
MIT Open Access Articles

Design and Implementation of the Ascend Secure Processor

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1109/TDSC.2017.2687463

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/135751

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135751
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

Design and Implementation of the Ascend Secure Processor

Ling Ren Christopher W. Fletcher Albert Kwon Marten van Dijk Srinivas Devadas

Abstract—This paper presents post-silicon results for the
Ascend secure processor, taped out in a 32 nm SOI process.
Ascend prevents information leakage over a processor’s digital
I/O pins — in particular, the processor’s requests to external
memory — and certifies the program’s execution by verifying
the integrity of the external memory. In secure processor design,
encrypting main memory is not sufficient for security because
where and when memory is accessed reveals secret information.
To this end, Ascend is equipped with a hardware Oblivious
RAM (ORAM) controller, which obfuscates the address bus by
reshuffling memory as it is accessed. To our knowledge, Ascend
is the first prototyping of ORAM in custom silicon. Ascend has
also been carefully engineered to ensure its timing behaviors are
independent of user private data. In 32 nm silicon, all security
components combined (the ORAM controller, which includes 12
AES rounds and one SHA-3 hash unit) impose a moderate area
overhead of 0.51 mm2. Post tape-out, the security components of
the Ascend chip have been successfully tested at 857 MHz and
1.1 V, at which point they consume 299 mW of power.

I. INTRODUCTION

As embedded and mobile devices become ubiquitous, users
have become more computationally limited and computation
outsourcing is becoming more common. From financial in-
formation to medical records, sensitive user data is being
sent to and computed upon by the cloud. Data privacy has
therefore become a huge concern, as sensitive user data is
being revealed to and can be attacked by potentially malicious
cloud applications, hypervisors/operating systems, or insiders.

One example is health diagnoses given a user’s private
medical records [31]. In this case, a mobile device is constantly
monitoring its user’s symptoms and wants to compute the like-
lihood that the user has some condition given these symptoms.
To outsource computation, the device sends a cloud server an
encryption of {symptoms, condition of interest}, which will
be inputs to a program (call it MedComp()). After running
MedComp() on the user’s private data, the server sends an
encryption of the result (e.g., “there is a 55% likelihood that
you have the condition”) back to the user. To maintain privacy,
the server must never learn anything about the user’s private
inputs — the symptoms or diseases of interest — at any time
before, during or after the computation. More examples are
given in [31].

One candidate solution is for the server to use tamper-
resistant hardware [20], [26], [41]. Here, computation takes
place inside a secure hardware compartment on the server side
that protects the user’s private data while it is being computed
upon. The smaller the trusted computing base (TCB), the
better from a security perspective. At the same time, removing
components from the TCB typically impacts performance
and/or energy efficiency. Despite the hit in efficiency, the
computationally-limited user is still motivated to outsource

computation since compute, energy and memory resources are
significantly cheaper for the server than the user.

A serious limitation with current secure hardware solutions,
however, is that they have to “trust” the program running on
the secure hardware. To “trust” the program, the user has to
“sign-off” on that program, believing that it is free of mali-
cious code or bugs that leak sensitive data. But applications
like MedComp() are seldom trustworthy. Verifying bug-free
and malicious behavior is a hard problem, if not intractable,
for sufficiently complex programs. Frequent software patches,
which are typical in modern software development, only
confound the issue. Furthermore, the user may not have access
to the program in the first place as the program may be
proprietary.

The Ascend1 secure processor is a step towards solving this
problem. With Ascend, the user sends the server encrypted
input (symptoms and medical information), and requests a
program (e.g., MedComp()) to be executed. The server would
then run the program on the user’s private data on an Ascend
processor, which decrypts user input, runs the program and
returns encrypted results to the user. Ascend ensures that even
a buggy or malicious program cannot leak information about
the user’s private data outside the Ascend chip.

A. The Problem with Untrusted Programs

Today’s secure processors (e.g., Intel+TXT [20], XOM [26],
Aegis [41], and Intel SGX [7]) leak private information when
running badly written or malicious programs. Consider the
following scenario. A user sends the server its symptoms and
condition of interest (denoted x) and expects the server to
run the MedComp() program described above. Note, the user
will send x to the server encrypted, and x is decrypted inside
the secure processor. However, the server being curious may
instead run the following program in order to learn the user’s
data.

void curious(x) {
if (x & 0x1) M[0];

}

M denotes program memory, which will be backed up in
cache (inside the processor) and in DRAM/disk (outside the
processor). If M[0] is not in cache, whether it is accessed is
visible to the server and reveals a bit in the user’s data. The
server can then repeat this experiment with different versions
of curious(x) to learn other bits in x.

These types of attacks are difficult to prevent. Adding cache
doesn’t help: the server can re-design curious(x) to miss
the cache. Encrypting data that leaves the secure processor

1Ascend stands for Architecture for Secure Computation on ENcrypted
Data.

2

also doesn’t help. As shown in the above example, the attack
can succeed when the server sees where the program accesses
memory (the access pattern), and whether/when accesses oc-
cur.

Of course, even if the server does run a non-malicious
program, program characteristics or bugs can leak private
information in the same way. Here, we use a toy example
curious() to illustrate the point, but several works have
demonstrated information leakage from memory access pat-
terns in practical scenarios [48], [23], [45], [21].

B. Ascend: Obfuscation in Hardware

Ascend defeats attacks like those posed by the curious()
program by performing obfuscation in hardware. Ascend guar-
antees that given an untrusted program P , a public length of
time T and two arbitrary inputs x and x′: running P (x) for
T time is indistinguishable from running P (x′) for T time
from any of the Ascend processor’s digital external pins. As-
cend has input/output (I/O) and address pins like a normal
processor, but obfuscates both the value and the timing of
digital signals on these pins. Therefore, the server does not
gain any information by watching these pins. Ascend does not
protect analog side channels like power, heat, electromagnetic
or radio-frequency channels.

Unlike a normal processor, Ascend runs for a parameter-
izable amount of time T that is chosen by the user before
the program starts, and is public to the server. Since T is
set a priori, it may or may not be sufficient to complete the
program given the user’s inputs. If the program terminates
before T time has elapsed, Ascend will perform indistinguish-
able dummy work until time T . After T time is complete,
Ascend will output either the final result or an intermediate
program state, encrypted with the user’s key. In either case,
the Ascend chip emits the same number of encrypted bits
(the result or state, possibly padded). The server, therefore,
cannot determine whether the program completes or how much
forward progress was made. In either case, signals on Ascend’s
digital pins must leak no information about private user data
for the entire T time, regardless of the program being run.

Putting these ideas together, the server cannot learn about
the user’s input by running programs like curious() from
Section I-A. Regardless of whether and how curious()
accesses external memory, Ascend runs for T time and behaves
in an indistinguishable way from the perspective of digital side
channels.

C. Contributions

This paper presents post-silicon results for the Ascend
secure processor. We make three primary contributions:

1) We give an overview of the Ascend execution model to
securely run untrusted programs. This part (Section II)
has been published in an STC workshop paper [14].

2) We provide a comprehensive overview of challenges
in implementing a hardware Oblivious RAM (ORAM)
controller, the core component in the Ascend design. We
present new techniques to address these issues. These

Untrusted
Server

UserAscend

2 encrypt(x), T, request(P) (1 interaction)

1
Key sharing

(several interactions)

Allocate external
memory & initialization

3

O(|M0|) interactions

Trusted Computing Base

Perform computation
5 O(|T|) interactions

Program P,
Public inputs y,
external RAM

6 MT’ (1 interaction)

4

Fig. 1. The protocol between a user, an untrusted server and Ascend. Numbers
follow Section II-A.

materials (Section IV, V, VI) have been published in a
series of our papers [35], [11], [12].

3) We implement all the techniques described in this paper
in hardware, tape out the Ascend processor in 32 nm
silicon, and report hardware evaluation and measurement
results. This part (Section VII) is new material for this
manuscript.

The security mechanisms of Ascend take up 0.51 mm2 of
silicon in 32 nm technology, which is roughly half the area of
a single processor core. Post tape-out, the security components
of the Ascend chip has been successfully tested at 857 MHz
and 1.1 V, at which point they consume 299 mW of power.
Our design is entirely written in Verilog and is available at
https://github.com/ascend-secure-processor/oram.

D. Organization

The rest of the paper is organized as follows. Section II
presents the Ascend execution model. Section III gives a
background on Oblivious RAM (ORAM). Section IV presents
the main challenges in implementing ORAM in hardware.
Sections V and VI describe optimizations which address the
aforementioned challenges. Sections VII present ASIC imple-
mentation and measurement results. Section VIII discusses
related work. Finally, Section IX concludes.

II. FRAMEWORK

A. Protocols

The user wants to perform computation on private inputs
x using a program P . P is stored on the server-side and
may have a large amount of public data y associated with
it (e.g., the contents of a database). The result of the user’s
computation is denoted P (x, y). P is assumed to be a batch
program, meaning that it only takes input at the beginning, and
produces an encrypted output upon termination.2 The protocol
for computing P (x, y) works as follows (shown graphically in
Figure 1):

1) The user shares a symmetric key K securely with
Ascend, using standard secure channel protocols (e.g.,
as used by Intel’s SGX [7]). For this purpose, we assume
that Ascend is equipped with a private key and a certified
public key.

2For interested readers, the model is generalized to programs that take
public streams of input [46], such as content-based image recognition software
processing video feeds.

3

2) The user encrypts its inputs x using K, and then chooses
T and R. T is the public time budget that the user is will-
ing to pay the server to compute on P . R is the number
of bytes reserved for P ’s final or intermediate output.
The user sends (encryptK(x), T,R, request(P, y)) to
the server, where request(P, y) is a request to use the
program P with server data y.

3) After receiving (encryptK(x), T,R, request(P, y)), the
server sends encryptK(x), P, y, T,R to Ascend. Ascend
decrypts encryptK(x), and writes x, P and y to external
memory, (re-)encrypted.

4) Ascend spends T cycles running P . After T cycles,
Ascend obtains r, the R-byte result that equals either
P (x, y) or some intermediate result.

5) Ascend creates a Message Authentication Codes (MAC,
e.g. a keyed hash [4]) on the program, user’s input
and parameters to certify the execution, i.e., h =
MAC(P ‖ x ‖ y ‖ T).3

6) Ascend sends encryptK(r) and h back to the user (via
the server).

7) The user verifies the MAC, (if match) decrypts and
checks whether the program finished. Without loss of
generality, we assume r contains an “I am done” mes-
sage if P finishes.

B. Threat Model

Ascend is a single-chip coprocessor on the server and
interacts with the server to run programs. The session key K
is stored in a register, accessible only to the encrypt/decrypt
units — not to the program P . The Ascend chip is assumed to
be tamper-resistant: the server cannot remove packaging/metal
layers, and hence cannot see K or any decrypted values inside
Ascend. The server can, however, monitor the traffic and
timing on Ascend’s I/O pins. The I/O pins record Ascend’s
interactions to an external memory while the program is
running — including the data, operation and address of those
requests as well as when those requests are made — and also
record when the program terminates and the final program
output. In this paper, we assume all external memory requests
are to fetch and evict processor cache lines from/to main
memory. Ascend does not protect any analog side channels
(e.g., power, heat, electromagnetic or radio-frequency).

The server can repeatedly perform experiments with As-
cend. For each experiment, the server initializes Ascend with
arbitrary encryptK(x), P , y, T , R and monitors how Ascend
interacts with the outside world through the digital pins. We
make no assumptions as to how the server monitors the pins.
An insider may attach an oscilloscope to the pins directly,
or create a sniffer program that monitors what bits change
in Ascend’s external memory. At any time, the server can
modify the contents in the external memory or perform a
denial-of-service attack by delaying or not returning memory
responses. These experiments can be run offline without the

3If P is the server’s proprietary software, the server can have a trusted
third party certify hash(P), and replace P with hash(P) in the MAC. This
protects the server from revealing the detailed code of P . Same applies to the
dataset y.

user’s knowledge. Running the curious() program from
Section I-A is one such experiment.

To cheat the user, the server can initialize the system
incorrectly (e.g., supply a different program P ′, run for less
than T time), or tamper with external memory during execu-
tion. The certified execution along with the memory integrity
verification in Section V-B will allow the user to detect any
cheating. Given that the user can detect cheating, the server’s
motivation changes: it wants as much business from the user
as possible and therefore is motivated to return correct results.
But it still wishes to passively (without actively tampering)
learn as much information as possible about the user’s input.

C. Design Overview

Ascend communicates over its I/O pins to a fixed-size
external memory that is controlled by and visible to the server.
All data sent to external memory from Ascend is encrypted
under K. Addresses sent to external memory, and whether
a given operation is a read or a write (the opcode), are in
plaintext. Preventing information leakage from the plaintext
address and opcode is a major goal of Ascend. Address
and opcode obfuscation is accomplished using a hardware
Oblivious RAM (ORAM) controller. At a high-level, the
ORAM controller encrypts and shuffles memory such that any
two access patterns of the same length are indistinguishable
to the server.

To obfuscate the timing channel, we architect Ascend to
access external memory at fixed/data-independent rate. The
data-independent rate may cause the external memory to be
accessed when not needed. In this case, Ascend performs a
dummy access, which is indistinguishable from a real access
due to the guarantees provided by ORAM. On the other hand,
the program may wish to access memory sooner than the data-
independent rate allows. In this case, the program will stall
until the next access is allowed to happen. This can be achieved
with a simple hardware counter and queue that increments
each processor cycle and triggers a real or dummy memory
access when it reaches the threshold. The threshold can be
set/changed by the server before or during the computation.
Padding program execution time to the threshold T is handled
similarly: dummy ORAM accesses are made, at the prescribed
interval, until T is reached. We also engineer the ORAM
controller microarchitecture carefully such that during each
ORAM access, the timing of each request made to the DRAM
does not depend on any user secret.

III. PATH ORAM

Our hardware ORAM is based on the Path ORAM algorithm
due to its simplicity and efficiency [40]. We will first define
ORAM [19] and then describe the Path ORAM algorithm in
detail.

A. ORAM Security Definition

An ORAM is made up of two components: a (trusted) client
and (untrusted) external memory or server. In the Ascend
setting, the client is an ORAM controller — trusted logic

4

TABLE I
PATH ORAM PARAMETERS AND NOTATIONS.

Notation Meaning

N Number of real data blocks in ORAM
L Depth of the ORAM tree
Z Maximum number of real blocks per bucket
B Data block size (in bits)
A Eviction rate (larger means less frequent)
G Eviction counter
H The number of ORAMs in the recursion
X The number of leaves stored per PosMap block
C Maximum stash occupancy (not counting transient path)
P(l) Path from root to leaf l
K Symmetric key established at program start

on the processor die which intercepts last-level cache (LLC)
misses. Server storage is a DRAM DIMM which the server
uses as main memory.

ORAM guarantees the following. Suppose the processor
creates two sequences of memory requests (LLC misses) W
and W ′. Each sequence is made up of read (read, addr) and
write (write, addr, data) tuples. The ORAM controller guaran-
tees that from the server’s perspective (which can monitor the
processor bus, or the state of the DRAM): if |W |=|W ′ |,
where | . . . | indicates length, then W is computationally
indistinguishable from W ′. Informally, this hides the tuples
in W and W ′: namely whether the client is reading/writing to
the storage, where the client is accessing, and the underlying
data that the client is accessing.

B. Basic Path ORAM Protocol

Path ORAM’s [40] server storage is logically structured
as a binary tree [38], as shown in Figure 2. The ORAM
tree’s levels range from 0 (the root) to L (the leaves). Each
node in the tree is called a bucket and has a fixed number
of slots (denoted Z) which can store B-bit data blocks. A
slot may be empty at any point, in which case we say the
slot contains a dummy block. Non-empty slots contain real
blocks. All blocks in the tree (real or dummy) are encrypted
with a probabilistic encryption scheme, so any two blocks are
indistinguishable after encryption. A path through the tree is
a contiguous sequence of buckets from the root to some leaf l
and is referred to as P(l). A path P(l) is uniquely identified
by a leaf l, so we use “path” and “leaf” interchangeably in
the paper. All symbols and parameters related to Path ORAM
are summarized in Table I for convenience.

The client logic is made up of the position map, the stash
and control logic. The position map, PosMap for short, is a
lookup table that associates each data block with a random
path in the ORAM tree. If N is the maximum number of real
data blocks in the ORAM, the PosMap capacity is N ·L bits:
one mapping per block. The stash is a memory that temporarily
stores up to a small number of data blocks (in plaintext).

1) Path ORAM invariant and operation: At any time, each
data block in Path ORAM is mapped to a random path via
the PosMap. Path ORAM maintains the following invariant:

PosMap:
Address leaves

Frontend

Backend

ORAM tree: external memory (untrusted)

Return block
to LLC

From LLC: Req for addr a

3Stash

4

a 1

1

ORAM Controller (trusted)

Address logic

Chip pins

0 1 2 3 4 5 6 7

DRAM addrs
for Leaf 15

2

a-1 6

a+1 3 Update
leaf

4

a, Leaf 1

Fig. 2. A Path ORAM of L = 3 levels and Z = 4 slots per bucket. Suppose
block a, shaded black, is mapped to P(1). Block a can be located in any of
the shaded structures (i.e., on path 1 or in the stash).

If a block is mapped to leaf l, then it must be either in some
bucket on P(l) or in the stash.

To make a request for a block with address a (block a
for short), the client calls the function accessORAM(a, op, d′),
where op is either read or write and d′ is the new data when
op = write (the steps are also shown in Figure 2):

1) Look up PosMap with a, yielding the corresponding leaf
label l. Randomly generate a new leaf label l′ and update
the PosMap entry for a with l′.

2) Read and decrypt all the blocks along path l. Add all
the real blocks to the stash and discard the dummies.
Due to the Path ORAM invariant, block a must be in
the stash at this point.

3) Update block a in the stash to have leaf l′.
4) If op = read, return block a to the client. If op = write,

replace the contents of block a with data d′.
5) Evict and encrypt as many blocks as possible from the

stash to P(l) in the ORAM tree (to keep the stash
occupancy low) while keeping the invariant. Fill any
remaining space on the path with encrypted dummy
blocks.

Some metadata is stored alongside each block in the ORAM
tree and in the stash. Metadata in the ORAM tree are encrypted
while metadata in the stash are in plaintext. The metadata
includes a block’s address and its leaf label. A special address
⊥ is reserved for dummy blocks. These metadata allow the
ORAM controller to discard dummy blocks, find the requested
block, and evict blocks in the above steps.

The eviction step (Step 5) warrants more detailed expla-
nation. Conceptually, this step tries to push each block in
the stash as deep (towards the leaves) into the ORAM tree
as possible while keeping to the invariant that a block can
only live on its assigned path. Figure 3 works out a concrete
example for the eviction logic. In Step 1 of Figure 3, block A

5

F0

C0

E

D1

1

A1

B0

Stash

Leaf 0 (b0) Leaf 1 (b1)

Root (b3)

C

A1

0

E

D1

1

A1

B0

Stash

C

A1

0

E

D1

1

B0

A1

B0

Stash

Assigned
leaf

Block
ID

Initial state Step 1 Step 2

b2

Fig. 3. Stash eviction example for Z = 2 slots per bucket. Buckets are
labeled b0, b1, . . . , etc. We evict along the path to leaf 1, which includes
buckets b1, b2 and b3. Each block is represented as a tuple (path, block ID),
where ‘path’ indicates which path the block is mapped to.

is mapped to leaf 1 and therefore may be placed in buckets
b1, b2, and b3. It gets placed in bucket b2 because bucket b1
is full and b2 is deeper than b3. In Step 2, block B could be
placed in b2 and b3 and gets placed in b3 because b2 is full
(since block A moved there previously).

We refer to Step 1 (the PosMap lookup) as the Frontend(a),
or Frontend, and Steps 2-5 as the Backend(a, l, l′, op, d′), or
Backend. We will describe in detail optimizations we make to
these modules in Section V and VI, respectively.

2) Bucket format: Each bucket is Z(L+O(L)+B) bits in
size before encryption. Here, L bits denote the path each block
is assigned to, O(L) denotes the (encrypted) logical address
a for each block. In practice, O(L) = L+1 or L+2 bits for
Z = 4, which means 50% of the DRAM can be used to store
real blocks [35]. Conceptually, we can reserve a unique logical
address ⊥ to mark a bucket slot as containing a dummy block.
Our actual implementation use Z extra ‘valid’ bits per bucket.

We use AES-128 in counter mode for encryption. The
ORAM controller maintains a monotonically increasing
(global) counter IV in a dedicated register.4 To encrypt a
bucket:

1) Break up the plaintext bucket into 128-bit chunks.
Encrypt each chunk with the following one-time pad:
AESK(IV ‖ i)⊕chunki, where ‖ denotes concatenation.

2) The current IV is written out alongside the encrypted
bucket.

3) IV← IV + 1.

IV may be initialized to 1 during ORAM initialization. Thus,
it is important to use a different session key K for each run, to
avoid a replay attack. After encryption, each bucket is Z(L+
O(L) +B) + |IV| bits in size.

3) ORAM initialization: One may initialize ORAM simply
by zeroing-out main memory. This means all IV fields are
also 0: AES units performing bucket decryption should treat
the bucket as fully empty when IV equals 0. Our actual
implementation uses this method. The downside of this scheme
is that it requires O(N) work upfront, for every program
execution. One could also perform a “lazy initialization”
scheme, which gradually initializes each bit of memory as
it is accessed the first time [35].

4We could use per-bucket counters (as proposed in [35], but that would
introduce a security flaw when combined with our PMMAC technique in
Section V-B, cf. [11].

1 0 0 1 0 0 1

PosMap
Block a2

On-chip PosMap
(i.e., root page table)

Access ORAM2 for (a2, l2)
(i.e., page table lookup)

Access ORAM1 for (a1, l1)
(i.e., page table lookup)

a0:

l2

a2

a1

l1

l2
l1

PosMap
Block a1

l0 is used to lookup
Data ORAM (ORAM0)

l0

Fig. 4. Recursive ORAM with PosMap block sizes X = 4, making an access
to the data block with program address a0 = 10010012. Recursion shrinks
the PosMap capacity from N = 128 to 8 entries.

4) Security: The intuition for Path ORAM’s security is that
every PosMap lookup (Step 1) will yield a fresh random leaf
to access the ORAM tree for that access. This makes the
sequence of ORAM tree paths accessed independent of the
actual program address trace. Probabilistic encryption hides
which block is accessed on the path. Further, stash overflow
probability is negligible if Z ≥ 4 [40], [30]. We assume Z = 4
for the rest of the paper.

We remark that ORAM does not hide the total number of
memory accesses. This is not an issue in our setting because
the total number of accesses is fully determined by the runtime
budget T and the memory access interval, independent of any
private user data (Section II-C).

C. Recursive ORAM

As mentioned in previous sections, the number of entries
in the PosMap scales linearly with the number of data blocks
in the ORAM. In the secure processor setting, this results in
a significant amount of on-chip storage (up to hundreds of
MegaBytes). To address this issue, Shi et al. [38] proposed a
scheme called Recursive ORAM. The basic idea is to store the
PosMap in a separate ORAM, and store the new ORAM’s
(smaller) PosMap on-chip. If the new on-chip PosMap is
still too large, additional ORAMs can be added. We make
an important observation that the mechanics of Recursive
ORAM are remarkably similar to multi-level page tables in
traditional virtual memory systems. We use this observation
to help explain ideas and derive optimizations.

We explain Recursive ORAM through the example in Fig-
ure 4, which uses two levels of recursion. The system now
contains 3 separate ORAM trees: the Data ORAM, denoted
as ORam0, and two PosMap ORAMs, denoted ORam1 and
ORam2. Blocks in the PosMap ORAMs are akin to page
tables. We say that PosMap blocks in ORami store X leaf
labels for X blocks in ORami−1. This is akin to having X
pointers to the next level page table. Generally, each PosMap
level can have a different X . We assume the same X for all
PosMaps for simplicity.

Suppose the LLC requests block a0, stored in ORam0. The
leaf label l0 for block a0 is stored in PosMap block a1 = a0/X
of ORam1 (division is floored throughout this paper). Like a
page table, block a1 stores leaves for neighboring data blocks
(i.e., {a0, a0 + 1, . . . , a0 +X − 1} in the case where a0 is a
multiple of X). The leaf l1 for block a1 is stored in the block

6

a2 = a0/X
2 stored in ORam2. Finally, leaf l2 for PosMap

block a2 is stored in the on-chip PosMap. The on-chip PosMap
is now akin to the root page table, e.g., register CR3 on X86
systems.

To make a Data ORAM access, we must first lookup the
on-chip PosMap, ORam2 and ORam1 in that order. Thus, a
Recursive ORAM access is akin to a full page table walk.

Additional PosMap ORAMs (ORam3,. . . ,ORamH−1) may
be added as needed to shrink the on-chip PosMap further.
H denotes the total number of ORAMs (including the Data
ORAM) in the recursion and H = log(N/p)/ logX + 1 if p
is the number of entries in the on-chip PosMap.

IV. DESIGN CHALLENGES FOR HARDWARE ORAM

The next two sections present the design of our hardware
ORAM controller. This represents the first hardware ORAM
with small client storage, integrity verification, or encryption
units taped out and validated in silicon.

In this section, we first discuss major design challenges for
an ORAM controller implemented in hardware. In the secure
processor setting, the only prior hardware implementation of
ORAM is an FPGA system called Phantom, by Maas et
al. [30]. That work left several design challenges, which we
address in Sections V and VI.

The first challenge is how to manage the position map
(PosMap, Section III). The Phantom design does not use
Recursive ORAMs. As a result, it requires multiple FPGAs
just to store the PosMap, and thus is not suitable for integration
with a single-chip secure processor.

We believe that to be practical and scalable to large ORAM
capacities in secure hardware, Recursive ORAM (Section
III-C) is necessary. Obviously, the trade-off is performance.
One must access all the ORAMs in the recursion on each
ORAM access. Counter-intuitively, with small block sizes,
PosMap ORAMs can contribute to more than half of the total
ORAM latency as shown in Figure 5. For a 4 GB Data ORAM
capacity, 39% and 56% of bandwidth are spent on looking up
PosMap ORAMs depending on the block size. Increasing the
on-chip PosMap capacity only slightly dampens the effect.
Abrupt kinks in the graph indicate when another PosMap
ORAM is added (i.e., when H increases). In Section V-A, we
show how insights from traditional virtual memory systems,
coupled with security mechanisms, can dramatically reduce
this PosMap ORAM overhead.

The second challenge in designing ORAM in hardware
is how to maximize throughput. Ideally, we would like the
limiting factor to be the memory bandwidth. Yet, the Phantom
design showed that this was actually hard to achieve.

One bottleneck is the stash eviction logic (Step 5 in Sec-
tion III-B). To decide where to evict blocks, Phantom con-
structs a hardware heap sort on the stash [30]. Unfortunately,
this sorting step becomes the bottleneck under small block size
and high memory bandwidth. For example, in the Phantom
design, adding a block to the heap takes 11 cycles (see
Appendix A of [30]). If the ORAM block size and memory
bandwidth are such that accessing a block in memory takes
less than 11 cycles, system performance is bottlenecked by the

30 32 34 36 38 40
log2(Data ORAM capacity in Bytes)

25
30
35
40
45
50
55
60
65
70

%
 a

cc
es

s
fro

m
 P

os
M

ap

b64_pm8
b128_pm8

b64_pm256
b128_pm256

Fig. 5. The percentage of Bytes read from PosMap ORAMs in a full Recursive
ORAM access for X = 8 (optimal found in [35]) and Z = 4. All bucket
sizes are padded to 512 bits to estimate the effect in DDR3 DRAM. The
notation b64 pm8 means the ORAM block size is 64 Bytes and the on-chip
PosMap is at most 8 KB.

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0
5

10
15
20
25
30

S
p
e
e
d
u
p

47.8

Fig. 6. The speedup achieved over a set of SPEC06 workloads by decreasing
the block size from 4 KByte to 64 Bytes. The speedup assumes there is no
bottleneck in the stash eviction logic or DRAM for any block size.

heap sort, not memory bandwidth. As a result, Phantom was
parameterized with large block size, e.g., 4 KByte.

While benefiting applications with good data locality, a large
block size severely hurts applications with erratic data locality.
Figure 6 shows this effect. Motivated by the large potential
speedup from small blocks, we will develop a stash eviction
algorithm in Section VI-A that flexibly supports any practical
block size (e.g., 64-Byte) without incurring performance loss.

Even after removing bottlenecks in the stash, using a
small block size creates additional challenges in implementing
ORAM over DRAM. Recall from Section III, accessing the
ORAM requires the ORAM controller to walk down ran-
dom paths in a binary tree where each node holds (say)
Z = 4 blocks, stored contiguously. DRAM row locality in
this operation is therefore based on Z and the block size,
and shrinking the block size decreases this locality. Counter-
intuitively, ignoring this issue can cause 2× slowdown. In
Section VI-B, we give a scheme that removes this bottleneck
and allows ORAM to achieve > 90% of peak bandwidth.

V. ORAM FRONTEND

The techniques in this section only impact the Frontend and
can be applied to any Position-based ORAM Backend (such as
[38], [16], [34]). Section V-A presents a technique to optimize
the PosMap. Section V-B discusses how to utilize the PosMap
to implement integrity verification for ORAM.

A. PLB and Unified ORAM

1) PLB Caches and (In)security: Given our understanding
of Recursive ORAM as a multi-level page table for ORAM
(Section III-C), a natural optimization is to cache PosMap

7

blocks (i.e., page tables) so that LLC accesses exhibiting pro-
gram address locality require fewer PosMap ORAM accesses
on average. This idea is the essence of the PosMap Lookaside
Buffer, or PLB, whose name obviously originates from the
Translation Lookaside Buffer (TLB) in conventional systems.

Suppose the LLC requests block a0. Recall from Sec-
tion III-C that the PosMap block needed from ORami for
a0 has address ai = a0/X

i. If this PosMap block is in the
PLB, the ORAM controller knows which path to access in
ORami−1, and can skip ORami and all the smaller PosMap
ORAMs ORamj where j > i. Otherwise, block ai is retrieved
from ORami and added to the PLB. When block ai is added to
the PLB, another block may have to be evicted, in which case
it is added to the stash of the corresponding PosMap ORAM.

Unfortunately, since PLB hits/misses correlate directly to a
program’s access pattern, the PosMap ORAM access sequence
(filtered by PLB) leaks the program’s access pattern (see [11]
for a concrete example).

2) Security Fix: Unified ORAM Tree: To hide the PosMap
access sequence, we will change Recursive ORAM such that
all PosMap ORAMs and the Data ORAM store blocks in the
same physical tree which we denote ORamU. Organizationally,
the PLB and on-chip PosMap become the new Path ORAM
Frontend, which interacts with a single ORAM Backend.

Data blocks and the PosMap blocks originally from the
PosMap ORAMs (i.e., ORam1,. . . ,ORamH−1) are now stored
in a single ORAM tree (ORamU) and all accesses are made
to this one ORAM tree. Both data and PosMap blocks now
have the same size. Since the number of blocks in ORami

(i > 0) decreases exponentially with i, storing PosMap blocks
alongside data blocks adds at most one level to the Unified
ORAM tree ORamU.

Each set of PosMap blocks must occupy a disjoint address
space so that they can be disambiguated. For this purpose we
apply the following addressing scheme: Given data block a0,
the address for the PosMap block originally in ORami for
block a0 is given by i‖ai, where ai = a0/X

i. This address
i‖ai is used to fetch the PosMap block from the ORamU

and to look up the PosMap block in the PLB. To simplify
the notation, we don’t show the concatenated address i‖ai in
future sections and just call this block ai.

Security-wise, both programs from the previous section
access only ORamU with the PLB and the adversary cannot tell
them apart (see Section V-A5 for more discussion on security).

3) PLB Architecture: The PLB is a conventional hardware
cache that stores PosMap blocks. Each PosMap block is tagged
with its block address ai and the current path it’s mapped to.
The path tag allows us to add an evicted PosMap block to
the stash without accessing its own PosMap block. Simulation
results show that increasing PLB size and associativity brings
limited improvement [11], so we use an 8 KB direct-mapped
PLB.

4) ORAM Access Algorithm: We introduce two new flavors
of ORAM access to support PLB refills/evictions (i.e., two
more types of op in Section III): read-remove and append. The
idea of these two types of accesses appeared in [35] but we
describe them in more detail below. Read-remove (readrmv)
is the same as read except that it physically deletes the block

(Unmodified) Backend for ORamU

On-chip PosMap

leafaddr PosMap block leaves

For i=0,…,H-2: Hit for
leaf of block ai?

liai+1

PLB

PLB
hit?

1

ah-1,…,a12
For i...1:

PLB refills

From LLC: Req for addr a0

AddrGen:
Derive
a1,...aH-1
from a0

PLB lookup
loop

Fig. 7. PLB-enabled ORAM Frontend with X = 4. Accessing the actual
data block a0 (Step 3 in Section V-A4) is not shown.

from the stash after it is forwarded to the ORAM Frontend.
Append (append) adds a block to the stash without performing
an ORAM tree access. ORamU must not contain duplicate
blocks: only blocks that are currently not in the ORAM
(possibly read-removed previously) can be appended. Further,
when a block is appended, the current leaf it is mapped to in
ORamU must be known so that the block can be written back
to the ORAM tree during later ORAM accesses.

The steps to read/write a data block with address a0 are
given below (shown pictorially in Figure 7):

1) (PLB lookup) For i = 0, . . . ,H − 2, look up the PLB
for the leaf of block ai (contained in block ai+1). If one
access hits, save i and go to Step 2; else, continue. If
no access hits for i = 0, . . . ,H−2, look up the on-chip
PosMap for the leaf of block aH−1 and save i = H−1.

2) (PosMap block accesses) While i ≥ 1, perform a
readrmv operation to ORamU for block ai and add that
block to the PLB. If this evicts another PosMap block
from the PLB, append that block to the stash. Decrement
i. (This loop will not be entered if i = 0.)

3) (Data block access) Perform an ordinary read or write
access to ORamU for block a0.

Importantly, aside from adding support for readrmv and
append, the above algorithm requires no change to the ORAM
Backend.

5) Security Analysis: We now give a proof sketch that our
PLB+Unified ORAM tree construction is secure. We make the
following observations:

Observation 1. If all leaf labels li used in {read, write,
readrmv} calls to Backend are random and independent of
each other, the Backend achieves the security of the original
Path ORAM (Section III).

Observation 2. If an append is always preceded by a
readrmv, stash overflow probability does not increase (since
the net stash occupancy is unchanged after both operations).

Theorem 1. The PLB+Unified ORAM tree scheme reduces to
the security of the ORAM Backend.

Proof. The PLB+Unified ORAM Frontend calls Backend in
two cases: First, if there is a PLB hit the Backend request is for

8

a PosMap or Data block. In this case, the leaf l sent to Backend
was in a PosMap block stored in the PLB. Second, if all PLB
lookups miss, the leaf l comes from the on-chip PosMap. In
both cases, leaf l was remapped the instant the block was
last accessed. We conclude that all {read, write, readrmv}
commands to Backend are to random/independent leaves and
Observation 1 applies. Further, an append command can only
be caused by a PLB refill which is the result of a readrmv
operation. Thus, Observation 2 applies.

B. PosMap MAC for ORAM Integrity

The Ascend processor needs to additionally integrity-verify
external memory. Now we describe a novel and simple in-
tegrity verification scheme for ORAM called PosMap MAC,
or PMMAC. PMMAC achieves asymptotic improvements in
hash bandwidth over prior schemes and is easy to implement
in hardware.

It is well known that MAC is insufficient for memory
integrity checking due to replay attacks. A fix for this problem
is to embed a non-repeating counter in each MAC [37]. The
challenge is how to make the counter tamper-proof. The idea
of PMMAC is to use the already existing PosMap entries as
tamper-proof non-repeating counters to facilitate the replay-
resistant MAC scheme.

Suppose block a has data d and access counter c. We replace
the PosMap entry for block a with c and generate the leaf l
for block a as l = PRFK(a ‖ c) mod 2L, where PRFK()
is a pseudorandom function [18], which we implement using
AES-128. Block a is written to the Backend as the tuple (h, d)
where

h = MACK(c ‖ a ‖ d).

We implement MACK() using keyed SHA3-224. When block
a is read, the Backend returns (h?, d?) and PMMAC per-
forms the following check to verify authenticity/freshness:
assert h? == MACK(c ‖ a ‖ d?) where ? denotes values that
may have been tampered with. After the assertion is checked,
c is incremented for the returned block.

Security follows if it is infeasible to tamper with block
counters and no counter value for a given block is ever
repeated. The first condition holds because the tamper-proof
counters in the on-chip PosMap form the root of trust and
then recursively, the PosMap blocks become the root of trust
for the next level PosMap or Data ORAM blocks. The second
condition can be satisfied by making each counter wide enough
to not overflow, e.g., 64 bits wide.5

PMMAC significantly reduces the required hash bandwidth.
A scheme based on Merkle tree checks and updates every hash
on the path [33]. PMMAC only needs to check and update one
block (the block of interest) per access, achieving an asymp-
totic reduction in hash bandwidth. For Z = 4 and L = 16,
PMMAC reduces hash bandwidth by Z(L+ 1) = 68×.

5This causes the PosMap size to grow, since each entry in the original
PosMap was L + 1 bits where L < 32 typically. As a result, we incur
one additional level of recursion. In [11], we describe an optimization that
compresses the 64 bit counters to be < L bits. But we do not build it in
hardware due to its extra complexity.

PMMAC requires no change to the ORAM Backend be-
cause the MAC is treated as extra bits appended to the original
data block. The extra storage overhead is relatively small: the
ORAM block size is usually 64-128 Bytes and a MAC is 80-
128 bits.

1) Security Analysis: We first show that breaking our
integrity verification scheme is as hard as breaking the un-
derlying MAC. We start with the following observation:

Observation 3. If the first k − 1 address and counter pairs
(ai, ci)’s the Frontend receives have not been tampered with,
then the Frontend seeds a MAC using a unique (ak, ck),
i.e., (ai, ci) 6= (ak, ck) for 1 ≤ i < k. This further implies
(ai, ci) 6= (aj , cj) for all 1 ≤ i < j ≤ k.

This property can be seen directly from the algorithm
description. For every a, we have a dedicated counter, sourced
from the on-chip PosMap or the PLB, that increments on each
access.

Theorem 2. Breaking the PMMAC scheme is as hard as
breaking the underlying MAC scheme.

Proof. We proceed via induction on the number of accesses.
In the first ORAM access, the Frontend uses (a1, c1), to call
Backend for (h1, d1) where h1 = MACK(c1 ‖ a1 ‖ d1). Note
that a1 and c1 cannot be tampered with since they come from
the Frontend. Thus, producing a forgery (h′1, d

′
1) where d′1 6=

d1 and h′1 = MACK(c1 ‖ a1 ‖ d′1) is as hard as breaking the
underlying MAC. Suppose no integrity violation has happened
and Theorem 2 holds up to access n− 1. Then, the Frontend
sees fresh and authentic (ai, ci)’s for 1 ≤ i ≤ n − 1. By
Observation 3, (an, cn) will be unique and (ai, ci) 6= (aj , cj)
for all 1 ≤ i < j ≤ n. This means the adversary cannot
perform a replay attack because all (ai, ci)’s are distinct from
each other and are tamper-proof. It is also hard to generate
a valid MAC with unauthentic data. Being able to produce a
forgery (h′i, d

′
i) where d′i 6= di and h′i = MACK(ci ‖ ai ‖ d′i)

means the adversary can break the underlying MAC.

Next, to achieve privacy under active adversaries, we require
certain assumptions about how the ORAM implementation
will possibly behave in the presence of tampered data.

Property 1. An ORAM Backend access only reveals to the
adversary (a) the leaf sent by the Frontend for that access
and (b) a fixed amount of encrypted data to be written back
to the ORAM tree.

The above properties hold in our implementation. The
Frontend receives tamper-proof responses (by Theorem 2) and
therefore produces independent and random leaves. Further,
the global counter encryption scheme (Section III-B) trivially
guarantees that the data written back to memory gets a fresh
pad. It is then straightforward to see that any memory request
trace generated by the Backend is indistinguishable from other
traces of the same length.

C. A Note on ORAM Length Leakage Outside Ascend

We remark that the two optimizations for ORAM Frontend
(PLB in Section V-A and PMMAC in Section V-B) can affect

9

the total length of the ORAM sequence. This is not a concern
in the context of Ascend because a program always runs for
a user-defined time budget T . However, if these optimizations
are applied outside Ascend, we refer readers to [11], [13] for
a discussion on the threat model and potential defenses.

VI. ORAM BACKEND

We now present several mechanisms to improve the ORAM
Backend’s throughput and make sure memory bandwidth is the
performance bottleneck. The techniques in this section only
impact the Backend and can be applied with or without the
optimizations from Section V.

A. Stash Eviction Logic

As mentioned in Section IV, deciding where to evict each
block in the stash is a challenge for Path ORAM hardware
designs. In this section, we propose a new stash eviction
algorithm that takes a single cycle to evict a block and can be
implemented efficiently in hardware. This eliminates the stash
eviction overhead for any practical block size and memory
bandwidth.

Our proposal, the PushToLeaf() routine, is shown in Algo-
rithm 1. PushToLeaf(Stash, l) is run once during each ORAM
access and populates an array of pointers occ. Stash can be
thought of as a single-ported SRAM that stores data blocks
and their metadata. Once populated, occ[i] points to the block
in Stash that will be written back to the i-th position along
P(l). Thus, to complete the ORAM eviction, a hardware
state machine sends each block given by Stash[occ[i]] for
i = 0, . . . , Z(L+1)−1 to be encrypted and written to external
memory.

Suppose l is the current leaf being accessed. We represent
leaves as L-bit words which are read right-to-left: the i-th bit
indicates whether path l traverses the i-th bucket’s left child
(0) or right child (1). On Line 3, we initialize each entry of
occ to ⊥, to indicate that the eviction path is initially empty.
Occupied is an L+ 1 entry array that records the number of
real blocks that have been added to each bucket so far.

The core operation in our proposal is the PushBack()
subroutine, which takes as input the path l we are evicting
to, the path l′ a block in the stash is mapped to, and outputs
which level on path l that block should get written back to.
In Line 16, t1 represents in which levels the paths P (l) and
P (l′) diverge. In Line 17, t2 is a one-hot bus where the set bit
indicates the first level where P (l) and P (l′) diverge. Line 18
converts t2 to a vector of the form 000 . . . 111, where set bits
indicate which levels the block can be pushed back to. Line 20
further excludes buckets that already contain Z blocks (due to
previous calls to PushBack()). Finally, Lines 21-23 turn all
current bits off except for the left-most set bit, which now
indicates the level furthest towards the leaves that the block
can be pushed back to.

In hardware, we further improve Algorithm 1. First, we add
2 pipeline stages after Lines 17 and 18 in the PushBack()
circuit to improve clock frequency. An important subtlety is
that we don’t add pipeline stages between when Occupied is
read and updated, so a new block can be sent to PushBack()

Algorithm 1 Bit operation-based stash scan. 2C stands for
two’s complement arithmetic.

1: Inputs: The current leaf l being accessed
2: function PUSHTOLEAF(Stash, l)
3: occ ← {⊥ for i = 0, . . . , (L+ 1)Z − 1}
4: Occupied ← {0 for i = 0, . . . , L}
5: for i← 0 to C + LZ − 1 do
6: (a, li, D) ← Stash[i] . Leaf assigned to i-th block
7: level ← PushBack(l, li,Occupied)
8: if a 6= ⊥ and level > −1 then
9: offset ← level ∗ Z + Occupied[level]

10: occ[offset] ← i
11: Occupied[level] ← Occupied[level] + 1
12: end if
13: end for
14: end function
15: function PUSHBACK(l, l′,Occupied)
16: t1 ← (l ⊕ l′) ‖ 0 . Bitwise XOR
17: t2 ← t1 & −t1 . Bitwise AND, 2C negation
18: t3 ← t2 − 1 . 2C subtraction
19: full ← {(Occupied[i]

?
= Z) for i = 0 to L}

20: t4 ← t3 & ∼full . Bitwise AND/negation
21: t5 ← reverse(t4) . Bitwise reverse
22: t6 ← t5 & −t5
23: t7 ← reverse(t6)

24: if t7
?
= 0 then

25: return −1 . Block is stuck in stash
26: end if
27: return log2(t7) . Note: t7 must be one-hot
28: end function

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8
L

Fig. 8. Illustration of subtree locality.

every cycle. Second, as soon as the leaf for the ORAM access
is determined, blocks already in the stash are sent to the
PushBack() circuit “in the background”. After cycle C, each
block read on the path is sent to the PushBack() circuit as
soon as it arrives from external memory.

B. Subtree Locality: Building Tree ORAMs on DRAM

Recall from Section IV: to fully reap the performance
benefits of small blocks, we must address how to achieve
high memory throughput for Path ORAM when implemented
over DRAM. DRAM depends on spatial locality to offer high
throughput: bad spatial locality means more DRAM row buffer
misses which means time delay between consecutive accesses
(we assume an open page policy on DRAM). However, when
naı̈vely storing the Path ORAM tree into an array, two con-
secutive buckets along the same path hardly have any locality,
and it can be expected that row buffer hit rate would be low.

To achieve high memory throughput for tree-based ORAMs,

10

we pack each subtree of k levels together, and treat them as the
nodes of a new tree, a 2k-ary tree with

⌈
L+1
k

⌉
levels. Figure

8 is an example with k = 2. We set the node size of the new
tree to be the row buffer size times the number of channels,
which together with the original bucket size determines k. We
adopt the address mapping scheme in which adjacent addresses
first differ in channels, then columns, then banks, and lastly
rows. With commercial DRAM DIMMs, k = 6 or k = 7 is
possible which allows the ORAM to maintain 90 − 95% of
peak possible DRAM bandwidth. More details can be found
in [35].

VII. ASIC IMPLEMENTATION AND MEASUREMENTS

We now evaluate a complete Ascend secure processor
prototype in silicon, which was taped out March 2015 in 32 nm
SOI, and was successfully tested in January 2017.

A. Chip Organization
The chip, shown in Figure 9, is composed of 25 cache-

coherent SPARC T1 cores, an on-chip network, and the
ORAM controller. The ORAM controller serves as the on-
chip memory controller, intercepting LLC misses from the
cores. The chip was done in collaboration with the Princeton
OpenPiton project [3]. The Princeton team contributed the
SPARC T1 cores and the on-chip network. We remark that
the ORAM controller could have been connected to any
cache/core hierarchy.

To implement Ascend, we require the (integrity-checked)
ORAM controller (Sections V and VI), logic for timing pro-
tection and logic to initiate/terminate the server-user protocol
(Section II). Since the ORAM controller already requires AES
and SHA units, we simply reuse those existing components to
perform the server-user protocol. To achieve timing channel
protection, we did not explicitly implement the counter and
queue as described in Section II-C but note that this logic
requires negligible area.

B. Implementation Details
The ORAM controller was taped out with L = 23 and

B = 512 bits. The entire design required five SRAM/RF
memories (which we manually placed during layout): the PLB
data array, PLB tag array, on-chip PosMap, stash data array
and stash tag array. Numerous other (small) buffers were
needed and implemented in standard cells. For PMMAC, we
use flat 64 bit counters to check freshness. Thus, each PosMap
block contains 8 counters, and we need six levels of recursion
to achieve a final on-chip PosMap size of 8 KBytes.

We adopt AES and SHA units from OpenCores [1]. We
use “tiny AES,” a pipelined AES-128 core for memory encryp-
tion/decryption. Tiny AES has a 21 cycle latency and produces
128 bits of output per cycle. Two copies of a non-pipelined 12-
cycle AES core are used as pseudorandom number generators,
one in Frontend to generate new leaf labels, and the other in
Backend to generate random paths for dummy accesses. We
could use a single AES core for both purposes to save area,
but opt for two separate cores for simplicity. A non-pipelined
SHA3-224 core is used to implement MACK() for PMMAC.
We truncate each MAC to 128 bits.

C. Tape-out Area and Performance

Post synthesis, the ORAM controller (which includes all
hardware security components in Ascend) had a total area of
0.326 mm2. For layout, we adopted a hierarchical work flow.
We divided our ORAM controller into three logical modules:
ORAM Frontend, ORAM Backend, and AES units. We placed
and routed the three modules separately. Their respective
dimensions and post-layout areas are given in Table II.

The bounding box of the ORAM controller was set to be
2 mm × 0.5 mm. This is due to an early design decision to
put ORAM at the top edge of the chip as well as artificial
constraints imposed by SRAM dimensions. Therefore, while
the bounding box occupies ∼1 mm2 area, the ORAM con-
troller post-layout area is more accurately represented by the
combined post-layout area of the three modules, which sum
to ∼0.51 mm2.

TABLE II
DIMENSIONS (WIDTH × HEIGHT) AND AREA OF THE THREE MODULES OF

THE ORAM CONTROLLER.

Module Frontend Backend Encryption
Dimensions (µm) 636.7 × 218.7 346.6 × 364.5 669.0 × 364.5

Area (mm2) 0.139 0.126 0.244

Our design met timing at 1 GHz during place-and-route
and can complete an ORAM access for 512 bits of user data
(one cache line) in ∼ 1275 cycles (not including the initial
round-trip delay to retrieve the first word of data from external
memory). In an earlier work based on simulation results [11],
we reported a very similar ORAM latency of 1208 cycles
per access, which leads to an average slowdown of ∼ 4× on
SPEC-Int-2006 benchmarks with a typical cache hierarchy.

D. Functional Tests and Power Measurements in Silicon

We test ORAM functionality and measure its power con-
sumption on first silicon. Table III shows the ORAM con-
troller’s dynamic power consumption across a range of volt-
ages and clock frequencies. Dynamic power includes transistor
switching power for the ORAM controller’s logic, the SRAMs
and the clock. For each test, core voltage (VDD) is set to
the values shown in the table and SRAM voltage is set to
0.05 V higher than VDD. The power numbers do not include
the power consumption from non-ORAM logic on the chip,
the I/O pins or the external memory.

To measure peak power consumption, we need to keep
the ORAM controller busy servicing memory requests at its
highest throughput possible. Therefore, during power tests,
we feed the ORAM controller with a synthetic memory
request trace from an on-chip traffic generator, and use an
on-chip buffer mimicking an external memory that has zero
latency and can fully utilize the chip pin bandwidth. Thus,
each measurement gives an upper bound on the chip power
consumption in a real deployment.

In each test, we sample the chip current draw 100 times in
16 seconds and compute the average power. It is worth noting
that the ORAM power consumption will gradually increase
with time as the chip temperature increases. At lower voltage

11

Encryption Backend
Frontend

2 mm

.5
 m

m

AES
(Path decrypt/encrypt)

Control
logic

SHA-3
(PMMAC)

AES (for PRNG)

Stash control logic

Top level (blue = filler cells)

Control
logic

AES (for PRNG)

St
as

h
 d

at
a

St
as

h
 t

ag
s

PLB data

On-chip
PosMap

P
LB

 t
ag

s

Tile 0 Tile 1 Tile 2 Tile 3 Tile 4

Tile 5 Tile 6 Tile 7 Tile 8 Tile 9

Tile
10

Tile
11

Tile
12

Tile
13

Tile
14

Tile
15

Tile
16

Tile
17

Tile
18

Tile
19

Tile
20

Tile
21

Tile
22

Tile
23

Tile
24

ORAM PLL

6 mm

6
 m

m

Fig. 9. Chip die photo (top left), whole-chip tape-out diagram (bottom left), and the ORAM controller broken up into the three logical modules (right).

TABLE III
ORAM CONTROLLER POWER CONSUMPTION (MW) UNDER DIFFERENT

FREQUENCIES AND VOLTAGES.

PPPPPPV
MHz 250 500 750 857

0.7 29.5
0.75 32.4
0.8 36.8
0.85 43.2 74.8
0.9 50.7 84.9
0.95 57.6 97.9
1.0 150
1.1 208 299

(< 1 V), the effect of temperature increase is not noticeable
and we start sampling the current 5 seconds after power on.
At high voltage (≥ 1 V), this effect cannot be ignored, and we
wait for the current draw to stabilize before sampling current.

Generally, running at a higher clock frequency requires
a higher voltage to make transistors toggle faster. For each
frequency in Table III, the ORAM logic will stop functioning
(not meet timing) below a certain voltage, at which point we
stop measuring power. For each frequency, the ideal point
to run the ORAM controller is the lowest recorded voltage,
which is the point that ORAM functions and consumes the
least power. Since increasing voltage beyond the threshold
strictly consumes more power, we omit the 1 V and 1.1 V
measurements for frequencies 250 MHz and 500 MHz. Our
test setup constrained us to test voltages ≤1.1 V. This is why
we were only able to test frequencies up to 857 MHz. If
equipped with a more effective cooling solution, the chip may
function beyond 857 MHz with >1.1 V voltage. We repeat
the test at 500 MHz and 0.9 V across three different chips.
Dynamic power consumptions across chips vary by about 7%.

We also measure the power consumption from the clock
tree. For these tests, the ORAM controller receives the clock
and is ready to service memory requests but no memory
request is made. For the frequencies and voltages tested in
Table III, the clock tree accounts for around 40% of the total
dynamic power.

VIII. RELATED WORK

Academic work on single-chip (tamper-resistant) secure
processors include eXecute Only Memory (XOM) [24], [25],
[26], Aegis [41], [42] and Bastion [6]. In XOM, applications
(both instructions and data) are only decrypted in secure
compartments. XOM does not manage transparent spilling of
data to a larger storage (e.g., cache misses to an external
memory). Aegis, a single-chip secure processor, performs
memory integrity verification and encryption on all data writ-
ten to main memory, but does not provide access pattern or
timing protection. Bastion provides the same external memory
protection as Aegis, and uses a trusted hypervisor to protect
applications when running alongside an untrusted operating
system.

In the industry, secure processor extensions include ARM
TrustZone [2], TPM+TXT [20] and most recently Intel
SGX [22], [7]. Trustzone creates a “secure world” which iso-
lates applications as long as they only require on-chip SRAM
memory. TPM+TXT gives the user ownership over an entire
machine, but does not provide encryption or other protection
to main memory. Intel SGX (similar to Bastion) isolates ap-
plications from an untrusted operating system using hardware-
supported enclaves, and provides encryption/integrity checks
over data written to main memory.

None of the above works includes memory access pattern
attacks or timing attacks in their threat model. An early work

12

that considers access pattern attacks is HIDE [48]. Using ran-
dom shuffles for small chunks of memory, HIDE mitigates but
does not completely stop information leakage from memory
access patterns. Ascend is the first full system architecture
that provides cryptographic security against an adversary that
has complete control/visibility over external memory. More
generally, Ascend prevents untrusted applications (buggy or
arbitrarily malicious) from revealing user secrets outside the
trusted chip through any digital side-channel. A concurrent
hardware ORAM project named Phantom [30] is treated as a
baseline design in our paper.

There have been a few works that propose additional tech-
niques to improve hardware ORAM in the secure processor
setting building on top of our work [47], [15]. They have
adopted most of the techniques in this work such as the PLB
and subtree locality. Nayak et al. has adopted our ORAM
controller design in a secure hardware prototype for obfus-
cation [32]. Liu et al. present compiler techniques to reduce
the required number of ORAM accesses [28] and evaluate on
the Phantom system [27].

Outside the secure processor setting, ORAM has also
found applications in various areas including storage outsourc-
ing [39], [44], [9], [10], searchable encryption [36], secure
computation [43], [29], proof of retrievability [5] and garbled
RAM [17].

IX. CONCLUSION

This paper has described the Ascend execution model, for
running untrusted programs operating safely on sensitive user
data, as well as detailed implementation and measurement
results for the Ascend prototype chip in silicon. This work
proves the viability of a single-chip secure processor which
can protect the privacy of software intellectual property or
user data, as it interacts with an external memory device. The
evaluation results are encouraging. The hardware mechanisms
needed to support Ascend, when integrated into the 25 core
test chip, are roughly half the size of a single processor
core. Further, average program slowdown considering these
mechanisms is estimated to be ∼ 4× — roughly the cost of
running a program in an interpreted language.

The Ascend execution model in its current form is somewhat
constrained. Ascend does not support multiple tenants sharing
the same chip, since on-chip resource sharing can leak private
information. Other modules cannot write to Ascend main
memory using DMA, and Ascend cannot be used in a multi-
socket shared memory architecture. We leave these challenges
to future work, and note that there have been efforts in these
directions [22], [8], [27].

REFERENCES

[1] Open cores. http://opencores.org/.
[2] T. Alves and D. Felton. Trustzone: Integrated hardware and software

security. In Information Quarterly, 2004.
[3] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi

Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne,
Xiaohua Liang, et al. Openpiton: An open source manycore research
framework. ACM SIGOPS Operating Systems Review, 50(2):217–232,
2016.

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In CRYPTO, 1996.

[5] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of
retrievability via oblivious ram. Journal of Cryptology, 30(1):22–57,
2017.

[6] D. Champagne and R. B. Lee. Scalable architectural support for trusted
software. In HPCA, 2010.

[7] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, Report 2016/086, 2016.

[8] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX Security,
pages 857–874, Austin, TX, 2016.

[9] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst oram: Min-
imizing oram response times for bursty access patterns. In USENIX
Security, pages 749–764, 2014.

[10] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren,
Elaine Shi, and Daniel Wichs. Onion oram: A constant bandwidth
blowup oblivious ram. TCC, 2016.

[11] Christopher Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and
Srinivas Devadas. Freecursive ORAM: [nearly] free recursion and
integrity verification for position-based Oblivious RAM. In ASPLOS,
2015.

[12] Christopher Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil
Stefanov, Dimitrios Serpanos, and Srinivas Devadas. A low-latency,
low-area hardware Oblivious RAM controller. In FCCM, 2015.

[13] Christopher Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer
Khan, and Srinivas Devadas. Suppressing the oblivious ram timing
channel while making information leakage and program efficiency trade-
offs. In HPCA, 2014.

[14] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Secure
processor architecture for encrypted computation on untrusted programs.
In STC, 2012.

[15] Naoki Fujieda, Ryo Yamauchi, and Shuichi Ichikawa. Last path caching:
A simple way to remove redundant memory accesses of path oram. In
Computing and Networking, Fourth International Symposium on, pages
347–353, 2016.

[16] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla,
Mariana Raykova, and Daniel Wichs. Optimizing ORAM and using
it efficiently for secure computation. In PETS, 2013.

[17] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Garbled
RAM revisited. In EUROCRYPT, 2014.

[18] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 1986.

[19] Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious rams. In J. ACM, 1996.

[20] David Grawrock. The Intel Safer Computing Initiative: Building Blocks
for Trusted Computing. Intel Press, 2006.

[21] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Risten-
part, and Vitaly Shmatikov. Breaking web applications built on top of
encrypted data. In CCS, pages 1353–1364, 2016.

[22] Intel. Software guard extensions programming reference. Intel, 2013.
[23] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access

pattern disclosure on searchable encryption: Ramification, attack and
mitigation. In NDSS, 2012.

[24] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz. Specifying and
verifying hardware for tamper-resistant software. In Proceedings of the
IEEE Symposium on Security and Privacy, 2003.

[25] D. Lie, C. Thekkath, and M. Horowitz. Implementing an untrusted
operating system on trusted hardware. In SOSP, pages 178–192, 2003.

[26] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. Architectural Support
for Copy and Tamper Resistant Software. In ASPLOS-IX, 2000.

[27] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. In ASPLOS, 2015.

[28] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks.
Automating efficient RAM-model secure computation. In Oakland,
2014.

[29] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine
Shi. Oblivm: A programming framework for secure computation. In
SP, pages 359–376, 2015.

[30] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi,
Kriste Asanovic, John Kubiatowicz, and Dawn Song. Phantom: Practical
oblivious computation in a secure processor. In CCS, 2013.

[31] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? In CCSW, 2011.

[32] Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya
Lokam, Elaine Shi, and Vipul Goyal. Hop: Hardware makes obfuscation
practical. In NDSS, 2017.

13

[33] Ling Ren, Christopher Fletcher, Xiangyao Yu, Marten van Dijk, and
Srinivas Devadas. Integrity verification for Path Oblivious-RAM. In
HPEC, 2013.

[34] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten van Dijk, and Srinivas Devadas. Constants count: Practical
improvements to Oblivious RAM. In USENIX security, 2015.

[35] Ling Ren, Xiangyao Yu, Christopher Fletcher, Marten van Dijk, and
Srinivas Devadas. Design space exploration and optimization of Path
Oblivious RAM in secure processors. In ISCA, 2013.

[36] Panagiotis Rizomiliotis and Stefanos Gritzalis. Oram based forward
privacy preserving dynamic searchable symmetric encryption schemes.
In CCSW, pages 65–76, 2015.

[37] Luis F. G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan
Rhodes, and Srinivas Devadas. Virtual Monotonic Counters and Count-
Limited Objects using a TPM without a Trusted OS. In STC, 2006.

[38] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with
o((logn)3) worst-case cost. In Asiacrypt, pages 197–214, 2011.

[39] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious
cloud storage. In S&P, 2013.

[40] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely
simple Oblivious RAM protocol. In CCS, 2013.

[41] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and
Srinivas Devadas. AEGIS: Architecture for Tamper-Evident and Tamper-
Resistant Processing. In ICS. ACM, 2003.

[42] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas
Devadas. Design and Implementation of the AEGIS Single-Chip Secure
Processor Using Physical Random Functions. In ISCA. ACM, 2005.

[43] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM:
On tightness of the Goldreich-Ostrovsky lower bound. Cryptology ePrint
Archive, Report 2014/672.

[44] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel
oblivious file system. In CCS, 2012.

[45] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In
Oakland, pages 640–656. IEEE, 2015.

[46] Xiangyao Yu, Christopher W Fletcher, Ling Ren, Marten van Dijk, and
Srinivas Devadas. Generalized external interaction with tamper-resistant
hardware with bounded information leakage. In CCSW, 2013.

[47] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao
Wang, Yiran Chen, and Jia Di. Fork path: improving efficiency of oram
by removing redundant memory accesses. In MICRO, pages 102–114,
2015.

[48] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: An infrastruc-
ture for efficiently protecting information leakage on the address bus.
In ASPLOS, 2004.

Ling Ren Ling Ren holds a Masters in Electrical
Engineering and Computer Science from the Mas-
sachusetts Institute of Technology and a Bachelors
in Electrical Engineering from Tsinghua University,
China. His research interests are in computer secu-
rity, applied cryptography and computer architecture.
While at MIT, he has worked on secure processors,
ORAMs, and cryptocurrencies.

Christopher Fletcher Christopher Fletcher holds
an S.M. and Ph.D. in Electrical Engineering and
Computer Science from the Massachusetts Institute
of Technology and a B.S. in Electrical Engineer-
ing and Computer Science from the University of
California, Berkeley. He will join the University of
Illinois, Urbana-Champaign in 2017 as an Assistant
Professor in the Computer Science Department. His
research interests are in computer architecture, high-
performance computing, computer security and ap-
plied cryptography.

Albert Kwon Albert Kwon holds a Masters in
Electrical Engineering and Computer Science from
the Massachusetts Institute of Technology and a
Bachelors of Science in Engineering in Electrical
Engineering and Computer Science from University
of Pennsylvania. His research interests are in se-
curity and privacy, applied cryptography, and dis-
tributed systems. He has worked on ORAMs and
anonymous communication systems at MIT.

Marten van Dijk Marten van Dijk is an Associate
Professor at the University of Connecticut. His re-
search interests are in computer security and cryp-
tography. He joined UConn in 2013. Prior to joining
UConn, He worked at MIT CSAIL, RSA and Philips
Research. He received a Ph.D. in mathematics, a
M.S. in mathematics, and a M.S. in computer science
from Eindhoven University of Technology.

Srinivas Devadas Srinivas Devadas is the Webster
Professor of Electrical Engineering and Computer
Science (EECS) at the Massachusetts Institute of
Technology (MIT), where he has been since 1988.
He received his MS and PhD from the University of
California, Berkeley in 1986 and 1988, respectively.
He served as Associate Head of EECS from 2005
to 2011. His research interests include Computer-
Aided Design, computer architecture and computer
security. He is a Fellow of the IEEE and ACM.

