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Abstract
The girth of a graph, i.e. the length of its shortest cycle, is
a fundamental graph parameter. Unfortunately all known
algorithms for computing, even approximately, the girth
and girth-related structures in directed weighted m-edge
and n-node graphs require Ω(min{nω,mn}) time (for
2 ≤ ω < 2.373). In this paper, we drastically improve these
runtimes as follows:

• Multiplicative Approximations in Nearly Lin-

ear Time: We give an algorithm that in Õ(m) time

computes an Õ(1)-multiplicative approximation of the

girth as well as an Õ(1)-multiplicative roundtrip span-

ner with Õ(n) edges with high probability (w.h.p).
• Nearly Tight Additive Approximations: For un-

weighted graphs and any a ∈ (0, 1) we give an algorithm

that in Õ(mn1−a) time computes an O(na)-additive ap-
proximation of the girth, w.h.p. We show that the run-
time of our algorithm cannot be significantly improved
without a breakthrough in combinatorial boolean ma-
trix multiplication. We also show that if the girth is
O(na), then the same guarantee can be achieved via a
deterministic algorithm.

Our main technical contribution to achieve these results
is the first nearly linear time algorithm for computing
roundtrip covers, a directed graph decomposition concept
key to previous roundtrip spanner constructions. Previously
it was not known how to compute these significantly faster
than Ω(mn) time. Given the traditional difficulty in effi-
ciently processing directed graphs, we hope our techniques
may find further applications.

1 Introduction

The girth of a graph G is the length of the shortest cycle
in G. It is a natural and fundamental graph parameter
that has been extensively studied (see Diestel’s book [19]
for a discussion) with research on its computation dating
back to the 1960s. Perhaps, the most straightforward
algorithm for the girth is simply to compute All-Pairs
Shortest Paths (APSP). Surprisingly, this simple rela-
tionship leads to the best known algorithm for girth in

∗OpenAI, merettm@gmail.com
†Bar Ilan University, liamr@macs.biu.ac.il
‡Stanford University, sidford@stanford.edu
§Bar Ilan University, roei81@gmail.com
¶MIT CSAIL, virgi@csail.mit.edu

a n-node graph with nonnegative weights: the break-
through APSP algorithm of Williams [55] can compute

the girth in n3/2Θ(
√

logn) time. For sparse weighted
graphs with m edges, an O(mn) runtime was recently
obtained by Orlin and Sedeño-Noda [38], improving
upon an O(mn+n2 log log n) runtime that follows from
using the best known sparse APSP algorithm [43].

When the graph can be dense, all known girth
algorithms run in n3−o(1) time (unless the weights are
small integers bounded in absolute value by M in which
case an Õ(Mnω) time is known [46]). Vassilevska W.
and Williams [53] explained this by showing that the
girth in weighted graphs is equivalent to APSP in the
sense that if one of the two problems has a “truly
subcubic”, O(n3−ε) time algorithm for some ε > 0,
then both do. As it is a longstanding open problem
whether APSP has a truly subcubic time algorithm,
computing the girth in O(n3−ε) time would be a huge
breakthrough.

One might wonder whether very sparse graphs allow
for much faster than O(mn) time girth algorithms (the
above discussion says that dense graphs probably do
not). Very recently, Lincoln et al. [32] showed that
if there exists any integer L such that for sparsity
m = Θ(n1+1/L), one can obtain an O(mn1−ε) time
algorithm for the girth of weighted directed graphs,
then Max-Weight k-Clique would have surprisingly fast
algorithms. Weighted k-Clique is a notoriously difficult
problem: it is the basis of several conditional lower
bounds. Here, assuming its hardness implies that
mn1−o(1) time is likely necessary for computing the girth
exactly, for almost any sparsity.

Because of the strong barriers for exact computa-
tion, efficient approximation algorithms are of inter-
est. Fast approximations for the girth in undirected
graphs are possible and have been studied extensively.
It is well known ([2]) that for any integer k ≥ 1,
every weighted undirected n-node graph G contains
an O(n1+1/k) edge (2k − 1)-spanner, i.e. a subgraph
that (2k − 1)-approximates all pairwise distances in G.

Such (2k − 1)-spanners can be computed in Õ(mn1/k)
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time [51], and immediately imply efficient approxima-
tion algorithms for girth in undirected weighted graphs.
In unweighted undirected graphs even better results are
known. Itai and Rodeh [28] gave an O(n2) time additive
1-approximation algorithm, and follow-up work [47, 33]
developed even more efficient, combinatorial, truly sub-
quadratic, approximation algorithms.

Although impressive approximate girth algorithms
are possible for undirected graphs, they all exploit prop-
erties particular to undirected graphs. In particular,
not only do sparse spanners exist in undirected graphs,
but it is also known [9] that undirected graphs with
Ω(n1+1/k) edges must contain a 2k-cycle. This fact is
at the heart of obtaining fast girth approximation algo-
rithms.

In contrast, directed graphs do not always contain
sparse spanners and dense digraphs might not have any
cycles at all (a directed bipartite clique is an example of
each). It is completely unclear what (if any) structure
there is to exploit in directed graphs to obtain fast girth
approximation algorithms. Due to the close relationship
between girth and APSP [53], a-priori it could be that
the girth problem in directed graphs suffers from the
same problem as APSP in directed graphs and no
finite approximation is even possible without resolving
a major open problem about BMM.

A potential saving point is that while directed
graphs may not contain sparse spanners, they do contain
sparse roundtrip spanners. That is, if one uses d(u, v) +
d(v, u) for the distance between u and v instead of
d(u, v), then one can obtain a very similar result for
directed graphs as in the undirected case: for all k ≥ 1
and ε > 0, every n node directed graph G contains
a (2k + ε)-roundtrip spanner on O(k2/εn1+1/k log nW )
edges (for nonnegative integer weights bounded by W ).
Furthermore, since roundtrip distances form a metric on
the vertices, there are emulators for roundtrip distances
with the same sparsity quality trade-offs as the best
spanners (although they might be expensive to compute
as computing the metric itself solves APSP).

Unfortunately, while roundtrip spanners have been
known to exist for over a decade (and roundtrip emula-
tors for over 25 years [40, 41, 2] through the aforemen-
tioned reduction to spanners), the fastest algorithms for
computing them run in O(mn) time, essentially the time
to solve APSP.

1.1 Our Results In this paper we provide the first
non-trivial approximation algorithms for computing the
girth and related properties on directed graphs that
run substantially faster than the roughly Ω(mn) time
currently needed to solve APSP on a n-node, m-edge
directed graph with non-negative weights.

We show how to compute Õ(1)-multiplicative ap-
proximations to the girth and construct multiplica-
tive roundtrip spanners in nearly linear time (See Sec-
tion 1.1.1), and we show how to compute additive ap-
proximations to the girth in time that is nearly tight
under standard assumptions (See Section 1.1.2). To
achieve these results we provide the first nearly linear
time algorithms for computing roundtrip covers, a nat-
ural directed graph decomposition notion in prior work
on roundtrip spanners [18, 45] (See Section 1.2).

1.1.1 Multiplicative Approximations in Nearly
Linear Time [53] showed that the girth problem in
weighted graphs is subcubically equivalent to APSP
in general graphs. Thus, obtaining a truly subcubic
algorithm for girth in weighted graphs would imply
a major breakthrough, and is a daunting task for
current techniques. In fact, no nontrivial combinatorial
approximation algorithms were previously known even
for the restricted case of unweighted directed graphs.
On the other hand, we show how to obtain an O(log n)
approximation to the girth in weighted graphs in slightly
super-linear time (See Theorem 1.1). Setting k := log n
in this theorem allows us to compute an O(log2 n)
approximation to the girth in nearly linear time.

Theorem 1.1. (Multiplicative Girth Approxi-
mation) For any n-node, m-node directed graph with
nonnegative integer edge weights, with unknown girth g
and integer k ≥ 1, in time O(mn1/k log5 n) we can com-
pute an estimate ḡ such that g ≤ ḡ ≤ O(k log n) · g with
high probability.

Thus, by suffering only a logarithmic loss in the
accuracy, one can obtain a girth estimate much faster
than mn, a runtime that is likely optimal for exact
computation.

Using our new directed graph decomposition al-
gorithm we also show how to compute multiplicative
roundtrip spanners in nearly linear time. A spanner is a
sparse subgraph that preserves the distances of the orig-
inal graph with some multiplicative or additive approx-
imation. Since even preserving the asymmetric reach-
ability structure of directed graphs may require Ω(n2)
edges (e.g. the complete directed bipartite graph), no
sparse spanner yielding a finite multiplicative approxi-
mation is possible. Instead, we consider spanners under
the roundtrip distance metric, i.e. roundtrip spanners.

Given vertices u and v the roundtrip distance be-
tween u and v is the distance from u to v plus the dis-
tance from v to u. Roundtrip distances were studied by
Cowen and Wagner [18] in the context of routing. Later
Roditty, Thorup and Zwick [45] obtained roundtrip
spanners for directed graphs that are almost as good
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in terms of their sparsity/approximation tradeoff as the
spanners of undirected graphs [2]: (2k−ε)-multiplicative
approximation with Õ((k2/ε)n1+1/k) edges for any in-
teger k ≥ 1 and ε ∈ (0, 1). However, the construction
of these spanners requires precomputing the roundtrip
distances between all pairs of vertices, resulting in a
running time of roughly Ω(mn). We show how to nearly
match this size/approximation tradeoff while decreasing
the time needed to construct them to nearly linear in
the number of edges in the graph.

Theorem 1.2. (Multiplicative Roundtrip Span-
ners) Given any n-node, m-edge directed graph with
nonnegative integer edge weights and any k ≥ 1 in
time O(mn1/k log5 n) we can compute an O(k log n)-
multiplicative roundtrip spanner with O(n1+1/k log2 n)
edges with high probability.

Our techniques are inherently parallelizable, and we
provide the first work-efficient parallel algorithms for
computing both the approximate girth and the strongly
connected components of an unweighted directed graph
with depth linear in the diameter of the computed
objects (See Section 5.2).

1.1.2 Nearly Tight Additive Approximations
Our techniques can also be used to obtain fast com-
binatorial algorithms that achieve additive approxima-
tions of the girth on unweighted graphs as follows. Let
a ∈ (0, 1) be any constant and suppose the girth g is
< na/ log n. Then, the algorithm from Theorem 1.1
will return w.h.p. in Õ(m) time a cycle of length O(na),
which is (trivially) an additive O(na) approximation of
g. If on the other hand g ≥ na/ log n, then if we take a
random sample S of Cn1−a log2 n nodes for large enough
constant C, then w.h.p. S will contain a vertex of the
shortest cycle. Then, running BFS from each node of S
will find the shortest cycle containing a node of S and
hence compute g exactly:

Corollary 1.1. (Additive Girth Approxima-
tion) For any unweighted n-node, m-edge directed
graph with unknown girth g and a ∈ (0, 1) in time
Õ(mn1−a) we can compute an estimate ḡ such that
g ≤ ḡ ≤ g +O(na) with high probability.

Our algorithms for Theorem 1.1 and Corollary 1.1
are combinatorial, but randomized. It is unclear
whether they can be derandomized without incurring
a large runtime cost. In particular, our algorithms use
sampling to crudely estimate the sizes of reachability
sets for all vertices in the graph. As far as we know,
there are no faster deterministic ways to do this in the
worst case than explicitly computing the reachability

sets which requires Ω(min{nω,mn}) time. We partially
derandomize Corollary 1.1 using different techniques:

Theorem 1.3. (Deterministic Additive Girth
Approximation) There is a deterministic combinato-
rial algorithm that for any unweighted n-node m-edge
directed graph with unknown girth g and parameters
a, ε ∈ (0, 1) computes in Õ(ε−2mn1−a) time an esti-
mate ḡ such that g ≤ ḡ ≤ g + O(nα) if g ≤ na and
g ≤ ḡ ≤ (1 + ε)g if g > na.

A natural question is whether the Õ(mn1−a) run-
time for na-additive approximation is necessary. Sur-
prisingly, we show that when it comes to combinatorial
algorithms, Theorem 1.3 and Corollary 1.1 are optimal
up to constant factors in the additive error, barring a
breakthrough in BMM algorithms:

Theorem 1.4. (Hardness for Improving Addi-
tive Running Time) Suppose there is a combinatorial
algorithm for some ε > 0 and a = 1/2 that computes
an additive na−1 approximation to the girth of any un-
weighted n-node m-edge directed graph in O(mn1−a−ε)
time. Then for some constant δ > 0 there is an O(n3−δ)
time combinatorial algorithm for n× n BMM.

1.2 Algorithmic Techniques : Roundtrip Cov-
ers in Nearly Linear Time Our key technical con-
tribution towards achieving the majority of our algo-
rithmic results is the first nearly linear time algorithm
for computing roundtrip covers of directed graphs. In-
formally, a roundtrip cover is a decomposition of a di-
rected graph into an overlapping collection of balls, i.e.
roundtrip distance induced subgraphs. It is required
that the radius, or maximum roundtrip distance, in each
ball be bounded and that any pair of vertices of bounded
roundtrip distance appear together in some ball (See
Section 5 for formal definition). Computing such covers
naturally yields multiplicative roundtrip spanners and
has been considered in previous work [18, 45].

Unfortunately, all known roundtrip cover computa-
tion algorithms prior to this paper ran in at least Ω(mn)
time. It was not clear how to efficiently manipulate the
roundtrip metric for the purposes of computing such
decompositions. It seemed that, in the worst case, one
would have to compute almost the entire roundtrip met-
ric explicitly, i.e. solve APSP.

We overcome this difficulty through a careful appli-
cation of a few techniques. The first is natural: cluster
the graph by growing balls of exponentially distributed
radii or using exponential distribution based clustering
techniques. (Similar ideas were used recently for parallel
algorithms for undirected graph decomposition [37] and
directed maximum flow [22]). This does not distort too
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many roundtrip distances, but may fail to produce clus-
ters of significantly smaller size. The second is our key
insight: we show that if we carefully seed such a clus-
tering routine we can ensure that we either find a large
cluster with small roundtrip diameter or we break the
graph into significantly smaller pieces while sufficiently
preserving roundtrip distances. Unfortunately, naively
implementing such a procedure would be expensive (i.e.
involve solving APSP). To circumvent this, we use an-
other trick: a known sampling based approach to esti-
mate the fraction of vertices that each vertex can reach
or is reachable by within a given distance and show this
suffices to pick seeds for clustering.

In short, we achieve our multiplicative approxima-
tions via a delicate combination of several powerful tools
that have been defined and used before: (1) low diame-
ter graph decompositions first introduced in [4], (2) us-
ing the exponential distribution for decomposition (e.g.
in [34, 6, 37, 22]), (3) recursive graph decomposition
(e.g. in [6, 24, 22]), and (4) sampling based reachability
set estimation ([13]). However, despite the prevalence
of this machinery, it was an open question whether or
not it could be leveraged to yield any running time im-
provement for the directed problems we consider. It
was unclear a-priori if there was structure to exploit
to quickly decompose the roundtrip metric and if the
problems we consider were as hard as APSP.

Our key contribution is to show that this is not
the case and there is in fact a way to rapidly reveal
non-trivial directed graph structure sufficient to achieve
our results. There are several pitfalls that occur when
naively applying standard machinery to this problem
and we believe the strength of our result is to show
how to methodically overcome them (see Section 3).
The lack of fast combinatorial primitives for directed
graphs is occasionally referenced as indicative of the
gap between recent progress on approximate undirected
network optimization problems [12, 35, 30, 48, 29, 42,
49] and directed problems [36, 31, 15]. We hope our
results and the insights that underly them may find
future use.

1.3 Additional Related Work For unweighted
graphs, in the 1970s Itai and Rodeh [28] showed that
the girth can be computed in O(nm) time via BFS,
or in O(nω) ≤ O(n2.373)-time using fast matrix mul-
tiplication [17, 52, 26]. These are still the best run-
times for the problem. Similarly to the relationship to
APSP, [53] showed that the girth in unweighted graphs
is subcubically equivalent to Boolean Matrix Multiplica-
tion (BMM). A large open question in BMM is whether
there exist truly subcubic “combinatorial” algorithms,
that can avoid the sophisticated but often impractical

tools for Strassen-like fast matrix multiplication (e.g.
[17, 52, 26]). The reduction from [53] shows that either
both BMM and girth have truly subcubic combinatorial
algorithms, or neither of them does.

For the girth in undirected unweighted graphs, be-
sides Itai and Rodeh’s [28] original O(n2) time ad-
ditive 1-approximation algorithm, Roditty and Vas-
silevska W. [47] presented an Õ(n3/m)-time addi-
tive 3-approximation algorithm. The additive 1-
approximation of [28] is also a multiplicative 4/3-
approximation. Lingas and Lundell [33] presented the
first algorithm that breaks the quadratic time bound
of [28], at the price of a weaker approximation: their

algorithm runs in Õ(n3/2) time and returns a multi-
plicative 8/3-approximation. Roditty and Vassilevska

W. [47] presented an Õ(n5/3)-time deterministic multi-
plicative 2-approximation algorithm. They also showed
how to obtain a less than 2 multiplicative approximation
in truly subquadratic time for triangle-free graphs.

The history of combinatorial algorithms for BMM
of n × n matrices is as follows. Bansal and
Williams [5] obtained an O(n3/ log2.25 n) time com-
binatorial algorithm improving on the 40-year record
of O(n3/ log2 n) by the Four-Russians Algorithm [3].
The result of [5] was further improved by Chan [11] to

O((n3/ log3 n) logO(1) log n) time and most recently by

Yu [56] to Ô((n3/ log4 n) logO(1) log n).
Obtaining a truly subcubic time algorithm for

APSP is among the most studied longstanding open
problems in graph algorithms. In the 1970s Fred-
man [25] showed that the O(n3) time classical Floyd-
Warshall algorithm is not optimal by giving an
O(n3(log log n/ log n)1/3) time running time. Many
polylogarithmic improvements followed, the last being
O(n3 log3 log n/ log2 n) by Chan [10]. Two years ago,
Williams [55] used techniques from circuit complex-
ity, namely the polynomial method, to shave all poly-
logs, thus obtaining the current best bound for APSP,
n3/2Θ(

√
logn).

Spanners in undirected weighted graphs were first
studied by Awerbuch [4] and Peleg and Schäffer [39].
Althöfer et al. [2] showed that for every integer k ≥ 1,
every n-node graph, even if it is weighted, contains
a multiplicative (2k − 1)-spanner on O(n1+1/k) edges.
This result is optimal, conditioned on a well-known (and
partially proven [54]) conjecture by Erdös [23] about the
existence of graphs of high girth.

1.4 Organization The remainder of the paper is
structure as follows. We introduce notation in Section 2,
provide an overview of our approach in Section 3, and
show how to compute roundtrip covers in Section 4. We
then provide our algorithms for multiplicative approx-
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imations in Section 5 and our algorithms for additive
aproximations in Section 6. We conclude with our lower
bounds in Section 7.

2 Preliminaries

Here we introduce various terminology we use through-
out the paper.

Graphs: Throughout this paper we let G =
(V,E, l) denote a directed graph with vertices V , edges
E ⊆ V × V , and non-negative edges lengths l ∈ RE≥0.
At times we consider unweighted graphs, that is graphs
in which le = 1 for all e ∈ E and in this case we will
omit the l altogether.

Distances: We let dG(u, v) denote the (shortest
path) distance from u to v in G and we abbreviate this
as d(u, v) when G is clear from context. At times we
consider shortest path distances over edge subgraphs
F ⊆ G and write dF (u, v) to denote the length of the
shortest path from u to v using only the edges in F . In
all cases we define d(u, v) = ∞ if there is not a path
from u to v.

Roundtrip Spanners: For a, b ∈ V we refer to

d(a � b)
def
= d(a, b) + d(b, a) as the roundtrip distance

between a and b. We call a subgraph S ⊆ E an
α-multiplicative roundtrip spanner if dS(a � b) ≤
α · (dG(a� b)) for all a, b ∈ V .

Additive Approximation: We call an estimate g̃
an α-additive approximation to the girth g of a directed
graph if g ≤ g̃ ≤ g + α.

Distance Measures: For a directed graph G =
(V,E, l) we call minv∈V maxv′∈V d(v, v′) the radius of
G. We call maxv,v′∈V d(v, v′) the diameter of G.

Balls: For a given metric, a ball of radius r around
v is the set of vertices within distance r of v. We
generally use the term ‘ball’ to refer to balls in the
roundtrip metric. For a directed graph G, we use
inballG(v, r) and outballG(v, r) to denote the subsets
of vertices of G that can reach v within distance r or be
reached from v within distance r, respectively.

Trees: Given a directed graph G = (V,E, l) we call
a Tout ⊆ E an out-tree with root r ∈ V if the edges
form an undirected tree and are all oriented away from
r (i.e. there is a r to v path for every node v in the
tree). Similarly, we call Tin an in-tree with root r ∈ V
if the edges form an undirected tree and are all oriented
towards r ∈ V (i.e. there is a v to r path for every node
v in the tree).

Paths and Cycles: A directed (simple) path
P = 〈u = v1, v2, . . . , vk = v〉 ⊆ V from u to v is an
ordered set of vertices, where for every i ∈ {1, . . . , k−1},
(vi, vi+1) ∈ E. A cycle C = 〈u = v1, v2, . . . , vk = v〉 is
a direct (simple) path with an additional requirement
that (vk, v1) ∈ E. If P is a path and u, v ∈ P such

that u precedes v in P then we denote by P (u, v) the
subpath of P from u to v. If P1 and P2 are paths in G,
then we denote by P1 · P2 the concatenation of P1 and
P2.

Running Times: We use Õ-notation to hide
logarithmic factors, i.e. Õ(f(n)) = O(f(n) logc f(n)).

Probability: We use with high probability (w.h.p)
to denote that an event happens with probability at
least 1 − 1/O(poly(n)) where n is the size of the input
to the problem.

3 Overview of the Approach

Our approach for computing multiplicative roundtrip
spanners is broadly inspired by the following simple
general strategy for computing spanners in undirected
unweighted graphs:

1. Repeat until there are no vertices left:

• Grow a ball of random radius from a vertex.

• Add the edges in the computed shortest path
tree to the spanner.

• Remove all vertices in the ball from the graph.

2. Recurse on the subgraph induced by the edges that
have endpoints in different balls.

If the radii are chosen appropriately one can show
that the shortest path trees approximately preserve the
distance between the endpoints of all edges inside a ball
and that not too many edges are cut (i.e. have endpoints
in different balls). While there is a great body of work
on efficiently constructing spanners with many desirable
properties [7, 14, 20, 21, 51], this simple strategy suffices
to provide a polylogarithmic multiplicative spanner in
nearly linear time.

Unfortunately there are two serious issues that pre-
vent us from easily extending this approach to compute
roundtrip spanners for directed graphs:

• Recursing on cut edges does not work (or even make
sense).

• There may be problematic vertices that are at a
small distance to (or from) all the vertices, but have
a large roundtrip distance to every vertex.

We derive our algorithm by carefully addressing these
two issues.

Issue #1: How to Recurse? The first issue is
immediate. If we grow multiple balls in a directed
graph and attempt to recurse on cut edges, it may
be the case that we disconnect the graph and the
roundtrip distances for the cut edges become infinite.
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Consequently, if we recurse on the cut edges alone we
simply do not have enough information to recover the
path information we lost. Therefore, it is not clear if
there is any reasonable way to recurse on the edges that
we may distort.

To alleviate this issue we instead build a randomized
scheme where we reason directly about the probability
of cutting or distorting the roundtrip distance between
any particular pair of vertices. Building on previous
work on graph decomposition [34, 6, 37] and directed
maximum flow [22] we use the fact that if we grow a
ball where the radii are chosen from an exponential
distribution then we can directly reason about the
probability that removing that ball cuts a cycle. We
then proceed to repeatedly grow balls of exponential
radii, removing them in each iteration. Since the
exponential distribution is memoryless, we can show
that the probability that this approach cuts a cycle
depends only on the parameter of the exponential
distribution we use.

For completeness, in Appendix C we prove for-
mally that repeated exponential ball growing works. For
our algorithms we instead use a slightly more sophisti-
cated clustering technique described in Section 4.1. This
scheme works for similar reasons, but is more easily par-
allelizable. Ultimately, both techniques allow us to rea-
son about the probability of destroying a cycle (rather
than an edge) and repeat until all cycles corresponding
to the roundtrip distances between vertex pairs are pre-
served with high probability. The difficulty remains in
ensuring that we can actually terminate such a proce-
dure in a small number of iterations (i.e. Issue #2).

Issue #2: How to Avoid Problematic Vertices?
The second issue seems even more troubling. Suppose
that there is a graph with non-trivial cycle structure we
would like to approximate. To create a harder instance
one could simply create a new graph by adding many
new vertices each of which has one short length edge
to every original vertex and one long length edge from
every vertex. Clearly these new vertices do not affect
the cycle structure of the original graph that we wish
to approximate. However, any shortest path query
from these new vertices will quickly explore the entire
graph. Consequently, starting any sort of clustering
from these vertices could be quite expensive in terms of
running time, yet reveals very little information about
the graph’s cycle structure.

Even if we take a different approach and simply
attempt to improve the running time of constructing the
roundtrip spanners from prior work [45], a similar issue
arises. Here the immediate issue is that the algorithm
computes balls in the roundtrip metric. However, to do

this, again we need to explore many vertices at a large
distance in the roundtrip metric for analogous reasons.

To alleviate this issue, we use sampling to estimate,
in near linear time, the fraction of vertices in |V | of
O(r)-balls around all nodes, up to a small additive error
ε. This can be done in nearly linear time due to a
clever technique of Cohen [13] (For completeness, see
Appendix however, we give a self-contained construction
tailored to our purposes in Section A.) This allows us
to find the problematic vertices that can reach many
vertices at distance r yet are reachable by few at
distance r (or vice versa). By using this technique to
find problematic vertices we can better bias the seeds of
our decomposition routines and make more progress in
nearly linear time. This is crucial to our algorithm.

Building the Algorithm Combining our ideas to deal
with these two issues yields our algorithm. We estimate
for every vertex the number of vertices at distance O(r)
both from and to it. In one case there is a vertex
that can both reach and is reachable by many vertices.
In this case, we can compute a large enough ball (in
the roundtrip metric) that contains vertices of small
roundtrip distance, and then we recurse on the rest of
the vertices outside the ball. In the other case, there
are many vertices that either do not reach or are not
reached by too many vertices at distance O(r) and we
can grow clusters from them and recurse on all the
clusters. In either case we show that we do not need
to recurse too many times and that ultimately, with
constant probability (see Section 4.3), any particular
pair of vertices at small roundtrip distance is together
in a cluster. Repeating this procedure multiple times
yields our nearly linear time roundtrip cover algorithm
(see Section 4).

We use our roundtrip cover algorithm to compute
multiplicative roundtrip spanners and obtain multi-
plicative estimates of the girth. A naive application
of our procedure would yield a logarithmic dependence
on the range of lengths in the graph. To avoid this, we
show how to break a directed graph into smaller graphs
reducing to subproblems where lengths vary only poly-
nomially in the number vertices. Furthermore, we show
that our algorithm is inherently parallel and we obtain
new work / depth tradeoffs for these problems. As dis-
cussed, this also yields faster additive approximation for
the girth, though new insights are needed to obtain de-
terministic results (see Section 5). As discussed in the
introduction, our roundtrip cover algorithm is also used
to compute additive approximations to the girth (see
Section 6).
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4 Roundtrip Covers

In this section we provide our main results on graph
partitioning. In particular we show how to efficiently
construct roundtrip covers, first introduced in [45].

Definition 4.1. (Roundtrip Covers, definition
2.4 in [45]) A collection C of balls is a (k,R)-
roundtrip-cover of a directed graph G = (V,E, l) if and
only if each ball in C is of radius at most kR, and for
every u, v ∈ V such that dG(u� v) ≤ R, there is a ball
B ∈ C such that u, v ∈ B.

The main result of this section is the following the-
orem, stating that we can construct a (O(k log n), R)-

roundtrip-cover with high probability in Õ(mn1/k)
time.

Theorem 4.1. (Fast Roundtrip Cover) The al-
gorithm Fast-Roundtrip-Cover(G, k,R), returns a
collection C that is an (O(k log n), R)-roundtrip-cover
of directed graph G = (V,E, l), w.h.p. in time
O(mn1/k log4 n). Moreover, every vertex v ∈ V belongs
to O(n1/k log n) elements of C.

Note that if G has integer edge lengths be-
tween 0 and U we can immediately apply The-
orem 4.1 for every value of R that is a power
of 2 and obtain O(k log n)-multiplicative roundtrip
spanners with O(n1+1/k log2 n logU) edges in time
O(mn1/k log4 n logU) as well as compute an O(k log n)
multiplicative approximation to the girth in the same
running time. Consequently, proving Theorem 4.1 en-
capsulates much of the difficulty in achieving our desired
algorithmic results. However, in Section 5 we show how
a more careful application of Theorem 4.1 yields even
stronger results, completely removing the dependence
on U .

The remainder of this section is dedicated to provid-
ing the algorithm Fast-Roundtrip-Cover and prov-
ing Theorem 4.1. First in Section 4.1 we provide our
main graph clustering tool, then in Section 4.2 we pro-
vide our technique for estimating the fraction of vertices
reachable to and from each vertex at some radius. Fi-
nally, in Section 4.3 we put these tools together to pro-
vide Fast-Roundtrip-Cover and prove Theorem 4.1.

4.1 Clustering Here we provide the primary cluster-
ing/partitioning technique we use for our algorithm. We
provide an algorithm that partitions the vertices into re-
gions of bounded radius of our choice centered around
a chosen subset of the vertices so that the probabil-
ity of separating any two vertices of bounded roundtrip
distance is small. The ability to control the radii and
choose the starting vertices is key to deriving our algo-
rithm.

As discussed in the introduction we use an
exponential-distribution-based clustering procedure so
that we can argue directly about the probability of cut-
ting any particular cycle. This allows us to apply this
procedure multiple times and argue by union and Cher-
noff bounds that with high probability we do not cut
any cycle that we want to approximate, and thus ob-
tain a good approximation of any relevant cycle. How-
ever, rather than simply growing balls of exponentially
distributed radius and repeating (as discussed in Sec-
tion 3), we provide a different scheme in the flavor of
[37, 22] that better parallelizes. For completeness we
complement our analysis with a proof that this sequen-
tial ball growing scheme also works in Appendix C.

Our algorithms, Cluster-Out and Cluster-In
are given in Figure 1. Given a graph G = (V,E, l), a set
of vertices S ⊆ V and a target radius r, the algorithm
uses the exponential distribution to assign vertices in
G to clusters for each of the v ∈ S. The assignment is
done in a way that ensures that these clusters each have
bounded radius. By our choice of assignment rule and
distribution we formally show that the probability that
two vertices of small roundtrip distance are not in the
same cluster is sufficiently small.

(V1, . . . , Vt) = Cluster-Out(-In)(G,S, r),
where G = (V,E, l) is a directed graph, S ⊆ V and
r > 0.

1. Set β := log(n)/r.

2. For every vertex v ∈ S, pick xv ∼ Exp(β).

3. For each vertex u ∈ V , assign u to the cluster
rooted at the vertex v ∈ S which minimizes
−xv + dG(v, u), unless that quantity is positive;
in that case, do not assign u to any cluster. (use
dG(u, v) for Cluster-In)

4. Let V1, . . . , Vt−1 be the clusters produced by the
above step.

5. Return (V1, . . . , Vt−1, V \
⋃

i Vi).

Figure 1: The clustering algorithm.

In the remainder of this section we formally ana-
lyze this algorithm proving Lemma 4.1. The analysis we
present is very similar to that of [37] and uses a subset
of the ideas of [22]. The main difference is that we start
only from a subset of the vertices S. Our analysis makes
use of several facts regarding the exponential distribu-
tion which for completeness we prove in Appendix B.

Lemma 4.1. Let (V1, V2, . . . , Vt) be the partition of
V returned by Cluster-Out(G,S, r) (analogously of
Cluster-In). Then, for any c ≥ 1 we have

1. with probability at least 1 − n1−c for all i < t, the
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radius of the tree corresponding to Vi is at most c·r,

2. for any pair of vertices u, v at roundtrip distance
at most R in G, they are in the same set Vi with
probability at least exp(− log(n)R/r).

Furthermore, the algorithm runs in time O(m log n).

Proof. We prove the lemma for Cluster-Out (the
proof for Cluster-In is analogous). We use various
facts about the exponential distribution though this
proof (See Section B for their proof). Note that the
maximum radius of any cluster, Vi is upper bounded by
maxi xi by design. For every i ∈ 1, . . . , t, we have

Pr [xi ≥ c · r] ≤ exp(−c · βr) = n−c .

By a union bound the maximum radius of is at most
c · r with probability at least 1− n1−c.

To prove the remainder of the lemma, fix u, v ∈ V
with roundtrip distance at most R in G. Assume s ∈ S
is the vertex minimizing −xs + min(dG(s, u), dG(s, v)),
and that this quantity is less than 0 (otherwise we have
u, v ∈ Vt). Let T be the second smallest value of
this quantity, or 0, whichever is smaller. Condition
on the values of xs and T and assume without loss
of generality that dG(s, u) ≤ dG(s, v). Then u is
assigned to the cluster rooted at s, and u and v can be
separated only if −xs + dG(s, v) > T . By the triangle
inequality, this would imply −xs+dG(s, u)+R > T . By
assumption, we have −xs+dG(s, u) < T , or equivalently
xs > dG(s, u) − T . By the memoryless property of the
exponential distribution (See Lemma B.1), we see that
the probability that the cluster rooted at s contains both
vertices u and v is at least

Pr
[
xs > dG(s, u)−T +R | xs > dG(s, u)− T

]
= Pr

[
Exp(β) ≥ R

]
= exp(−βR),

yielding the desired result. �

4.2 Estimating Ball Sizes To compute part of a
roundtrip cover, ideally we would just partition the
graph using our decomposition scheme of the previ-
ous section and repeat until the clusters have good
roundtrip diameter. Unfortunately, as discussed in Sec-
tion 3 this approach fails as there may be problematic
vertices that have a large low-radius ball in one direc-
tion, and a small low-radius ball in the other direction.
In other words, calls to Cluster-In and Cluster-Out
with the wrong set S might only yield trivial partitions,
i.e. V1 = V .

To alleviate this issue, we use a fast sampling
approach to estimate the sizes of the O(r)-balls of all
vertices, that allows us to identify these problematic
vertices efficiently.

Lemma 4.2. ([13]) For all ε ∈ (0, 1) there is an algo-
rithm Estimate-Balls(G, r, ε) that in O(mε−2 log2 n)
time computes n-length vectors sout, sin, with the follow-
ing property. For any vertex u, let s̄outu be the fraction
of vertices in V such that dG(u, vi) ≤ r. Then, w.h.p.,
for all vertices u, |s̄outu − soutu | ≤ ε, where soutu is the
component of sout corresponding to u. An analogous
statement holds for sin.

For completeness, we provide a self-contained proof
of Lemma 4.2 in Appendix A.

4.3 Fast Roundtrip Covers Combining the tech-
niques of Section 4.1 and Section 4.2 here we provide
our efficient algorithm for constructing roundtrip cov-
ers, i.e. Fast-Roundtrip-Cover, and prove the main
theorem of this section, Theorem 4.1, analyzing this al-
gorithm.

We push much of the work of this algorithm
to a subroutine Probabilistic-Cover that performs
the simpler task of constructing probabilistic roundtrip
cover: that is a partition of the vertex set such that any
two vertices close enough in the roundtrip metric are
in the same cluster with at least some fixed probability.
Our main roundtrip cover construction is then simply a
union of sufficiently many probabilistic roundtrip covers
computed by Probabilistic-Cover.

The statement and analysis of
Probabilistic-Cover are the most technically
involved results of this section. Our algorithm,
Probabilistic-Cover, takes as input a directed
graph G, a target radius r, and proceeds as follows.
First we use Estimate-Balls from Section 4.2 to
estimate the fraction of vertices in all balls of radius
O(r) up to an additive 1/8. Then we consider two
cases. In the first case we find that there is some
vertex that can reach a large fraction of the vertices at
distance O(r) and can be reached by a large fraction
of the vertices at distance O(r). In this case we know
that many vertices have a small roundtrip distance to
this vertex so we simply output a roundtrip metric
ball around this vertex and recurse on the remaining
vertices. Otherwise, we know that there are many
vertices that do not reach (or are not reachable by)
many vertices at distance O(r) and we can cluster to or
from these vertices using Cluster-Out(-In) analyzed
in Section 4.1 and recurse on the clusters. In either case
we recurse on subsets of vertices that are a constant
fraction of the original size and hence only need to
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{B1, B2, . . .} = Probabilistic-Cover(G, r),
where G = (V,E, l) is a directed graph and r > 0.

1. Set c > 1 to a sufficiently large constant (for high
probability bounds).

2. If V is empty, return ∅.
3. Let sout, sin := Estimate-Balls(G, c · r, 1

8
).

4. Let Sout := {v ∈ V : soutv ≥ 3
4
}, Sin := {v ∈ V :

sinv ≥ 3
4
}.

5. If Sout ∩ Sin 6= ∅:

(a) Choose an arbitrary vertex u ∈ Sout ∩ Sin.

(b) (failure) If |outballG(u, c · r) ∩ inballG(u, c ·
r)| < 1

4
· |V |, return {V }.

(c) Pick rB uniformly at random in [2c ·r, 2(c+
1) · r].

(d) Let B be a ball of radius rB in the roundtrip
metric around u.

(e) Let G′ be the graph induced by G on V \B.

(f) Return {B}∪Probabilistic-Cover(G′, r).

6. If |Sout| ≤ 1
2
· |V |:

(a) Let (V1, . . . , Vt) := Cluster-Out(G,V −
Sout, r).

Otherwise (we have |Sin| ≤ 1
2
· |V |):

(b) Let (V1, . . . , Vt) := Cluster-In(G,V −
Sin, r).

7. (failure) If maxi |Vi| > 7
8
· |V |, return {V }.

8. For i = 1, . . . , t, let Gi be the graph induced by
G on Vi.

9. Return Probabilistic-Cover(G1, r) ∪ . . . ∪
Probabilistic-Cover(Gt, r).

Figure 2: Single pass of cover construction.

recurse a for a logarithmic number of iterations. We
formally analyze this algorithm and prove that it has
the desired properties in the following Lemma 4.3.

Lemma 4.3. Let C := Probabilistic-Cover(G, r).
Then:

1. each B ∈ C is a ball of radius O(r) in the roundtrip
metric, w.h.p.,

2. any pair of vertices u, v at roundtrip distance at
most R in G are in the same element of C with
probability at least exp(−6 log2(n)R/r), and

3. every vertex v ∈ V belongs to exactly one element
of C.

Furthermore, the algorithm runs in time O(m log3 n).

Proof. Property 3. is easily verified.
To prove property 1., first note that for large

enough c w.h.p. all calls to the subroutines
Cluster-In,Cluster-Out and Estimate-Balls
yield the guarantees described in Lemmas 4.1 and 4.2.
Conditioning on this event, we show the failures in
steps 5(b) and 7 of Probabilistic-Cover never occur;
this is enough to show the thesis.

First assume that there exists a vertex u ∈ Sout ∩
Sin. Then, by assumption, we have |outballG(u, c ·r)| ≥
( 3

4 −
1
8 ) · |V | ≥ 5

8 · |V | and |inballG(u, c · r)| ≥ 5
8 · |V |.

Hence |outballG(u, c · r) ∩ inballG(u, c · r)| ≥ 1
4 · |V |.

Hence the failure in step 5(b) cannot occur. Thus, if the
condition in step 5 holds, then whp the algorithm will
return a cover. Let’s assume then that Sout ∩ Sin = ∅.
Then it must be that either |Sin| ≤ |V |/2, or that
|Sout| ≤ |V |/2. Assume that |Sout| ≤ 1

2 · |V | (the
case |Sin| ≤ 1

2 · |V | is analogous). By assumption, the
radii of all balls grown in calls to Cluster-Out are at
most c · r, and so the sizes of the clusters constructed
are at most 7

8 · |V | (by assumption on accuracy of
Estimate-Balls). The last cluster cannot be larger
than 1

2 · |V | by construction. Hence the failure in step 7
cannot occur.

To prove property 2., first note that in every
recursive call, the size of the vertex set is multiplied
by at most 7/8. Therefore, there are at most dlog8/7 ne
levels of recursion. Now fix two vertices u and v at
roundtrip distance at most R ≤ r in G. In each level
of recursion, the vertex set is partitioned by a call to
Cluster-In or Cluster-Out, or growing a roundtrip
metric ball of radius chosen uniformly at random from
[2c·r, 2(c+1)·r]. For the first two cases, the probability u
and v are not separated if they have not been separated
previously is at least exp(− log(n)R/r)) by Lemma 4.1.
For the last case, the probability is easily seen to be
at least 1 − R/(2 · r) ≥ exp(− log(n)R/r). Hence, the
probability that u and v are not separated at all is at
least

exp(− log(n)R/r)dlog8/7 ne ≥ exp(−6 log2(n)R/r).

Note that computing the ball in the roundtrip metric
in step 5(d) reduces to two single source shortest path
computations from u. Consequently, the running time
is dominated by the O(log n) calls to Estimate-Balls.
�

With Probabilistic-Cover in hand, we are
ready to present the complete efficient algorithm
for constructing roundtrip covers. The algorithm,
Fast-Roundtrip-Cover is given in Figure 3 and we
conclude with its analysis, i.e. the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.3, w.h.p. all
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{C1, C2, . . .} = Fast-Roundtrip-Cover(G, k,R),
where G = (V,E, l) is a directed graph and k,R > 0.

1. Let r := 6Rk logn.

2. Let c > 1 to a sufficiently large constant (for high
probability bounds).

3. Let C0 := ∅.
4. For i = 1, . . . , c · dn1/ke · dlogne:

Ci := Ci−1 ∪ Probabilistic-Cover(G, r).

5. Return C.

Figure 3: The fast roundtrip cover algorithm.

balls in C have the desired radius properties and the
size assertions are easily verified.

It remains to show that w.h.p. any two vertices
at short roundtrip distance share at least one cluster
in C. Fix two vertices u and v at roundtrip distance
at most R in G. By Lemma 4.3, the probability
they are in the same cluster in any single cover pass
is at least exp(−6 log2(n)R/r) = exp(− log(n)/k).
Hence, the probability they are separated in
dn1/ke = dexp(log(n)/k)e independent passes is at
most exp(−1). Therefore, the probability they are
separated in all the of c · dn1/ke · dlog ne passes is at
most exp(−c log n) = n−c. �

5 Roundtrip Spanners and More

The analysis in Section 4 as encompassed by Theo-
rem 4.1 yields our best result for unweighted graphs G;
the union of Fast-Roundtrip-Cover(G, k,R) for R =
20, 21, . . . , 2dlog2 ne is w.h.p. an O(k log n)-multiplicative
roundtrip-spanner of G. More generally, for weighted
graphs we obtain the following corollary:

Corollary 5.1. Given a directed graph G = (V,E, l)
we can construct w.h.p. a O(k log n)-roundtrip-
spanner of G with O(n1+1/k log n log(nW )) edges in
O(mn1/k log4 n log(nW )) time, where W is the ratio be-
tween the largest and the smallest length in G.

The first aim of this section is to remove the
dependence on W from both the size of the spanner
and the running time (Section 5.1). This allows us to
prove the following result on spanner construction, and
Theorem 1.1 as its corollary.

Theorem 5.1. The algorithm
Fast-Roundtrip-Spanner(G, k) in O(mn1/k log4 n)
time computes w.h.p. an O(k log n)-roundtrip-spanner
of G of size O(n1+1/k log2 n).

Then we shall investigate parallel algorithms that
result from our scheme, obtaining the following results
(Section 5.2).

Theorem 5.2. Given an unweighted directed graph G
and an upper bound R on the maximum diameter of
any strongly connected component of G, we can w.h.p.
compute the strongly connected components of G in
Õ(m) work and Õ(R) depth.

Theorem 5.3. Given an unweighted directed graph G,
we can w.h.p. compute an O(k log n) approximation to

the girth of G in Õ(mn1/k) work and Õ(girth(G)) depth.

5.1 Removing the Dependence on Edge
Lengths Our algorithm for constructing the spanner
will remain based on the idea of taking a union of
(O(k log n), R)-roundtrip-covers over R ∈ R, for some
set R such that every roundtrip distance in G is a
constant factor smaller than some element of R.

The main idea in removing the dependence on the
lengths of the edges is that for a fixed value of R,
we do not have to consider all the edges in G when
constructing a (O(k log n), R)-roundtrip-cover. First,
note that we can remove all the edges longer than R,
as that does not change any roundtrip distance smaller
than R. Simultaneously, for any strongly connected
component of edges shorter than R/n, we can replace
it by a single vertex. Indeed, uncontracting all such
vertices after obtaining a roundtrip cover will increase
the length of any path found by only an additive
R. Finally, we can remove all the edges that do not
participate in any strongly connected component, as
that does not impact any roundtrip distances. The idea
is similar to those given in [16, 22]; the main difference
from the scheme of [22] is in preserving only edges that
are parts of connected components of edges shorter than
R. The described process is formalized in Definition 5.1.

Definition 5.1. Let G = (V,E, l) be a directed graph
and xL, xR ∈ R be such that 0 < xL < xR. We
construct G collapsed to [xL, xR] by:

• merging any vertices that can reach each other while
following only edges of length at most xL,

• removing all edges longer than xR,

• removing all edges whose endpoints cannot reach
each other while following only edges of length at
most xR, and

• removing all vertices of degree 0 remaining afer the
above operations.
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To simplify notation, we define the L∞-roundtrip
distance d∞G (u, v):

Definition 5.2. For a directed graph G = (V,E, l)
and a pair of vertices u, v ∈ V , we define the L∞-
roundtrip distance between u and v, denoted d∞G (u, v),
as the minimum value of d such that there is a cycle C
containing u and v such that le ≤ d for all e ∈ C.

We now show that performing the process for all
R ∈ {2t : t ∈ Z} results in a collection of graphs with a
bounded size.

Lemma 5.1. Let G = (V,E, l) be a directed graph. For
every t ∈ Z, let G(t) be G collapsed to [2t/n, 2t]. Then
the total number of edges in all G(t) is O(m log n), and
the total number of vertices in all G(t) is O(n log n).

Proof. Fix an edge e = (u, v) ∈ E and t such that e is
an edge in G(t). Note that since e is not contracted, we
must have d∞G (u, v) > 2t/n. Simultaneously, since e is
part of a strongly connected component in G consisting
of edges of length at most 2t, we must have d∞G (u, v) ≤
2t. Hence t − log2 d

∞
G (u, v) ∈ [0, log2 n). Therefore e is

included in O(log n) of the graphs G(t).
Assume that u is a vertex of G(t). By construction,

it must be part of a nontrivial strongly connected
component in G(t), and so it is merged with another
vertex in G(t′) for all t′ ≥ t + log2 n. Since there
are only O(n) possible vertices that can result from
merging vertices in V , and each of them appears in
O(log n) graphs G(t), we obtain the thesis. �

If we can construct all the graphs G(t) effi-
ciently, we can simply run Fast-Roundtrip-Cover
on each of them to obtain a spanner for G. Fol-
lowing the idea of the proof of Lemma 5.1, to con-
struct all of G(t), is enough to compute for each
edge (u, v) ∈ E the value of d∞G (u, v). This is ob-
tained by the algorithms Roundtrip-L∞-Spanner
and Find-Collapse-Times, described below. The al-
gorithm Find-Collapse-Times computes d∞G (u, v) for
every edge (u, v) in G, assuming that all the edges have
distinct weights from 1 to m.

Lemma 5.2. Let G = (V,E) be a directed graph
and (eL, . . . , eR) be a sequence of edges on V . As-
sume that every edge in E is contained in a strongly
connected component of (V, {eL, . . . , eR}). Let s =
Find-Collapse-Times(G, (eL, . . . , eR)). Then for ev-
ery e ∈ E, it holds that se is the minimum i such
that e is contained in a strongly connected component
of (V, {eL, . . . , ese}). Moreover, the algorithm runs in
O((|V |+ |E|+ (R− L+ 1)) log(R− L+ 1)) time.

s = Find-Collapse-Times(G, (eL, . . . , eR)),
where G = (V,E) is a directed graph, L,R ∈ N with
1 ≤ L ≤ R.

1. If L = R, set se = L for all e ∈ E and return s.

2. Let M = b(L+R)/2c.
3. Let

E′ := {e ∈ E | e is contained inside a SCC

of the graph (V, {eL, . . . , eM})}.

4. Let V ′ be V with edges in E′ contracted.

5. Let s′ :=
Find-Collapse-Times((V,E′), (eL, . . . , eM )).

6. Let s′′ := Find-Collapse-Times((V ′, E \
E′), (eM+1, . . . , eR)).

7. Return s′ merged with s′′.

Figure 4: The recursive algorithm for computing col-
lapse times.

Proof. Correctness is easily proven by induction. To
bound the running time, it is enough to observe that
every recursive call halves (R − L+ 1), and every edge
in E is only passed to one recursive call. �

The algorithm Roundtrip-L∞-Spanner con-
structs an O(n)-sized subset F of the edges of G that
preserves the L∞-roundtrip distances between vertices
of G. It also returns a tree T containing all the vertices
that can result from collapsing cycles of maximum edge
length lower than some bound, with edges of T describ-
ing the hierarchical structure on them. Lowest common
ancestor queries on T enable us to efficiently compute
d∞G (u, v) for any u, v.

Lemma 5.3. Let G = (V,E, l) be a directed graph. Let
(F, T ) = Roundtrip-L∞-Spanner(G). Then:

1. F ⊆ E is such that for any pair of vertices u, v
contained in a cycle in G with maximum edge length
R, there exists a cycle in (V, F ) containing u and
v with maximum edge length R,

2. |F | = O(n), and

3. for any two vertices u, v ∈ V , the label of the
lowest common ancestor of u and v in T is equal
to d∞G (u, v).

Moreover, the algorithm works in O(m log n) time.

Proof. By Lemma 5.2, the application of
Find-Collapse-Times computes for each edge
(u, v) ∈ E the value of d∞G (u, v). The claims of the
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(F, T ) = Roundtrip-L∞-Spanner(G),
where G = (V,E, l) is a directed graph.

1. Remove from G any edges that are not part of a
strongly connected component.

2. Let e1, . . . , em be the edges of G, ordered by
increasing length.

3. Let s := Find-Collapse-Times(G, (e1, . . . , em)).

4. Let V0 = V, F0 = ∅.
5. Let T = (V, ∅).
6. For i in 1, . . . ,m:

(a) Let Ei be the set of edges e for which se = i.

(b) Let E′i be union of any out- and in-trees
for the strongly connected components of
(Vi−1, Ei).

(c) Let Fi := Fi−1 ∪ E′i.
(d) Let Vi be the set of vertices obtained from

Vi−1 by contracting all of Ei (equivalently
E′i).

(e) Label every vertex of Vi \ Vi−1 by l(ei).

(f) Add all vertices of Vi \ Vi−1 to T .

(g) For every vertex u ∈ Vi−1 that was con-
tracted into a vertex v ∈ Vi \ Vi−1, add an
edge between v to u to T .

7. Return (Fm, T ).

Figure 5: The algorithm for computing a small subset
of edges that preserves L∞-roundtrip distance.

lemma follow by construction. �

Finally, we describe our complete algorithm for
computing roundtrip distance spanners of weighted
graphs. The algorithm first computes all graphs G(t)

using a call to Roundtrip-L∞-Spanner and the
ideas of the proof of Lemma 5.1. It then invokes
Fast-Roundtrip-Cover for each of G(t) and returns
the union of the results, together with a L∞-roundtrip
distance spanner for G to account for the collapsed clus-
ters in G(t).

Reminder of Theorem 5.1 The algorithm
Fast-Roundtrip-Spanner(G, k) in O(mn1/k log4 n)
time computes w.h.p. an O(k log n)-roundtrip-spanner
of G of size O(n1+1/k log2 n).

Proof of Theorem 5.1. First note that for each t, F0

provides a low-cost spanner for every collapsed vertex
of G(t). By uncollapsing the collapsed vertices of G(t)

and adding in edges from F0, the length of any path in
the roundtrip cover at radius 2t increases by at most an
additive 2t. Since edges larger than 2t have no influence

F = Fast-Roundtrip-Spanner(G, k),
where G = (V,E, l) is a directed graph and k ≥ 1.

1. Let (F0, T ) :=Roundtrip-L∞-Spanner(G).

2. For all t ∈ Z, let G(t) be G collapsed to [2t/n, 2t].

3. Let i := 0.

4. For every t such that G(t) is nonempty:

(a) Ci := Fast-Roundtrip-Cover(G(t), k, 2t).

(b) Fi+1 := Fi∪ shortest path trees to and from
roots of each ball in Ci.

(c) i := i+ 1.

5. Return Fi.

Figure 6: The roundtrip spanner algorithm.

on roundtrip distances not larger than 2t, we see that
the roundtrip covers computed for each G(t) are also
roundtrip covers for G (after adding the edges of F0).

To obtain the claimed running time, we need to
show that the nonempty graphs G(t) can be computed
efficiently. Following the idea of the proof of Lemma 5.1,
we see that it is sufficient to compute for every edge
(u, v) the value of d∞G (u, v). By Lemma 5.3, this is eas-
ily done using lowest common ancestor queries on T . �

Theorem 1.1 is an immediate corollary of Theo-
rem 5.1.

Reminder of Theorem 1.1 For any n-node, m-node
directed graph with nonnegative integer edge weights,
with unknown girth g and integer k ≥ 1, in time
O(mn1/k log5 n) we can compute an estimate ḡ such that
g ≤ ḡ ≤ O(k log n) · g with high probability.

Proof of Theorem 1.1. It is sufficient to exe-
cute Fast-Roundtrip-Spanner(G, k). The small-
est diameter of any cluster computed in calls to
Fast-Roundtrip-Cover will be no larger than
O(k log n) · girth(G). �

5.2 Parallel Strongly Connected Components
and Girth Estimation Our main subroutine,
Fast-Roundtrip-Cover, is inherently parallelizable.
This enables us to obtain a new parallel algorithm for
computing strongly connected components in nearly
linear work, and depth proportional to the maximum
diameter of a strongly connected component (assuming
access to a known upper bound). To our knowledge,
no previous guarantees of this type have been known,
despite the classical status of analogous guarantees for
problems such as parallel u-v reachability in directed
graphs.
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Reminder of Theorem 5.2 Given an unweighted
directed graph G and an upper bound R on the maximum
diameter of any strongly connected component of G, we
can w.h.p. compute the strongly connected components
of G in Õ(m) work and Õ(R) depth.

To prove this result, we first formally state the par-
allel runtime guarantees of Fast-Roundtrip-Cover.

Lemma 5.4. For unweighted graphs, a parallel ver-
sion of Fast-Roundtrip-Cover(G, k,R) can be im-

plemented to work in Õ(mn1/k) work and Õ(R) depth.

Proof. Since Probabilistic-Roundtrip-Cover has
only O(log n) levels of recursion, and the separate calls
to it can be made in parallel, the bottleneck for depth is
computing shortest paths. Since for unweighted graphs
any paths computed in calls to Estimate-Balls,
Cluster-Out and Cluster-In are of length Õ(R),
the thesis follows by employing standard parallel
breadth first search (cf. [37]). �

We now proceed to prove Theorem 5.2.

Proof of Theorem 5.2. We start by computing
C := Fast-Roundtrip-Cover(G, log n,R). Now note
that w.h.p., for any pair of vertices u and v, they are
part of the same cluster in C if and only if they are in
the same strongly connected component of G. Hence, it
is enough to compute weakly connected components of
the relation of being part of the same cluster in C; this
is achieved with classical parallel algorithms [1, 44]. �

Another corollary is that we can parallelize our girth
estimation algorithm for unweighted graphs.

Reminder of Theorem 5.3 Given an unweighted
directed graph G, we can w.h.p. compute an O(k log n)

approximation to the girth of G in Õ(mn1/k) work and

Õ(girth(G)) depth.

Proof of Theorem 5.3. It suffices to invoke
Fast-Roundtrip-Cover(G, k,R) for R ∈ 20, 21, . . .
until it returns a nonempty result. The work and depth
bounds follow from Lemma 5.4. �

6 Additive Approximation for the Girth

As discussed in the introduction, combining Theo-
rem 1.1 with the BFS computation of the lengths of
shortest cycles through all nodes in a random sample of
size Õ(n1−a), yields the following corollary:

Reminder of Corollary 1.1 For all a ∈ (0, 1), there
is an Õ(mn1−a) time combinatorial algorithm that w.h.p
returns an O(na) additive approximation to the girth of
an unweighted directed graph.

It is unclear whether the algorithm from the above
corollary can be derandomized. The algorithm uses
randomization in many places: (1) it uses a random
sample to hit long cycles that we don’t have a handle
on otherwise, (2) it uses sampling quite heavily to obtain
estimates of the sizes of reachability sets of all vertices,
(3) it grows random neighborhoods according to an
exponential distribution.

We are not aware of any deterministic approach that
achieves running time O(mn1−ε) for ε > 0 for any of
the above cases. In fact, as far as we know, the only
way to achieve (2) deterministically is to compute the
reachability trees explicitly. Despite this, we show that
the result can be partially derandomized using different
techniques:

Reminder of Theorem 1.3 Let G = (V,E) be
a directed unweighted graph with unknown girth g,
and let 0 < a, ε < 1 be parameters. There is a
deterministic combinatorial algorithm that computes in
Õ((1/ε2)mn1−a) time a cycle whose length is

1. an O(na) additive approximation of g if g ≤ na,
and

2. a (1+ε) multiplicative approximation of g if g > na.

In the reminder of this section we prove Theo-
rem 1.3.

Roughly speaking, our algorithm works in itera-
tions, where each iteration takes Õ((1/ε)m) time. Let
C be a shortest cycle in G = (V,E). The idea of the
algorithm is as follows. In each iteration we consider a
shortest path of dε ·nae vertices. If no such path exists,
then the diameter of G must be smaller than εna, and
we can pick any cycle and return it as our approxima-
tion. Assume now that there is a shortest path P with
at least dε ·nae vertices. Either P ∩C 6= ∅, or we can re-
move P from G and recurse on the remaining graph. If
P ∩C 6= ∅, our algorithm finds an approximation for C
by constructing a new weighted graph G′ and a shortest
path P ′ between two nodes s and t in G′ whose second
shortest simple path length is a good approximation to
the length of C.

If we could compute this second shortest path ex-
actly, then we would be done. Unfortunately, the
fastest known algorithm for second shortest path takes
O(mn+n2 log log n) time [27], and moreover Vassilevska
W. and Williams [53] showed that the problem is sub-
cubically equivalent to APSP, so that a truly subcubic
algorithm for it would be a breakthrough. Our goal
is to obtain an almost linear time algorithm, however,
since we might need to repeat the procedure n1−a times
(removing na nodes in each iteration).

Fortunately, Bernstein[8] developed an Õ(m/ε)
time algorithm that computes a (1 + ε) multiplicative
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approximation for the second shortest simple path in di-
rected weighted graphs. We use this algorithm for our
Õ(mn1−a) mixed approximation algorithm.

Before we formally describe our algorithm, we note
that a cycle in a directed graph must be contained in a
strongly connected component (SCC). We can assume
that G is strongly connected, as otherwise we compute
in O(m)-time its SCCs and run the algorithm in every
non-singleton SCC. If all SCCs are singletons, then the
graph is a directed acyclic graph and has no cycles.

We start by taking an arbitrary vertex z of G and
using BFS in O(m) to find the longest shortest paths
Qin, Qout, in and out of z, respectively. Let Q be the
longer of Qin and Qout. By the triangle inequality, Q
must have length at least half of the diameter of G
(notice that since G is strongly-connected, the diameter
is well-defined). Let d = dε · nae. If the length of Q
is < d, then the diameter is < 2d, and any vertex of
G is on a cycle of length at most 2d: take the edge
(x, y) on a shortest cycle C̃ through x; the length of C̃
is 1 +d(y, x) ≤ 1 + (2d−1) = 2d. Therefore, by running
a BFS from an arbitrary vertex and stopping when the
first backward edge is detected, we find a cycle that is
an O(εna) additive approximation to the shortest cycle.

Otherwise, the diameter is at least 2d. Let P =
〈vd, . . . , v0〉 be a portion of d edges from the path
that we have computed. We construct a new directed
weighted graph G′ as follows.

1. Initialize G′ to be G. Set all weights to 1.

2. Add the following vertices and edges to G′.

(a) For each vi ∈ P , where i ∈ {0, . . . , d}, create
new nodes ui and u′i.

(b) For each i ∈ {0, . . . , d} add an edge from ui to
u′i, and for each i ∈ {0, . . . , d−1} add an edge
from u′i to ui+1. All edges are of weight 1.

3. For each vi ∈ P , where i ∈ {0, . . . , d}, add the
following new edges to G′.

(a) Add a new edge of weight 4d − 3i from ui to
vi.

(b) For each outgoing edge (vi, x) ∈ E of vi, add
a new edge of weight 4d− 3i from ui to x.

(c) For each incoming edge (y, vi) ∈ E of vi, add
a new edge of weight 3i from y to u′i .

From the above construction it follows that there is
a path P ′ = 〈u0, u

′
0, u1, u

′
1, . . . , ud, u

′
d〉 in G′ of length

2d + 1. Moreover, P ′ is the shortest path from u0 to
u′d. To see this, notice first that there is no edge from
u to v, where u, v ∈ P ′ are not consecutive. Therefore,

any path from u0 to u′d other than P ′, contains a vertex
v /∈ P ′. The length of such a path is at least 4d > 2d+1
since it must use an edge of weight 4d−3i to leave P ′ and
an edge of weight 3j to return P ′, where 0 ≤ i ≤ j ≤ d.

Next we apply Bernstein’s algorithm to find a
second shortest path for P ′ in G′. Similarly to prior
work on replacement paths, given a shortest path Q we
say that a path D(u, v) is a 〈u, v〉-detour of Q if D(u, v)
is a simple path for which D(u, v) ∩ Q = {u, v} and u
precedes v on Q. It is easy to show that the second
shortest path Q′ of Q = 〈v0, . . . , vk〉 has the following
form: Q′ = Q(v0, u) ·D(u, v) · Q(v, vk), where Q(v0, u)
and Q(v, vk) are the subpaths of Q from v0 to u and
from v to vk, respectively, and D(u, v) is a 〈u, v〉-detour
of Q (e.g. see Lemma 2.1 in [8]).

The following fact follows easily from the construc-
tion of G′ and P ′ above.

Fact 6.1. If P ′ has a 〈ui, u′j〉-detour then it has the
following structure: (ui, x) · Q′ · (y, u′j), where Q′ is a
path from x to y in G, and x is an out-neighbor of ui in
G and y is an in-neighbor of vj in G. Notice Q′ might
be an empty path.

In the next lemmas we establish the relationship
between a shortest cycle that intersects P in G and a
second shortest path for P ′ in G′.

Lemma 6.1. Let 0 ≤ i ≤ j ≤ d. If P ′ has a 〈ui, u′j〉-
detour D(ui, u

′
j), then there is a cycle in G that contains

P (vj , vi) and has length ≤ |D(ui, u
′
j)| + |P (vj , vi)| =

|D(ui, u
′
j)|+ (j − i).

Furthermore, if G has a simple cycle C that con-
tains P (vj , vi), then P ′ has a 〈ui, u′j〉-detour of length
at most |C| − |P (vj , vi)|+ 1.

Proof. Let Q be a 〈ui, u′j〉-detour of P ′. From the
construction of G′ it follows that Q = (ui, x) ·Q′ · (y, u′j)
where Q′ is a path from x to y in G1.

We show that C = (vi, x) · Q′ · (y, vj) · P (vj , vi) is
a cycle in G. From the construction of G′ it follows
that the edges (ui, x) and (y, u′j) in G′ correspond to
the edges (vi, x) and (y, vj) in G, respectively, and since
the path Q′ is also in G it follows that C is a cycle in
G.

Let C be a simple cycle such that P (vj , vi) ⊆ C
for some i, j (possibly equal). If C = 〈vj , . . . , vi〉 (i.e.
(vi, vj) ∈ E), then i 6= j and we have the following
〈ui, u′j〉-detour : D(ui, u

′
j) = 〈ui, vi, u′j〉. Otherwise,

1Notice it is possible that x = y, and then 〈vi, x〉 ·Q′ · 〈y, vj〉 is
actually 〈vi, x, vj〉. It is also possible, in addition, vi = x = y, and
then 〈vi, x〉 · Q′ · 〈y, vj〉 is actually 〈vi, vj〉; this is the reason for
adding the edges (ui, vi) in G′. For simplicity of the presentation,
we assume the concatenation notation subsume all these cases.
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we have a shortest path B from vi to vj , such that
B ∩ P = {vi, vj} and B 6= {vi, vj}. Let x be the vertex
that follows vi in B and y the vertex the precedes vj in
B (it might be that x = y), then we have the following
〈ui, u′j〉-detour : D(ui, u

′
j) = (ui, x) ·B(x, y) · (y, u′j). �

Lemma 6.2. Let C∗ be a shortest cycle in G. If
P (vj , vi) ⊆ C∗, where j ≥ i, then the length of a second
shortest path of P ′ is at most 6d− 2 + |C∗|.

Proof. It follows from Lemma 6.1 that P ′ has a
〈ui, u′j〉-detour. From Fact 6.1 it has the following
structure: (ui, x) · Q′(x, y) · (y, u′j). Consider the path
P ′(u0, ui) · (ui, x) · Q′(x, y) · (y, u′j) · P ′(u′j , u′d). Its
length is 2i + (4d − 3i) + dG(x, y) + 3j + 2(d − j) =
6d+ (j− i) +dG(x, y) = 6d−2 +dG(x, y) + 2 + (j− i) ≤
6d− 2 + dG(vi, vj) + dG(vj , vi) = 6d− 2 + |C∗|. �

According to Lemma 6.1, a second shortest path
implies a cycle C in G consisting of the detour of the
second shortest path together with the path in G corre-
sponding to the subpath of P ′ that was circumvented.
Notice it is easy to derive from C a simple cycle in G,
which might be shorter. Denote by L the length of a
second shortest path. The length of C is then at most
d+ L.

Let C∗ be a shortest cycle in G. If P ∩ C∗ 6= ∅,
according to Lemma 6.2, L ≤ 6d − 2 + |C∗|. Since we
are using a (1+ε)-approximation for the second shortest
path (ε < 1), we get a cycle of length at most:

d+ (1 + ε)L = d+ (1 + ε)(6d− 2 + |C∗|)
= 7d− 2 + ε(6d− 2) + (1 + ε)|C∗|
≤ O(d) + (1 + ε)|C∗|.

If g ≤ na, then we found a cycle of size O(na). If
g > na, then since d ≤ O(εna), we have a 1 + O(ε)
multiplicative approximation for the girth.

Thus, if an approximate second shortest path of
length ≤ 16d is found, we can conclude that L ≤ 16d
and hence |C∗| ≤ O(d), so we can stop and return.
Otherwise, we can conclude that none of the vertices of
P are on cycles of length ≤ d in G, as otherwise the
algorithm would return an approximate second shortest
path of length 7d − 2 + ε(6d − 2) + (1 + ε)|C∗| <
13d−4 + 2d < 16d. We can thus remove all the vertices
of P from G and repeat the process above on the new
graph.

Consider the first iteration in which P ′ contains a
vertex of C∗. Since up to this iteration no vertices
of P ′ are removed, the graph will contain a detour
corresponding to the portion of C∗ not on P , and
the approximate cycle returned will be of length ≤

O(d)+(1+ε)|C∗|, as argued above. If the girth is ≤ 2d,
the approximation is additive O(d), and otherwise it is
multiplicative 1 +O(ε).

The correctness of the algorithm follows from the
discussion above. The runtime is as follows. The
time to decompose the graph to its strongly-connected
components isO(m+n) [50]. The time to constructG′ is
O(m), and the running time of Bernstein’s algorithm for
the second shortest path on G′ is Õ(m/ε). We conclude
that the running time for a single iteration is Õ(m/ε).
The number of iterations we have in the algorithm is
at most d(1/ε)n1−ae, since we are removing dε · nae
vertices from G in each iteration. It follows that the
total running time of the algorithm is Õ((1/ε2)mn1−a),
thus proving Theorem 1.3.

7 Lower Bounds

In this section we provide a conditional lower bound for
the problem of computing additive approximations for
the girth of a directed unweighted graph.

Let us begin with our plausible hypothesis:

Hypothesis 7.1. Any combinatorial (possibly random-
ized) algorithm for triangle detection in n-node m-edge
graphs with m = Θ(n2) requires (expected) n3−o(1) time.

Combinatorial algorithms informally do not use
Strassen-like matrix multiplication, and hopefully do
not hide high constants in the big-O. The current best
combinatorial algorithms for triangle detection run in
time min{O(n3/ log4 n), O(m3/2)} time [56, 28]. It is
a major open problem to design a truly subcubic, i.e.
an O(n3−ε) time combinatorial algorithm for constant
ε > 0 for triangle detection. Triangle detection is
known [53] to be subcubically equivalent to Boolean
Matrix Multiplication (BMM) under combinatorial fine-
grained reductions, and thus the above hypothesis is
equivalent to the hypothesis that combinatorial BMM
of n× n matrices requires n3−o(1) time.

We now state our result:

Theorem 7.1. Under Hypothesis 7.1, any combinato-
rial algorithm that computes an additive n1/2−1 approx-
imation to the girth of all directed n-node, m = O(n)-
edge graphs requires mn1/2−o(1) time.

Proof. Let G = (V,E) be an n-node, m-edge directed
graph for m = Θ(n2), so that we want to detect the
presence of a 3-cycle in G. We now create a new directed
H as follows:

• H has n2 vertices: for every v ∈ V we create n
copies v1, . . . , vn.

• For every edge (u, v) ∈ E of G, we create directed
edges (un, v1) and (ui, vi+1) for all i ∈ {1, 2}.
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• For every vertex v ∈ V , create directed edges
(vi, vi+1) for all i ∈ {3, . . . , n− 1}.

Every triangle a1 → a2 → a3 → a1 in G is
represented by an n-cycle in H: a1

n → a2
1 → a3

2 →
a1

3 → a1
4 → . . .→ a1

n.
Every n-cycle in H must correspond to a 3-cycle

in G, as there is a path from v3 to wn if and only if
v = w. Moreover, any cycle in H has length that is
a multiple of n as each cycle must go through all n
partitions of the graph over and over until it lands at
the same node. The girth of H is thus either n if G
has a 3-cycle, or at least 2n otherwise. H has N = n2

vertices and M ≤ 3m+ n2 = Θ(n2) edges.
Suppose that there is some constant ε > 0 such that

for all a there is an O(MN1/2−ε) time algorithm that
achieves an additive N1/2−1 approximation to the girth
of M -edge, N -node directed graphs. Let’s apply this
algorithm to H. If it finds an additive N1/2−1 = n−1 -
approximation to the girth of H, it will be able to detect
whether G contains a triangle. The running time of the
algorithm would be

O(MN1/2−ε) = O(n2 · n1−2ε) = O(n3−2ε),

which contradicts Hypothesis 1. �

Considering multiplicative approximation for the
girth in directed unweighted graphs, it is known that
any truly subcubic combinatorial algorithm that com-
putes a 2 − ε approximation (0 < ε < 1) for the girth
in directed unweighted graphs, implies a truly subcu-
bic time combinatorial algorithm for triangle detection.
This is formalized in the next probably folklore theorem.
A formal proof of it appears in [47].

Theorem 7.2. (Folklore) Under Hypothesis 7.1,
any combinatorial algorithm that for ε ∈ (0, 1) computes
a multiplicative 2 − ε approximation for the girth of a
directed n-node, m-edge graph requires n3−o(1) time.
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[40] Peleg, D., and Schäffer, A. A. Graph spanners.
Journal of Graph Theory 13, 1 (1989), 99–116.

[41] Peleg, D., and Ullman, J. D. An optimal syn-
chronizer for the hypercube. SIAM J. Comput. 18, 4
(1989), 740–747.

[42] Peng, R. A note on cut-approximators and approx-
imating undirected max flows. CoRR abs/1411.7631
(2014).

[43] Pettie, S., and Ramachandran, V. A shortest path
algorithm for real-weighted undirected graphs. SIAM
J. Comput. 34, 6 (2005), 1398–1431.

[44] Reif, J., and Spirakis, P. Expected parallel time
and sequential space complexity of graph and digraph
problems. Algorithmica 7, 1 (1992), 597–630.

[45] Roditty, L., Thorup, M., and Zwick, U.
Roundtrip spanners and roundtrip routing in directed
graphs. ACM Trans. Algorithms 4, 3 (2008), 29:1–
29:17.

[46] Roditty, L., and Williams, V. V. Minimum weight
cycles and triangles: Equivalences and algorithms.
In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011 (2011), pp. 180–189.

[47] Roditty, L., and Williams, V. V. Subquadratic
time approximation algorithms for the girth. In
Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Ky-
oto, Japan, January 17-19, 2012 (2012), pp. 833–845.

[48] Sherman, J. Nearly maximum flows in nearly linear
time. In 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA (2013), pp. 263–269.

[49] Sherman, J. Generalized preconditioning and net-
work flow problems. CoRR abs/1606.07425 (2016).

[50] Tarjan, R. E. Depth-first search and linear graph
algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.

[51] Thorup, M., and Zwick, U. Approximate distance
oracles. J. ACM 52, 1 (2005), 1–24.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1390

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



[52] Vassilevska Williams, V. Multiplying matrices
faster than Coppersmith-Winograd. In Proceedings of
the 44th Symposium on Theory of Computing Confer-
ence, STOC 2012, New York, NY, USA, May 19 - 22,
2012 (2012), pp. 887–898.

[53] Vassilevska Williams, V., and Williams, R. Sub-
cubic equivalences between path, matrix and triangle
problems. In 51th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2010, October 23-
26, 2010, Las Vegas, Nevada, USA (2010), pp. 645–
654.

[54] Wenger, R. Extremal graphs with no C4’s, C6’s, or
C10’s. Journal of Combinatorial Theory, Series B 52,
1 (1991), 113 – 116.

[55] Williams, R. Faster all-pairs shortest paths via cir-
cuit complexity. In Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014 (2014), pp. 664–673.

[56] Yu, H. An improved combinatorial algorithm for
boolean matrix multiplication. In Automata, Lan-
guages, and Programming - 42nd International Collo-
quium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part I (2015), pp. 1094–1105.

A Ball Size Estimation

Here we present a routine that can estimate the sizes
of neighborhoods of all vertices. The approach is
similar to that of [13]. We provide the algorithm,
Estimate-Balls, that when invoked on a graph G
with radius parameter r and error parameter ε computes
w.h.p. for every vertex the fraction of vertices that it
can reach at distance at r and the fraction of vertices
that can reach it.

(sout, sin) = Estimate-Balls(G, r, ε),
where G = (V,E, l) is a directed graph and r, ε > 0.

1. Sample t = d20 · logn/ε2e vertices v1, . . . , vt
independently uniformly at random from V with
replacement.

2. Compute the distances between every vertex in
V and each of v1, . . . , vt.

3. For each u ∈ V , let soutu be the fraction of
v1, . . . , vt such that dG(u, vi) ≤ r.

4. For each u ∈ V , let sinu be the fraction of
v1, . . . , vt such that dG(vi, u) ≤ r.

5. Return (sout, sin).

Figure 7: The algorithm for estimating the sizes of out-
and inballs at radius r for a given graph.

Our algorithm simply samples vertices with replace-
ment and computes distances to and from them to es-
timate the ball sizes. The analysis of Estimate-Balls
reduces to a simple application of Chernoff bounds and

union bound. We prove that it works in Lemma A.1.

Lemma A.1. Let sout, sin be the output of
Estimate-Balls(G, r, ε). For any vertex u, let
s̄outu be the fraction of vertices in V such that
dG(u, vi) ≤ r. Then, whp., for all vertices u it holds
that |s̄outu − soutu | ≤ ε. An analogous statement holds for
sin. The algorithm runs in time O(mε−2 log2 n).

Proof. By a standard Chernoff bound, we have

Pr[|s̄outu − soutu | > ε] ≤ 2 exp(−2tε2)

≤ 2 exp(−40 log n)

= 2n−40 .

An analogous bound holds for sin. �

B Exponential Distributions

Here we recall some basic facts about the exponential
distribution we use in the paper.

Lemma B.1. (Exponential Distribution Facts)
We let Exp(α) denote the exponential distribution with
parameter α. This distribution is supported on R≥0 with
a pdf given p(x) = α · exp(−αx). This distribution has
the following properties:

• CDF: Pr[Exp(α) ≤ x] = 1− exp(−αx) for x ≥ 0.

• Expected Value: EExp(α) = 1
α

• Memoryless: Pr [Exp(α) ≥ s+ t |Exp(α) ≥ s] =
Pr [Exp(α) ≥ t]

• High Probability: The maximum of n indepen-
dent r.v.s drawn from Exp(α) is O( logn

α ) with high
probability.

Proof. Direct calculation reveals that

Pr [Exp(α) ≤ x] =

∫ x

−∞
α exp(−αx)

= − exp(−αx) + exp(0)

= 1− exp(−αx)

giving the formula for the CDF. Furthermore, integra-
tion by parts yields that

EExp(α) =

∫ ∞
0

αx exp(−αx)dx

= [−x exp(−αx)] |∞0 −
∫ ∞

0

− exp(−αx)dx

= − 1

α
exp(−α∞) +

1

α
exp(−α0) =

1

α
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giving the expected value formula. Direct calculation
again yields

Pr [Exp(α) ≥ s+ t |Exp ≥ s] =
Pr[exp(α) ≥ s+ t]

Pr [exp(α) ≥ s]

=
exp(−α(s+ t))

exp(−αs)
= exp (−αt)
= Pr [Exp(α) ≥ t]

proving the memoryless property. Finally the high
probability bound is immediate from the CDF and the
definition of high probability. �

C Sequential Clustering Algorithm

Here we formalize and prove the alternative approach
to clustering described in Section 3.

(V1, V2, . . .) =
Sequential-Cluster-Out(-In)(G, (v1, . . . , vt−1), r),
where G = (V,E, l) is a directed graph, v1, . . . vt−1 ∈ V ,
and r > 0.

1. Set β := log(n)/r.

2. Let G0 := G.

3. For i in 1, . . . , t:

(a) If vi is not in Gi−1, let Gi := Gi−1, Vi := ∅
and continue the loop. Otherwise:

(b) Pick xi ∼ Exp(β).

(c) Let Vi := outballGi−1(vi, xi).
(inballGi−1(vi, xi) for Cluster-In)

(d) Let Gi := Gi−1 with Vi and incident edges
removed.

4. Return (V1, V2, . . . , Vt−1, V \
⋃

i Vi)

Figure 8: The sequential clustering algorithm.

Lemma C.1. Let (V1, V2, . . . , Vt) =
Sequential-Cluster-Out(G, (v1, . . . , vt), r0, r)
(analogously of Sequential-Cluster-In). Then for
any c ≥ 1 we have

1. with probability at least 1 − n1−c for all i < t, the
radius of the tree corresponding to Vi is at most c·r,
whp.,

2. for any pair of vertices u, v at roundtrip distance
at most R in G, they are in the same set Vi with
probability at least exp(− log(n)R/r).

Proof. Note that the maximum radius of any con-
structed tree is upper bounded by maxi xi. For every

i ∈ 1, . . . , t, we have

Pr [xi ≥ c · r] ≤ exp(−c · βr) = n−c,

and so by union bound the maximum radius is at most
c · r with probability at least 1− n1−c.

To prove the remainder of the lemma, fix two
vertices u and v at roundtrip distance at most R in
G. Assume the i-th cluster is the first one to contain an
element of the set {u, v}. By the memoryless property
of the exponential distribution we see that conditioned
on this event the probability that cluster i contains both
vertices u and v is at least

Pr [Exp(β) ≥ R] = exp(−βR),

yielding the desired result. �
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