

and K 0
S K 0

Sπ
+ decays can be calculated by 

Nnet = NK 0
S sig − 1

2
Nsb1 + 1

4
Nsb2 − Nb

other, (1)

and the net number of the D0 → K 0
S K 0

S K 0
S decays can be calculated 

by 

Nnet = NK 0
S sig − 1

2
Nsb1 + 1

4
Nsb2 − 1

8
Nsb3 − Nb

other, (2)

where NK 0
S sig and Nsbi are D signal yields from the fit in the 2D or 

3D signal regions and sideband i regions, respectively. Nb
other is the 

normalized number of residual peaking background. For the D+ →
K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ and D0 → K 0
S K 0

S K 0
S decays, the residual 

peaking background is mainly from the events of D+ → K 0
S K 0

L K + , 
D+ → K 0

S K 0
L π

+ and D0 → K 0
S K 0

S K 0
L versus D−(D̄0) → K 0

S X (X =
any possible particle combination). This kind of background peaks 
around the nominal D mass [1] when the K 0
S from a D−(D̄0) decay 

has momentum similar to that of a K 0
L produced in D+(D0) decay. 

These peaking backgrounds cannot be modeled by the events from 
the 2D or 3D sideband region and are estimated by analyzing the 
inclusive MC sample. The measured values of Nb

other and Nnet are 
given in Table 2.

4. Branching fractions

The branching fraction for the hadronic decay D+(0) → f is de-
termined by 

B(D+(0) → f ) = Nnet

2 · σD+ D− (D0 D̄0) ·L · ε , (3)

where Nnet is the net number of D+(0) → f decays in data, 
ε is the detection efficiency including the branching fraction of 
K 0

S → π+π− , L is the integrated luminosity of data [11] and 
σD+ D− (D0 D̄0) is the D+D− (D0 D̄0) cross section at the ψ(3770)

resonance peak.
The detection efficiencies are determined by analyzing the in-

clusive MC sample. In this sample, the signal MC events for D+ →
K 0

S K 0
Sπ

+ are produced as a mixed sample containing 90% of the 
D+ → K 0

S K ∗(892)+, K ∗(892)+ → K 0
Sπ

+ decays and 10% of the di-
rect three-body decay in phase space D+ → K 0

S K 0
Sπ

+ . The signal 
MC events for D+ → K 0

S K 0
S K + , D0 → K 0

S K 0
S and K 0

S K 0
S K 0

S are pro-
duced using a phase–space model. Detailed studies show that the 
momentum and polar-angle distributions of the daughter particles 
in data are well modeled by the MC simulation for each decay 
mode. By analyzing the inclusive MC sample with the same anal-
ysis procedure applied to the data (including the MBC fits and the 
calculation of the net signal yields), we obtain the net number of 
D mesons observed for each decay. The detection efficiency ε is 
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Table 3
Systematic uncertainties (%) in the branching fraction measurements.

Sources D+ → K 0
S K 0

S K + D+ → K 0
S K 0

S π
+ D0 → K 0

S K 0
S D0 → K 0

S K 0
S K 0

S

MC statistics 0.5 0.4 1.8 1.3
Luminosity of data 0.5 0.5 0.5 0.5
D D̄ cross section 1.6 1.6 1.6 1.6
B(K 0

S → π+π−) 0.2 0.2 0.2 0.3
K 0

S reconstruction 3.0 3.0 3.0 4.5
Tracking for K +(π+) 0.5 0.5 – –
PID for K +(π+) 0.5 0.5 – –
MBC fit 2.1 1.0 4.2 2.7
�E requirement 2.0 1.5 2.0 1.5
PBKG normalization 0.5 1.4 2.4 0.8
K 0

S sideband 0.5 0.5 2.0 1.0
MC modeling 1.0 1.0 – 1.0

Total 4.7 4.4 6.8 6.1
obtained by dividing the net D signal by the total number of sig-
nal events, taking into account the efficiency correction discussed 
in Sect. 5.

Inserting the numbers of Nnet, ε , L, as well as σD+ D− =
(2.882 ± 0.018stat. ± 0.042sys.) nb or σD0 D̄0 = (3.607 ± 0.017stat. ±
0.056sys.) nb quoted from Ref. [18] into Eq. (3), we obtain the 
branching fraction for each decay, as listed in Table 2, where the 
uncertainties are statistical only.

5. Systematic uncertainty

Table 3 shows the systematic uncertainties in the branching 
fraction measurements. Each of them, estimated relative to the 
measured branching fraction, is discussed below.

• MC statistics: The uncertainties due to the limited MC statis-
tics are 0.5%, 0.4%, 1.8% and 1.3% for D+ → K 0

S K 0
S K + , D+ →

K 0
S K 0

Sπ
+ , D0 → K 0

S K 0
S and D0 → K 0

S K 0
S K 0

S , respectively.
• Luminosity of data: The uncertainty in the quoted integrated 

luminosity of data is 0.5% [11].
• D D̄ cross section: The uncertainties of the quoted D+ D− and 

D0 D̄0 cross sections are 1.6% [18].
• B(K 0

S → π+π−): The uncertainty of the quoted branching 
fraction for K 0

S → π+π− is 0.1% [1].
• K 0

S reconstruction: The K 0
S reconstruction efficiency has been 

studied as a function of momentum by using the control sam-
ples J/ψ → K ∗(892)∓K ± and J/ψ → φK 0

S K ±π∓ . Small data-
MC efficiency differences are found and presented in Ref. [26]. 
To correct the K 0

S reconstruction efficiency, a piecewise fit to 
these differences as a function of K 0

S momentum is performed. 
For the efficiencies of detecting the decays D+ → K 0

S K 0
S K + , 

D+ → K 0
S K 0

Sπ
+ , D0 → K 0

S K 0
S and D0 → K 0

S K 0
S K 0

S , the momen-
tum weighted differences associated with K 0

S reconstruction 
between data and MC are determined to be (+3.9 ± 1.9)%, 
(+3.0 ± 1.4)%, (+1.8 ± 0.8)% and (+5.9 ± 2.8)%, respectively, 
where the uncertainties are statistical. These corrections are 
applied to the detection efficiencies, after which only the sta-
tistical uncertainties of the differences are retained. On aver-
age, the residual uncertainty for each K 0

S is no more than 1.0%. 
Furthermore, the difference of the momentum-weighted effi-
ciencies between data and MC from the different fits, which is 
1.0% per K 0

S , is included as an additional uncertainty. Finally, 
we assign 1.5% per K 0

S as the systematic uncertainty for the 
reconstruction efficiency.

• Tracking [PID] for K +(π+): The tracking [PID] efficiencies for 
K + and π+ are investigated using doubly tagged D D̄ hadronic 
events. The difference of momentum weighted efficiencies be-
tween data and MC of the tracking [PID] are determined to 
be (+2.1 ± 0.4)% [(−0.3 ± 0.1)%] for the K + in the D+ →
K 0

S K 0
S K + decay and (+0.4 ± 0.3)% [(−0.3 ± 0.1)%] for the π+

in the D+ → K 0
S K 0

Sπ
+ decay, where the uncertainties are sta-

tistical. After correcting the detection efficiencies by these dif-
ferences, we take 0.5% [0.5%] as the systematic uncertainties in 
tracking [PID] for the K + and π+ , respectively.

• MBC fit: In order to estimate the systematic uncertainty as-
sociated with the MBC fit, we repeat the measurements by 
varying the fit range ((1.8415, 1.8865) GeV/c2), signal shape 
(with different MC matching requirements) and endpoint of 
the ARGUS function (±0.2 MeV/c2). Quadratically summing 
the changes of the branching fractions yields 2.1%, 1.0%, 4.2% 
and 2.7% for D+ → K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ , D0 → K 0
S K 0

S
and D0 → K 0

S K 0
S K 0

S , which are assigned as the relevant sys-
tematic uncertainties.

• �E requirement: To investigate the systematic uncertainty as-
sociated with the �E requirement, we repeat the measure-
ments using alternative �E requirements of ±(4, 5, 6) times 
the resolution around the �E peaks. The maximum changes 
of the branching fractions, 2.0%, 1.5%, 2.0% and 1.5% for D+ →
K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ , D0 → K 0
S K 0

S and D0 → K 0
S K 0

S K 0
S , 

are taken as the associated systematic uncertainties.
• Normalization of peaking backgrounds: In the nominal analy-

sis, the normalization factor for the peaking backgrounds, 
which is the ratio of background yields between the K 0

S sig-
nal and sideband regions, has been assumed to be 0.5. The 
branching fractions are recalculated with alternative normal-
ization factors determined by MC simulation. The correspond-
ing changes on the branching fractions, 0.5%, 1.4%, 2.4% and 
0.7% for D+ → K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ , D0 → K 0
S K 0

S and 
D0 → K 0

S K 0
S K 0

S , are assigned as the systematic uncertainties 
associated with the peaking background (PBKG) normalization. 
On the other hand, the uncertainties of the residual peaking 
backgrounds are dominated by the uncertainties of the input 
branching fractions for D−(D̄0) → K 0

S X , which contribute ad-
ditional uncertainties of 0.1%, 0.1% and 0.4% for the measured 
branching fractions for D+ → K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ and 
D0 → K 0

S K 0
S K 0

S , respectively.
• K 0

S sideband: To evaluate the systematic uncertainty due to 
the choice of K 0

S sideband region, we remeasure the branch-
ing fractions after shifting the K 0

S sideband by ±2 MeV/c2. 
The corresponding maximum changes in the branching frac-
tion, which are 0.5%, 0.5%, 2.0% and 1.0% for D+ → K 0

S K 0
S K + , 

D+ → K 0
S K 0

Sπ
+ , D0 → K 0

S K 0
S and D0 → K 0

S K 0
S K 0

S , respectively, 
are taken as the systematic uncertainties.

• MC modeling: For the three-body decays, we examine the 
reweighted detection efficiencies by including the possible 
sub-resonances a0(980) and f0(980) in the signal MC samples. 
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Table 4
Comparisons of the branching fractions (in 10−4) measured in this 
work with the PDG values [1].

Decay modes This work PDG

D+ → K 0
S K 0

S K + 25.4 ± 0.5 ± 1.2 45 ± 20

D+ → K 0
S K 0

S π
+ 27.0 ± 0.5 ± 1.2 –

D0 → K 0
S K 0

S 1.67 ± 0.11 ± 0.11 1.7 ± 0.4

D0 → K 0
S K 0

S K 0
S 7.21 ± 0.33 ± 0.44 9.1 ± 1.3

The maximum change of the reweighted detection efficiencies, 
1.0%, is taken as the systematic uncertainty in MC modeling.

Adding all of above systematic uncertainties in quadrature, we 
obtain the total systematic uncertainties of 4.7%, 4.4%, 6.8% and 
6.1% for D+ → K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ , D0 → K 0
S K 0

S and D0 →
K 0

S K 0
S K 0

S , respectively.

6. Summary

In summary, by analyzing 2.93 fb−1 of data collected at 
√

s =
3.773 GeV with the BESIII detector, we measure the branching frac-
tions for the hadronic decays D+ → K 0

S K 0
S K + , D+ → K 0

S K 0
Sπ

+ , 
D0 → K 0

S K 0
S and D0 → K 0

S K 0
S K 0

S using a single-tag method. Ta-
ble 4 presents the comparisons of the measured branching frac-
tions with the PDG values [1]. The branching fraction for D+ →
K 0

S K 0
Sπ

+ is measured for the first time and the others are consis-
tent with previous measurements, but with much improved pre-
cision. We also determine the branching fraction ratios B(D+ →
K 0

S K 0
S K +)/B(D+ → K 0

S K 0
Sπ

+) = 0.941 ± 0.025stat. ± 0.040sys. and 
B(D0 → K 0

S K 0
S )/B(D0 → K 0

S K 0
S K 0

S ) = 0.232 ± 0.019stat. ± 0.016sys. , 
in which the systematic uncertainties in the D+D− (or D0 D̄0) 
cross section, the integrated luminosity of data, as well as the 
reconstruction efficiencies and the branching fractions of the two 
K 0

S mesons cancel. The results in this analysis provide helpful ex-
perimental data to probe for the interplay between the weak and 
strong interactions in charmed meson decay [2–5]. In addition, the 
measured branching fraction for the two-body decay D0 → K 0

S K 0
S

can also help to understand SU(3)-flavor symmetry breaking effects 
in D meson decays [6–10].
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