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Continuum Modeling of Projectile Impact with Dry Granular
Media

Sachith Dunatunga and Ken Kamrin

Abstract

Modeling of impact into granular substrates is a topic of growing interest over the last decade. We
present a fully continuum approach for this problem, which is shown to capture an array of experimentally
observed behavior with regard to the intruder penetration dynamics as well as the flow and stress response
of the granular media. The intruder is modeled as a stiff elastic body and the dry granular bulk is modeled
using a ‘trans-phase’ constitutive relation. This relation has an elasto-viscoplastic response with pressure-
and rate-sensitive yield behavior given by the µ(I) inertial rheology when the granular free volume is
below a critical value. Above this critical value, the material is deemed to separate and is treated
as a disconnected, stress-free medium. The Material Point Method is used to implement the impact
problem numerically. Validations are conducted against a wide set of experimental data with a common
granular material, which allows use of a single model calibration to test the agreement. In particular,
continuum simulations of projectile impact with different shaped intruders and different impact energies
show good agreement with experiments regarding of time-of-flight, penetration depth, and Poncelet drag
force coefficients. Simultaneously, good agreement with experiments is found regarding the response of
the granular media during impact, such as the pressure wave propagation process during the initial stage
of impact, the flow fields that develop under the moving intruder, and the free-surface dynamics.

1 Background
The impact of a solid intruder into a dry granular medium is a problem that has received growing attention
in recent years for its many applications (e.g. geological and astrophysical as in Melosh (1989); Furbish et al.
(2007); Housen and Holsapple (2003); Holsapple (1993); Zhao et al. (2015)). These systems, as we discuss
below, are frequently modeled using reduced-order intrusion models, which provide intruder dynamics but
do not solve for the motion of the granular domain, or grain-by-grain discrete element methods (DEM).
A broadly accurate continuum approach could be an advantageous methodology for these systems, provid-
ing details of both grain dynamics and intruder motion without the cost of DEM. Continuum treatments,
especially if they invoke a small set of parameters, could also lead to new analytical tools to shed under-
standing on the impact process. However, continuum modeling of impact comes with many theoretical and
numerical challenges. Granular materials are challenging to model as a continuum, displaying a combina-
tion of behaviors from the traditional phases of matter (gas, liquid, solid) depending on load and packing
conditions. During an impact, these phases can all appear simultaneously — zones farther from the intruder
behave as a stiff elastic material, zones surrounding the intruder undergo high levels of dense plastic flow,
and at the free surface the material becomes loose and splashes before settling into a post-impact, possibly
cratered configuration. Given a constitutive model capable of accurately representing the different phases,
to compute solutions one would also need a versatile solver able to calculate solid elastic response, extreme
plastic deformations, and large nominally stress-free volumetric expansions with accuracy. It must permit
an element of material to undergo transitions between these phases and for the granular body to undergo
topological changes as the intruder embeds and is enveloped by the grains. The contact interaction with the
intruding body brings added challenges, particularly if the intruding body cannot be considered as a rigid
or elastic solid.

Several other approaches may be considered to solve this class of problems. Traditionally, aside from
experiments (Clark, Kondic, and Behringer 2012; Clark and Behringer 2013; Clark, Petersen, and Behringer
2014; Clark et al. 2015; Clark, Kondic, and Behringer 2016), or scaling relations (Newhall and Durian 2003;
Bruyn and Walsh 2004), macroscopic force laws on the intruder motion (Allen, Mayfield, and Morrison 1957;

1



Katsuragi and Durian 2007) have been successfully used to glean insight into the impact process, even from
as early as the works of Euler and Poncelet. However, typically these methods are only able to capture
specific phenomena, such as trajectories and forces on the intruder, and reveal little about other aspects of
the system (e.g. flow fields in the granular bulk).

The discrete element method (DEM), first described in Cundall and Strack (1979), is regarded as one of
the most accurate computational tools available for granular systems. DEM achieves this level of accuracy by
solving the classical equations of motion on each grain individually; unfortunately, this results in untenable
computational expense for problems involving large time spans or with high numbers of grains. A distinct
advantage of DEM for simulation of impact of solid intruders is that it can account for the intruding bodies
in an “automatic” manner – that is, the intruder can simply be considered as a rather large grain with certain
material properties and the method itself can remain the same. However, liquid intruders, or those with
more complicated constitutive models, may prove difficult in DEM. Despite this, DEM is readily used to
model granular impact, as was done in Kondic et al. (2012), and can serve essentially as a tightly controlled
experiment, given that the total number of grains remains small enough compared to the computational
power and time available. In order to solve problems involving many grains or a long time-scale, it is
therefore worth investigating if a unified continuum approach can be used to model the entirety of the
granular impact process.

Regarding continuum approaches, many constitutive models have been used to various degrees of success
in modeling the behavior of granular materials. While the rate-independent Drucker-Prager and Mohr-
Coulomb models are generally successful in predicting the onset of plastic deformation, more recent rhe-
ological models such as the µ(I) relation in da Cruz et al. (2005) (extended to 3D in Jop, Forterre, and
Pouliquen (2006)) and the nonlocal granular fluidity model (an extension of Jop, Forterre, and Pouliquen
(2006)) in Kamrin and Koval (2012) are more accurate in solving problems with zones of dense, rapid flow,
where rate-sensitivity and particle size effects can play a stronger role. Although at first glance granular
impact may appear to be a highly transient event, recent work from Clark, Kondic, and Behringer (2016)
shows that the flow of the granular bulk directly underneath the intruder is well-captured by a dynamic
steady-state profile, in which the flow field is self-similar in time and scales linearly with the instantaneous
intruder velocity for a majority of the impact process. This suggests that rheological models arising from
quasi-steady-state assumptions, such as µ(I), should in fact be able to replicate the intruder dynamics from
these events. Furthermore, if rate-sensitivity is not a large factor here, µ(I) reduces to a rate-independent
model with a Drucker-Prager failure criterion and non-associated flow rule, and it is possible this even simpler
model could capture a majority of the intruder dynamics well compared to the full µ(I) relation.

In addition to the constitutive model, the equations of motion must be solved, and various methods have
been proposed, with the division typically between solid methods (largely finite-element derived methods)
and fluid methods (various, but largely finite-volume derived methods). While both sets of methods are
successful in their respective regimes (e.g. implementation of the µ(I) rheology in the Navier-Stokes solver
Gerris for dense, flowing systems as in Lagrée, Staron, and Popinet (2011); Staron, Lagrée, and Popinet
(2012); Staron, Lagrée, and Popinet (2014)), unified modeling of the various granular phases under a single
method is difficult and still an active area of research. Granular impact is a good example where all behaviors
are present. Deep in the granular bulk the material acts largely as an elastic solid. Near the tip of the intruder
the flow is very similar to that of a yield-stress fluid. Furthermore, many grains are ejected near the free
surface, resulting in a dilute gas-like phase which may nevertheless be important if ejecta dynamics or the
post-impact surface shape and stress fields are desired. Ideally, such a continuum method would also allow
seamless use of different constitutive models for both the granular bulk and the intruding body; while in this
work we only focus on elastic solid intruders, liquid drops have shown interesting behaviors and have many
applications as well (Zhao et al. 2015).

The Material Point Method (MPM), first described in Sulsky, Chen, and Schreyer (1994), combines the
strengths of both fluids solvers and the finite element method. It allows for large inhomogeneous deformation
and topological changes while supporting elasticity, true yield functions, and complex, history-dependent
constitutive models without an interpolation or remeshing step on stress or state variables. The earlier
particle-in-cell (PIC) method (Harlow 1964) and the fluid-implicit-particle (FLIP) method (Brackbill, Kothe,
and Ruppel 1988) directly precede MPM, but were generally not applied to solid mechanical problems. In
MPM, the state of a continuous body is saved at Lagrangian material points, but the equations of motion
are solved on an ephemeral background mesh in a manner analogous to an updated Lagrangian FEM step.
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As the material points contain the entire state of the simulation, the mesh can be reset at the beginning
of each time step, allowing for large deformations to accumulate on material points without any particular
mesh deforming excessively. The ability of MPM to seamlessly allow topological changes (as the connectivity
between material points is not fixed) is of particular relevance to impact-type problems, as the bulk granular
material may both create new surfaces and merge existing ones during the impact process. These attractive
properties have allowed other practitioners to use MPM in saturated soil problems with large deformations
(Abe, Soga, and Bandara 2013; Bandara and Soga 2015), granular flow in silos (Więckowski 2003; Więckowski
2004; Więckowski and Kowalska-Kubsik 2011), granular column collapse problems (Andersen and Andersen
2009; Mast et al. 2015), and even wedge indentation in soft soils (Farias, Llano-Serna, and Nairn 2012).
However, the constitutive models used in these works typically do not handle possible tensile stress states,
and either ignore the dilute gas-like phase which results, or assume that all extensile deformation can be
subsumed as plastic dilation even as densities drop below the limit for contact connectivity.

Variants of MPM have been developed to address shortcomings of the original method, typically at the
expense of increased computation. Many of these variants involve improving the integration techniques
when obtaining coefficients for the system of equations necessary to solve the equations of motion, the first
of which was termed the Generalized Interpolation Material Point Method (GIMP) in Bardenhagen and
Kober (2004). As GIMP spreads the influence of the material point, the computational cost is inceased by a
small factor (depending on dimensionality) from that of the original formulation, but in turn can help reduce
problems present in the original form, such as cell-crossing error. Further improvements and practical forms
for extension to three dimensional problems were shown in the Convected Particle Domain Interpolation
(CPDI) method in Sadeghirad, Brannon, and Burghardt (2011) and CPDI2 in Sadeghirad, Brannon, and
Guilkey (2013), which remarkably have no extra computational cost over GIMP in one and two dimensions,
provided that the deformation gradient (or material point corner locations in CPDI2) is tracked on each
material point. Finally, the original implementation in Sulsky, Chen, and Schreyer (1994) only allows no-slip
contact between separate bodies; contact algorithms have been developed to address this shortcoming, such
as that of Bardenhagen et al. (2001) and Huang et al. (2011). Although experimental evidence and the
collisional model in Clark, Petersen, and Behringer (2014) suggest that the value of surface friction between
the intruder and the bulk granular medium is largely unimportant, using an improved contact algorithm
allows us to vary this parameter, or even simulate entirely frictionless contact between the intruder and the
bulk.

The current work builds upon the constitutive/numerical approach in Dunatunga and Kamrin (2015) to
show that dry granular impact processes can be well-represented with a single, unified granular continuum
model. The results also serve as the first comprehensive validation of this ‘trans-phase’ modeling framework,
which had previously only been tested for individual scalings (e.g. chute flow shows the Bagnold profile,
silos show Beverloo scaling, etc.). The experiments that we compare against all utilize the same granular
media, which reduces fitting to provide a more stringent test of the modeling. Even though the impact
process spans dynamic and static behaviors, the continuum model is shown to work in a variety of impact
conditions, and many relevant aspects of the problem can be extracted from a single simulation once the
appropriate material constants are known. Specifically, we show that penetration depths and times are
reproduced for many intruder shapes and energies, as are the Poncelet-type drag-force functions often used
to model intruder dynamics. The granular flow under the intruder is also in agreement with experiments,
confirming the presence of a steady-state normalized velocity profile. Thanks to the experiments in Clark
et al. (2015), we are also able to validate the model’s elastodynamic predictions, comparing against data
for force propagation during the initial stage of impact. Additionally, the deformation and spallation of
the free-surface is qualitatively well-matched with discrete element simulations. To implement the impact
simulations numerically, we enhance our previous MPM procedure to permit higher-order accuracy in the
spatial integration and to allow multi-body frictional contact between separate continuous bodies.

2 Theory
The constitutive framework is related to the model introduced in Dunatunga and Kamrin (2015). Through-
out, we use the notation for continuum mechanics defined in Gurtin, Fried, and Anand (2010). The spatial
gradient and spatial divergence operators are given by grad and div respectively, while material time deriva-

3



tives are represented by an overdot. The transpose of a tensor A is given by AT , the trace by trA, and the
deviator by A0 = A− 1

3 (trA)I in 3D.
The equation for momentum balance is

divT + ρb = ρv̇, (1)

where the Cauchy stress is denoted by T, ρ is the density, b is the specific body force, and v̇ is the material
rate of change of the velocity. The spatial velocity gradient, spin, and stretching tensors are defined as

L = gradv, W =
1

2
(L− LT ), D =

1

2
(L + LT ), (2)

and, by mass balance, the density evolution obeys

ρ̇ = −ρ trL (3)

assuming the motion is smooth (e.g. we are not inside a shock).
From the stress tensor, we define the equivalent shear stress, pressure, and Drucker-Prager stress ratio,

respectively, by

τ̄ =

√
1

2
(T0 : T0), p = −1

3
trT, µ = τ̄ /p (4)

where : denotes the tensorial contraction (defined for tensors A and B as A : B =
∑
i

∑
j AijBij). Note

that the model itself is expressed as a three-dimensional relation; however, the examples shown in this work
reduce to the plane-strain case, where Dzz = 0 but Tzz 6= 0 in general.

The constitutive relation takes the form of an elasto-viscoplastic relation with pressure-sensitive plastic
flow rule, extended to allow transitions to and from a gas-like ‘open’ material state. Our model employs a
hypoelastic-plastic framework. The usual procedure for a hypoelastic-plastic model is to perform an additive
decomposition of the velocity gradient into elastic and plastic parts, L = Le + Lp. These elastic and plastic
velocity gradients are further decomposed into stretching (De and Dp) and spin (We and Wp) tensors.
Unlike the alternative hyperelastic-plastic framework, hypoelastic-plastic models are not derived from an
energy potential. However, they avoid reliance on tracking the deformation gradient tensor F, which may
become ill-behaved when large, inhomogeneous deformations are applied, as are commonplace in granular
flows. Moreover, because the grains themselves are stiff, granular elasticity invokes small elastic stretches,
which tends to reduce the issues that may arise in hypoelastic models.

During dense flow, we assume a flow rule of the formDp = D̂p(T). In the common case of codirectionality
(the deviator of the Cauchy stress and the deviator of the plastic stretching are in the same direction) and
isochoric (volume-preserving) plastic deformation, we can further write the flow rule as

D̂p(T) = ˙̄γp(T)
T0

2τ̄
, (5)

where ˙̄γp is the equivalent plastic shear strain rate. In dense granular flow, codirectionality is approximately
satisfied; see DEM simulations of stiff grains by da Cruz et al. (2005); Silbert et al. (2001); Koval et al.
(2009). The isochoric assumption is reasonable when the critical state of constant-volume flow is rapidly
approached, which is the case, relatively speaking, in problems with high strains and rates. Even so, the
packing fraction of dense (non-collisional) granular flows rarely varies by more than a few percent. With
these simplifications, the problem reduces to determining ˙̄γp given a stress state T.

For the function ˙̄γp(T) we adopt the ‘µ(I) rheology’ presented in da Cruz et al. (2005); Jop, Forterre, and
Pouliquen (2006). The model is essentially a pressure- and rate-sensitive plasticity relation which relates the

stress ratio µ to the inertial number defined by I = ˙̄γp
√

d2ρs
p . The relation is commonly fit to the functional

form

µ = µ(I) = µs +
µ2 − µs
I0/I + 1

if I > 0, and µ ≤ µs if I = 0, (6)
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where I0 is a material constant, ρs is the density of solid particles, and d is the mean particle size. We can
rewrite this equally as a relation for the flow stress:

τ̄ = τ̄(p, ˙̄γp) = p

(
µs +

µ2 − µs
I0/ ˙̄γp

√
d2ρs/p+ 1

)
if ˙̄γp > 0, and τ̄ ≤ pµs if ˙̄γp = 0. (7)

Inspection of this form when considering ˙̄γp shows that no plastic flow can occur if µ < µs, and therefore µs
is considered a static friction coefficient. The parameter µ2 serves as an upper limit on the stress-ratio during
flow. As plastic transients are neglected (due to the assumption that the expected total shear deformation is
large compared to the shear required to reach a “critical state”), our plasticity model is defined solely through
equations 5 and 6.

We use an equation of state for the pressure wherein the pressure below a critical density is taken to be
zero. Above the critical density we assume a constant bulk modulus. The critical density is set to be the
density when volumetric strain is zero. We can write this concisely as

K(ρ) =

{
0 if ρ < ρc

Kc if ρ ≥ ρc.
(8)

Here Kc is a constant bulk modulus of dense media (that is, the granular assembly taken as a whole).
Physically speaking, we view ρc as the density at which the grains are just barely in contact with each
other, with vanishingly small force at each contact. Volumetrically expanding a particle system at ρc renders
the grains separated and disconnected ; hence the pressure is zero. Compressing a system at ρc increases
the relative displacements of the contacting particles and likewise increases the contact forces; hence the
pressure increases with increasing compression, or equivalently, increasing density. The transition from a
dense granular state to the disconnected state can be reconciled as a transition to a low-temperature granular
gas (Dunatunga and Kamrin 2015).

Since we use a hypoelastic-plastic model, we must choose an objective rate for the stress evolution
equation; we use the Jaumann (corotational) rate, which is given by

4
T ≡ Ṫ−WT + TW. (9)

The elasticity is then written as a relation between the elastic stretching De = D−Dp and the stress-rate,
given by

4
T = C : De ≡ 2G(D0 −Dp

0) +K tr(D−Dp)I (10)

where the fourth-order elastic stiffness tensor, C, is given by C = 2GI + (K − 2G/3)I ⊗ I, where I is the
fourth-order identity tensor and the bulk and shear moduli are given by K and G respectively. We also make
reference to the Young’s modulus, which is given by E = 9KG/(3K + G), and the Poisson ratio, given by
ν = (3K − 2G)/(6K + 2G).

As the material has no stress when in tension and remains essentially stress-free (with the exception of
negligible kinetic stresses) until the density returns to the critical value, we call the dilute phase disconnected.
When the material is at a density higher than the critical density, the grains are in compression (implying a
positive pressure), so we can use the µ(I) rheology and elasticity to compute the stress state, and we term
this the dense phase. The material response can be expressed universally by

4
T = C(ρ) : (D− D̂p(T)), (11)

where C(ρ) is given by combining eqs. (8) and (10) and D̂p is obtained from eqs. (5) and (7). We refer to the
above model as a trans-phase constitutive relation — it reduces to solid elasticity when ρ ≥ ρc and µ < µc,
it gives fluid-like plastic flow when ρ ≥ ρc and µ ≥ µc, and it gives a gas-like disconnected granular behavior
when ρ < ρc. Although here we only consider an elastic response that is linear, data from Clark et al. (2015),
to which we will compare our model later, show some evidence of nonlinear elastic behavior in their material
composed of discs. This would go beyond the nominally linear response obtained from Hertzian interactions
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Project (To Nodes) Move Nodes (FEM) Project (To Material Points)

Figure 1: A single MPM step. First material point data (blue circles) is projected onto a background
mesh (red squares). An explicit finite element step is then run to obtain the background mesh deformation.
Finally, these deformations are projected onto the material points, which then update their states (such as
position and stress), and the mesh is reset for the next time step. We stress that the points drawn represent
material points of the continuum; they are not individual grains.

of contacting disks. If deemed necessary, nonlinear elasticity could be incorporated in our model through
the choice of the C(ρ) relation above ρc, in order to incorporate the desired dependence of the bulk modulus
on density. A nonlinear elastic model might be more essential in materials composed of spheres rather than
disks, where Hertzian contact has a nonlinear power law.

3 Method
The material point method is used for the underlying numerical method, which solves the equations of
motion and provides the velocity gradient for the constitutive model. In MPM the stress, momentum,
and mass are stored and updated on a set of Lagrangian material points. One time-step of MPM updates
the positions of the materials points and the quantities stored on them. To do so, each step the method
introduces a background finite-element mesh; herein we exclusively use a cartesian mesh of linear elements.
The physical quantities stored on the material points are projected onto the nodes of the mesh and then a
single finite-element step is conducted, which uses momentum balance and constitutive information to move
the mesh and update the nodal quantities. The finite-element solution is projected from the mesh back onto
the material points, giving the points new positions and updated values for the physical quantities stored on
them. This marks the end of the procedure for one time-step. Note that the distorted finite-element mesh is
never referred to again as the next step begins anew with an undistorted mesh. In so doing, issues of large
mesh distortion do not arise in MPM even though large strains may be occurring on the material points.
See fig. 1 for a flow chart of the MPM update procedure.

3.1 Integration
To maintain accuracy and manage computational expense in the impact simulations, we use an augmentation
to the original version of the material point method by Sulsky, Chen, and Schreyer (1994). The original
method makes use of a delta function idealization of particle influence during integration. This assumption is
computationally efficient as integrals are then simply single function evaluations, however undesirable effects
such as cell-crossing error can appear in this formulation. Fundamentally, these effects stem from neglecting
the spatial extent of the material point influence when performing the integration. However, in practice, we
find that many of these effects are mitigated or diminished by a sufficiently small time step. In Dunatunga
and Kamrin (2015), the problems investigated did not require high levels of geometric refinement; however,
with the current set of simulations, geometry plays a crucial role in our investigations, and we need to ensure
that this geometry is correctly captured. Using a similar Courant–Friedrichs–Lewy (CFL) number (which
gives a necessary condition for stability on the time step size given the elastic wave speed) as in the previous
simulations would have resulted in large computational expense, as relatively speaking more particles and
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elements are present than in prior work. Addressing the integration issue allows us to increase the CFL
number relative to that which is stable for the simpler delta function formulation, overall resulting in less
computational expense.

As an example, for first order elements in one dimension, we have shape functions and gradients given
by

Si(x) = max

[
0, (1− 1

∆x
|xi − x|)

]
(12)

∇Si(x) =

{
1

∆x sgn (xi − x) if |xi − x| ≤ ∆x

0 otherwise
(13)

respectively, where xi is the position of the node and ∆x is the grid spacing (higher dimensional shape
functions can be generated from products of the one dimensional functions). Using the delta function
approximation, the elements of the sparse mapping matrices used to project to and from the nodes to the
material points, are

Sip = Si(xp), ∇Sip = ∇Si(xp), (14)

where xp is the position of the material point. However, particularly for the estimation of the gradient,
there are issues with the delta function idealization, mainly near element boundaries – in one dimension, we
can see that the gradient is constant, up until the point where the material point crosses the node. Then,
the sign of the gradient switches abruptly; if we consider that particle stresses are mapped to nodal forces
through this gradient operator, we see that this results in the force rapidly changing sign as a material point
crosses a node, which can lead to nonphysical artifacts.

It is this cell-crossing error which can be largely mitigated through considering the spatial extent of the
material point when computing the gradient. Later MPM variants such as the Generalized Interpolation
Material Point Method (GIMP) from Bardenhagen and Kober (2004) and Convected Particle Domain In-
terpolation (CPDI) from Sadeghirad, Brannon, and Burghardt (2011) are capable of performing a more
accurate integration by reconsidering the numerical extent of the material point (in the case of GIMP, via
choosing the appropriate particle characteristic functions). It is important to distinguish the numerical and
physical extents of the material points; these methods concern only the numerical extent. For details on this
distinction, we refer to Sadeghirad, Brannon, and Guilkey (2013). The numerical extent is used to spread
the influence of material points and to obtain better estimates, in particular for the gradients, over the delta
function formulation. This is done by sampling the shape function at multiple points instead of analytically
differentiating the piecewise function (and later assuming the derivative is constant instead of examining each
section separately). The physical extent is the actual material subdomain that a material point is supposed
to represent. It may have a complex, difficult-to-integrate shape (we do not track this shape entirely, only
its scalar volume). In one dimension, CPDI improves accuracy by evaluating the shape function at the left
and right corners of the particle numerical domain and dividing by the particle size to estimate the gradient
(this ensures that the gradient approaches zero as the material point approaches nodes, allowing a smooth
transition), and the approach in the cited works can be generalized to higher dimensions. That is, in one
dimension, we can write the elements of the mapping matrices as

Sip = (Si(x
L
p ) + Si(x

R
p ))/2, ∇Sip = (Si(x

R
p )− Si(xLp ))/(xRp − xLp ), (15)

where xLp and xRp are the left and right corners of the numerical extent of the material point. While this
results in a minor increase in computational cost, the improved integration increases accuracy and minimizes
cell-crossing effects.

Due to the tremendous strains which may occur in granular flows, especially in the impact/penetration/splash
problem, we wished to avoid reliance on the deformation gradient F when determining the numerical domain
of a material point’s influence. Unfortunately, the first version of CPDI uses the deformation gradient to
update the particle extent – the second version, presented in Sadeghirad, Brannon, and Guilkey (2013), does
not need to utilize F as it advects material point corners with the displacement field, however we did not
implement this version as it can suffer issues similar to Finite Element mesh tangling (e.g. when Jacobians
become singular). While we chose to retain the CPDI framework, we disabled the extent updates through
F. One may choose to let only detF change the material point numerical extent through isotropic dilation
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and contraction. However, the volume changes experienced by the granular material while in the gas phase
can be extremely large, which, if distributed isotropically, can in turn lead to non-physical effects such as
the corners of a material point becoming embedded deep inside the bulk. Instead, for the current work,
we opt to use a fixed material point extent with a predefined finite volume, analogous to uGIMP (Barden-
hagen and Kober 2004; Sadeghirad, Brannon, and Burghardt 2011). This middle-ground solution relieves
the grid-crossing error to permit lower CFL numbers, but without posing heavy-handed assumptions on
material point influence in highly expanding regions. Note that although the extent used to approximate
the integration does not change, we do update the physical volume of the material point using the density
via Eq 3. This physical volume is used to weight the approximated integrals so the appropriate quantities
(e.g. masses and forces) are correctly projected onto the grid nodes and vice-versa.

3.2 Contact
By default, the material point method allows for multiple bodies to interact only through a no-slip contact
condition. Although we are able to run simulations with this contact condition, the deformation immediately
underneath the intruder appears nonphysical, as bulk material is unable to flow around the intruder and
instead “piles up” in a single element ahead of it.

The contact algorithm presented in Huang et al. (2011) is a further refinement of the one developed in
Bardenhagen et al. (2001). A minor modification was needed as the algorithm presented is given for the
Update Stress First formulation of MPM, while we use the Update Stress Last form; simply, we do not need
to break up the algorithm into two phases (before and after the stress update step), and can instead just
run the entire contact algorithm before the stress update step. There is additional computational expense
compared to the no-slip MPM algorithm (which is achieved “for free” in the default formulation), as a
separate background grid must be created for each object and forces must be computed where separate grids
disagree on nodal velocity. However, the cost is minor unless the simulations are particularly sparse or the
contact surface is extremely large.

There is notable visual qualitative improvement when using the contact algorithm rather than default
no-slip; particularly, the pileup effect is eliminated and material is able to flow around the intruder as we
physically expect. With this algorithm, we are also able to modify the surface friction coefficient between
the bulk and intruder – in practice, we found that although no surface friction (perfect slip, µsurf = 0)
appeared qualitatively different than even a small amount of surface friction (µsurf = 0.05), increasing the
surface friction even up to the the bulk coefficient of friction, µs, did not significantly alter results further.
This is consistent with the collisional model in Clark, Petersen, and Behringer (2014). Unsurprisingly, the
perfect-slip simulations displayed greater sensitivity to the initial conditions; for this reason, we used a
surface friction of µsurf = 0.1 in all of our simulations presented, as the intruder is a relatively smooth object
but certainly has a few imperfections which preclude perfect slip.

3.3 Overview
With the exception of the improvements in the integration and contact algorithm noted above, the overall
MPM procedure takes a standard form. We still retain the use of the explicit dynamic integration due to
the phenomena of interest present in the impact process, including the propagation of stress waves, and we
continue to use the update stress last variant.

Recalling that the mapping matrices Sip and ∇Sip are no longer single point evaluations, mapping
material point quantities to nodes at the beginning of a step remains

mn
i =

∑
p

Sipmp, (mv)ni =
∑
p

Sipmpv
n
p , bni =

∑
p

Sipmpb
n
p , fni =

∑
p

−vpTn
p · ∇Sip, (16)

where mp is the (constant) particle mass, and vnp , bnp , and Tn
p are the particle velocity, specific body force,

and Cauchy stress respectively (the n superscript indicates the beginning of the step). The nodal quantities,
indexed by i, are given in order as the mass, momentum, body force, and internal forces at the beginning
of the time step. If more than one body contributes to particular nodes across meshes, those bodies are
considered in contact, so the contact algorithm needs to run on these nodes, which contributes to the nodal
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forces. The total nodal force is given by

˙(mv)
n

i = bni + fni + fcontact. (17)

Once the nodal quantities are produced, nodal momenta are calculated per body using forward Euler
integration to yield

(mv)n+1
i = (mv)ni + ∆t ˙(mv)

n

i . (18)

Likewise, since the nodal mass remains constant in a time step, the nodal acceleration and velocity respec-
tively are given by

v̇n+1
i =

˙(mv)
n

i

mi
, vn+1

i =
(mv)n+1

i

mi
. (19)

After applying boundary conditions, the nodal kinematic quantities are used to update the material point
velocity, velocity gradient, and position through

vn+1
p = vnp + ∆t

∑
i

Sipv̇
n+1
i , Ln+1

p =
∑
i

vn+1
i ⊗∇Sip, xn+1

p = xnp + ∆t
∑
i

Sipv
n+1
i . (20)

Note that since material points only contribute to small subset of nodes (and vice-versa), the sums
involved are only over a small portion of the domain (when mapping to particles) or only over a small
number of particles (when mapping to nodes). Once the velocity gradient is computed, the trans-phase
constitutive relation can be used to update the Cauchy stress at the material points (see implicit update
routine in Dunatunga and Kamrin (2015)), which then completes the step.

Prior to discussion of our results, we emphasize that this study is mainly concerned with the ability
of the numerical method and mathematical model to converge upon the multitude of results observed in
experiments; many “low-hanging fruit” are still available in both program and method optimization for the
MPM numerics. Nevertheless, we provide our metrics to establish a baseline level of performance, with the
caveat that changes may be made that can significantly reduce run time. Nonuniform mesh refinement and
nonuniform material point distributions could be used to cut down significantly on both the wall and CPU
times in these problems at the expense of additional programming complexity. Parallelization could be used
to reduce the wall time for large individual simulations; our implementation has this capability but as we
required a large number of relatively coarse simulations compared to a small handful of extremely fine ones,
using a single thread per simulation results in greater throughput. Furthermore, an implicit (dynamic) time
discretization can save tremendous amounts of computational time (Sulsky and Kaul 2004) by allowing larger
time steps to be taken. Together, these changes should result in a much faster MPM solver, but would also
require much more programmer time to implement.

4 Results

4.1 Material parameters
Common to all but the very last of the simulations, we wish to simulate the bulk properties of Vishay Precision
Group’s PS-1 material, which is used in Clark, Kondic, and Behringer (2012); Clark and Behringer (2013);
Clark, Petersen, and Behringer (2014); Clark (2014); Clark et al. (2015); Clark, Kondic, and Behringer
(2016). A single grain of this material is disc-shaped, has a density of 1.28 g cm−3, and has a Young’s
modulus of 1.28 GPa. We chose the Young’s modulus and Poisson ratio for the bulk granular media to be,
respectively, E = 20 MPa, and ν = 0.45. The values of the elastic material parameters were chosen to be
in the general range of the results of the appendix in Clark et al. (2015) and the main text of Bathurst and
Rothenburg (1988). We assume that the packing fraction Φ in the dense phase is 0.79, so ρc is given by
1.0112 g cm−3. Although in reality the material is bidisperse with diameters of 4.3 mm and 6 mm, we set
the diameter in the rate-sensitivity for the µ(I) model to be 5.0 mm. Because the constituents are discs
constrained to flow as a 2D granular assembly, our fully-3D formulation is specialized to plane-strain and
calibrated so as to match the in-plane mechanical properties of the disk media.
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For the important µs and µ2 parameters, direct measurements of these values have not been measured
for the material used. Instead, we used knowledge based on prior work for similar disk-based materials,
such as Silbert et al. (2001); Kamrin and Koval (2014), to formulate a small range of acceptable values.
We initially ran one simulation of penetration depth as a representative sample with a value chosen in this
range, and found that the results were indeed close to the experimental observations. We observed some
sensitivity to the choice of µs, but much less to the choice of µ2. We chose µs = 0.320, µ2 = 0.598, and
I0 = 0.278. No numerical fitting procedure was applied to optimize these choices; this single set of parameters
was calibrated once from a single penetration depth example and used for all of the experimental validation
tests. Although the value for µs seems somewhat low, corresponding to a friction angle of 17.75 degrees, this
is indeed consistent with DEM findings utilizing frictional disks, such as Silbert et al. (2001); Kamrin and
Koval (2014). The given material properties result in a p-wave speed of 272 m/s in the bulk as estimated
from the density and p-wave modulus (M ≡ E(1 − v)/(1 − v − 2v2)). We provide two sets of validations
of our constitutive model, corresponding to those concerning intruder dynamics and those concerning the
response of the granular bulk.

Note that even though we have used the µ(I) rheology here, it is interesting to see how closely a simple
rate-independent model (such as an elasic-perfectly plastic material with a Drucker-Prager yield criterion
and non-associated flow rule) can replicate the intruder motion, given that we observed a much stronger
dependence of the results on µs than µ2. Indeed, appendix A shows that the rate-independent model captures
the results quite well in this particular configuration, although there are small but noticeable differences at
high kinetic energies.

4.2 Intruder
We first investigate an intruder impacting a granular bulk corresponding to the experiments in Clark, Pe-
tersen, and Behringer (2014). The intruders have a range of initial kinetic energies as well as shapes. The
shapes are distinguished by the slope s of the intruder tip. We specifically compare the final depth, flight
time, and two force-related parameters relevant to the model presented in that work.

The mass of each intruder is held to a constant value of 0.219 kg. In the experimental work, the intruder
has a density corresponding to that of bronze at 8.91 g cm−3. However the thickness of the intruder is 2.2mm,
whereas the thickness of the bulk granular material is 3mm. Therefore, the average areal density per unit
length (in the out-of-plane dimension) of the intruder in our simulation is taken as 6.5 g cm−3. We did not
note a high degree of sensitivity to the elastic properties of the intruder; choosing a Young’s modulus of
40MPa and poisson ratio of 0.45 did not noticeably alter a few representative results compared to cases
where higher elastic moduli were used (up to 1GPa). To keep the stable time step size as large as possible
(and reduce the computational expense), we ran all simulations with the lowest values except when noted
otherwise.

We replicated the shapes of the intruders tested in the experimental work, with the exception of the
sharp corners; we regularized these for numerical purposes by rounding corners with a radius of 1 cm. Any
mass lost due to rounding is added onto the tail section of the intruder to keep the total mass constant. We
initially filled elements with four material points per element located at the centers of the element quadrants,
although there is some indication from Farias, Llano-Serna, and Nairn (2012) that efficiency may be increased
by choosing a different discretization for the intruder. Simulations were run on a cluster composed of Intel
Xeon E5645 processors. To maximize total throughput, we ran all simulations in single-threaded mode, which
were managed through the use of GNU parallel from Tange (2011). When the cluster was fully loaded, each
simulation took approximately 18 hours of wall time to complete, with over 30,000 total material points and
a grid size of 100 elements in both the horizontal and vertical directions, for a total of 10,000 elements.
However, individual simulations run when the cluster was relatively unloaded measured at well under half
that time, with an average time of around 4 hours. Again no parallelization is used here, as total throughput
across many simulations was the goal; a single simulation could be run at a faster pace by distributing the
work.

The area simulated was a 0.91m by 0.91m square, corresponding to the smallest in-plane dimension of
the experimental setup. We used a time step size of 3 µs, and simulated up to 0.5 s (although it is clear from
the results that simulations are essentially completed by 0.3 s). A sequence of material point distributions
from two representative simulations are shown in fig. 2. Interestingly, we note that a single plume is observed
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above the intruder (seen at 400ms in each simulation), which is significant as there is no interstitial fluid in
this simulation. This is consistent with the zero-pressure limit of the results found in Royer et al. (2008).

We first checked that the kinematic quantities matched between simulations and experiment. In experi-
ments, Clark, Petersen, and Behringer (2014) measured both the depth an intruder ultimately settled at and
the time it took to approach this depth. Results are plotted in fig. 3. We extracted these results from the
simulations; the depth is simply the z-displacement of the center of mass of the intruder from the moment it
impacts the granular bulk to the end of the simulation. The resting time is non-trivial to define due to elastic
oscillations; we plot the last time the z-position of the intruder differed by more than 0.2 percent of the final
depth in an effort to prevent small oscillations in position from artificially increasing the resting time. Flight
time calculations vary within as much as 0.01 s by changing this threshold from 0.1 to 0.3 percent of the final
depth.

We also compared force coefficients obtained from our data assuming that the intruder obeys the differ-
ential equation

mz̈ = mg − f(z)− h(z)ż2. (21)

Equation (21) has been studied in relation to granular impact in Clark, Petersen, and Behringer (2014);
Clark and Behringer (2013); Clark, Kondic, and Behringer (2012) and the problem has been studied in even
earlier works.

In this model, f(z) is the static force which depends on the intruder shape and current depth. The h(z)
term is a collisional term, and also depends on the intruder shape and current depth. Note that neither
f(z) nor h(z) depend on the velocity of the intruder. Therefore, if we have measurements of mz̈ and ż2

for multiple initial velocities at the same fixed z position zk, we can solve a linear least squares problem
to obtain estimates of f(zk) and h(zk) for a given intruder shape. Repeating this procedure over several
distinct zk allows us to see the behavior of the f(z) and h(z) functions. Note that this corresponds to the first
procedure mentioned in Clark and Behringer (2013), which may have a large spread with experimental data,
in which case the Kinetic Energy Formulation explained in that work (first developed in Ambroso, Kamien,
and Durian (2005)) is more useful as it delays the application of numerical differentiation. However, we found
that the results from simulations were amenable to the least-squares procedure. Because we store data for
different simulations at the same time, rather than the same z-position, we need to post-process our output
data to obtain estimates for the f(z) and h(z) functions. To do this, we first generated a smooth trajectory
z(t) through cubic splines of the position data. The function is essentially one-to-one before the intruder
comes to a stop, and therefore we used the inverse function to compute the set of tk for each simulation
corresponding to a desired zk. Differentiating the spline representation of z(t) and evaluating at tk allowed
us to obtain the velocity and acceleration at zk. Two example spline trajectories as well as their derivatives,
with s = 0.5 and 1.5 and a common initial velocity of 3.55 m s−1 are shown in fig. 2. Note that in this
particular case for the s = 1.5 intruder, the Kinetic Energy corresponds to appoximately 1.37 J; comparison
with the general trend in fig. 3 shows that this experiment had a greater final depth than would be expected
by a trend line, resulting in our simulations slightly underestimating the depth for this particular experiment.
We then used the least squares procedure to determine the best estimates for f(zk) and h(zk), which yields
fig. 4. The weakness of this approach is that the spline is not accurate over the first few depth data points,
so we ignored these; similarly, when the z(t) function ceases being one-to-one, we again could not use this
procedure to obtain estimates on these coefficients. Increasing the sampling rate of the simulation would
help us obtain data at smaller depths and at depths closer to the settling position. In the range of validity,
we see both the static term f(z) and the collisional term h(z) match well with the experimental data from
Clark, Petersen, and Behringer (2014). The main anomalous result is the ordering of the s = 0 curve in
the h(z) plot and the much weaker dependence of the shape on the h(z) curves; however, overall the data
compares well to experiments.

These experimental works have suggested a local surface-level, collision-based picture to explain the
obtained resistance coefficient h(z). The fact that it arises as well from a fully continuum treatment suggests
the particle motions assumed in the collisional model, if back-expanded to locations displaced from the
intruder tip, might approximate the velocity field we find on a control volume boundary extending in front
of the intruder. Flow through such a volume is the key determiner, from a continuum standpoint, for the
h(z) function, as it determines the rate of momentum exchange with the intruder.
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Figure 2: The instantaneous equivalent plastic shear strain rate at multiple stages of the continuum impact
simulation for two representative cases: s = 0.5 (top) and 1.5 (middle), v = 3.5 ms−1 common to both.
Colors correspond to the magnitude of equivalent plastic shear strain rate in log scale, and are plotted on
the material points. The intruder is outlined in black. From left to right: The initial configuration, which
is when the intruder is just about to enter the granular bulk, followed by tunneling through, followed by
collapse of the top layers forming a central plume, and finally both the intruder and the bulk have come to
rest in a static configuration. We show displacement (bottom left), velocity (bottom center), and acceleration
(bottom right), generated from displacement data for the same cases (s = 0.5 and s = 1.5 for a common
initial velocity of 3.55ms−1). The colors and markers follow those of fig. 3.
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Figure 3: Final depth from the original surface of the bulk material (left) and the time until the intruder
comes to a stop (right). Simulation results are represented by closed markers with connecting lines, while
experimental results from Clark, Petersen, and Behringer (2014) are shown as open markers with no connect-
ing line (the shape and colors correspond between simulation and experiment). Final depth is taken to be
the position at the end of 0.5 s, where all simulations appear to be entirely static. Stopping time calculated
as the last time the intruder position is at most 0.2% of the total depth away from the final position.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Depth (m)

0

1

2

3

4

5

f
(z

)
(N

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Depth (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h
(z

)
(k

g
/
m

)

Figure 4: Static force term f(z) (left) and the coefficient of the inertial term h(z) (right) as done in Clark,
Petersen, and Behringer (2014). Plotting conventions from fig. 3 are used. The coefficients are obtained
through a fitting procedure to the dynamical model proposed in the cited work, as detailed in the main text.

4.3 Granular Bulk
4.3.1 Force Propagation

The intensity plot shown on the left of fig. 5 was created from analysis of a very high resolution simulation
focusing on the point of impact between the intruder and the granular bulk. Since the system is essentially
hyperbolic at this point, we are able to cut out a large portion of the bulk. The entire intruder is still retained,
however, as it is small enough that p-waves can traverse across and reflect multiple times over the course of
the simulation – in practice however we did not see much difference from increasing the bulk modulus of the
intruder much beyond that of the bulk granular media. As this is an explicit-dynamic scheme, the stability
criterion is related to the smallest element size and the stiffest modulus, so it is advantageous to keep the
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Figure 5: Stress/force propagation after intruder contact. Snapshots of the pressure at material points are
overlaid on top of stills from the experimental movie found in the supplemental material of Clark et al. (2015)
(right). The experimental data utilizes photoelasticity and shows stress-supporting particles in white color.
We plot the pressure as a space-time plot (left) similar to that visualized in Clark et al. (2015). Dashed line
corresponds to a speed of 300m/s, the approximate front speed observed in the granular bulk in the cited
work. All images share a common color scheme for the pressure, with dark purple indicating high pressure.

modulus of the intruder as low as possible. The intruder in this case consists of a bronze disc with diameter
12.7 cm and effective planar thickness 2.2 mm to match the results of Clark et al. (2015). It begins with an
initial downward velocity of 5 meters per second. Although our intruder is bronze, we found that setting the
Young’s modulus of the intruder to a scant 20 MPa was sufficient – setting the modulus up to 1 GPa did
not noticeably alter the results in the granular bulk. In line with the previous simulation, for the granular
bulk we are considering the stiffest material, PS-1 from Vishay Precision Group. The parameters for this
material remain unchanged from the previous section.

The simulation uses a 0.31m by 0.31m square grid discretized by 400 elements in each linear direction, and
9 total material points per filled element in the initial discretization. In total, over 400,000 material points
were used to ensure precision; this number is much larger than needed if one utilizes a non-uniform grid
and non-uniform initial particle placement, but suffices for our current purposes of demonstrating physical
agreement. The time step size ∆t is 0.15 µs, but we only needed to simulate the first 0.6 milliseconds. The
total wall time taken by the simulation on an already-loaded Intel i5-3570k was approximately an hour and
a half. The sampling rate of the output is set to 40 kHz to match the camera sampling rate in Clark et al.
(2015).

We show snapshots of the propagating wave at specific times in the right half of fig. 5. The pressure
of our simulation is overlaid atop the experiment, which utilized photoelastic disks so that particle forces
can be correlated to light intensity. It can be seen that the pressure front models the force front observed
experimentally. The figure on the left was made by considering the entire simulation and is intended to
replicate the procedure done in Clark et al. (2015). First, all particles outside of a 90 degree sector symmetric
about the vertical axis below the impact point are discarded. Next, particles are arranged in bins according
to their radial distance from the impact point; the pressures from these particles are averaged. Each pressure
value in a bin is shown by the color of a block, and each column in the image shows a snapshot in time
of the average pressure at the radial distance indicated by the depth. Plotting the pressure versus depth
and time in this way allows us to clearly visualize the propagating wave front and its speed. This apparent
wave speed is compared to the theoretical p-wave speed of our material model (272m/s) – as expected, these
match quite well, and close to the experimentally observed range at around 300m/s (indicated by a dashed
line).
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Figure 6: Comparison between the normalized granular velocity field from experimental results (left bottom,
image taken from Clark (2014)) and those of the MPM simulation (left top). The velocity field is normalized
against the intruder’s center-of-mass velocity. The colorbar is common for all images; the left column
shows the vertical component of normalized velocity, the right shows the horizontal component. Streamlines
(MPM) and a coarse-grained velocity vector field plot (experiment) are shown as a further comparison (right).
Simulation data was taken at 45ms, which corresponds to an intruder velocity of 3.07ms−1 (experimental
data was taken when the intruder was traveling at 3.05ms−1). Thicker streamlines indicate a higher velocity
at that point. The computed free surface of the MPM simulation is shown via a dashed line.

4.3.2 Granular Bulk Motion

In addition to checking that forces (stresses) are propagated correctly, we also wished to check that the flow
of the bulk was realistic. To this end, we extracted velocity fields underneath the intruder to compare to the
data in Clark, Kondic, and Behringer (2016). We also compared the shape of the free surface of our method
to a discrete element simulation performed in Seguin (2010). We switch to DEM simulations for the latter
study because no free-surface or splash data was provided in the experimental studies.

Normalized Velocity Fields We continue to use the same bulk and intruder material properties as
before, as these were unchanged in Clark, Kondic, and Behringer (2016) and that author’s previous works.
The intruder is a bronze disc with diameter 12.7 cm and is given an initial velocity of 5ms−1. As in the
prior simulations, we took the out-of-plane thickness to be 2.2mm, whereas for the bulk the out-of-plane
thickness is 3mm, reducing the areal density by the appropriate factor. We show the values of the nodal
velocity field as projected into the material point positions.

We observe good agreement in the velocity fields, as shown in fig. 6. Note the agreement is evident in
both the magnitude and direction of the flow fields, as well as in the free surface shape in the intruder’s
wake, which is computed via a contour of the log of number density of material points at surrounding nodes.
Interestingly, we also observed the type of “dynamic steady-state” phenomena described in Clark, Kondic,
and Behringer (2016). Although the top left inset of fig. 6 was created when the intruder was still moving
at 3.07ms−1, the shape of the normalized velocity fields directly ahead the intruder appear nearly identical
down to as low as 0.1ms−1 with the circular intruder; naturally, the wake changes shape as material flows
in behind the intruder, leading to differences in the velocity field in these regions.
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Figure 7: Comparison between an impact problem with DEM from Seguin (2010) (images taken from cited
work, bottom row) and MPM (current work, top row). Snapshots are taken at 0, 25, and 78 milliseconds
after the start of the simulation, which corresponds to the point in time where the intruder just touches the
surface. For details on the bulk grain and intruder properties, see the main text.

Surface Shape Until this point, we have been using material properties calibrated to the grains from
Clark, Petersen, and Behringer (2014); Clark et al. (2015); Clark, Kondic, and Behringer (2016). To verify
the shape of free surface, we found results from a two-dimensional DEM simulation in Seguin (2010), which
requires new material parameters.

The individual grains have diameter 1mm, areal density 2500 kgm−2, and Young’s Modulus 69GPa.
As the modulus of the bulk will be somewhat lower, we took this to be one tenth of the grain’s modulus
(6.9GPa). Similarly, the packing fraction of these assemblies in two-dimensions is near 0.8, so we took
the bulk areal density as 2000 kgm−2. Although no data was provided regarding a second elastic material
property, we took the Poisson ratio to be 0.45 as before. For this simulation, the bulk material has dimensions
200mm by 66mm. The intruder has an identical density and identical elastic properties as an individual
grains; only the diameter is different, which is given by 20mm for the intruder. An interesting aspect of
this DEM simulation is that no particle surface friction is used; following the results of Kamrin and Koval
(2014), we know that this should correspond to a µs near 0.13, as we do not use the µ(I) relation with an
exponential tail. In line with the cited work, we also take µ2 = 0.428 and I0 = 0.278. Due to the frictionless
nature of the DEM simulation, we used µsurf = 0 (frictionless) contact between the intruder and the bulk.

A comparison of the DEM simulation from Seguin (2010) and the results from our MPM solver are shown
in fig. 7; the surface shape progression is well-captured by the continuum method. In particular, we note
that the splashing front of the two simulations sweep outward at similar rates and eject material at similar
angles.
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5 Conclusion
Using tabulated values for the granular bulk and a single penetration depth simulation for calibration of the
unknown parameters, the continuum formulation presented is able to replicate, to a good level of agreement,
a variety of experimental results pertaining to impact in a common material. We find that the penetration
depths and flight time match the experimental data well. Force-like coefficients corresponding to terms in
a dynamical equation for the position of the intruder were also recovered quantitatively. We verified that
the elastodynamics are captured correctly by checking the p-wave speed in the granular bulk, and we also
qualitatively see that the wavefront appears to develop similar spatial patterns as the experimental data.
Also semi-quantitatively, the velocity fields of the granular bulk in the vicinity of the intruder appear to
be closely matched with the coarse-grained velocity field obtained in experiment through particle image
velocimetry; the dynamic steady state behavior was also observed in simulation during a large portion of
the impact process. Lastly, using parameters for a different granular bulk material, the evolution of the free
surface shape and material ejection when compared to a DEM simulation provides another validation. These
results provide, to our knowledge, the first demonstration that a single granular continuum model is capable
of representing the various aspects of granular impact.

From a numerical standpoint, we have noted improved behavior of the scheme presented in Dunatunga
and Kamrin (2015) by using a variant of CPDI (itself a refinement of the original material point method)
from Sadeghirad, Brannon, and Burghardt (2011) where the particle domain is fixed (similar to uGIMP).
When combined with an improved contact algorithm from Huang et al. (2011), our simulation method was
able to reliably implement continuum granular impact in true impact conditions, allowing the comparison
to experimental results in both Clark, Petersen, and Behringer (2014) and Clark et al. (2015). The validity
of the constitutive model and its numerical implementation in modeling many impact scenarios gives hope
that the approach’s validity is general to a potential array of granular flow problems, not limited by the
possibility for a granular region to pass through the dense and disconnected phases.
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Figure 8: Here we show the equivalent plastic shear strain rate on a linear scale; the data is identical to
that presented in fig. 2. It is a bit easier to notice that the strain rates are more concentrated towards the
sharper intruder early on in the simulation, especially in the 100ms image.

A Comparison to a Rate-Independent Model
As we noted in the main results, there is not much apparent dependence of the intruder motion on the µ2

parameter in the µ(I) model. Indeed, for the dynamics of the intruder in this case, we can then presume
that a rate independent model, such as that given by an elastic-perfectly plastic material with a Drucker-
Prager yield criteron and non-associated flow rule, when combined with an appropriate density rule (to
prevent tensile stress states and ratcheting), can capture the results almost as well as the rate dependent
µ(I) rheology.

The rate-independent model then consists of a threshold for the stress ratio µs, below which the material
acts as an elastic solid and at which any plastic strain rate is possible. Writing this as a condition on the
equivalent shear stress results in the following form:

τ̄ = τ̄(p, ˙̄γp) = pµs if ˙̄γp > 0, and τ̄ ≤ pµs if ˙̄γp = 0. (22)

Note that this can be easily implemented in the existing algorithm by simply setting µ2 to µs, which
eliminates the rate-dependent region in the µ(I) model, as seen by examining eq. (7).

To facilitate the comparison, we begin by showing plots of the equivalent plastic shear strain rate ˙̄γp (fig. 8)
and inertial number I at material points for representative simulations in fig. 9. In line with Andersen and
Andersen (2013), spatial smoothing of the pressure is employed for visualization here, by projecting from
material points to nodes and then back to material points for plotting. Note that this is only done for
visualization, and during simulation no such smoothing is employed.

We note that although the equivalent plastic shear strain rate is high underneath the intruder as shown
in fig. 2 and fig. 8, so is the pressure, leading to only moderate I values nearly everywhere. This results in a
strength which is only marginally higher than the lower bound given by µs.

Running a full set of simulations, we can generate the equivalent of fig. 3 using the rate-independent
material. As the results are quite similar to that generated by the µ(I) model, we plot the results from
the two models against each other in fig. 10. The most noticeable difference is that the rate-independent
model predicts that the intruder has a larger depth and flight time compared to the µ(I) predictions and
the experiments (refer back to fig. 3). This makes sense because the material is effectively weaker in the
rate-independent model, because its resistance does not grow with flow rate. This may also explain why the
difference is more noticeable when impact energy is larger.
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Figure 9: Here we plot the inertial number I using the same simulations as present in fig. 2. As open
material has zero pressure, we have plotted these particles as open circles with black outlines. Note that the
majority of the granular bulk is at a low inertial number; it is mostly the free surface, where the pressure
is low, that exhibits higher I values. Although the strain rates are high underneath the intruder, as show
in fig. 8, the pressure is also high in this region, leading to much smaller I values than may be initially
expected. Together, these plots suggest that the level of rate-sensitivity for this problem will be low, except
perhaps in the motion of the free surface. As a reference point, at I = 0.1, the strength of the material is
given by µ ≈ tan 21.5 degrees, whereas µs ≈ tan 17.75 degrees.

Although there are only slight differences in this case, note that the plots of I indicate that the free surfaces
may possess significantly different strengths than the bulk material; this in turn means that other impact
situations may show a stronger effect with regards to rate-dependence, specifically where high equivalent
plastic shear strain rates are not necessarily collocated with high pressures (e.g. if the projectile were to
impact the granular media at an angle).
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Figure 10: Final depth from the original surface of the bulk material (left) and the time until the intruder
comes to a stop (right). Simulation results using the µ(I) model are represented by closed markers with
connecting lines, while results using the rate-independent material are shown as open markers with no
connecting line (the shape and colors correspond between the two sets of simulations, and are unchanged
from the main text). As in the main text, final depth is taken to be the position at the end of 0.5 s, where
all simulations appear to be entirely static. Similarly, as before stopping time calculated as the last time the
intruder position is at most 0.2% of the total depth away from the final position. Note that the flight time
of the rate-independent model appears to generally be higher (expected due to a lower average strength),
but this does not seem to affect the final depth too much.
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