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1 Abstract

Purpose Extracting information from Electronic Medical Record is a time-consuming and expen-
sive process when done manually. Rule-based and machine learning techniques are two approaches
to solving this problem. In this study, we trained a machine learning model on pathology re-
ports to extract pertinent tumor characteristics, which enabled us to create a large database of
attribute searchable pathology reports. This database can be used to identify cohorts of patients
with characteristics of interest.

Methods We collected a total of 91,505 breast pathology reports from three Partners hospitals:
Massachusetts General Hospital (MGH), Brigham and Womens Hospital (BWH), and Newton-
Wellesley Hospital (NWH), covering the period from 1978 to 2016. We trained our system with
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annotations from two datasets, consisting of 6,295 and 10,841 manually annotated reports. The
system extracts 20 separate categories of information, including atypia types and various tumor
characteristics such as receptors. We also report a learning curve analysis to show how much
annotation our model needs to perform reasonably.

Results The model accuracy was tested on 500 reports that did not overlap with the training
set. The model achieved accuracy of 90% for correctly parsing all carcinoma and atypia categories
for a given patient. The average accuracy for individual categories was 97%. Using this classifier,
we created a database of 91,505 parsed pathology reports.

Conclusions Our learning curve analysis shows that the model can achieve reasonable results
even when trained on a few annotations. We developed a user-friendly interface to the database
that allows physicians to easily identify patients with target characteristics and export the matching
cohort. This model has the potential to reduce the effort required for analyzing large amounts of
data from medical records, and to minimize the cost and time required to glean scientific insight
from this data.

2 Introduction

Pathology reports, individually and in the aggregate, contain immense quantities of information
critical to cancer research. Unfortunately, the majority of this information is present as free text,
locking the data away from all but the most tenacious researcher. It is extremely difficult to
parse out useful data from the free text without significant work by human beings. Therefore,
when studies are undertaken, they involve a step of manually extracting relevant information from
free-text reports and coding it into structured data.

This makes large-scale studies prohibitively expensive as they require well-educated and trained
individuals, often at the MD level, to participate in data preparation. Automating this process
would not only reduce costs, but would also enable the research community to apply big data
analysis methods to clinical research and population based patient care.

Natural language processing (NLP) is a computerized approach for extracting the meaning within
free-text, translating prose into a structured database that contains information of interest. There
are basically two approaches to NLP, a rules based approach, where words and phrases within free-
text are mapped to categories, and a machine learning approach, where a training set of annotated
reports are provided to a computer which learns how to identify desired categories.

Rule-based NLP techniques have been applied to breast pathology reports with varying results.
For instance, Buckley et al[1] designed a set of rules for mapping pathology reports to values
of extracted fields. The manual efforts involved in designing such rules turned out to be labor

2

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/079913doi: bioRxiv preprint first posted online Oct. 10, 2016; 

http://dx.doi.org/10.1101/079913
http://creativecommons.org/licenses/by/4.0/


intensive and not easily extended to other organs or disease processes. For instance, [1] showed that
invasive ductal carcinoma (IDC) had been stated in 124 different ways in their corpus of pathology
reports. Similar findings have been reported by others who employed rule-based approaches for the
task [1, 11, 5, 2, 8, 6].

An alternative approach to text processing is to employ machine learning techniques. Instead of
using manually specified rules, these approaches learn extraction patterns from pairs of pathology
reports with associated values. Typically, the accuracy of these algorithms depends on the size of
available annotations. However, in the case of pathology reports, such annotations are commonly
readily available from previous clinical studies, and can be re-purposed. A number of researchers
employed these techniques for parsing breast pathology reports [4, 3, 7, 12]. Unfortunately, the
reported results have been unsatisfactory. For instance, a recent paper [12] achieved accuracy of
12.6%.

In this study, we apply a modern machine learning technique with a large annotated training
set to automatically parse free-text pathology reports into structured data. In contrast to prior
approaches, our model achieves excellent performance with 90% per report accuracy and 97% per
category accuracy, and requires only a few development days.

3 Methods

Pathology Reports With the approval of the Partners Institutional Review Board (IRB), we
collected a total of 102,907 breast pathology reports from three Partners hospitals: Massachusetts
General Hospital (MGH), Brigham and Women’s Hospital (BWH), and Newton-Wellesley Hospital
(NWH), covering the period from 1978 to 2016. The pathology reports in the three Partners
institutions do not follow the same structure and exhibit marked differences in verbalizations.

Using the College of American Pathologists’ (CAP) synoptic reporting system as a starting point,
we identified 20 categories of information that were known to be useful in categorizing breast disease
and breast cancer (shown in Table 2).

The work-flow for processing these reports was as follows: First, all reports were automatically
anonymized, stripping dates, medical record numbers, and patient names from the free-text of each
pathology report as shown in the left-hand side of Figure 2. Second, 11,402 non-breast pathology
reports were identified and excluded, leaving 91,505 reports breast pathology reports. Third, reports
of bilateral breast cases were split into two reports and parsed into two records in the database
(one right and one left). This resulted in a database with 108,114 rows.

Machine learning requires an annotated dataset where free-text reports have been annotated for
the correct value of each category. We aggregated the annotations in our dataset from two sources
(both of which covered subsets of the records in the above mentioned database):
1) The dataset used by Buckley et al [1] which included annotations for a nonrandom sample of

3

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/079913doi: bioRxiv preprint first posted online Oct. 10, 2016; 

http://dx.doi.org/10.1101/079913
http://creativecommons.org/licenses/by/4.0/


6,295 reports over 3,313 patients annotated for various types of carcinoma and atypia.
2) The Breast Cancer Database (BCD) Partners IRB: 1999P009256 which includes annotations for
10,841 reports over 5,268 patients about typical tumor characteristics (categories) such as estro-
gen receptor (ER), progesterone receptor (PR) and HER2 status as well as carcinomas and atypias.

There was some overlap in the categories covered in the two sources and different categories had
widely varying amounts of annotation. For example, the Isolated Tumor Cells (ITC) category has
1,143 annotations from only the BCD, and the Ductal Carcinoma In Situ (DCIS) category had
16,550 annotations, which come from a combination of both sources. Table 2 shows the full list of
categories, how much annotation was available per category, and their respective sources.

For each category, we split out our annotated dataset into a training set and a test set. The
training set was the set of reports and respective annotations that we gave to our machine learning
model to learn from. The test set was the held-out set of reports and annotations that we used
to evaluate our model’s predictions. We note that the train/test sets for all 20 categories were
independent, and there was a separate training set and test set for each category. In general, we
used 500 annotations for our test set, with the exception of the Extra Capsular Extension (ECE),
and ITC categories, for which we used 203 and 171 held out annotations. This was done because
we had relatively little annotation for those categories (1,354 and 1,153 respectively), and so we
used 15% of available annotations as testing sets instead of 500 as in other data-rich categories.

Machine Learning Method The training set was then used to train our classifier using boost-
ing classification, where a strong non-linear classification was achieved by combining weak learners,
such as decision stumps [10]. We represented each pathology report using standard n-gram repre-
sentation, where the text was a vector capturing words and phrases that appeared in the document.
During training, the model learned the weights of each phrase. We trained the classifier separately
for each one of 20 categories.

Evaluation Methodology For evaluation, we compared our models predictions with the anno-
tations of our held-out test set.

We calculated Accuracy, Precision, Recall (Sensitivity), and F1 score for the possible values of each
category (e.g. Positive, Negative or Not available). Accuracy was defined as the portion of times
the models prediction agreed with the annotations. Precision was defined as the True Positive rate
(what portion of the positives we predicted were correct). Recall was defined as the proportion of
all true positives our model captured. F1-score was the harmonic mean of Precision and Recall.
F1-score ranged from 0 to 1, where 1 was perfect performance. To achieve a high F1-score our model
had to both predict positives very accurately (Precision) and miss very few positives (Recall).

In addition to per-category analysis, we reported ”all-or-nothing” report-level accuracy for the
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major categories of carcinoma and atypia, all of which can either be Present or Absent. For our
model to be correct in ”all-or-nothing” evaluation, it had to predict all categories of carcinoma and
atypia correctly.

Comparison with Rule-Based Approach To compare with the previously reported rules
based approach [1], we manually examined reports where our models disagreed. We randomly
selected 15 reports for each of the 9 shared categories, resulting in 135 reports overall. The list of
shared categories can be seen in Table 2.

Learning curve analysis We also performed a Learning Curve analysis, where we plotted the
performance of the system, measured in aggregate F-score over the cancer and atypia categories,
as we varied the amount of annotation from 10 examples to 5,500 examples. This type of analysis
lets us analyze how much annotation our model needed to start achieving reasonable performance.

Creating Database After training our model, we applied it to the full set of 108,114 free-text
preprocessed reports to predict the values of all 20 categories. To make this accessible, we have
made this resource available to other researchers through an internal web-interface, as shown in
Figure 1, which was accessible with IRB approval.

In addition to report-based retrieval, we also enabled the users to perform episode-based search.
In managing breast patients, it was not unusual to have multiple pathology reports relating to
a single episode of care as we previously described [1]. An episode of care included all pathology
reports for a single side within a six-month period. For example, a patient might have a core biopsy
showing atypical ductal hyperplasia (ADH), followed by an excision showing ductal carcinoma in
situ (DCIS), followed by a lumpectomy showing invasive ductal carcinoma (IDC). This information
would be consolidated into a single episode showing that the patient at that time had ADH, DCIS
and IDC.

4 Results

An example of system input and output is shown in Figure 2. We evaluated our performance by
comparing our model’s predictions on a held out set of 500 pathology reports for each category
against their corresponding MD annotations.

Data statistics The average length of a pathology report after preprocessing was 354 words,
with the shortest being 17 words and the longest being 2,428 words. Statistics on pathology report
lengths broken out by Institution can be seen in Table 1.
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Per category performance Table 3 displays extraction accuracy, precision, recall and F-score
for all possible values of all 20 categories. Table 4 shows the aggregate accuracy and F-score for
each category. The latter table shows that 19 out of 20 categories have F-scores greater than .90.
The remaining category has an F-score of 0.88. All categories had an accuracy over 90%, and 16
categories had an accuracy over 95% on our test set. Our model had an average category F-score
of 0.96 and an average category accuracy of 97%.

We note that the model predicted carcinomas with an F-score 0.94 and an accuracy of 94%. Our
model predicted the atypias with an F-score of 0.91 and an accuracy of 91%.

Per report Performance We also computed the “all-or-nothing” report-level accuracy where
the system must correctly extract all the information about atypias and carcinomas from a given
report to be correct. In this evaluation, the system achieved 90%. Since this evaluation required
correct prediction across multiple categories at once, the performance was lower than per-category
accuracy. However, it was still sufficiently high to be used in practical setting.

Comparison with rule-based approach To compare to the rule-based model presented in [1],
we selected 135 random reports where the rule-based model and our model disagreed, 15 from each
of the 9 shared categories. We manually compared the 135 disagreements and observed that our
model was correct 52% of the time, showing our model performed as well as the previous work
while requiring much less manual effort.

Learning curve analysis Our next question concerned the amount of annotations required for
achieving satisfactory performance. This was a pertinent question because of the cost associated
with obtaining a large corpus of manual annotations. Figure 3 shows the average F1 score as we
varied the training set size from 10 annotations per category to 5,500. With only 400 annotations,
the model achieved an average category F-score of 0.90. This result shows the promise of using this
approach in annotation-lean scenarios.

Output Using 91,505 pathology reports for 49,717 patients, we created a database having 108,114
rows (records) which could be consolidated to 73,542 episodes of care. An example of system input
and output is shown in Figure 2.

5 Discussion

Our results demonstrate that machine-learning system can accurately parse breast pathology re-
ports rivaling the performance of a carefully engineered rule-based system [1]. Our approach saves
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significant manual effort involved in manual engineering employed by the rule-based approaches.
As stated by Buckley et al[1] :

“We have been struck by the inherent complexity of using NLP in medical care. The
time and effort required to use NLP for a single, well-defined problem should give pause
to the idea that having data in any electronic format, even free text, will help us improve
medical care.”

At the same time, we show significant improvement over previous machine learning approaches. Of
these approaches, Wieneke et al [12] is the closest to our work. Their extraction scheme has a large
overlap with our categories, including features such as Ductal Carcinoma in Situ (DCIS), Lobular
Carcinoma in Situ (LICS), and Atypical Lobular Hyperplasia (ALH), and they rely on a medium-
sized training set of 3,234. However, their model achieves low performance for most categories,
with an F-Score of 0 for DCIS, LCIS, and ALH. Other researchers report improved performance
on different annotation schemes e.g. 0.65 [3], 0.82 [7] and 0.85 [9].

In this paper, we demonstrate that machine learning techniques can accurately parse pathology
reports reaching an F-score of 0.96, without daunting manual effort. We hypothesize that the
success of our method can be attributed to the learning algorithm and the quality of the annotated
data. The boosting learners are known to achieve top performance on the classification tasks, and
can robustly handle the noise in the training data. The annotations used for our algorithm contain
a large representative sample of diverse pathology reports from three different hospitals, and are
carefully annotated by trained professionals.

To make our system results usable in a clinical setting, we have compiled parsed pathology reports
into a database with a user-friendly interface, as shown in Figure 1. This interface can be used by
researchers with appropriate IRB approval to identify cohorts of patients determined by specific
combinations of categories. These cohorts can be identified as single records or as episodes of care,
which is defined as a consolidated record that contains all pathology categories found within a six
month period on the same side (left or right) [1]. For example, a researcher looking for pure DCIS
cases would want to search by episode of care, not by specific report. Once a cohort is identified, all
pathology reports in the database for each individual in the cohort can be retrieved. This provides
a quick way to analyze prior diseases for each patient (which might exclude the patient from a
study) or subsequent diagnoses (potentially an endpoint of a study). For example, a researcher can
see the risk of subsequent cancer in patients with high risk lesions while excluding patients with
prior cancers or can see the rate of in-breast or contralateral disease, giving a first pass at the long
term clinical course. Obviously patients change health care systems regularly, so while this first
pass will not give comprehensive follow up information, it will provide a valuable start in gathering
the data for the research endeavor.

The cohort and all pathology reports over time are made available to the researcher, who must
then review the records for accuracy, since we did not achieve an F-score of 1. As each record is
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reviewed and edited, the corrected records are returned and added to the training set, which is
used to further enhance the algorithm. Over time, we expect that as multiple records are corrected
and used for retraining of the algorithm, we will asymptotically approach an F-score of 1.

We are also exploring the possibility of making this system publicly available, allowing the uploading
of de-identified pathology reports from other institutions to be parsed by our algorithm. While we
expect F-scores to be lower as reports from different institutions may have different formats or
linguistic creations, we also expect that this will improve over time. It should also be noted that
the machine learning approach described here can be applied to any language with annotated
reports, as the algorithm looks for patterns as they relate to annotations, not at actual words or
phrases. We are currently exploring this approach for non-English reports.

We recognize that our system has a number of limitations. Our algorithm is not 100% accurate
and thus requires post-processing before use for clinical care or research. Compared to the absence
of this data for large-scale studies or clinical care, we feel this is acceptable, but at the same we
are developing workflows that we anticipate will markedly increase our accuracy. We also recognize
that our algorithm might not be immediately applicable to other institutions. We are addressing
this by possibly opening our system for general use, where annotated reports and corrections
will strengthen our system for all institutions. As we parse annotated data from more and more
institutions, we expect our algorithm will learn to be more generalizable, as there is some basic
similarity of breast pathology reports and a limit to how creative pathologists can be in describing
the same disease scenario.

6 Conclusion

We have developed a robust system for NLP of breast pathology reports that we anticipate will
become more accurate and useful over time. We are hopeful that this system will be useful for
research and clinical care at our institution and potentially at multiple institutions. We are also
hopeful that this approach can be extrapolated to other free-text medical reports, hopefully sal-
vaging at least some of the massive amounts of information locked in the free-text of the electronic
health records.
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Institution Avg Length (words) Range Num Reports Num Patients

MGH 364 2409 60713 25921
BWH 342 2286 41776 19527
NWH 331 1482 5625 4251

Overall 354 2411 108114 49717

Table 1: Statistics on pathology reports broken out by institution, after preprocessing

Category Value Accur Prec Recall F-
Score

Breast side Right 1.0 1.0 1.0 1.0
Breast side Left 1.0 1.0 1.0 1.0
DCIS Present .99 .93 .84 .88
DCIS Absent .99 .99 1.0 .99
ILC Present .99 .5 .66 .57
ILC Absent .99 1.0 1.0 1.0
IDC Present 1.0 1.0 .86 .92
IDC Absent 1.0 1.0 1.0 1.0
Carcinoma Present .94 .94 .94 .94
Carcinoma Absent .94 .94 .94 .94
LCIS Present .98 .93 .96 .94
LCIS Absent .98 .99 .99 .99
ADH Present .90 .84 .89 .87
ADH Absent .90 .94 .91 .92
ALH Present .98 .95 .93 .94
ALH Absent .98 .98 .99 .98
Lobular Neoplasia Present .97 .91 .92 .92
Lobular Neoplasia Absent .97 .99 .98 .98
Flat Epithelial
Atypia

Present 1.0 .95 .95 .95

Flat Epithelial
Atypia

Absent 1.0 1.0 1.0 1.0

Blunt Adenosis Present 1.0 1.0 1.0 1.0
Blunt Adenosis Absent 1.0 1.0 1.0 1.0
Atypia Present .91 .85 .85 .85
Atypia Absent .91 .93 .94 .94
Positive LN Present .98 .97 .93 .95
Positive LN Absent .98 .98 .99 .99
ECE Present .97 .97 .96 .97
ECE Absent .97 .96 .97 .96
ITC in LN Present 0.96 .98 .89 .93
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ITC in LN Absent 0.96 .95 .99 .97

LVI

Present .98 .97 .89 .93
Absent .88 .93 .89 .91
Unknown .90 .64 .81 .71

BVI

Present .99 1.0 .4 .57
Absent .90 .94 .93 .93
Unknown .91 .82 .86 .84

ER Status

Positive .97 .97 .98 .98
Negative .99 .99 .92 .95
Unknown .97 .89 .91 .90

PR Status

Positive .96 .98 .96 .97
Negative .97 .95 .94 .94
Unknown .97 .85 .95 .90

HER 2 Status

Positive .97 .96 .80 .87
Negative .95 .96 .95 .95
Unknown .96 .88 .98 .93

Table 3: This tables shows Accuracy, Precision, Recall and F-Score
for each value of each category. All these results come from com-
paring the predictions of our model to MD annotations on a held-
out test set of 500 reports. We note that for ECE, and ITC, we
present evaluate our on 203 and 171 held out reports respectively,
instead of 500, because we have relatively few annotations for those
categories.
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Figure 1: A screenshot of the searchable database we built on the results of our system. Users can
query for any combination of diagnoses and export the resulting database
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Category Source # of MD-annotated examples Examples

Breast Side Buckley 6295

Ductal Carcinoma in Situ Buckley, BCD 16550

Invasive Lobular Carcinoma Buckley, BCD 6295

Invasive Ductal Carcinoma Buckley, BCD 16550

Lobular Carcinoma in Situ Buckley, BCD 16550

Cancer Buckley, BCD 16550

Atypical Ductal Hyperplasia Buckley, BCD 11414

Atypical Lobular Hyperplasia Buckley, BCD 6295

Lobular Neoplasia Buckley 6295

Flat Epithelial Atypia Buckley 6295

Blunt Adenosis Buckley 6295

Atypia Buckley, BCD 16550

Positive Lymph Nodes BCD 1143

Extracapsular Axillary Nodal Extension BCD 1354

Isolated Tumor Cells in Lymph Nodes (ITC) BCD 1143

Lymphovascular Invasion BCD 7097

Blood Vessel Invasion BCD 7763

Estrogen Receptor Status BCD 6707

Progesterone Receptor Status BCD 6686

HER 2 (FISH) Status BCD 3601

Table 2: Source and amount of labeled examples and for each category. Buckley refers to [1], and
BCD refers to the Breast Cancer Database (Partners IRB: 1999P009256).
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Figure 2: An example of an anonymized pathology report and the extractions for that report. We
bold the text in the report relevant to our extractions for clarity.
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Category Accuracy F-score
Breast side 1.0 1.0
DCIS .99 .99
ILC .99 .99
IDC 1.0 1.0
Carcinoma .94 .94
LCIS 1.0 .98
ADH .90 .90
ALH .98 .98
Lobular Neoplasia .97 .97
Flat Epithelial
Atypia

1.0 1.0

Blunt Adenosis 1.0 1.0
Atypia .91 .91
Positive LN .98 .98
ECE .97 .97
ITC in LN .96 .96
LVI .92 .88
BVI .93 .90
ER Status .97 .96
PR Status .97 .95
HER 2 Status .96 .94
Report-Level .90 N/A
Average .97 .96

Table 4: This table shows F-score and accuracy for each category,
the average across all categories and “All-or-nothing” report-level
accuracy.
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Figure 3: The average F1-score of our model plotted against the amount of supervision, ranging
from 10 to 5,500 annotations per type of information
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