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Abstract

This thesis deals with lossy digital image compression. The goal of this work is to develop
an algorithm which allows for high quality image reconstructions with low computational
complexity. Because of complexity requirements a spatial domain technique was focused on.
This technique is an extension of fan based redundancy reduction style compressicn algorithms
developed in the late 1960's. These algorithms nonuniformly sample the image data. More
samples are taken where the data is more complex and less where it is simpler. Upon
reconstruction samples which were not retained during the compression process are interpolated
from retained samples. Accordingly, the algorithm developed here has been dubbed nonuniform
sampling and interpolation, NSI.

Throughout the course of this thesis a number of extensions were are to algorithms
developed in the 1960's to increase decompressed image quality without increasing
decompression complexity. The three major contributions are: an improved sample selection
criterion through a sum of squared error metric, improved edge fidelity through "sample point
jittering” and the incorporation of two dimensional correlation by alternate scan path processing of
the image data. This work consists of a description of a series of experiments which explore a
variety of algorithm extensions. At each point along the way image quality is evaluated through 2
statistical measure, peak signal to noise ratio (PSNR) measured in decibels, described in the body
of the thasis. A compression algorithm based on the discrete cosine transform (DCT) was used as
a basis for comparison, because of it's acknowledged high image quality and acceptance as an
international image compression standard by JPEG.

As a result of this investigation an algorithm was developed which performs very close in
terms of quality to that of a DCT, being only 2.5 dB worse. Yet decompressing an image 24 times
faster and compression an image 48 times slower. This algorithm is highly suitable for situations
where an image is more often decompressed than compressed and where the decompression is
to take place on a low power compute platform.
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1. Introduction
1.1 Overview

This thesis deals with digital image compression. Throughout this thesis a lossy image
compression algorithm is developed by building on work done in redundancy reduction
algorithms in the late 196C's. The various parameters of the algorithm are tested and evaluated.
The result is an image compression algorithm, dubbed NSI, for nonuniform sampling and
interpolation, which can decode images extremely quickly and has image quality which rivals that
of a more popular algorithm, the discrete cosine transform. These attributes make the algorithm
extremely well suited for use on a personal computer.

1.2 Description of Image Compression

More and more frequently images are stored in digital form. The most standard ‘way to
store an image is on a pixel-by-pixel basis. In this format, one number is used to represent the
intensity of a particular pixel. In the case of a color image a pixel is most often represented as three
numbers, one for red, one for grecn and one for blue. Typical image sizes are 512 pixels on a
side or 1024 pixels on a side. This means that a typical black and white image can require 256
kilobytes or 1 megabyte of storage space and three times that amount for a color image. In view ot
these figures it is obvious that storage and transmission of these images is expensive.

Compression provides a means by whick the amount of information needed to represent
an image can be reduced. Since the data in these images do not come from completely random
sources, there is a certain amount of predictability in the data which can be exploited to reduce the
amount of data needed to represent an image. The amount of information which is contained in a
signal is called its entropy and Is defined by the 1o||%wing equation: [Shannon and Weaver 63]

Entropy = H(f) =- )’ P(fj) log2P(f})
i=1
[1.2-1]

In this equation P(fj) is the probability that a particular symbol fj will be encountered in the signal.
The higher the probability that symbol is encountered, the lower the contribution in bits per
symbol to the overall entropy of the signal. The entropy of a signal, H(f), is the average number of
bits per symbol needsd to encode the signal, in the case of images it is bits per pixel. A totally
random black and white image with 256 brightness levels would require eight bits per pixel.
Whereas an image which was totally blank would req."ire zero bits per pixel. Entropy encoding
algorithms like Huffman and Lempel-Ziv coding attempt to extract the symbol probability
distribution from the signal. The problem is that these algorithms can never be one hundred
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percent efficient and can oniy encode an image close that of its entropy. Table {1.2-1]
summarizes the theorsticai erdsspy per pixel and the entropy encoding performance for three 8.0
bit per pixel images which ars referred to later in this document:

irnage name Firet Order Huffman Lampei-2iv Higher c“)reier]
l=_ _ E%ﬁi_r_gg‘y:___l_ﬁg‘g&resslon ”cgmg.rjs@_sslonﬂ Entrog!
Lena 7.48 7.49 7.04 5.24
Titt 6.63 6.64 6.23 5.03
Smag 7.43 7.44 7.54 6.49

Table [1.2-1}. The entropy and entropy encoding results of various images 8.0 bit per pixel
images.

Lempei-Ziv actually does a little better than Huffman coding or the actual entropy of the
signal because it exploits higher order entropy. Higher order entropy uses conditional probability
to calcuiate the probability of the next symbol. Therefore the probability of the occurrence of a
particular symbol changes depending on what pixels have occurred before it in a strearn of data.
The higher order entropy column in Table [1.2-1] uses the pixel above to help predict the pixel
value. The problem is that even exploiting higher order entropy results in a relatively low
cornpression rate, about 35% savings for typical images.

This lower bound imposed by entropy is only related to a lossless reconstruction of the
image data. A lossless reconstruction means that the original image data is reconstructed exactly,
bit for Lit. This is an overly strict requirement in certain situations and it tums out by loosening this
requirement it is possible to greatly improve the compressibility of image data. This class of
algorithms are called a lossy compression algorithm because they modifies the original image data
so as to inake it more compressibla.

What types of data modifications are "acceptable?” The first class are modifications whict,
are visually imperceptible. In most cases the primary use of image data is for viewing. If this is the
case, then various aspects of the human visual system can be taken into account. This allows
certain parts of image information to be changed without a visually perceived loss in information.
Images coded ir: this manner are considered visually lossless. Another part of image data which
can be removed is noise. Most digital images originate from some digitization process. This
process usually introduces noise into the image data. If the noisy part of the signal can be
identitied and removed then a useless part of the signal with a high information content can be
sliminated. Noise can have a large apparent information content bacause of its unpredictability
which increases it entropy. It is also possible to distort the image in som= perceptible way that is
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not particularly objectionable for a specific application. In a situation where the compressed image
is only used for browsing and idsntification purposes, the image may contain many distortions and
still be acceptabie.

The usefulness of a lossy compression algorithm in many situations is obvious. The high
coimpression rate achievable by the use of a lossy algorithm can reduce storage requirements and
data communications time significantly. The two desired characteristics for such an algorithm are
that it achieve highest possible quality reconstructions and the fastest nossible coding and
encoding. Many lossy compression algorithms exist and each has its own advantages and
disadvantages.

The limited storage capacity available to microcomputers makes lossy image compression
extremely attractive in this domain. Even a 100 megabyte hard drive can only store thirty-three
1024 x 1024 color images. The need has recently become more apparent because of the
decrease in the cost of high quality frame buffers. The major limiting factor in the application of
compression methods in this domain is limited system processing power. This makes the
computational complexity of the compression algorithm a major factor in its usability in the
microcomputer domain. The alternative is to use a computationally demanding algorithm and
supply expensive hardware specific support for the algorithm.

15




2. Background

Many aigorithms have been developed to perform lossy image compression. All of these
algorithms attempt to exploit some regularities in the input data in order to achieve coding
efficiency. There are two broad classes of algorithms for lossy image compression. The first class
are transform domain techniques. These techniques first perform a linear transformation of the
image data before attempting to code it. The other class of algorithms are spatial domain
techniques. These techniques exploit local inter-pixel correlation directly to achieve
compression.

2.1 Transform based techniques
Transform based techniques linearly transform the image so as to concentrate as much
energy as possible into as few transform coefficients as possible. This in and of itself does not

These techniques usually perform extremely well. This is because many sections of natural
scenes are relatively uniform and will not have very many high frequency components. These
techniques can aiso be easily adapted to take advantage of characteristics of the human visual
system's frequency response by quantizing the different coefficients corresponding to various
frequency ranges to diffarent accuracies.

The major disadvantage of these techniques is their computational complexity. The two
dimensional transtormation of an image whose dimensions are n x n pixels takes on the order of
nlogyn real multiplications and additions per pixel.[Pratt 78] This would make it prohibitively
expensive to calculate the two dimensional transform of large pictures. A number of techniques
have been used to make this number more reasonabie. The first is the use of separable
transforms. This reduces the calculations to taking all the horizontal and then all of the vertical
transformations of the image. The complexity of this operation is order logon. The second
technique exploits the local nature of image correlation. This implies that the parts of the image
which are not spatially adjacent have very little to do with one another. This is taken advantage of
by breaking the image up into blocks and transforming each of these blocks separately. If block
size is kept constant over the entire image thei complexity becomes linear in the number of pixels
in the image.

One aspect of transform domain techniques are their encoder-decoder symmetry. Since
performing a forward and inverse transform are equally complex, compression time is roughly
equal to decompression time.

The preferred transform for this type for image coding has been the discrate cosine
transform (DCT) because of its good performance. One reason for its good performance is that its
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windowed transform implies even symmetry. Even symmetry makes the signal continuous at the
boundaries of the image tiles so that sharp discontinuities not created which can introduce
spurious high frequency components and reduce compression rate. The DCT is usually
computed for 8 x 8 blocks of the image and con ba computed as a separable transform. This
places its complexity at 3 multiplications and & additions per pixel.[Makhoul 80, Feig 90}

Recently a committee of the CCITT, the joint photographic experts group (JPEG), has
chosen the DCT as the world standard for continuous image compression. This decision was
based on the high quality reconstructions, form both subjective and objective evaluations,
possible with the DCT and the "reasonable” computationally complexity.[Hudson and Yasuda and
Sebestyen 88, Laeger and Joan and Yamazaki 88, Wallace and Vivian and Poulsen 88] The
existence of this standard is triggering the development hardware and software to perform a
discrete cosine transform quickly. In the hardware arena a company named C-cubed
Microsystems located in San Jose California is producing a integrated circuit which can compress
or decompress an image at 10 million color pixels per second. This is more than fast enough to
encode and decode NTSC video in real time. In terms of software and algorithms, IBM has
recently developed an algorithm which can perform the DCT in 0.84 multiplies and 7.2 additions
per pixel.[Feig 90] The fact that IBM is patenting this algorithm may limit its widespread use. The
complexity of the DCT still puts it beyond software implementations with reasonable response
time on low end compute platforms.

The DCT does have certain failings. One is the fact that the image is processed in a block-
wise manner can create artifacts where these blocks are visible in the image. The other effect is
that often an image compressed by the DCT looks low passed filtered. This is because, most
often, the high frequency coefficients are truncated to zero. This tends to have the effect of
blurring sharp edges in the image. A more thorough analysis of DCT image qualily is given in a
later section of this thesis.

2.2 Spatial techniques

These are techniques which operate on the image in its original form. They attempt to
compress the image by taking advantage of spatial correlation between the pixels in the image.

One of the simplest of these techniques is subsampling. This technique simply throws
away a certain percentage of the image pixels. One version of this algorithm first low pass filters
the image and then resamples it. The problem with this technique is that the high frequency
portions of the image are removed. A variant on this technique just resamples the image without
first fittering it. This reduces the computational complexity of the algorithm but introduces aliasing
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artifacts in high frequency regions of the image and at sharp edges. Subsampling actually
performs amazingly well for simple images with large uniform areas.

Another spatial technique is block truncation coding. This technique divides an image up
into blocks and process each block of the image individually. The algorithm chooses two
representative pixel values for each block such that when it assigns one of the two values to each
pixel in the block, the mean and variance of the coded block is approximately the same as the
original image block. The simplicity of this algorithm allows for very fast encoding and decoding.
The are two major artifacts generated by the algorithm. The first is aliasing. This occurs because
only two intensity values can be used near high contrast edges, so the anti-aliasing effect of a
continuous grayscale are eliminated. The other artifact is blockiness.

Yet another technique is vector quantization. This technique divides the image up into
blocks and treats each block as if it is a vector. The pixel values are the components of that vector.
Compression of the image consists of calculating a small set of all possible vectors, called a code
book, which can adequately represent all of the vectors which do occur in the image. Each block
in the image is then assigned an index to the entry in the code book which best approximates it.
Decoding of the image consists of placing the correct codebook entries in the correct places in
the image. Code book generation and searching and can make this algorithm extremely
expensive in the ccmpression phase. (Code book generation overhead can be reduced by
creating a "universal® code book, but usually such a code book does not allow as great a
compression rate as a specific code book). The table look up nature of decompression makes this
phase extremely fast. This algorithm has been found to perform extremely well. One of its major
disadvantages is the use of the codebook. Code book searching and storage can pose problems
because code books can get to be extremely large. This results from the large number of
possible image vectors. Another problem is that certain details in the image may not be well
represented by a closest vector. "Universal® code book usage can make this problem worse.

2.3 Redundancy reduction

A variant on subsampling is a set of algorithms which perform redundancy reduction. This
class of algorithms adaptively samples the image. They were mainly developed and investigated
in the late 1960's. These algorithms process the image on a scan line by scan line basis placing
sample points such that the reconstructed scan line is with in a particular error bound of the
original data. Many of these algorithms used simple linear interpolation to reconstruct missing
samples during decompression.

The are a number of variants of redundancy reduction, but the version which will be used
in this thesis operates as follows: The process of choosing a sample point consists of the
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following steps. First, the starting point of the segment is defined. This point can be the first point
on the line or the end point of the previous segment. An approximating segment is then
extended from that point, pixel by pixel. At each step the error is calculated between the original
image data and an approximation of that data based on the current position of the segment end
point. When a error metric threshold is exceeded a sample point is placed immediately before the
point which exceeded the threshold. In this way, the approximation is guaranteed to be within a
certain error bound (the error metric threshold) of the original image data. The new end point
forms the start point of the next approximating segment. This process is continued until the end
of a scan line is reached. (The last sample on every line segment must always be taken.) This
scan line process is repeated until all of the lines of the image have been processed. This version
of redundancy reduction is often referred to as the fan based aigorithm. Figure [2.3-1] is
illustrative of this process. In this Figure an intensity waveform, where the vertical axis is intensity
and the horizontal axis is across the scanline, is to be approximated. Point PO is chosen as the
first point on the curve. Points P1 and P2 are later chosen such that the dotted segments which
will approximated the curve will not result in an approximation error above threshold.

Eigure [2.3-1); An approximation is made to a curve by choosing sample points PO, P1, and P2.

A large part of the work performed in the sixties dealt with evaluating the performance of
ditferent redundancy reduction algorithms given models of the source data. In [Davisson 68] an
analysis is performed comparing fan based redundancy reduction to run length encoding for a
lossless encoding of a source signal. Based on a statistical model of the source, the author found
that in certain instances, when the data is generated by a first order Markov process, that run
length encoding out performs the fan algorithm. The stipulation that an exact reconstruction of
the original signal be made did not allow the author to analyze all of the benefits of the fan-based
algorithm.

In [Ehrman 67] a comparison is made of three algorithms, a floating aperture predictor, a
zero-order interpolator, and a fan based interpolator. A floating aperture predictor is basically a run
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length encoder. A zero order interpolator is different in that the pixel value which is replicated is
optimally chosen and is not bound to be on the signal itself. In all three cases a maximum
deviation error measure was used. The expected time between sample points for a given error is
calculated for a source modelled as a first order Markov process and compression efficiency is
compared to a PCM algorithm. The analysis showed the fan algorithm to perform better then the
floating aperture predictor or the zero order interpolator. The fan algorithm was found to perform
comparably to PCM based uniform sampling. However, this is only the case where the bandwidth
of the signal to be compressed is known. It could be calculated on the fly for a PCM encoder but
this would seem to greatly increase its complexity. The author suggests in this situation a fan
based algorithm is a better choice.

In [Kortman 67] a fan-based algorithm is compared to run length encoder style algorithms
in a satellite telemetry compression task. The fan-based algorithm is found to perform the best.

In [Gardenhire '64] thiee methods were evaluated: the step method, the two point
projection method (the first two sample points define the slope of the interpolated line), and the
fan method. The results were that the fan method worked best. The two point projection method
was found to be extremely sensitive to noise. The only case where the step method seem to
function better than the fan method was when the data being coded was of a binary nature, like
that generated by switch closures.

Orie of the nice aspects of redundancy reduction techniques is that decompression is
extremely simple. The sample point just needs to be placed in the image and the pixels between
are then reconstructed by linear interpolation.

The major disadvantage of these algorithms is that they process the data in a one
dimensional fashion. Accordingly, compression rate is low tecause the two dimensional structure
of the image is not extracted. Also, because each scan line is processed independently, the
image tends to stripey with smearing occuring in the direction of the scan line processing.

Some more current work is extremely similar to this early redundancy reduction work.
[Wallach 86] describes ar: algorithm which is "inspired” by fractal geometry. The algorithm uses a
line segment of a fixed length. This segment is pivoted until it intersects the image intensity
waveform. (In practice this operation can be performed via a table look up.) The compressed
image is then made up of the horizontal distance traversed by the line and its sign. With this
information a piecewise linear approximation of an image can be formed. The author gives no
precise image quality measures , image quality is just described as being "excellent.”

[Yang and Wu and Mills 88] extend this method by incorporating the Peano scan to take
advantage of two dimensional correlation and by keeping a fixed set of yardsticks, whose choice is
modulated based on local image statistics. [Goel and Kwatra 88] integrate two dimensional
correlation through the use of DPCM in the vertical direction. Color images were also tested and
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non-edge regions of the im- 7e were subsampled by 2:1. The claim is that good subjective quality
color images can still be ac...eved at 1.2 bits per pixel even though the measured objective quality
is low.

Related recent work is on the polygonal decomposition of curves. The goal of this work is
to reduce the amount of data needed to represent a two dimensional sampled curve. [Sklansky
80] presents an algorithm which utilizes a scan along method which reduces the complexity of
finding those points which fall within a specified error tolerance. This same method is applied by
[Fowell and McNeil 89] for the compression of plot data. [Wall and Danielsson 83] have devised
an algorithm which uses the error area generated for determining when a new sample point is
necessary.

There are two parts to the data created by a redundancy reduction algorithm. The first
part is the sample values themselves. The second part is the distances between these samples.
As has been found in run length encoding investigations, a reduction of overall compressed
image data size can be achieved by entropy encoding the distances between the sample points.
Also, as might be expacted, shorter segments are more probable in images with a fair amount of
detail and hence can be encoded with very few bits.

2.4 Nonuniform sampling

A more general approach is to choose sample points on a two dimensional basis insiead
of on a scan line basis. Since in the general case this is an extremely computationally expensive
process, work in this area has focused on image segmentation. These algorithins segment the
image into regions which contain near equiluminance. The boundaries of these regions are then
coded and the pixels within are interpolated. Two recent papers have used this approach. One
paper by [Hovig 88] segments the image into polygonal regions which are of near equiluminance.
The image is stored as the outlines of these regions and the intensity within. Another paper, [Lee
89], uses a slightly different approach. Regions are created by grouping together pixels within a
certain range. The boundaries of these regions then form something akin to a topographic map of
the intensity surface. These contours are then coded as splines. Part of this coding process is to
reduce the number of points needed to code these boundaries. The image is reconstructed
using techniques similar to reconstructing a terrain surface from a topographic map.

Other work which is related is the compression and smoothing of a digitized depth
map.[Schmitt and Barsky and Du 86] In this work a bust of Victor Hugo was digitized. The
algorithm used a quadtree subdivision approach to successively divide up the surface. Each
surface patch was approximated by a spline based reconstruction of that patch. The patch was
further subdivided if a complexity measure of detail within the surface patch was exceeded.
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3. Research and Results

3.1 Proposed work

3.1.1 Extensions to existing algorithms

3.1.1.1 Goals

The goal of this work is to develop an algorithm which will decode an image quickly with
very little compute power and which will generate high quality images. To achieve these desired
goals, an algorithm which operated in the spatial domain seemed like the best choice. As
discussed in the previous section, a search of the literature showed redundancy reduction
algorithms to have the most promise. The major drawback of these algorithms is low
decompressed image quality. Since it is desired that decompression be quick, the body of this
work investigates ways of improving decompressed image quality without significantly increasing
decompression complexity. This requires increasing the complexity of the compression half of
the algorithm and therefore making the algorithm highly asymmetrical in terms ot compression and
decompression complexity. Two means of improving image quality were investigated:
optimization of the sample point selection process and the extension of redundancy style
algorithms to utilize the two dimensional correlation present in image data. Since the resultant
algorithm seems to fall somewhere between redundancy reduction algorithms and nonuniform
sampling algorithms, it is referred to as the nonuniform sampling and interpolation algorithm, or
NSI.

The process used to investigate improved image quality consisted of experimenting with
a number of different variations at each step and evaluating the resultant image quality and
artifacts introduced. Three images were used for evaluation purposes. The first two are the
"classic” Lena and Tiffany images from the USC data base. The original images were color and
were mapped into intensity space by a weighted sum of the red. These images can be seen in
Photographs [8.1-2] and [8.1-2]. (Note that all Photographs in this thesis are included in the
Appendix section 1.) The third image is a section of a magazine scanned in at 150 dpi on a
Hewlett-Packard ScanJet+. It was then filttered and resampled down to 75 dpi. Since the scanner
does not optically fitter the image before scanning, some aliasing is noticeable due to the
halftoning of the image. This image can be seen in Photograph [8.1-3]. (Unless otherwise noted,
all graphs of data and photographs will be of the Lena image.)

Two components need to be specified to carry on this investigation. The first is an image
quality metric. Peak signal to noise ratio was chosen and is detailed in a following section. The
second is a lower and an upper bound for comparative image quality. Since the assumption is that
nonuniform sampling should perform better than uniform sampling, uniform sampling is
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considered to be a lower bound on image quality. An analysis of uniform sampling is contained in
a following section. Because of the acknowledged [Wallace and Vivian and Poulsen 88] good
performance of the DCT in terms of image quality, it was considered to be a reasonable upper
bound on image quality.

3.1.2 Description of the Image Quality Metric
Throughout this investigation the major goal of this work is to improve the reconstructed
image quality. This implies that a means of measuring image quality is needed. Part of the
problem is that "true” image quality is dependent on the human viewer and therefore complex
models of the human visual system, which is not fully understood, are necessary to measure
image quality. A statistical measure commonly used by researchers and which is used throughout
this work is peak signal to noise ratio {PSNR). The formula is as follows: [Pratt 78]

2
PSNR = 10 log — 252 3
ﬁz Z (Ixy - Ixy)
y x

[3.1-1]

This metric is a normalized sum of squared error measure on a logarithmic scale, the peak
value of the si/?nal is assumed to be 255 for an 8 bit per pixel image, N is the total number of pixels
in the image, Ixy is the reconstructed pixel value, and Ixy is the original pixel value.

PSNR can pe utilized to generate rate-distortion graphs which are used to compare the
performance of different compression algorithms. A rate-distortion graph is generated by
calculating PSNR at a variety of compression rates and then connecting the points to form a curve
on a graph. One such graph is Graph [3.1-1]. The vertical axis is PSNR, the higher the number
the better the image quality. The horizontal axis is compression rate in terms of bits per pixel. Bits
per pixel is calculated by taking the total number of bits needed to store the image in compressed
form and dividing it by the total number of pixels in the image. When comparing algorithms, an
upward shift in the rate-distortion curve implies that the algorithm's image quality has improved.
The rate of droop of the curve, how fast image quality drops off with decreased bitrate, says
something about the efficiency of algorithm in utilizing its bits. A sudden drop in image quality
implies that algorithm has some reached some lower bound where it can no longer perform in a
reasonable manner with the given amount of data. Another interesting thing to note is that rate-
distortion curves may intersect. This means that at a particularly low bit rate a worse performing
algorithm may gain an advantage over an algorithm which typically performs better. This
advantage may not be significant, however, in that at these low bit rates image quality is below a
minimally acceptable level anyway.
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3.1.3 The Discrete Cosine Transform
As discussed previously, the discrete cosine transform (DCT) has been acknowledged for
its high quality. For this reason, it is being used as a practical upper bound in terms of image
quality. Graph [3.1-1] plots the DCT's (with an 8x8 block size) rate-distortion function. Photograph
(8.1-4] shows Lena compressed to 1.0 bpp and a PSNR of 35.56 dB. (This PSNR is slightly lower
than what might be expected from the rate-distortion graph because the image has been post-
fitered to remove some DCT blocking artifacts.)
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Graph [3.1-1]; Rate distortion curve for the discrete cosine transform.

The major disadvantage of the DCT is complexity. The DCT is symmetric in terms of
compression and decompression complexity. This is because both processes require that a
transformation be performed. in general 2nzlogz(n) multiplications and additions are required to
transform a two dimensional string of data consisting of n x n data points.[Pratt 78] This translates
into 2log2(n) multiplications and additions per pixel, where n is the square root of the total number
of pixels in the image. The problem is that this makes makes the algorithm O(nlog2(n)). To
overcome this problem, images processed by the DCT are usually broken up into 8 x 8 blocks and
then each block is transformed separately. This fixes the total number of operations per pixel at
six multiplies and six adds and makes the algorithm O(n), where in this case n is the total number of
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pixels in the image. The only problem with processing each block of the image separately is that
the borders between these blocks become visible at very low bit rates. A variety of techniques
have been introduced which filter these boundaries, but these tend to blur image details which
intersect these boundaries.

Recently the DCT has received a lot of attention due to the fact that it is being accepted as
an international image compression standard. Accordingly, much work is being done to decrease
the complexity of computing the DCT and the inverse DCT. [Feig 90] describes an algorithm
which can compute the DCT in 0.84 multiplies per pixel and 7.2 additions per pixel. However, iBM
is patenting this algorithm and therefore its widespread use is questionable. A survey of
techniques [Chen and Smith 77, Makhoul 80] seems to put most DCT algorithms at around 3
multiplies and 3 additions per pixel.

3.1.4 Uniform sampling

The most obvious way to reduce the size of an image is uniform sub-sampling. This
process discards every nth pixel. If the image is not fittered before subsampling then aliasing will
occur because the image is probably being sampled below its Nyquist frequency. Some
subsampling algorithms pre-filter the image and others do not. The decision to filter is usually
based on a computational complexity requirements at compression tima. Filtering the image will
cause textures to disappear and sharp edges will be blurred. Sampling the image without pre-
filtering causes aliasing in the textured regions of the image and along sharp edges.

Because of the nature of the redundancy reduction algorithms which will be investigated,
a version of subsampling which does not prefilter each line of the image will be evaluated. Graph
[3.1-2] plots the rate distortion curves for one dimensional and two dimensional versions of
uniform sampling. As this graph portrays, the two dimensional version of the algorithm gains
about 3 dB in quality over the 1D version, by the fact that it takes advantage of the two
dimensional correlation between image lines. Photograph [8.1-5] shows Lena subsampled by 8
in the horizontal direction to 1.0 bit per pixel and a PSNR of 21.10 dB, aliasing is readily apparent.
Photograph [8.1-6] subsamples Lena two dimensionally, by four in the horizontal direction and by
two in the vertical direction. The resultant image is 1.0 bit per pixel and has a PSNR of 24.89 dB.
Aliasing is still apparent, but is reduced from Photograph [8.1-5].
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Graph [3.1-2]: Rate-distortion curve for uniformly sampled Lena images.

3.2 Analysis of various error metrics

3.2.1 Introduction

A variety of methods for sample point selection are evaluated in the sections which follow
and then compared. The methods fall into two categories. The first are methods which calculate
some measure of the error between the original image data and the reconstructed data when
choosing sample points. When a specified srror threshold is exceeded, the current segment is
terminated and a new one is started. One of the advantages of these methods are that they are
quality controlled. Specifying a particular error threshold guarantees that no part of the image will
exceed that threshold. It is therefore advantageous that the error measured is somehow related
to a measure of the image quality as a whole. One of the problems with some of these method. is
that as the approximating segment is extended to a new rample point, the slope of the
approximating line changes, requiring that the error measure be recalculated for each point being
approximated by the segment. The second category is made up of methods which try to identity
some feature of the data and place sample points on or near the identified features.

Given the goals set for NSI, the main feature that a sample point selection method should
exhibit is resultant high decompressed image quality. A secondary, aithough not completely
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insignificant, aspect is the computational complexity of the method. Following, a variety of
methods are evaluated based on these criteria and their individual characteristics are described.

3.2.2 Ccne intersection method

This error metric was originally developed for generating approximations to two
dimensional line drawings.[Sklansky and Gonzalez 80] However, this approximation technique
can anply to approximating a two dimensional intensity waveform as well. This method chooses
sample point locations by segmenting the plane occupied by the image intensity waveform into
bounded regions, called cones. Points which fall within these cones can be approximated to the
specified error. Each time the approximating segment is extended the active "cone" was
readjusted.

Figure [3.2-1] shows the cones defined by P41 and P2. In this Figure, point PO is the
starting paint of the data to be approximated. Point P1 is the next data point along the curve. P1
defines a cone (drawn as a pair of dotted lines in Figure [3.2-1].) which is tangent to a circle of
radius equal to the error threshold, €, centered on P2. Any line though PO which lies within that
cone will satisfy the error metric threshold. The next point on the image intensity waveform after
Pi, point P2, defines a different acceptable error bound cone. (Shown as the pair of solid lines in
Figure [3.2-1].) The intersection of these two cones (the "active” cone) define the set of
approximating line segments that are satisfy the constraints of both points. A cone intersection
algorithm maintains the active cone on a point by point basis as the line segment is extended.
When the intersection of the active cone and the current cone is the empty set, then a sample
point must be placed. The nature of this algorithm simplifies its computation tecause the active
cone can be computed in a scan along manner and does not need to be recomputed as the slope
of the approximating line changes.
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Eigure [3.2-1}: P1 and P2 define two cones whose intersection bounds possible locations of
future sample points.

Graph [3.2-1] plots a rate-distortion curve for the Lena image compressed using this error
metric.
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Graph [3.2-1]; Rate-distortion curve for Lena image processed using the cone intersection error
metric.



The major problem with this error metric is the distance measure which it employs. As can
be seen in Figure [3.2-1), this distance is the sum of both the spatial distance betwc _.i points
along a line and the difference in intensity between points. It is clear that distances in the different
dimensions should be scaled before being combined, but it is not clear how to scale between the
two axes. Graph [3.2-2] shows the effect on image quality, of scaling the intensity axis by four
different scaling constants, 0.01, 0.05, 1.0 and 2.0. This graph shows that this scaling factor
significantly effects image quality. For this image 0.05 seems to be a close to optimal scaling
factor. It seems reasonable that decreasing the contribution of intensity is the correct thing to do
to improve image quality. This is because most approximating line segments will be short, less
than eight pixels long, therefore the intensity differences would dominate the distance measure.
This makes it easy to see that the the local image height effects what this scaling constant is and
how it would effect image quality. For this reason it seems unlikely that an optimal scaling constant
could be determined experimentally which would generalize to all images. Photograph [8.1-7]
shows Lena compressed at 1.0 bits per pixel with an intensity scaling factor of 0.05x and at
resultant PSNR of 26.43 dB
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Graph [3.2-2]; Rate-distortion curves illustrating the effects of different intensity scaling factors.
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Eigure [3.2-2]. Diagram of the cone intersection metric used for complexity calculation.

Calculating the complexity of this error metric is not a simple task, because the calculation
of the active cone is not a simple task. The most straightiorward way to calculats the active cone is
to use trigonometric functions and to keep track of the current cone in terms of their angles
relative to the X-axis. A simpler calculation is described in [Fowell and McNeil 89]. This
computation involves a slightly different error metric which results in a tighter error bound and
hence worse compression. The error calculated by this algorithm is labeled € in Figure [3.2-2].
This error defines the solid cone in the Figure. The dotted cone is the one which would be
defined by the "standard” cone intersection method. The distance measure employed in this
algorithm always implies a tighter bound than the tangent method. Two computations are
necessary in this algorithm for sample point selection. The first is to check to see if the new point
being evaluated falls within the active cone. If it does, then a new active cone can be calculated.
This check requires instantiating the poin{ :nto the equations of the lines which define the edges
of the cone. This requires two mutltiplications and four additions. Calculating the cone defined by
the new point P1 requires the following steps, as detailed in the list below: Steps 1,2, and 3
calculate the length of POP1 and require two subtractions, one addition, two multiplications and
one square root. Steps 4 and 5 calculate intermediate values, this requires one division, two

multiplications, and four additions. Steps & and 7 show how to calculate the location of Pa and Pb,
but do not actually have to be performed. Steps 8 and 9 calculate the slopes of POPa and

POPb , this requires two additional divisions. This results in an algorithm total of: 2 subtractions,

5 additions, 4 multiplications, 3, divisions, and 1 square root per pixel.
1) dx = (P1y - POy)
2) ay = (P1x - POx)

3)L=| POP1 | = Vdx2 + dy2
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4) Dxﬂ%‘e

5)Dy=Leg

6) Pa = ((P1y + Dy), (P1y - Dx))

7) Pb = ((P1x - Dy), (P1y + Dx))

Pay - POy (P1y - Dx) - POy _dy - Dx

B)Ma =52y - POy ~(P1x + Dy) - POy ~dx + Dy

va - POV =r(P1y + Dx) - POV _d\l + Dx
Pbx - POx (P1yx - Dy) - POx dx - Dy

9)Mb =

3.2.3 Maximum deviation

Another error measure that was examined was the absolute value of the maximum
deviation between original and interpolated pixel values along an interpolating line. This measure
was the one most frequently used by earlier researchers working on redundancy reduction
algorithms. This measure is diagrammed in Figure [3.2-3], denoted as € and described by
Equation [3.2-1]. If this value exceeds some preset threshold then a sample is placed. The rate-
distortion graph in Graph [3.2-3] shows the image quality achievable using this error meaasure.
Photograph [8.1-8] shows Lena compressed at 1.0 bit per pixel with a PSNR of 26.31 dB.
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Eigure {3.2-3]; The maximum deviation error measure.

n ga
Error = max Ili - Iil
i=1
(3.2-1]
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Graph [3.2-3]. Rate-distortion curve for the maximum deviation error metric.

One of the major drawbacks of this error measure is that each time the approximating line
is extended and the slope of that line changes, the error measure must be recalculated for all of
the points on the line. Because of this, this algorithm takes n (n + 1) / 2 additions per line, where n
is the final length of the approximating line segment. This makes the algorithm O(n2) in terms of
the line lengths used in the image. Therefore, as compression rate goes up and line lengths
increase, compression time will rise dramatically.

3.2.4 Sum of error
Another error metric is the sum of the differences between the original data and the
approximating line segment. This is diagrammed in Figure [3.2-4], where €1, €2, and €3 are the
errors calculated from the individual data points. The problem with this metric is illustrated in
Figure [3.2-4]. When combined, errors of opposite signs cancel one another out. The rate-
distortion graph in Graph [3.2-4] shows the image quality achievable with thic error metric.
Photograph [8.1-9] shows Lena compressed at 1.0 bits per pixel and with a PSNR of 27.03 dB.
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Eigure [3.2-4]. The sum of errors metric.
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Graph [3.2-4]. Rate-distortion curve for the sum of error metric.

This metric is desirable in that it is computationally simple. Given Equation [3.2-2], it would
seem that the form of this metric, like the maximum distance metric, would require that it would
have to be recalculated over all of the pixels of the approximating line each time the slope of the
approximation changed. However, simple algebra shows that only a few recalculations and the
maintenance of a few running sums are necessary to recompute the metric each time the slope ot
the approximating line changes, as is illustrated in Equations [3.2-3] and [3.2-4]. Equation [3.2-3]
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A
replaces Ij with its linear approximation, where m is the slope of the line and b is the intercept (the

first point of the line}. CTguation [3.2-4] expands and separates the terms of the summation into
individual components. This expansion shows that the metric is O(n) to compute and consumes
three additions and one multiply per pixel and the maintenance of three running sums.

n
A
Error = Z(Ii'li)
i=1

[3.2-2]
n
Error = Z(mi +b-1)
i=1
[3.2-3]
n n
Error =m Zi+nb- zli
i=1 i=1
[3.2-4]

3.2.5 Sum of squared error

This error measure is the obvious solution to some of the problems of the previous one.
Here error is measured as the sum of squared (SOS) errors between the original data and the
approximating line, as diagrammed in Figure [3.2-5] which shows how the squares of the errors
from the previous section would add together. The calculation of this metric is detailed in
Equation [3.2-5]. The image quality achieved is presented in Graph [3.2-5]. Photograph [8.1-10]
shows Lena compressed at 1.0 bits per pixel at 27.58 dB. It is interesting to compare this with
Photograph [8.1-9] and notice that the sharp edges in the image (at the crest of the hat and at the
shoulder area) are better represented. One possible reason for this is the large penalty that an
edge shift incurs because the magnitude of the error is squared.
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Eigure [3.2-6: The sum of squared error metric.

n
A

Error = 2 (Ii-Ii)2
)

(3.2-5)
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Graph [3.2-5]: Rate-distortion curve for the SOS error metric.

This metric has the advantage in that positive and negative errors do not cancel one
another out. This algorithm can also be implemented such that the errors can be accumulated in a
scan-along manner just as in the straight sum of error described B\reviously. This is iliustrated in
Equations [3.2-6], [3.2-7] and [3.2-8). Equation [3.2-6] replaces Ij with its linear approximation,
where m is the slope of the line and b is the intercept. Equation [3.2-7] is an algebraic expansion
of Equation [3.2-6]. Equation [3.2-8] groups all of the terms multiplied by the slope together.
Only six running sums need to be kept and combined together each time the approximating
segment is extended and iis siope changes. As is shown in Equation [3.2-8], computation of the
metric is O{n), whare n is the total number of pixeis in ihe image, and requires 7 multiplies, one
shift, and 10 additions per pixel. In addition it requires one multiply and one shift per line segment

in order to calculate b2 and 2b.

Z(mx +b- Il)
i=1
[3.2-6]
n n n
Error = m 21 + 2mb Zl+nb2-2m 2(111) 2b ZI‘+ le
=1 i=1

[3.2-7]
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n n n n n
Error=m(m Ziz + 2b Zi -2 Z(I;i)]+ nb2 -2b ZIi+ 2112
i=1 i=1 i=1 i=1 1=1
[3.2-8)

3.2.6 Mean squared error

A possible modification to the sum of squared error metric is a scaling factor which
normalizes the measured error based on line length. The simplest thing to do is to divide the error
by the line length. This only requires adding a single division for each point processed, so it is not
objectionable in terms of computational complexity. Equation [3.2-9] illustrates the modified error
metric. Graph [3.2-6] is a rate distortion graph comparing image quality of images processed by
scaled (mean squared error, MSE) and non-scaled sum of squared (SOS) metrics. The quality of
images compressed with a mean squared error metric are, on average, 4 dB worse than those
processed by sum of squares.

[3.2-9]
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Graph [3.2-6]. Rate-distortion curves for scaled and unscaled metrics.
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A problem arises with this metric because of the scan-along method employed to process
the pixels. This is illustrated in Figure [3.2-6]. Since the scaling factor is atways smali at the
beginning of a line and large at the end of a line, a similar feature which is encountered at the
beginning of the line and at the end of a line will have a larger effect on sample point selection if it
is encountered at the beginning of a line. The effect noticeable in an image processed in this
manner is that edges immediately following large flat areas tend to be smeared out in the direction
of the scan line processing.

However, not scaling the error also causes certain probiems. The first is that relatively flat
areas of the image which could be completely approximated by a line segment will, over time,
accumulate small bits of error which will finally become big enough to cause a sample point to be
placed even though it is not necessary. Also, as a line gets longer and longer the accumulated
error will get larger so that a very small deviation can cause a sample point to be placed.

A M\

A N\

X >

Eigure [3.2-6]. Image features encountered at the beginning of a line are not treated the same as
those encountered at the end.

3.2.7 Local slope

Another possible way to choose sample positions is to ignore reconstructed image error
and perform a type of edge detection by examining local slope. The calculation ot which is
illustrated in Equation [3.2-10] involves calculating inter-pixe! differences. If inter-pixel difference
exceeds some threshold then a sample point is placed before and after this "adge.” This is
diagrammed in Figure [3.2-7]. A sampie point needs to be placed before and after the edge
because the slope of the intensity waveform need not be continuous. If it is discontinuous then
two sample point are needed to capture the discontinuity. Graph [3.2-7) shows the image quality

achievable with this sample point selection process.

Slope =1j - Jj-1
[3.2-10]
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Eigure [3.2-7]. Sample point selection based on slope.
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Graph [3,2-7]. Rate-distortion curve for slope metric.

This process is advantageous in that computational complexity is low. The algorithm is
O(n) and only requires one subtraction per pixel.

It does not perform well when faced with certain image features. One such feature is
diagrammed in Figure [3.2-8]. Areas where the slope changes slowly are not assigned sample
points and are therefore flattened out undesirably.
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Eigure [3.2-8]: The slope metric does not sample the curve where the slope changes slowly.

3.2.8 Second derivative method

An improvement to the previous sample point selection scheme is to place samples
based on the second derivative of the image intensity waveform, as calculated in Equation [3.2-
i1). Since a piecewise linear approximation to the image intensity waveform is being made, the
assumption is that along each linear section the second derivative of the original data is zero.
Therefore, places where the second derivative of the original data deviates from zero by some
threshold should be good places to put sample points. Second derivative sample point salection
for the curve in the previous section is diagrammed in Figure [3.2-9]. Graph [3.2-8] shows the
image quality achieved with this method.

Second derivative = (I - Ij-1) - (Ii-1 - Ij-2)
[3.2-11]

| TN

X >
Eigure [3.2-9]: Second derivative based sample point selection.
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Graph [3,2-8]: Rate-distortion curve for the second derivative metric.

Since this method is local, its computational complexity is low, the metric is O(n) and
requires only two subtractions per pixel if the previous pixel difference is buffered. The problem
with this method is that it is very sensitive to noise and often places sample points in unnecessary
places. Some low pass filtering of the image before sample point seiection might fix this problem,
but this would increase the computational complexity and would tend to smooth out the shamp
edges in the image that are desirable to maintain.

3.2.9 Comparison of Sample Selection Methods

Each of the previously described error metrics has its advantages and disadvantages in
terms of computationally complexity and resultant image quality. Table [3.2-1] compares the
computational complexities of the various metrics. Also included, for comparison, is the
complexity of the DCT and uniform sampling. In this table n is the number of points which make
up a line, not including the initiai starting point. The registers column refers to how many values
need to maintained while processing one segment. All of the metrics are O(n) in tarms of line
length, and hence the number of pixels in the image, except the maximum distance metric. in
terms of computational complexity, the derivative methods are least expensive.
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Error Metric| Muitiplies Adds Squars Shifte Registers
| Algorithm | & Divislons | & Subtracts Roots
DCT 3n 3n
Uniform Samp <n
cone 9n 9n n
intersection
max. distance (n+n) / 2
sum of error n 3n 3
sum ot sq. n+1 10n n+1 6
error
mean sq. error 8n + 1 10n n+1 6
slope n
second deriv. 2n 1

Iable [3.2-1): The computational cornplexities ot various error metrics.

Since one of the stated goals of this work was the best decoded image quality with a
lesser concern towards encoding complexity, it is also necessary to take decoded image quality
into consideration when evaluating these metrics. Graph [3.2-9] Is a rate-distortion curve that
compares four error metrics: sum of squares, straight sum, maximum deviation, and the cone
intersection algorithm. (The slope method and the second derivative perform so poorly that they
ara not included in this graph.) Maximum deviation and cone intersection perform to almost the
same quality. Sum of squares metric clearly performs better, but only by a small amount, 1.5 dB.
In this case the subjective qua'* increase gained by moving to the sum of squared error metric is
not completely reflected iri PSNR. An interesting point is that the SOS metric performs better
than the maximum deviation measure used by early researchers in this field, yet the SOS metric is
O(n) where the maximum deviation measure is O(nz). Graph [3.2-10] shows how the SOS earrcr
metric fairs when compared to the DCT and one dimensional uniform sampling. The SOS
obviousiy performs much better than straight uniform sampling. It still has & long way tc go to
reach the quality of the DCT. Part of the reason for this is that the DCT is taking advartage of two
dimensional correlation whereas NSI is not. Extending NSI to two dimensions (s discussed in a
following section.
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3.3 Heurlstics to improve sample point placement

3.3.1 Sampie point Jittering
The algorithm, as described so far, has one particular flaw. Because a sample is not
actually placed until after the error metric threshold has been exceeded, a sample is often placed
after an edge as illustrated in Figure [3.3-1], where the solid line is the original intensity waveform,

the dotted line is the approximation and the arrow points to sample point P1 placed after the
edge.

Eigure [3.3-1): A sample being placed after an edge, when the error threshold is exceeded.

This is not the optimal position for the sample point. If the sample point was placed closer
to the edge, the position of the ecge would be better maintained and the SOS error over the line
segment would be reduced. This is illustrated in the Figure [3.3-2].

A P2p
PO

- e < P1
X >

Figure [3.3-2]. A sample being placed, correctly, on an edge.

Obviously it is desirable to design an automatic procedure which can readjust the original
sample point iocation so that it is located on the edge. Simply backing up the samgle point a fixed
amount after it is chosen so that the SOS error is reduced will not work because the amourit that it
needs to be backed up is dependent on the local characteristics of the image intensity waveform.

An algorithm was devised which could perform this adjustment automatically. This
algorithm uses the approximate location of the next sample point as the constraining factor. It



attempts to reposition P1 so as to minimize the total of the SOS error of the two approximating
segments, POP1 and P1P2 . The four steps involved in this process are:

1) Choose a sample point based on an error metric. (P1)
2) npproximate the location of the next sample point. (P2)

3) Backup the position of P4 such that the total SOS error over the line segments
PoP1 and P{P2 is minimized.

4) Discard the approximation P2, set Pg to the current position of P and return to
step 1.

In this way, the length of PgP1 is constrained by the factthat as PoP1 gets shorter, the
SOS erroron P4P2 gets larger. The problem then collapses to deciding how to choose the

approximating point P2. The problem is that the final location of P2 cannot actually be determined

until the final position of P4 is determined. Ideally P2 needs to be placed somewhere after P, on
the next stable slope so that the slope of P{P2 after P4 is optimized is close to what the slope of

the segment P4P2 will be after the final position of P2 is chosen. Hopefully, this slope will be
close to that of the edge which P{P2 is trying to approximate.

The first approximaticn that comes to mind is to scan ahead using the sample point
selection algorithm and choose the location of P2 to be the next point which exceeds the error

metric threshold. Figure [3.3-3) represents the sample point before optimization (a) and after
optimization (b).

A
m

Figure [3.3-3): (a) P0,P1,P2 before optimization. (b) P0,P1,P2 after optimization. P2 is chosen
based on the full SOS error measure.

Since P2 is also placed after the edge, the slope of segment P1P2 is not close to that of

the edge. Therefore the optimization will not be correctly calculated, as can be seen in Figure
(3.3-3). The sample point P4 is not backed up enough. On the other extreme, an alternate
approximation for P2 is the next possible sample point, as is illustrated in Figure [3.3-4].
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Eigure {3.3-4]. (a) P0,P1,P2 before optimization. (b) P0,P1,P2 after optimization. P2 is the next
point after P1.

The problem with this approximation is that since P2 is so close to P4, the point will be
backed up too much. The final approximation used was a comprise between the two just
mentioned, P> was chosen by scanning forward after P4 until error metric exceeded one quarter

of the error threshold. As illustrated in Figure [3.3-5]). This Figure illustrates that P2 is placed in
such a position so that the slope of P{P2 is close to that of the edge itself.

FEigure [3.3-5]. (a) P0,P1,P2 before optimization. (b) P0,P1,P2 after optimization. P2 is chosen
based on 1/2 threshold.

Graph [3.3-1] is a graph which shows the effect of these different ways of choosing P2 on
image Guality. As can be seen, the difference between these methods is minimal. This is a case
where this particular parameter adjustment is significant to subjective image quality, but does
affect objective quality greatly.
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Graph [3.3-1); Rate-distortion curves for different second point backup methods.

The effect of sample point jittering on image quality (on average a 3 dB improvement in
PSNR,) is illustrated in Graph [3.3-2). Photograph [8.1-11] shows Lena compressed at 1.0 bits per
pixel with a PSNR of 30.11 dB. It is interesting to compare this Photograph with Photograph [8.1-
10]. This comparison shows how jittering greatly reduces "edge bleed". This is especially
noticeable on the strand of hair which makes an arc or. the shoulder.
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Graph [3.3-2]: Rate-distortion curves comparing NS| performance before and after sample point
jittering.

Another interesting side effect of sample point jittering is the interpretation of the error
threshold. Previously, every pixel in the image was guaranteed to be approximated with an error
less than or equal to the emror threshold. Given samiple point jitiering, this is stiii ihe case.
However, the pixels which are near an edge will be approximated with a higher degree of accuracy
depending on how much backup actually takes place, the more backup, the greater the accuracy.

In a practical implementation it is extremely computationally expensive to have an
unlimited amount of backup. Practically, it is necessary to limit the maximum allowable backup.
One of the advantages of limiting the amount of backup is that some of the calculations for the
error of the first segment can be cached and do not need to be recalculated. Inthe worse case, all
points in the image would have to be processed twice, but limiting the allowable backup can
reduce this. Graph [3.3-3] shows the percentage of the frequency of particular backup distances
for the "Lena" image compressed at 2.0, 1.0 and 0.5 bits per pixel. As would be expected, the
more compressed an image is the longer the backups will be because the eror threshold is higher
so that, on average, an edge tends to be overshot by a greater distance. Graph [3.3-3] shows that
for backup distances more than 16 pixels, each individual backup distance makes up less than 3%
of overall back up distances. Graph [3.3-4] shows the individual back up frequencies at large
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backup values. it is clear that the number of backups drops off quickly until 16, and then levels off
at a very low level. As a further confirmation, a number of different backup bounds were tried, and
their effects on image quality was invested. The results of this experiment are displayed in Graph
[3.3-5]). This Figure contains rate-distortion curves with backup bounds of 2, 4, 8, 16, and 32
pixels, respectively, from the lowest to highest curve. The dotted curve plots the data for a
maximum backup distance of 16. As the graph shows, no appreciable improvement in image
quality is gained between a backup of 16 and 32 pixels, accept at very low bit rates where the
image quality is so low that the relevance of this data is questionable. In light of this data, a
maximum backup of 16 was chosen to be a best all around bound.
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Graph [3.3-3]. Percentage distribution of backup distances Lena compressed at three bitrates.
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Graph [3.3-4]; Frequency distribution of backup distances for the Lena image compressed at

three bitrates. The vertical fine, positioned at a backup of 16, represents what was considered an
optimal backup cutoff.
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3.3.2 Look ahead when threshold is exceeded

Another drawback of NSI, as currently described, occurs because of the SOS error metric
and the scan-along nature of the algorithm. This situation is diagrammed in Figure [3.3-6].

i‘—: ————— ——-——_——7.\
X

Eigure [3.3-6]: A noise bump causing an unnecessary sample to be taken.

In this situation, a small bump in the intensity waveform can cause the slope of the
interpolating line to be pitched up which may cause the error metric threshold to be exce«sd and
a sample point to be placed. It is obvious that if the approximating line is extended further, then
the intensity waveforin can be approximated t¢ within the error metric threshold without the
additional sample. This is illustrated in Figure [3.3-7].

Ao /\_
X > STt

Eigure [3.3-7]: Extending the segment past the noise bump via look ahead.

To solve this problem, NSI was modified so that if the error metric threshold is exceeded,
the line is extended further to see if the approximation ¢an be made to move back within the error
threshold. The obvious problem is that if the approximating line is extended indefinitely, each
time the error metric threshold is exceeded then the akjorithm will be untolerably slow. This is
because the error metric may have to be calculated many times per point. Therefore, a practical
implementation must limit its look ahead to a fixed number uf pixels. Graph [3.3-6] shows a graph
which contains rate-distortion curves for various amounts of bounded look ahead. The three data
sets plotted are: 8, 16, and 32 pixels of look ahead, respectively for the bottom to top curves.
The performance gained by this optimization is small and and is not greatly enhanced by
extending the bound of the lock beyond 16 pixels. A bound of 18 pixels was considered
reasonable. Even though this does not seem like a significant cptimization, it is highly dependent
on the characteristics of the the image. Since many images which are processed contain noise, it
was considered significant enough to include in the algorithm.
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Graph [3,.3-6]: Rate-distortion curves for bounded look aheads of 8, 16, and 32 pixels.

3.4 Two dimensional extensions
3.4.1 Introduction

NSI as described thus far is only one dimensional in nature. This approach has two major
drawbacks. The first is that since each line of the image is processed independently, the image
looses vertical coherence. This is because the slopes of the approximating waveforms of
vertically adjacent rows of pixels may not be continuous vertically as was the case in the original
image. This makes itself visible as stripes in the image which adversely affect image quality. This
can be seen in Photograph [8.1-11]. The second disadvantage is that vertically adjacent lines are
highly correlated. Ignoring this correlation degrades the algorithm’s performance. This correlation
can be utilized to achieve better compression ratios.

A truly two dimensional version of the algorithm would have to operate over regions of the
image. One possible method is to start with minimal size regions and then grow them until an error
threshold is exceeded. There are a number of problems with this method. One is that managing
these regions is a difficult problem. As the regions are grown, empty spaces arise between the
regions which must be kept track of and filled in later, as illustrated in Figure [3.4-1]. Another issue
is that of how to choose the size of the regions. if the regions are constrained to be rectangles,
then they can grow arbitrarily in the horizontal or vertical directions and can be positioned



anywhere. Thig is a very complex problem. Another digadvantage In this algorithm, is that,
depending on how the blocks of the image are transmitted, a sequential flow of decoding may not

- possible. Large sections of the image may need to be buftered. In a display application where a
full screen buffer is available this may not be a problem, but in a situation where the image is being
decoded in a printer with a limited buffer this may be impossible. A commor method used for
subdividing blocks of data, which solves some of these problems, is a quadtree decomposition
which is described in the following section.

Eigure [3.4-1]. Growing regions can cause empty spaces to form between blocks.

3.4.2 Quadtree based bilinear Interpolation

A quadtree decomposition of an image solves certain problems introduced by a general
blocking algorithm. This algorithm operates based on a test and then subdivide regime. To start
with, the entire image is made the current block and is tested. This test can be any test performed
on the pixels of the block. The specific test used in this experiment is described in the following
paragraphs. If the block passes the given test then the algorithm accepts the block. Otherwise
the block will subdivided into four equal size squares and each of those will be tested, in turn. If
those blocks do not pass the test, then those blocks will be subdivided. This process continues
until the all of the generated blocks of the image pass the specified test or until they reach 1 pixel
on a side. A characteristic subdivision of an image by this process Is illustrated in Figure [3.4-2]

Figure [3.4-2]; A typical subblock decomposttion by a quadtree aigorithm.
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Three variations of this algorithm were implemented and evaluated. In all of these
implementations the test used was thresholded sum of squared error for the block. The error was
caiculated by comparing the block of original data to a version bilinearly interpolated from the four
corner points. If the block could be interpolated to within the specified error then it was not
subdivided. The first implementation was a relatively straight forward quadtree implementation.
The major problem with a straight forward ‘mplementation is that redundant samples will be taken
on block boundaries unless a map is maintained of the samples which have already been taken.
This problem arises from the fact the two blocks from different subdivisions may border each other
and share sample points on the boundaries. Maintaining a sample map halps eliminate duplicate
samples and keep compression rate down, but increases the memory overhead associated with
decompression. The rate-distortion curve for this algorithm is plotted in Graph [3.4-1].
Photograph [8.1-12] shows Lena compressed at 1.0 bits per pixel and 34.12 dB. In this
Photograph, some artifacts of the block based processing of the quadtree are noticeable at
edges. A problem with quadtree decompositions, in general, is that if only a small section of an
image is complex and the rest is simple, then many unnecessary samples will be taken in order to
get the block size small enough block to satisty the error threshold. This is bacause blocks must
be recursively subdivided and each time a block is subdivided, samples need to be taken at its
corners. A second implementation tried to eliminate this problem by maintaining a flag for each of
the four quadrants of each subdivided block. Samples were only taken for the quadrant which
could not interpolated to satisfy the error metric threshold. The rate-distortion curve for this
algorithm is aiso plotted in Graph [3.4-1), notice that no significant improvement tc image quality is
gained. This method reduces some of unnecessary samples, but samples still need to be taken
for every level of the pyramid even if only a small detail in the block needs to be isolated. The third
version solves this problem by subdividing a block down to the level of the smallest block which
causes the block to approximated within the error metric threshold. In this way, samples are only
taken at the bottom of the branches of the quadtree instead of each level down. This is
accomplished by categorizing each block into one of three types during subdivision: (1) block
passes approximation test OK to stop subdivision, (2) none of the blocks are OK - subdivide all
blocks, or (3) some of the blocks are OK - four bits of flag will identify which quadrants need to be
made into subblocks. The rate distortion curve for this algorithm is also in Graph [3.4-1].
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Graph [3.4-1,. Rate-distortion curves three quadtree implementations.

The two latter versions of the quadtree algorithm attempt to solve the problem of arbitrary
placement of sample points. The third version of this algorithm seems to colve this problem
nicely, however, the added information that is carried with each block reduces the compression
rate. in and of fiseif the bits required for each block are minimal, but they accumulate each time the
algorithm moves down a leve! in the quadtree. Going down to a 1 x 1 block to pick up one error
can be an expensive nperation. This can be observed in Graph [3.4-1]. The image quality is
significantly redured with the increased overhead of flagging which samples shculd not to be
stored. It would seem that decreasing the number of "useless” sampies by increasing the
algorithms' control of sample poinrt placement would improve image quality, this turns out not to be
the case. An explanation for this is that the "useless” samples are not useless, but indeed
contribute to improving the image quality. Another explanation for this result is the fact that all
three implementations, unlike straight forward quadtree implementations, maintain a sample map,
so that an extra subdivision of a block may cost very few additional samples if any.

A separate problem with a quadtree subdivision is that because the image is processed in
blocks there tend to be blocking artifacts. This occurs when the edge of a block just skims an
edge in the image or if the corner of 2 box intersects an edge of the image. The effect of the small
part of the edge may be washed out by the other pixels in the block. This can cause notches to
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appear in edges in the decompressed image. Another problem which cropped up with this
algorithm is that it tended to make the image look iow pass filtered. Some of these effects are
noticeable in Photograph [8.1-12].

The complexity and relatively low image quality of these quadtree based a'gorithms make
them undesirable candidates for a two dimensional axtension to NSI. The following section
describes an altermate way of extending the method to 2D.

3.4.3 Alternate scan path techniques

A common way of extending algorithms which are inherently one dimensional to handle
multi-dimensional data is to map the pixels into a lower dimensional array. One such mapping
method is an "alternate scan path.” These algorithms process the pixels sequentially and usually
attempt to maintain the spatial locality of the higher dimensional arrangement in the lower
dimensional array. In this way, if spatially loczi pixels are correlated in the higher dimensiona!
representation then that correlation can be utilized by an algorithm processing the lowur
dimensional representation.

The three major considerations utilized to choose an alternate scanning algorithm for NSI
were: (1) that edge fidelity should not be sacrificed, (2) that large smooth areas should be abie to
be coded efficiently, and {3) that the scan path should not generate visually noticeable artitacts in
the final decompressed image.

Perhaps the simplest way to aid NSi's use of two dimensiona! correlation is to extend the
lengths of the lines that it operates over. One way to do this is to combine the even and odd scan
lines in an image into one scan line, twice as long. Figure [3.4-3] shows two ways of doing this.
The first way is to scan the pixsls out in a sawtooth pattern, in effect interleaving the pixels from
the two lines. The ather method involves scanning out the pixels in a square wave pattem.

A
“ L_ P ’L-W,T““’l

Eigure [3.4-3); Two methads for two line interleave, a sawtooth and a square wave pattern.

The reasoning ’ere is that if a two dimensional region of the image is ralatively flat, then
exiending the fength of the line will increase the size of that region in its one dimensional
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representation. Of course, an edge may cause extra samples to be taken because it may be
traversed additional times by the scan, in effect, creating additional edges in the one diinensional
version.
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Graph [3.4-2]): Rate-distortion curves for a pair of two line interleave methods and straight scan
line processing

The image quality resuits of two line interleave are summarized in Graph [3.4-2] and
compared to a straight scan line processing of the image. Both of these algorithms improve image
quality significantly, about 3 dB, over a scan line order processing. The two line interieave seems
to perform slightly better than the square wave scan. Presumably this is because the interpolation
algorithm benefits in reasonably smooth areas by the fact that adjacent lines are always traversed
in the same direction. However, some problems still exist. One is that the image still appears to
have streaks because each pair of linas is processed independently. Also, all of the two
dimensional correlation in the image is not being exploited. Many smoothly shaded regions of the
image span more than two lines and could be better encoded. These problems arise from the fact
that only a limited area of the image is covered by the scanning pattern. If more pixels could be
brought into the pattern, or possibly the entire image, then decompressed image quality could be
improved.

A scan path which would appear to solve most of these problems is a space-filling curve.
These curves are guaranteed to scan out all of the points in a higher dimensional space into a one
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dimensional space such that the closest pixels in the higher dimensional space are maximally
close to one another in the lower dimensional space. A very standard curve used for scanning a
two dimensional array of pixels into a one dimension array is the two dimensional Peano
scan.[Bially 63] The Peano scan can be generated by a recursive scanning scheme. The basic
pattern for a two dimensional scan is illustrated in Figure [3.4-4a]. This is the path followed by an
algorithm scanning a 3 x 3 pixel array. Scanning a 9 x 9 pixel array consists of dividing itinto 3 x 3
subblocks and scanning each of these with the basic pattern. To make the path contiguous, the
order in which the 3 x 3 blocks are processed Is the same as the path for scanning a 3 x 3 array.
Also, the paths in the individual 3 x 3 blocks are rotated so that {he path taken through the pixels is
contiguous. A 9 x 9 scan is illustrated in Figure [3.4-4b). Larger arrays of pixels can be scanned
by following the same algorithm.

S ipteticits:

P . fastates:
Llth F’I
i

Eigure [3.4-4]. (a) The basic 3 x 3 Peano scan pattern. (b) A 9x9 Peano scan pattem.

The properties of the Peano scan would seem to make it ideal for use with NSI. However
this turns out not to be the case. One of the major characteristics desired of a scanning pattern for
use with NSI is that a smoothly shaded patch of the image can be well coded. The problem is
illustrated in Figure [3.4-5]. In this diagram a fixed slope is used to interpolate the pixels on the
scan in order. As can be seen, spatially adjacent pixels have wildly varying inter-pixel intensity
differences. These differences range from 0.5 to 3.5. The problem arises from an interaction
between the Peano scan and the one dimensional linear interpolant used by the algorithm. This
is also made apparent locking at this situation from the other direction. Figure [3.4-6] shows a
bilinearly interpolable section of the image and the one dimensional Peano scan version. The
one dimensional Peano scan version creates an extra edge that did not originally exist in the data.
This shows that the Peano scan would not allow this portion of the image to be compressed
efficiently.
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Figure [3.4-6]. A 3 x 3 bilinearly interpolably block cf pixels and their sequence when scanned by
the Peano scan.

This does not exclude the use of the Peano scan. It seems as though it would be
possible to maintain an X and a Y slope and keep track of what direction (X, Y) the scan stepped
between each pixel in the one dimensional version of the data. This possibility was nct examined
because the added computational overhead introduced did not seem tc promise the necessary
pay off in terms of image quality.

Another thought was to extend the two line interleave methods introduced before. One
extension is to just increase the number of lines involved in the scan, specifically to increase the
height of the scan. The problem with this straight forward approach is that as the height of the
patch increases, the same problems, like banding, that occur with processing long one
dimensional lines start to crop up in the vertical direction. Another methed is two apply to line
interleave recursively. An example of this is illustrated in Figure [3.4-7]. A 4 x 3 patch of pixels is



first scanned in two line pairs and then the one dimensional versions of these pairs are
recombined into a one dimensional pattern. The resultant order of the pixel scanning reveals that
the same problem will occur as with the Peano scan, the intensity of adjacent pixels in smooth

patches cannot be interpolated in a reasoinable fashion using a simple one dimensional linear
interpolant.

WW&/‘&
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Eigure [3.4-7): A pair of lines repeatedly rescanned in a sawtooth pattern and the resultant pixel
order

The scan path that was eventually settled on is the one diagrammed in Figure [3.4-8]. In
this method every nth line is processed horizontally using the single line version of NSI. (Where a
reasonable value of n for use with most pictures was determined sxperimentally.) Vhe pixels
between the lines are then processed as independent coluinns. The start and end point of each

of these columns are the reconstructed image vali:as from the horizontally processed lines from
below and above.

Y

>
X ———

Eigure [3.4-8]; Scan pattern followed by the multi-line scanning algorithm.
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This scanning method statisfies the atorementioned criteria. If an image patch can be
bilinearly interpolated, no samples need to be taken from the space in between the lines. Also,
because each column of pixels is processed with the full algorithm, every pixel is guaranteed to be
approximated to within the error metric threshold. Graph [3.4-3] siows rate-distortion curves for
various band heights of 2, 8, 16, and an image processed in scun line order. Most of the
improvement is gained from just increasing the number of lines involved in the processing to two
lines. Not much of an improvement in quality is gained from larger bands. It is therefore not clear,
what an optimal band height should be. Visually, a band height of 8 makes the boundaries
between the bands least objectionable. Also band height of eight also seems justifiable in light of
previous work which seems to indicate the inter-pixel correlation tends to fall off after 8 pixels, this
is one reason that algorithms like the DCT divide an image up into 8 x 8 blocks. For these reasons,
a band height of eight is considered optimal. Photograph [8.1-13] shows Lena compressed with
a band height of eight and all previous algorithm enhancements described. This image is
compressed to 1.0 bit per pixel and the PSNR is 35.27 dB.
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Graph [3.4-3]; Rate distortion curves comparing the DCT, one dimensional NSI and band
precessing NSI algorithms.

Centain visual artifacts still occur in images processed by this scan method. One is that
directional aliasing is noticeable. Since the algorithm is only looking for edges in one direction, itis
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possible that a nearly horizontal or vertical which just skims a scan path will cause samples to be
taken by a vertical or a horizontal pass but not both. An example of this sit: .Jtion is diagrammed in
Figure [3.4-9]. In this Figure, the solid line represents an edge in the image, the circles represent
pixels, and the boxed in pixels represent places where sampies were taken. In this situation the
curved edge is completely flattened by the lack of horizontal processing in the middle of the band.
This can cause notches in certain parts of the image, which is illustrated in the lips in Photograph

[8.1-13).
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Eigure [3.4-9]: The curved edge in (a) is completely eradicated by the lack of horizontal scanning
in the middle of a band (b).

Another problem is that some banding is visible in the image, because every eighth line is
processed independently. Another artifact is some blotchiness in the image. Both of these can
be seen on the light vertical column on the left hand of Photograph {8.1-13]. This occurs
because the influence of noise in the image becomes variable with this scanning technique. 1t a
noisy pixel happens to be chosen as a sample in a column then the noise contained in a pixel will
be smeared out over that coiumn in the vertical direction. However, if a pixel which is taken as a
sample has noise during the horizontal processing of pixels, its influence is different. One
difference is that the noise will be smeared out in the horizontal direction. Another difference is
that since the horizontal segments are not limited in length, the noise can influence a greater
portion of the horizontal line. The scanning pattern itself extends its influence even more. This is
because the starting and endpoint of each column are the interpolated pixeis from the horizontally
processed lines above and below.

3.4.4 Final evaluation
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Now that the algorithm is extended to two dimensions and is in its final form, it can be
reasonably compared to the discrete cosine transform and two dimensional uniform sampling.
Graph [3.4-4] contains rate-distortion curves for these two algorithms and the two-dimensional
version of NSI. This shows that two dimensional uniform sampling performs abysmally poorly
compared to the DCT or NSI. NSI still performs worse than the DCT, but only by 2.5 dB on
average. An interesting thing to note is that the rate-distortion curve for NSI falls off more slowly
than that of DCT, and that the two curves actually cross at a particular bitrate. Unfortunately at the
quality level where this cross over occurs, the images are not of a useful quality.
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Graph [3.4-4]; Rate-distortion curves ccmparing 2D uniform sampling, the DCT and NSI.

Now is also the time to compare the original image in Photograph [8.1-1], the DCT
compressed image at 1.0 bits per pixel in Photograph [8.1-4] and the NSI compressed image at
1.0 bits per pixel in Photograph [8.1-13]). The major things to notice are that the DCT image has
an overall low pass filtered appearance, yet maintains textures in the hat. On the other hand,
sharp edges in the NSI image are well maintained but, textures exhibit splotchy aliasing neise.
Two other Photographs are also of interest. Photograph [8.1-14] shows how the algorithm
performs at low bitrates. This image shows Lena compressed to 0.5 bits per pixel and a PSNR of
31.28 dB. Notice how textures in the image have completely disappeared and that low contrast
edges are smeared. However, the sharp edges in the image do not degrade significantly.



Photograph [8.1-15] shows the image compressed at 2.0 bits per pixel with a PSNR of 39.28 dB.
In this case the image is practically a lossless reconstruction of the original. The performance of
the sample point selection algorithm can also be observed. Photograph [8.1-16] is a plot of
samples taken by NS! to generate the image in Photograph [8.1-13]. In this image white dots
represent sample locations. The first thing to notice is that samples to track edges fairly well. At
the locations of discontinuities in the image intensity, one sample is taken before and one is taken
after the discontinuity. Many samgles are taken in the regions of the image like the feathers where
there are many edges. However, in flat regions like the shoulder, relatively few samples are taken.
The effect of the banded processing of the image is also noticeable. In many parts of the image,
only one sample is taken every eighth line

Examining magnifications of the DCT, NSI, ard original images, helps to clarify the strong
and weak points of the two compression algorithms. Photograph [8.1-17] shows the left eye
region of the original Lena magnified eight times. Photograph {8.1-18] shows the corresponding
region in the NSI 1.0 bit per pixel image and Photograph [8.1-19] shows the corresponding
region in the DCT 1.0 bit per pixel image. It is ciear from these images that the DCT has a low pass
effect on the edges, whereas NSI reconstructs them more faithfully. A situation where NSI does
not perform as well can be seen in the next set of photographs. Photograph [8.1-20] shows the
hat region of the original Lena image magnified four times. Photographs [8.1-21] and [8.1-22]
show the corresponding regions in the NSI and DCT images respectively. The DCT does a
reasonable job at reconstructing the texture. NSI, however, performs abysmally, in two respects.
The first respect is that the texture is blotchy and aliased and smeared out. The other way in which
NSI fails is that the low contrast boundary of the hat and some of the intemal regions of the hat are
aliased because of the eight line scanning pattern.

Further data comparing NSI and the DCT can be found in the Appendix section 3.
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3.5 Algorithm Failures

NSI performs extremely well, but still has problems compressing certain image features
and introduces certain idiosyncratic artifacts into the decompressed image. One quick way to
examine NSI's failings is to look at a difference image. This is an image which is genarated by
subtracting the original image from the reconstructed image and then adding 128 so the the
differences can be viewed as an image themselves. This new image is, in effect, what is missing
from the reconstruction. Gray areas in the image correspond to places of little or no error, white
places correspond to a positive error and black places correspond to a negative error.
Photograph [8.1-23] is just such an image for Lena compressed to 1.0 bit per pixel. To make the
errors more apparent, the differences where scaled by 8. (Differences which fell out of the 0-255
range were clipped.) The most noticeable artifact in the difference image is that textures show up
strongly. This makes sense since that is one of the types of image features which NSI does not
code well, as is described in the :ext paragraph.

The most obvious deficiency of this algorithm is that low contrast, high frequency image
regions will not ba reproduced with high quality. The reason for this can be seen in Figure [3.5-1].
A high frequency, low intensity region of the image will be tiled by line segments which will create
an unevenness in intensity, but will not reproduce the signal. The only way to reproduce such a
texture using linear interpolation is to place a sample on each peak and trough, which would
greatly reduce the compression rate. THis type of failure shows up in taxtured regions of images
which are inherently composed of low-amplitude, high-frequency signals. This type of distortion
is apparent in Photograph [8.1-21] as smearing and uneven brightness in the regions containing
texture.
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Eigure [3.5-1]; A high frequency low amplitude signal is aliased.

Another distortion generated by this algorithm is that low contrast regions of the image
may disappear when compressed. The reason for this can be seen in Figure [3.5-2]. A low
contrast detail in the image may only have one sample taken at its maximum, which will, in effect,
reduce its brightness difference from the background over a region, making it less visible. This is
noticeable by comparing Photographs [8.1-24] and [8.1-25] which are magnifications of a section
of the original and NSI compressed l.ena images. In the NSI image it is readily apparent that the
radial arms of the semicircle at the left of the image seem to tade from view.
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Eigure [3.5-2]: Low contrast details may fado from the reconstructed image

Another set of artifacts are caused by the scan path used to extend the algorithm to two
dimensions. These are described in the section on two dimensional algorithm extensions and
this section should be referenced for a full description. There are three major effects are listed
there. The first is that some banding may be visible in the image, because every eighth .ne of the
image is scanned independentiy of the others. The second artifact is splotchiness caused by the
asymmetrical way in which noise can spread in image. The third artifact is "notching” of certain
image features because the scan path only "detects” edges in the image of particular orientations,
depending on how these edges intersect the scan path. All of these effect are apparent in
Photograph [8.1-21] which is a magnification of the hat region of the NSI compressed Lena
image.

Another drawback of NSI, as it stands, is that the contrast of the image effects how the
error threshold is related to image quality. This is diagrammed in Figure {3.5-3]. A high contrast
image feature will generate a larger emor than a low contrast error. If contrast varies from image to
image, then the contrast of the image can be calculated by computing the variance of the pixels in
the image and adjusting the error threshold accordingly. The real problem comes when an image
is composed of high and low contrast regions, such as text and a low contrast image. To correct
this case the error threshold would have to be varied locally in the image. This could be done by
computing a local contrast measure. Another possible way to achieve this is to some how factor
the slope of the approximating line segment into the error threshold. In this way steeper
approximating line slopes, corresponding to higher contrast region artifacts, could cause the ermor
threshcid to be increased.

INVANS

Eigure [3.5-3. The same image feature at different contrasts will be compressed differently.
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Many of the drawbacks of NSI could possibly be solved bv using NSI in combination with
another compression aligorithm so that they could compliment one another's weak points. This
possibility is discussed in the "Subband Coding" and "Future Work" sections.

3.6 Frequency Domain Analysis

An informative way to analyze the characteristics of an algorithm is to look at the
magnitude plot of a two dimensional fourier transform of the original image compared to the
decompressed image. Photograph [8.1-26] is a fourier magnitude plot for the original Lena image
and Photograph [8.1-27] is a fourier magnitude plot for the NSI compressed 1.0 bit per pixel
image. It is interesting to note that most of the high frequency information still seems to be
present in the compressed image. In contrast, an algorithm which tended to low pass the image
would generate a fourier magnitude plot in which the center "blob" of the plot would be shrunken.

Perhaps a more informative way of using the fourier transform for analysis is taking the
fourier transform of the difference image described in the previous section. Photograph [8.1-28]
is a fourier transform magnitude plot of the scaled difference image in Photograph [8.1-23].
(Again, this means that the magnitude of the errors in the fourier transform plot are scaled by 8.)
Two things immediately become apparent. The first thing is that the the errors from the algorithm
seem to relatively evenly distributed over the frequency plane. This shows that, in general, no
group of frequencies is being badly represented. The second thing is that there is a strong
perfectly vertical artifact in the fourier image. This is caused by the scan path used to process the
image. Because the majority of the pixels in the image are processed as small independant
columns there is a discontinuity between these columns which explains the artifacts visible in the
plot.

3.7 Subjective Evaluation Experiment

Throughout these experiments irﬁage quality has been compared across compression
algorithms using PSNR. It is possible, however, that a particular distortion introduced by a specific
compression algorithm might be exceptionally more objectionable to a human viewer than another
and that PSNR would not capture this. For example, the DCT tends to create blocking artifacts
and blur sharp edges whereas NSI tends to smear edges at low bit rates and generate aliasing in
textured regions. To justity the use of PSNR, an experiment was performed to evaluate image
quality subjectively. Twelve compressed and decompressed versions of the Lena image were
used for this experiment. Six were compressed using the DCT and six using NSI. (The
boundaries between the blocks in the DCT images were filtered so that the blocking artifacts of
the DCT would not unduly bias the subjects.) The statistics of the images used is summarized in
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Table [3.7-1]. Graph [3.7-1] plots the experimental images' PSNR in descending order. Graph
[3.7-2] plots bitrate in descending order. Images were generated such that the bitrates wer~
equivalent across the two algorithms.

image Name Compression Bits Per Pixel PSNR
Type in dB

D1 DCT 1.610 38.257
D2 DCT 1.024 36.805
D3 DCT 0.696 35.318
D4 DCT 0.553 33.874
D5 DCT 0.400 31.312
D6 DCT 0.311 27.419
N1 NSI 1.624 37.931
N2 NSI 1.013 35.269
N3 NSI 0.697 33.077
N4 NSI 0.559 31.774
NS NSI 0.406 30.114
N6 NSI 0.317 25.260

L}

Iable [3.7-1]; Alist of the DCT and NSI images used in the subjective evaluation experiment.
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Graph [3.7-2]; Subjective bit per pixel ranking

The experiment charged subjects with the task of checosing which of two displayed
images was a more faithful rendition of the original image, also displayed. Images were displayed
in the arrangement shown in Figure [3.7-1]. The top image is the original image and the bottcm
two irnage. are reconstructed images. Image display was performed on a Barco calibrated monitor
in a dark room, to control the viewing situation. The images were displayed on a background of
neutral gray (intensity value = 128) to eliminate background contrast effects. A single
presentation of the images consisted of blarking the screen blanking entirely to gray, loading the
three images, displaying the three images simultaneously, and then a subject pressing the
number 1" or "2" on the kayboard followed by "RETURN" to specify which image was the better
rendition of the original. The screen was blanked between presentations to eliminate any bias
introduced by image loading order, or by having an image being replaced line by line with another
imaye which would allow a direct comparison between images. Subjects were given as much time
as they required to make their decision. Screen refresh between each presentation was only 5
seconds. A trial consisted of showing a subject all pair-wise comparisons of all twelve images, for a
total of 66 triplets. (Images were not compared to themselves.) Images were presented in a
random order and left-right position was randomized. Each subject performed 3 trials.

69



Original image

Compressed imagas

Neutral gray background
Eigure [3.7-1]; The disp'ayed arrangement of images for the experit.ient.

To further control the viewing parameters, subjects’ head positions were fixed using a
chin rest which placed them approximately 71 centimeters from the screen. The images
themselves were made up of 512 x 512 pixels and when displayed were approximately 14
centimeters square. Given these dimensions, each image subtended 11 degrees of visual angle.

A total of 18 subjects were used for the experiment. Six manipulated images in their work
every day, the other twelve were unskilled observers.

As the subjects progressed through the three trials their response time became quicker.
It seerned as though they had developed particular criteria for judging the images. To try to
capture this aspect of the experiment, subjects were asked what parts of the image and criteria
they felt that they were using to judge the images. Table [3.7-2] lists what each subject stated was
the image region they looked to first when evaluating images. An interesting observation that can
be made from this table is that 75% of the subjects who were considered "naive” used portions of
the face for discrimination, where as only 33% of the "experienced” observers used the face. The
more experienced observars seemed to uce the regions of the image which contained finer
detail. This seems to hint at the different requirements for different users of images.

I Image reglon evaluated | Nalve !Exgerlenced
1 1

Eyes
Mouth and chin 1
Shoulder smoothness
Lines in hat and brim
Details in the feathers
Face in general

Iable [3.7-2]; A tabulation of remarics from subjects describing image judging criteria.
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The data from the experiment was analyzed to compare the ranking of images based on
the subjects' opinions to that of PSNR. To generate this ranking, each image was assigned a
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score as to how many times it was preferred over another image by a subject. Table [3.7-3]
summarizes that data and Graph [3.7-3] plots it. It is obvious that the subjects' ordering of the
images is close but not the same as that of PSNR, plotted in Graph [3.7-1). Figure [3.7-2]
compares that ranking, taking statistical significance into account. Images in the same column
have rankings which are not statistically significantly different. Statistical significance was
determined to the p < 0.05 level using the Wilcoxon signed ranks test.[Siegel and Castellan 88]
This analysis brings PSNR into agreement with the subjective ranking. The only exception is a
reversal at the two lowest bitrate images. One possible explanation for this is that the DCT's
performance tends to fall off dramatically at very low bitrates because of ccrtain fixed overhead
associated with its implementation. Also, at thase low bitrates the blocking artifact of the DCT
becomes very apparent and may be considered objectionable.

| lmage Name | Sublectlve Score P
D1 508

D2 478
D3 451
D4 306
DS 149
D6 6
N1 495
N2 453
N3 304
N4 218
N5 124
N6 72

Table [3.7-3]. Subjects' scores for experiment images.
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Eigure [3.7-2]. A comparison of image ordering generated from PSNR and subjective data.

The result of this experiment is that PSNR seems to be a raasonable measure of image
quality and agrees favorably with the subjects ranking of the images. A possible explanation for
the good performance of PSNR in this situation is that neither the DCT or NSI implementations
were optimized to take advantage of human visual system characteristics.

3.8 Extensions to Color
All of the work presented thus far has concerned itself with monochrome images. In most
images, the majority of the information in the image is contained in the intensity channel. However



the compression of color images is often desired. There are a numbar of different options
available for compressing an color image.

One method is to compress the red, green and blue channels separately. The problem
with this method is that the red, green, and blue channels are highly correlated. This can be seen
in Photographs [8.1-30], [8.1-31] and [8.1-32] which are the red, green, and blue channels,
respectively, of the color Lena image in Photograph [8.1-29]. Therefore, in certain situations, like
at the location of a black to white transition, three samples will be taken at the same location in all
three color channels. One way to fix this is to transform the image into an alternate representation
which decorrelates the different channals. One such color space is the YIQ color space. This
space is a linear transformation of the RGB colospace into a luminance channel (Y) and two color
channels (1Q). Photographs [8.1-33], [8.1-34] and [8.1-35] are the Y, | and Q channels,
respectively, of the color Lena Image. It is immediately noticeable that the | and Q channels
contain much less detailed information compared to the Y channel. Another trick that is frequently
used with YIQ data is to take advantage of the fact that the human eye's color sensors resolve
things at a lowei rasolution than its intensity sensors. Some algorithms exploit this fact by
subsampiing the color channels to gain extra compression.

To evaluate the performance of NSI on color images, two 24 bit per pixel color images
were used. The first is the color version of Lena shown in Photograph [8.1-29) anu the Frog
image shown in Photograph [8.1-38).

The Graphs [3.8-1], [3.8-2], [3.8-3], [3.8-4] show the image quality achieved for the two
different images and different color spaces. It is obvious from Graphs [3.8-3] and [3.8-4] that the |
and Q channels compress very efficiently and can boost overall image quality.
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Graph [3.8-4]; YIQ rate-distortion curves for YIQ processing of the “froq” image.
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For a better comparison between RGB and YiQ performance some examples of color
images are included. Photograph [8.1-37] shows color Lena compressed with an RG8
representation. The overall bitrate is 2.0 bits per pixel and the specific channel contributions are
listed in Table [3.8-1]. Photograph [8.1-38] shows the Frog image compressed with an RGB
representation. The overall bitrate is 2.0 bits per pixel and the specific channel contributions are
listed in Table [3.8-2].

Channel Bitrate PSNR
red 0.67 34.04 dB
green 0.67 31.47 dB
blue 0.66 31.60 dB

Iable {3.8-11. Channel contributions and quality for 2.0 bit per pixel RGB Lena image.

Channel Bitrate PSNR
red 0.69 33.16 dB
green 0.67 30.28 dB
blue 0.68 30.96 dB

Table [3.8-2]: Channel contributions and quality for 2.0 bit per pixel RGB Frog image.

This next set of images shows the efficiency of color image compression using a YIQ
representation. (Because the range of | and Q values fell outside the 0 to 255 range they were
biased and scaled to fit into this range.) Photograph [8.1-39] shows color Lena compressed with
a YiQ representation. The overall bitrate is 2.0 bits per pixel and the specific channel contributions
are listed in Table [3.8-3). Photograph [8.1-40] shows the Frog image compressed with a YIQ
representation. The overall bitrate is 1.9 bits per pixel and the specific channel contributions are
listed in Table [3.8-4]. Comparing the RGB and YIQ images shows the definite quality advantage
of the YIQ representation. In the YIQ images the finer detail in the image is visible because more
bits can be allocated to intensity image, the Y channel. Also color spill between regions does not
seem apparent as one might expect from the very low bitrates used on the | and Q channels.

Channel Bitrate PSNR
Y 1.51 37.53 dB
| 0.25 36.85 dB
Q 0.24 40.09 dB
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Iable [3.8-3); Channel contributicns and quality for 2.0 bit per pixel YIQ Lena image.

Channel Bitrate PSNR
Y 1.42 35.65 dB
| 0.25 37.03 dB

Q 0.27 36.74 dB
Iable [3.8-4]. Channel contributions and quality for 1.9 bit per pixel YIQ Frog image.

The added compression efficiency gained by moving an image into an alternate color
space makes such a transformation highly desirable. But transforming from RGB into YIQ or back
to RGB from YIQ requires multiplying each pixsl by a 3 x 3 matrix. This means that it would take 9
multiplies and 6 additions for each direction. Because this is too computationally expensive for
certain applications, other less efficient color spaces are often used. One frequently used space
is Y, Ry, By. In this space the three channels are intensity (Y) and the red channel minus Y and the
blue channel minus Y. This space requires 3 multiplies per pixel and 4 additior:s per pixel to
translate RGB to YRyBy. The inverse transformation has the same complexity. This is still a
relatively complex operation. However, because NS! performs linear interpoiation and the fact that
these transformations are linear transformations, the computational burden can be reduced. This
is because during decompression only the samples need to be transformed back into RGB and
then can be interpolated in the RGB calor space. For an image which has been compressed 8:1
this translates into a factor of 8 comj lexity reduction at decompression time. This means that a
YIQ transformation would cost 1.1 mauttiplies and 1.1 additions per pixel. An YRyBy transformation
would cost 0.38 multiplies per pixel and 0.5 additions per pixel. Also there is an added overhead
of 9 additions per sample, which translates to 1.1 additions per pixel, needed to manage the
conversions butween slopes in RGE space and the alternata color space. Of course during image
compression, the entire image would still have to be transformed into the alternate color space.

3.9 Using NSI to Scale Images

An interesting aspect of NSI is that during the compression procese it performs an
analysis of and imparts a structure to the image. This process can be useful for certain other types
of processing performed on the image data. One very common typa of processing performed on
images is scaling. Images are often scaled so that they can fit into a specific geometry ina
document or on a screen. However, scaling an image up can blur sharp edges in the image. This
is because when images are scaled up "holes" (pixels with unassigned brightness values) are
created between the original pixels which need to be assigned values. This can be seen in Figure



[3.9-1], the solid matrix represants the original pixel grid and the dotted lines represent the new
pixel grid introduced by scaling tha image by a factor of two. The simplest way of filling up these
"holes" is pixel replication, that is, just assigning each new pixel the value of the pixel adjacent to
it. This is illustrated in Figure [3.9-2] for the pixels in Figure (3.8-1]. This method does not perform
well on smooth regions u: the image. The problem is that in the original image, the pixe! intensity
values vary smoothly from pixel to pixel creating the appearance of a continuously shaded region.
But pixel replication, in effect, ircreases the size of these pixels and can make their boundaries
visible. In the scaled image these regions will appear blocky.
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Eigure [3.9-1]. Scaling an image by two, requires filling in the pixels at the intersections of the
dotted gridlines.

Eigure [3.9-21: Missing pixels generated by pixel replication.

Another method for filling in the "holes" is interpolation. That is, based on the
surrounding pixels make a reasonable guess as to what the pixel value is. One common method
used is bilinear interpolation. Here each pixel value is the weighted sum of the values of the four
pixels surrounding it based on its distance irom those individua! pixels. NSI provides a means for
reducing the computational complexity of bilinear scaling. This is because NSI already uses linear
interpolation to fill in unsampled pixel values. This means that the slopes needed to fill in scaled
pixels values which fall on the rows and columns of the original image processed by NSI are
already calculated by NSI during the decompression process. Therefore, if inage decompression
is combined with scaling, certain sicpe calculations can be avoided.

Bilinear interpolation handles smoothly shaded regions well because each pixel in the
scaled image is shaded continuously. This algorithm, however, does not do a very good job
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scaling high contrast regions of the image with sharp edges. This is illustrated in Figure [3.9-3]
which is a scaled version of the pixels in Figure [3.9-1]. If a sharp edge ociurs between two pixels
in the original image, bilinear interpolation will smoothly shade the region betwean those two
pixeis. But, if in fact, it was known that an edge existed there, then if pixel replication was used to
scale that portion of the image, then the sharp edge would have baen coirectly scaled.

x_, s

Eigure [3.9-3]; Missing pixels generated by bilinear scaling.

Ohviously if the locations of these sharp edges in the image were known at the time of the
scaling then the different scaling algorithms could be correctly applied in the different cases. This
analysis can be performed before scaling an image, but is time consuming. However, during the
compression process, NSI performs just such an analysis by its choice of sample points. Because
a piecewise linear interpolation of the image intensity waveform is being made, each sample point
location corresponds to a change in the slope of the image intensity waveform. If two of these
samples are placed very close together, then, most likely, a discontinuity or a sharp edge occurred
somewhere between those two sample points. Just such a situation is illustrated in Figure [3.9-4].
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X >
Eigure [3.9-4]. Samples taken by NSI before and after an edge.

Therefore scaling an image which has been compressed using NSI seems extremely
simple: Use linear interpolation to scale between sample points, unless two sample points are
very close together, then assume that a shaip edge occurs directly in the middle of the two points
and use pixel replication to fill the pixels in between such that a sharp edge appears in the center
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of the two sample points. The only problem with this is that edges occur in both directions
(horizontally and vertically), but NSI only processes the image one dimensionally, in one direction
at any one time. In the simple case where each scan line is processed independently, if any
horizontal edge occurs in the image then it will be missed and cannot be enhanced during scaling.
This is seen in Figure [3.9-5] where the solid line represents an edge in the image, the dotted
lines the scan path, the circles pixels and the triangles regions of blur.
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Eigure [3.9-5]: An undetected horizontal edge causing blurring in a scan line version of NSL.

When the two dimensional version of NSI is used to process the image in bands, this
problem is not as bad. This is because the image is processed both in the vertical and the
horizontal directions. Because the vertical columns processed between the horizontal rows
processed use the pixels in these rows as the end points of the columns, no horizontal edge will
be missed. Figure [3.9-6] shows how samples, pixels surrounded by squares, will be chosen on

either side of the edge.

Eigure [3.9-6]. Every horizontal edge is detected by the scan path. (Boxes represent sample
point locations.)

The problem now is with vertical edges. i a vertical edge intersects a row, then it will be
detected and can be enhanced on that row only. However, as an edge travels between the
columns, it will not be detected. Figure [3.9-7a] shows how samples are not taken on both sides
of the vertical edge, causing it to be blurred. The way to fix this problem is to propagate the ed,je
information from rows bordering each band to the columns in it. if an edged is sensed at the top of
a row, it can ba propagated down the columns until a sample is taken in the column, which
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indicates that the edge has crossed out of that column and should no longer be enhanced.
Similarly, information can also be propagated up a column. Figure [3.9-7b] shows how this can
improve the enhancement, shaded regions indicate groups of pixels effected by edge
information propagation. Unfortunately, this does not fix every situation. The situation in Figure
[3.9-8a] is still not corrected. This is the case where a vertical edge exists, but does not traverse
any of the pixels processed as rows. This is the situation created by small text in the image. The
situation in Figure [3.9-8b] also is not fixed. Here a diagonal line is not properly enhanced.
Another rule for scaling can be added which helps fix some of these problems. That is whenever
two samples are adjacent vertically in a column, that since there is a horizontal edge, it must
accompanied by a vertical edge nearby, therefore treat the pixels on the left and right of the pair as
sharp edges. Because the band height is limited this will correct many small edges and diagonal
lines. Certain diagonal lines which are nearty vertical will still not be corrected because they will not
cause samples to be taken in an adjacent manner in columns. Of course this “fix" will also
generate blockiness in a class of horizontal edges which have various continuous pixel values on
both sides of the edge, which are rare.
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Eigure [3.9-7]. (a) A vertical edge going undetected. (b) Edge propagation improves
enhancement.
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Eigure [3.9-8]. (a) An edge too small to be enhanced. (b) A diagonal line is not correctly
enhanced.

Pixel replication is not the complete answer 10 scaling edges. If pixel replication is used to
scale curved or diagonal edges in the original image, then these edges will appear blocky in the
scaled image, as can be seen in Figure [3.9-9a). This type of artifact is called aliasing. The
appearance of these scaled edges could be improved if the edgss could be detected ard then
anti-aliased. Fortunately, NSI also provides a means of doing this. If bilinear interpolation is first
used to scale the image and then the pixel values between enhanced samples are thresholded,
based on the average of the enhanced sample vaiues, then in effect, the edges will be anti-
aliased. An anti-aliased edge can be seen in Figure [3.9-9b].
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Figur2[3.9-9]: (a) An edge aliased by enhanced scaling. (b) The same edge after being anti-

aliased.

To evaluate this scaling algorithm's image quality on high contrast edges, two binary
images were compressed and processed. One is a thresholded version of some text from the
Smag image, pictured in Photograph [8.1-41], this image will be referred to as "Text.” The original
image here is shown magnified so greater detail can be seen. The second is 2 thresholded
varsion of the eye region of the Lena image, pictured in Photcgraph [8.1-42], this image will be
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referred to as "Eye." The origina! image here is magnified so that finer detail is visible.
Photographs [8.1-43] and [8.1-44] show the samples chosen by NSI for the Tuxt and Eye images,
respectively. These are included for reference because the sampling pattern effects which pixels
will be scaled in what manner. {Note that when the Text and Eye images were compressed by
NSI, they were compressed losslessly bacause they consisted entirely of regions which could be
encoded as piece-wise linear approximations.) Photographs [8.1-45] and (8.1-46] show the
effect of using NS! to bilinearly scale the Text image by four and the Eye image eight, respectively.
As should be expected, this type of scaling blurs the edges and makes the images appear to be
out of focus. Photographs [8.1-47] and [8.1-48] show the effect of using NS! to scale and
enhance, through pixel replication, the Text image by four and the Eye image by eight,
respectively. The scaled images appear blocky, but the algorithm did effectively find the edges in
the image to enhance, only missing a small percentage which does not appear ic be an
objectionable artifact, subjectively. Photographs [8.1-48] and [8.1-50] show the effect of using
NSI to scale and anti-alias the Text image by four and the Eye image by eight, respectively. In
these images edges have a more pleasant rendition, being sharp but not as jagged as the straight
enhancement scaling. The only artifact notiieable in the images scaled by anti-aliased edges is
some "notching” caused by round-off errors in the threshoidin) process.

Both of these images show the effect of these NSI scaling algorithms on scaling high
contrast images. The interaction of the NSI scaling algorithm with images consisting of high
contrast regions and continuous tone regions is demonstrated in the next section.

One apparent problem with this method of enhancing scaled edges is its dependence on
the distance between sample points, which varies according to the compression rate. This will
have an effect on which regions of the image will be enhanced during scaling, but not a major one.
This is especially true if enhancement is limited {0 occur between adjacent pixels. Since, images
will typically be compressed by more than 2 to 1, most samples will have to be at least one pixel
apart. For this reason most of the pixels in an image will never be enhanced.

3.10 Combination with Subband and Pyramidal Coding

Inspired by the good performance of the NSI anti-aliased scaler, other app'ications were
sought for this scaler. One application which came to mind was vsing the scaler in conjunction
with subband or pyramidal coding. In this class of algorithms an image is split up into low
frequency and high frequancy components. The low frequency component is then subsampled
and the nrocess can be repeated recursively, generating successively "lower” sublevals of the
image. The hope here is that the NS! anti-aliased scaling algorithm wll allow the high fraquency
components in the higher sublevels to be synthesized in a reasonable way f-om the high
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frequency cornponents o: the lower sutilevels. The are a number of possibie applications of such
a capability. One is a hetter renditioi of an image in progressive transmission systems. in systems
which empioy progressive transmission the lower sublevels are sent first io generate a preview of
the image. The hope is that ii the higher sublevels can be synthesized then an image with a
higher apparent resolution would be generated and the progressive transmission of the image
could be terminated 2t a lower sublavel. Another application is better compression rates. |f the
some of the higher sublevels can be discarded and synthesized from fower sublevels, with little
degradation of image quality, then overall bitrate can bs reduced. A thirg application is better
scaled image quality. It is pos=ible that scaling tne high and low frequencies of an image
separately may result in better scalad image quality then just using NSI to scale the image directly.

There are many averwues of inquiry possible in this area of sublevel scaling, but, because
of time constraints, only a cursory invastigation was performed. There are many areas which were
left unexnlored and couid be the focus of future inquiry.

Tne scaling of thi2 high frequency sublevel information is not a unique idea. In [Holtzrnan
90], a pattern classification technique is used. During sublevel generation a pattern table is
generated which relates image patters in the righ frequency banids between sublevels. This
table is used to scale the lower level bands with enhancement «. jenerate the higher level bands.
The author states that subjective image quality was found to improve significantly over straight
Gausian scaling of the images. The foliowing paragraphs explore an alternate way oi performing
this scaling and sublevel synthesis through NSI.

Subband coding is a means by which images are separatad intc four frequency
components or subbards.[Woods and O'Neil 86] The four subbands corraspond to the following
aspects of the ‘mage: the DC information, the horizontal high frequency information, the vettical
high frequency information and the “"diagonal® high frequency information. Cach of thuse
subbands images is one quaiter of the sice of the original image. This process can e repeated
recursively to the DC subband to gunerate successively "lower” subbands. Subband coding
mast often utilizes quadrature mirror filters and has been found to out perform many other
techniquss in the image compression domain.fWoods and O'Nuil 86; Simoncelli 84]

To test NSI's performance in tris domain tha image in Photograph [6.1-51] was used, it
will be referred to as "Moonlight.” Three !evels of subbands were then gencrated, where level 0
is the originai image axd level 3 is the lowest qroup of subbands. Table [3.10-1] shows the
bitrates and qualities achieved for compressing leval 3 subbands with NSI. The leve! 3 subbands
were scaled by 2 using NSI to form the level two subtands and by four to form the level 1
subbirids. Finally, the full sized image (level 0) was completely reconstructed from the
synthesized lavel 1 and level 2 subbands and with the unmeditied level 3 subbands, with the
results shown i Phoicgraph [8.1-52]. Thase results she that these eriorts were not omplaicly
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successiul. The image does have a geod appearance yet is plagued with ringing at edges. A
possible explanation for the ringing is a phase distortion generated in the higher frequency
subbands by the NSI scaling algorithm. This distortion does occur with the version of NSI scaling
used here because sample values are placad at the edges of the scaled regions thay influence
instead of at the centers. Theoretically this could be corrected but there was not enough time, in
this investigation, to do so. From a statistical standpoint, the image in Photograph [8.1-52] is 0.55
bits per pixel and has a PSNR of 28.56 dB. The quality of this image is significantly lower (3.5 dB)
than what one would expect by just compressing an image at this bitrate. The phase distortions
contribute to this iow PSNR in two ways: first, they cause the ringing at edges and second PSNR
penalizes phase shifts immensely. PSNR generates this penalty because it measures squared
differences so that a small shift in an edge will creae a large statistical error but not much of a
subjective one.

Subband Bits per pixel PSNR
horizortal 1.01 38.04 dB
verticas 1.10 34.53 dB

diagonal 1.13 41.99 dB
Iable [3.10-1); Compression rates and quality for "Moonlight™ third level subbands.

The windowed Gausian filters used in pyramidal coding are not as phase sensitive as the
quadrature mirror filters used in subband coding. In pyramifal coding, an image is low pass fittered
by a windowed Gausian to generate a low pass band. This low pass band is then subtracted from
the image to generate a high pass band. The low pass band is then subsampled to onhe halt size.
The smaller low pass band can go through the process repeatedly, resulting in lower and lower
levels of the pyramid in a manner analogous to subband coding. This processing of an image has
found to be extremely useful in image compression as well as other .ypes of image
processing.[Adelson and Anderson and Bergen and Burt and Ogden 84)

To test NSI scaling performance in conjunction with pyramidal coding, a three level
Gausian pyramid was generated and the lowest level (one quarter size) image was used to
generate the higher levels. Photographs [8.1-53] and [8.1-54] show the low and high frequency
portions of the third level pyramid of the Moonlight image, each has been magnified, to make
detail more visible. So that scaling can take place, the high frequency sibband was compressed
by NSI. It was compressed to 2 6 bits per pixel and a PSNR of 36.84 dB. For comparison, the
th'rd level subband was also scaled Gsing the NSI scaling algorithm directly. To facilitate this, the
image in Pihotograph [8.1-55], which is the composite of the information in Photographs {8.1-53]
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and [8.1-54), was compressed and scaled. It was compressed {0 4.08 bits per pixel and a PSNR
of 39.53 dB.

The images summarize the results. Photographs [8.1-56] and [8.1-57] show the result of
scaling by two using NSI combined with pyramidal coding and using NSI directly, respectively.
Both of these images have been magnified using pixel replication so that the detail can be buu.r
examined. The first thing that is obvious is that these images are a better rendition than either of
Photographs [8.1-53] or [8.1-55]. Edges are much sharper in thase scaled images. Comparing
these two images is difficult, both do a respectable job of high-frequency syrithesis. Each has its
own specific artifacts and it seems doubtful than one coukd be classitied as "better” than the other.
Photographs [8.1-56] and [8.1-57] are the result of scaling the lower pyramid level by 'our back to
full size, using NSI combined with pyramidal coding and using NSI directly, respectively. At this
level it seems as though NSI does a better scaling job than the synthesized pyramid which
contains more serious smaars and blotches. But again, both tachniques do a reasonable job of
generating apparent resolution from nothing.

The statistical avaluation of this experiment is summarized in Table [3.10-2]. An
examination of the scale by two figures is rather disappointing. At at the 1.0 bit per pixel bit rate,
most algorithms can give better quality than this. (NSI gives a PSNR of over 35 dB.) One possible
explanation for the poor performance is the phase shift inducea by NSI scaling. PSNR penalizes a
phase shift of an edge severely because it squares the difference. At this level of scaling, both
algorithms seem to perform similarly in terms of quality, the hybrid pyramidal scaling performing
slightly better. The really interesting result is from scaling by four. Here the quality remains stable
when scaling up. For the direct NSI scaling, the quality even improves slightly. This is interesting
because it implies that over a reasonable range of scale factors, NSI based scaling (both the
pyramidal hybrid and the direct version) is a reliable way of enhancing the resolution while scaling
images. Compared to NSI compression of this image at a similar bitrate, one would expect the
quality to be 2 dB worse. This means that there may be something to g¢ain by using these scaling
based algurithms in conjunction with compressing images to obtain better coinpressed image
quality. Infact it hints at the possibility of generating a "resokition independent” representation of
an image of constant quality.

Scale Ailgorithm Bits_per Plxel PSNR
x2 Pyramid and NSI 0.9 30.44 dB
x2 NSI direct 1.02 29.88 dB
x4 Pyramid and NSI 0.23 29.53 dB
x4 NS! direct 0.26 30.02dB_ _ |
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Table [3.10-2]: NSI pyramidal scaling performance.

This experiment shows that the NSI scaling algorithm can be useful for scaling higher
fraquency subband information in situations where the filters in use are not phase sensitive. It
also shows is that the NSI scaling algorithm does a fair job of scaling images which contain both
sharp edges and smoothly shaded areas.

3.11 Multiple Compression Passes

In certain applications a compressed image is decompressed and then modified and then
recompressed. It is therefore advantageous that an image compression algorithm be able to
compress and decompress an image through multiple cycles without a significant degradation in
quality through each cycle. Graph [3.11-1] is a graph of the "Lena"” image passed through
nineteen compression-decompression cycles at 0.5, 1.0, and 2.3 bits per pixel. The vertical axis
is image quality and the horizontal axis is compression cycles. What is apparent from this graph is
that image quality degrades asymptotically, the biggest drops happening during the first 6
compression cycles and then levelling off to a near negligible decline. This trends seems to be
similar at all three bit rates. Graph [3.11-2] is a related graph which plots bit rate on the vertical axis
and the number of compression cycles on the horizontal axis. Here bit rate takes a small drop
during the first three cycles and then seems to level off. What is appareni from both of these
graphs, is that image quality takes a significant drop of 2-3 dB during the first few compression
cycles. The reason that this occurs is that the emror metric thresho!d is kept constant during all of
thase cycles. Once the image is compressed and decompressed oiice, it should be able to be
compressec again losslessly by NSI. This is because it should find all the line segments in ihe
reconstructed waveforms and be able to find all of the sample points exactly. In practice this is not
the case, as the reconstructed intensity values are calculated to a limited precision during
dacoding. Because of this round-off, error will accumulate during the compression process.
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Graph [3.11-2]. Plot of compression rate over 19 successive compression-decompression cycles
with a constant error threshold for three bitrates.

Graph [3.11-3] plots PSNR on the vertical axis and compression cycles on the horizontal
axis. After the first compression cycle, the error metric threshold was set to four. Four was chosen
because it would allow 16 round off errors (0.5) to accumulate in a row. (0.5 is squared,
consequently 16 times 0.25 is 4.) As the Graph shows, there is no visible reduction in image
quality on this scale. Graph [3.11-4] plots compression cycles versus compression rate. This
Graph shows that there is approximately a 0.1 bit per pixel increase in the first compression cycle
and then no appreciable increase occurs. Graph [3.11-5] is a plot of quality versus compression
cycles centering on the 1.0 bit per pixel data. This seems to show a relatively linear decrease in
quality, of 1.5 thousandth's of a decibel, an unobservable amount. Graph [3.11-6] zooms in on
the same data, plotting compression rate versus compression cycles. This Graph shows that
bitrate seems to increase asymptotically, averaging atout 0.2 bits per pixe! (3500 bytes) during
the first 10 compression cycles and then decreases, to less than 0.01 bits per pixel (10 bytes) in
subsequent cycles.
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Graph [3.11-3]; Plot of image quality over 19 successive compression-decompression cycles wit.
a small error threshold for three bit-ates.
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Graph [3.11-4]; Plot of image quality over 19 succescive compression-decompression cycles with
a small error threshold for three oitrates.
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Graph [3.11-2]. Magnified plot of image quality over 19 successive compression-decompression
cycles with a small error threshold for 1.0 bits per pixel.
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Grapb [3.11-6]. Magnified plot of image compression rate over 19 succassive compression-
decompression cycles with a small error threshold for 1.0 bit per pixel.

This data argues, extremely strongly, that NSI performs very well in a situation where
images go through multiple compression-decompression cycles. In order for this level of
performance to be achieved, an image should be flagged as previously compressed, so that the
error threshold can be anpropriately set. Selecting a threshold is not as simple if the data is
modified when decompressed. If the modification is limited to a small region of the image then a
small thresiold could be used for the unmodified part of the image and a larger threshold for the
modified part of the image. If the entire image is modified, one would still assume that the
modifications made would not add a significant amount of noise to the image so that the chosen
threshold could be srnallar than normal.

NSI's good performance in this area due to the fact sample point jittering ensures that
sample points will be placed on the edges when the decompressed image is compressed again.
Tne slight quality degradation can be accounted for by samples being ramoved from areas which
were originally noisy and the merging of line segments with relatively close slopes.

3.12 Threshold vs. Bitrate
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One characteristic of NSl is that it is supposed to be a quality controlled algorithm. That is,
the error threshold of the image is supposed to be related to image quality. Graph [3.12-1] plots
image quality on the vertical axis and the error threshold on the horizontal axis for the “Lena”
image. Image quality, improves in an exponential manner in an inverse relation to the error
threshold. Graph [3.12-2] plots compression rate on the vertical axis and error metric threshold
on the horizontal axis for tho same three images. As would be expecied, compression rate falls
off very quickly, in an exponential manner, a3 error threshold is decreased.
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Graph [3.12-1]. Plot of error threshold vs. image quality.
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3.13 Sample vs. Positional Information

One interesting thing about an image compressed by NSI is that part of the compressed
data is the actual pixel values and some of it is positional information. It is informative to look at that
composition, because it predicts the effect of better compression on the positional informaticn on
reducing overall bitrate. Also, decompression time and overall decoding computational
complexity per image depend on the number ¢! samples, not the total number of bytes which
make up the compressed image. Graph [3.13-1] plots the ratio of sample bytes to the total
number of compressed bytes on the horizontal axis and compression rate in bits per pixel on the
vertical axis. There are a number of interesting things about this graph. The first is that the lower
bound of the ratio seems to be a 50-50 composition of sample bytes to positional bytes. Arotner
is that compression rate is is directly related to this ratio. This is expected because at higher
compression rates, the line lengths are longer per sample and there are fewer of them. Whereas
at lower compression rates, the line lengths are shorter per sample and there are more of them.
The extremely interesting thing, though, is that the shape of the curve on this graph looks
extremely similar to a rate-distortion curve. Prompted by this Graph [3.13-2] plots PSNR on the
vertical axis and the sample ratio on the horizontal axis. Plainly, there is a linear relationship
between PSNR and the ratio down to when the ratio first hits 50%. Tha question is, how does this
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relationsitip generalize to other images? Graph [3.13-3] answaers this quastion. This is a plot of
sample data ratio versus PSNR for three images: Lena, Tiffany, and Smag. What is surprising ic
thiat except tor a small number of outliers, Lena and Tiffany follow the same line. Smag also seems
to follow a practically linear course once it gets above a particuiar ratio. Although is an extramely
interasting relationship, the reason why it axists is not clear.
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Graph {3.13-1]. Plot of the of ratio of sample bytes to total data versus ompression rate.
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4. Conclusions

An algorithm has been developed which brings the quality of a redundancy reduction
style algorithms close to that of transformed based techniques. The investigated algorithm N3l is
within 2.5 dB of quality of a DCT and is able decode an image approximately 24 \'mes faster. It also
exhibits the useful property of speeding up siandard scaling and color transformations. It also has
the feature that it can enhance during scaling to improve scaled image quality. NS! also able to
compress and decompress an imzge repeatedly without significantly distorting the image. These
characteristics make NSI extremely attractive for an enviconment where decodar complexity and
decoded image quality are of primary concern.
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5. Summary

An initial survey of existing image compression algorithms showed that spatial domain
techniques were most amenable for use on low power computer because of the low
computational compliexity cf decoding the image. The problem, however, is that the majority of
these techniques result in image quality signiticantly less than that of transform based techniques.
Of the spatial techniques reviewed it seemed as though redundancy reduction techniques had
the most promise of improved image quality. Accordingly, the failings of the current state of these
algorithms were investigated and attempts were made to remedy them. There were three
significant extensions. The first was sample point jittering which improved image quality and
especially edge fidelity by repositioning sample points so as to minimize local error. The second
was sample point look ahead which helps limit the number of unnecessary sample points taken by
the aigorithm due to noise. This was accomplished by extending the approximating line to see if
the approximation could once again be brought into bounds. The third extension was an
alternate scan path for processing the pixels to allow the algorithm to exploit two dimensional
image correlation, which processed the pixels in horizontal bands. The tops and bottoms of the
bands bands are processed as rows and the pixels in between as columns. The performance of
each of these extensions was evaluated by generating rate-distortion curves based on peak-
signal to noise ratio as a measure of image quality. Finally the quality of the algorithm (NS!) was
compared in terms of speed and quality to that of the DCT. NSI was found to be approximately 2.5
dB in terms of quality worse, 24 times faster in decoding and 48 times slower in encoding.
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6. Future work

During the course of this investigation many possibilities for extending the current work
developed. This section summarizes some of the more significant of these.

6.1 Algorithm Hybhridization

One of the major weaknesses of NSI as it stands is its perfformance in textured regions of
the image. In many cases this level of performance is unacceptable. One possible way to improve
performance is to combine NSI with another algorithm which can efficiently code textures. Since it
is still desirable to keep decompression complexity low, a spatial domain technique seems like the
most reasonable choice.

The best candidate would seem to be block truncation coding. Block truncation coding is
extremely fast in encoding and decoding. Itis also extremely good at representing textures. This
is because a textured region will most often be composed of two different brightness levels which
can be encoding as one of the two values used oy block truncation coding.

To make block truncation coding more amenable for use in the context of NSI it could be
modified to operate on a one dimensional basis. In this case a particular line segment would be
coded using this one dimensional version of block truncation coding instead of the standard
interpolation technique. A special flag value could be inserted in the sequence of samples which
would tell the algorithm when the block truncation coding method should be used.

The difficult thing to do is to decide when to use block truncation coding. One way to do
this would be to examine the difference signal between the approximation and the original image.
Presumably the error in textured regions is relativelv uncorrelated with the approximation and the
error in texture. Whereas the error in flatter regions will be more correlated with the approximation.

6.2 Human Visual System Extensions

Throughout the field of image comprassion it is widely accepted that better subjective
image quality are possible at any given compression ratio if the characteristics of the human visual
system is taken into account in the compression algorithm. These characteristics are the spatio-
temporal characteristics and the contrast sensitivity function of the human visual system. The use
of this information allows an algorithm to spend more of its bits in the regions of the image which
are more significant for the human observer.

NSI as it now stands does not take human visual system characteristics into account. One
relatively straight forward way of incorporating these characteristics into the algorithm are in the
error metric. The sum of squared error metric seems to be an acceptable statistical measure of it
and a coarse measure of subjective image quality as demonstrated in the subjective experiment
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described earlier. It seems reasonable, though, that an error measure which included HVS
characteristics could generate an image which has better apparent quality, possibly at the cost of
signal to noise ratio.

Another way to include HVS characteristics is via adaptive quantization. Currently, if the
original image data was eight bits per sample, then the samples will be stored at eight bits per
sample. However, it is known that characteristics of the human visual system are such that the
human eye is much more sensitive to quantization error in flat regions of the image, versus high
contrast regions of the image. Given this observation, it should be possible to modulate the
quantization of the sample data based on previous distances between the samples. Short

distances imply sharp edges whereas long distances imply tlat regions.

6.3 Better sample point choices

Even though many of the optimizations developed in this thesis retine the sample
selection process, the sample points chosen should in no way be considered optimal. There are
many methods which could further improve the sample point values chosen, as will be described
in the following paragraphs.

6.3.1 Sample points off of the image surface

The first possible improvement is to choose sample points oft of the image surtace. It
seems most likely that the image regions where this will be most useful will contain high frequency
noise. Usually, in these regions the slope pitches pack and forth over the intensity surface. The
image would look better if just one smooth slope was maintained. In these regions the sample
values could be changed to flatten out the approximation. The problem is to automatically decide
which regions of the image should get this treatment. The process could be similar to that of
deciding where block truncation coding should be used. The error between the approximation
and the original image can be examined. If the error is decorrelated then that is one sign ot
texture. Another sign is the ratio of the positive to negative ertor. In this case of a curved region,
most of the error will be of the same sign. However, in the case of a textured region the error will
frequently aiternate between positive and negative values.

6.3.2 Better band coherence
One problem with NSI is the fact that there is little coherence between bands. There

does not seem to an obvious way to eliminate this problem

6.3.3 Better error metric
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The sum of squared error metric is most probably not the optimal error metric. One choice
of a better class of error metrics are those which take human visual system characteristics into
account, as described in a previous section. Another possibility is that the slope of the
approximating line or its length modulates the scale of the error metric in some manner. As has
been stated previously, one of the problems with the current algorithm is that as a flat line grows
longer and longer it will tend to accumulate error and cause a samples to be taken which are not
necessary. Modulating the error metric could help reduce that problem.

6.3.4 Sample point removal

It is possible that during the compression process sample points were chosen such that
adjacent segments ended up with approximately the same slope. In this case, the sample point
between the segments could be removed and the resulting segment would have approximately
the same slope and would not greatly increase overall image error. This process of "line segment”
joining would require some decision criterion. One simple criterion could be a simple error bound
on the difterence of the slopes of the two segments. If the slopes are within the error bound then
the segments could be joined. Another possible criterion is comparing the total of the two sum of
squared errors generated by the two separate segments to that of approximating that data with
one segment. If the errors are within a certain bound of each other then the middle sample point
can be removed.

6.4 Coding of motion sequences

NSI would seem to be well suited to the coding of motion sequences because its
decoding complexity is so low. There are certain aspects of NSI which might hamper this
application. The major aspect is edge buzziness. Since the position of sample points in the
image can be dependent on image noise and local image characteristics, it seems likely that the
positions of these samples might wander between frames, even if the objects are reasonably
stationary in the frame. This would result in an artifact called edge buzziness where edges in the
image seem to waver. A related problem would occur in textured regions. In these regions the
pattern of the aliasing noise is highly dependent on small intensity fluctuations in the image. Itis
theorized that textured regions would exhibit a changing pattern over time would be highly
objectionable.

Capturing temporal correlation using NS! should be possible using a three dimensional
extension of the banding scheme. In this three dimensional extension, individual frames could be
stacked to form a "thick" frame, the thickness in the time axis. Every nth frame could then be
processed by standard NSI. Then the frames between these "key" frames could be processed in
a manner similar to the columns processed between bands of a single image. The major
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disadvantage in this scenario is that each individual frame cannot be decoded without context
from another frame, which doubles memory requirements in the decoder.

The problems described in this section make it unlikely that NSI will perform in an
acceptable mananer in the context of coding motion video.

6.5 Bitrate control

In many applications it is advantageous to be able to specify a compression rate at which
an image need be compressed. As NSl is currently described, it is a quality controlled algorithm.
That is, the only specifiable parameter, which is the error metric threshold is directly related to
image quality. it should, however, be possible do adapt NSI so that a particular bitrate can be
specified and the algorithm can deliver that bitrate.

The way to introduce bitrate control is via feedback. The feedback process would make a
guess at an initial error metric threshold and then attempt to compress a portion of an image. If the
bitrate was too low then the threshold could be rcised. If the bitrate was too high then the
threshold could be lowered. The algorithm could then continue to compress the image,
continually adapting the threshold. Or, alternately, it could throw away the work it had done
compressing the block and attempt to recompress the block and adjust the threshold until the
desired bitrate was achieved. It is assumed that the former method would be preferred because it
would result in less wasted computation.

6.6 Contrast adjustment

One of the stated problems with this algorithm is that the contrast of the image being
compressed effects the relationship between error metric threshold and compressed image
bitrate and decompressed image quality. This problem becomes more serious when various parts
of the image have greatly different contrasts. In this situation, one error threshold is not a good
choice over the entire image.

The solution is either to adjust the error metric threshold according to image contras: or to
adjust the image contrast itself. On a global level, a histogram of an image can be generated.
From this histogram, statistics, the the mean atid the variance, which characterize the distribution
of intensity values in the image can be calculated. Given this information the intensity values can
be shifted and scaled so that their mean and variance is some "standard" value. On a local level
the image can be separated into blocks. Each block can then be processed separately and have
its contrast adjusted separately. The problem with this approach is that blocking artifacts may
arise. One possible way to prevent this is to continuously vary the contrast adjustment parameters

between adjacent blocks so that is no large jump between blocks. One problem with a local block
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contrast adjustment is that it an entire block is made up of a relatively flat region then any noise in
that region will be greatly amplified. This can partially be avoided by making sure that the contrast
adjustment is continuous between adjacent blocks, but can also be prevented by putting a bound
on the contrast adjustment. This bound may be derivable from model of the contrast sensitivity
thresholds of the human visual system so that invisitle features in the image are not amplified and
unnecessarily coded.
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8. Appendix

8.1 Photographs

This section contains all of the photographs referenced in this thesis. Each photograph
in this section is labeled with a short description of its contents.

All of the photographs were taken on a matrix film recorder. The black and white images
were generated by a Datacuoe 8 bit per pixel frame buffer driven by a Sun 3 and were
photographed with Kodak ASA 100 Tri-X film and printed on fiber-based paper. Color images
were generated by a Taac 24 bit per pixel frame buffer driven by a Sun 3 and were photographed
with Kodak ASA 100 Kodacolor film and printed on resin-coated paper.

The six color Photographs [8.1-29}, [8.1-36], [8.1-37], [8.1-38], [8.1-39], and [8.1-40] are
reprinted in black and white in photographs [8.1-1], [8.1-60], [8.1-61], [8.1-62], [8.1-63], and [8.1-
64], respectively.

Cenrtain photographs are magnified versions of the image. This is not to be confused with
the scaling algorithms which involve the NSI algorithm. When an image is said to be magnitied it
means that the size of image was increased through the use of pixel replication to make detail in
the image more visible. Therefore if an image is magnified four times then each pixel of the
original image was displayed as blocks four pixels on a side when it was displayed to be
photographed.
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List of Photographs

Name Page
[8.1-1] Original "Lena" image at 8.0 bits per pixel 110
(8.1-2] Original "Tiff" image at 8.0 bits per pixel. 111
[8.1-3] Original "Smag" image at 8.0 bits per pixel. 112
[8.1-4] Lena compressed to 1.0 bit pixel by the DCT 113
(8.1-5] Lena compressed to 1.0 bit per pixel by 1D subsampling 114
[8.1-6] Lena compressed o 1.0 bit per pixel by 2D subsampling 115
[8.1-7] Lena compressed to 1.0 bit with scaled cone intersection metric. 116
{8.1-8] Lena compressed to 1.0 bit per pixel with maximum deviation metric _____ 117
[8.1-9] Lena compressed to 1.0 bit per pixel with sum of error metric 118

g

[8.1-10] Lena compressed to 1.0 bit per pixel with sum of squared error metric ___ 119

[8.1-11] Lena compressed to 1.0 bit per pixel with sample point jittering 120
[8.1-12] Lena compressed to 1.0 bit per pixel by quadtree decomposition ______ 121
[8.1-13] Lena compressed to 1.0 bit per pixel by the final versionof NSI 122
[8.1-14] Lena compressed to 0.5 bit per pixel by final version of NSI 123
(8.1-15] Lena compressed to 2.0 bits per pixel by the final version ot NSI 124
[8.1-16] Samples chosen by NSI when compressing 1.0 bit Lenaimage 125
[8.1-17] Magnified eye region of original Lena 126
[8.1-18] Magnified eye region of NSt compressed Lena 127
[8.1-19] Magnitied eye region of DCT compressed Lena 128
[8.1-20] Magnified textured hat region of original Lena 129
[8.1-21] Magnified textured hat region of NSI compressed Lena 130
[8.1-22] Magnified textured hat region of DCT compressed Lena 131
[8.1-23] Difference between the original and 1.0 bit per pixel NSl Lena 132
[8.1-24] Magnitied radial am region of original Lena 133
[8.1-25] Magnified radial arm region of NSI compressed Lena 134
[8.1-26] Fourier transtorm coefficients of the original Lena image 135
[8.1-27] Fourier transform coefficients of 1.0 bit per pixel Lenaimage ______ .. 136

[8.1-28] Fourier transform of ditfference between original and 1.0 bit NSI Lena 137

[8.1-29] Original 24.0 bit per pixel color Lena image 138
[8.1-30] Red channel of original color Lena image. 139
[8.1-31] Green channel of the original color Lena image 140
[8.1-32] Blue channel of the original color Lena image 141
[8.1-33] Y channel of the original color Lena image .. 142

[8.1-34] I channel of the original color Lena image 143




[8.1-35] Q channel of the original color Lena image

[8.1-36] Original 24.0 bit per pixel color Frog image

[8.1-37] RGB Lena image.compressed by NSI to 2.0 bits per pixel
[8.1-38] RGB Frog image.compressed by NSI to 2.0 bits per pixel _
[8.1-39] Y1Q Lena image.compressed by NSI to 2.0 bits per pixel

(8.1-40] YIQ Frog image.compressed by NS! to 1.9 bits per pixel

[8.1-41} Original Text image

[8.1-42] Original Eye image

[8.1-43] Samples chosen by NSI when compressing the Text image
[8.1-44] Samples chosen by NSI when compressing the Eye image
[8.1-45] Text image scaled by four using NSI bilinear scaling

[8.1-46] Eye image scaled by eight using NSI bilinear scaling

[8.1-47] Text image scaled by four using NSi enhanced scaling

[8.1-48] Eye image scaled by eight using NSI enhanced scaling

[8.1-49] Text image scaled by tour using the NSI anti-aliased scaling
[8.1-50] Eye image scaled by eight using NSI anti-aliased scaling

[8.1-51] Original Moonlight image

[8.1-52]) Subband compressed Moonlight image

[8.1-53] Low frequency component of quarter sized Moonlight image
[8.1-54] High frequency component of quarter sized Moonlight image
[8.1-55] Quarter sized Moonlight image

[8.1-56] Mooniight image reconstructed half size using Gausian pyramid
(8.1-57] Moonlight image scaled to half size using NSI anti-aliased scaling
[8.1-58] Moonlight image reconstructed at full size using Gausian pyramid
[8.1-59] Moonlight image scaled to full size using NSI anti-aliased scaling
[8.1-60] Black and white version of Photograph [8.1-36)]

[8.1-61] Black and white version ot Photograph [8.1-37]

[8.1-62) Black and white version of Photograph [8.1-38]

[8.1-63] Black and white version of Photograph [8.1-39]

[8.1-64] Black and white version of Photograph [8.1-40]
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109



Photograph [8.1-1); Original "Lena” image at 8.0 bits per pixel.

ID #{P004]
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Photograph [8.1-2]); Original “Tiff* image at 8.0 bits per pixel.
ID #{POOS)
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Photograph [8.1-3). Original "Smag" image at 8.0 bits per pixel.
ID #{P00S)



113

Photograph [8.1-4). Lena image compressed to 1.0 bit per pixel by a discrete cosine transtorm.
ID #{PO14]
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2110dB

PULS

Photograph [8.1-5). Lena image compressed to 1.0 bit per pixel by subsampling the itnage by
eight in the horizontal direction.
iD #{PO15]
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Lena

2D$ub 
LObpp -
24 89dB
PU16 " -

Photograph [8.1-6]. Lena image compressed to 1.0 bit per pixel by subsampling the image by
four in the horizontal direction and two in the vertical direction.
1D #{PO16]



116

Lena -

cone
1.0bpp
26.43dB
PO6L

Photograph [8.1-7]; Lena image compressed to 1.0 bit per pixel by one dimensional sample point
selection and a scaled cone intersection error metric.
ID #{P061)
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axdev
L.0bpp
26.31¢B .

POLT .

Photograph [8.1-8]. Lena image compressed to 1.0 bit per pixel by one dimensional sample point
selection and a maximum deviation error metric.
1D #{P017)
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Lena

SOE”"
1.0bpp
27.03dB

TPOTR

Photograph [8.1-9); Lena image compressed to 1.0 bit per pixel by one dimensional sample point
selection and a sum of error error metric.
1D #{PO18]
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Lena.

SOS:.
1.0 bpp -
27.58 dB
PO19.

Photograph [8.1-1Q): Lena image compressed to 1.0 bit per pixel by one dimensional sample
point selection and a sum of squared error metric.
ID #[P0O19)
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—

" Lena

iilbpp»' 
_jhter” 
-30.11dB

P0O20

Photograph [8.1-11]. Lena image compressed to 1.0 bit per pixel by one dimensional sample
point selection and a sum of squared error metric with sample point jittering.
ID #(P020]
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“qdtree
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34.12dB

P21

Photograph [8.1-12]; Lena image compressed to 1.0 bit per pixel by quadtree image
decomposition and a sum of squared error error metric.
ID #{P021]
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Lena

NSL
1.0bpp =
-35.27dB

CPu2s

Photograph [8,1-13). Lena image compressed to 1.0 bit per pixel by the final version of NSI with
two dimensional sample point selection, a sum of squared error error metric, sample point jittering,
and sample point look ahead.

ID #{P025)
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Lena

NSI

0.5bpp
31.28dB
P049

Photograph [8.1-14); Lena image compressed to 0.5 bit per pixel by the final version ot NSI with
two dimensional sample point selection, a sum of squared error error metric, sample point jittering,
and sample point look ahead.

ID #{P049)
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Lena

NSL
20bpp -
39.28dB "

Photograph [8,1-15]. Lena image compressed to 2.0 bits per pixel by the tinal version of NSI with
two dimensional sample point selection, a sum of squared error error metric, sample point jittering,
and sample point look ahead.

ID #{P050]
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‘Lena

NSI
1.0bpp
‘samples -
PO48

Photograph [8.1-16). Samples (represented as white dots) chosen by NSI when compressing
the Lena image to 1.0 bits per pixel. These samples correspond to Photograph [8.1-13].
ID #({P048)
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Photograph [8.1-17]. Eye region of the original 8.0 bit per pixel Lena image. Magmified eight
times. The complete image is in Photograph [8.1-1].

ID #[P109]
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Photograph [8.1-18]. Eye region of the Lena image compressed to 1.0 bit per pixel by NSI.
Magnified eight times. The complete image is in Photograph (8.1-13].

1D #[P107]
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Lena.

DCT
1.0bpp
mag8x
35.56dB
POs

Photograph [8,1-19]; Eye region of the Lena image compressed to 1.0 bit per pixel by the DCT.
Magnitied eight times. The complete image is in Photograph [8.1-4].
ID #{P108)
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Lena - .

8.0 bpp

magdx
- P103

Photograph [8.1-20]; Textured hat region of the original 8.0 bit per pixel Lena image. Magnified
four times. The complete image is in Photograph [8.1-1].
ID #[P103)
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.

Lena .

1.0bpp

magé4x
"35.27dB -
“P101 :

Photograph [8,1-21). Textured hat region of the Lena image compressed to 1.0 bit per pixel by
NSI. Magnified four times. The complete image is in Photograph [8.1-13].
ID #(P101)
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- Lena

DCT
1.0bpp
‘mag 4x
35.56dB
P102

Photograph [8.1-22]; Textured hat region of the Lena image compressed to 1.0 bit per pixel by
the DCT. Magnified four times. The complete image is in Photograph [8.1-4].
ID #[P102)
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"-Lena.

NSI
1.0bpp
 diffx8 
35.27dB -
P100.

Photograph [8.1-23]. The difference image between the original 8.0 bit per pixel Lena image and
the 1.0 bit per pixet NSl version. The differences are scaled by eight and values outside of the 0-
255 range were clipped. A gray dot represents no error, a white dot represents a positive error
and a black dot represents a negative error. A plot of the magnitude of the fourier transform of this
image is pictured in Photograph [8.1-28].

ID #{P100)
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Photograph [8.1-24]. Radia! arm region of the original 8.0 bit per pixel Lena image. Magnified two

times. The complete image is in Photograph [8.1-1].

ID #[P115)
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Lena

NSI

1.0 bpp
mag?2x-
35.27dB
P113 - .

Photograph [8.1-25]; Radial arm region of the Lena image compressed to 1.0 bit per pixel by NSI.
Magnified two times. The complete image is in Photograph [8.1-13].
ID #(P113}



135

Lena

8.0bpp
fourierm
P‘U,IO‘.-' _ .

Photograph [8.1-26]. Plot of the magnitude of the tourier transform coefficients of the original 8.0
bit per pixel Lena image. Values outside of the 0-255 range were clipped.

ID #[P010]
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NSLLObpp
fl;o;»u r i"_é»r'fmag .
o T

Photograph [8.1-27]; Plot of the magnitude of the fourier transform coetfticients of the Lena
image compressed to 1.0 bit per pixel, shown in Photograph [8.1-13]. Values outside of the 0-
255 range were clipped.

ID #[PO11)
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LObpp
“fourier mag
diffx8
35.27dB

SPo2T e

Photograph [8,1-28). Plot of the magnitude of the tourier transtorm coefficients of the scaled
difference image between the original 8.0 bit per pixel Lena image and the 1.0 bit per pixel NSI
version. This image is pictured in Photograph [8.1-23). Values outside of the 0-255 range were
clipped.

ID #{P027)
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Photograph [8.1-29). Originat 24.0 bit per pixel color Lena image. A black and white version of
this image can be seen in Photograph [8.1-1].
ID #(P028)



" Lena

24.0bpp 4
red chan -
Pojo

Photograph [8.1-30]: The red channel of the original 24.0 bit per pixel color Lena image.

ID #(P030]
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Lena

24.0bpp
‘grnchan
P0O31 -

Photograph [8.1-31]. The green channel of the original 24.0 bit per pixel color Lena image.
1D #{PG31)
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Lena

24.0bpp
'bl,u chan
P032

Photograph [8,1-32]. The blue channel of the original 24.0 bit per pixel color Lena image.

ID #{P032]
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Photograph [8.1-33); The Y channel of the original 24.0 bit per pixel color Lena image.
ID #{P033]
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Ehotograph [8.1-34). The | channel of the original 24 0 bit per pixel color Lena image.

ID #(P034]
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Photograph [8.1-35]. The Q channel of the original 24.0 bit per pixel color Lena image.

ID #{P035)
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Photograph {8.1-36); Original 24.0 bit per pixel color Frog image. A black and white version of
this photograph can be seen in Photograph [8.1-60].

ID #[P029)
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Photograph [8.1-37]; Color Lena image compressed by NSi to 2.0 bits per pixel by compressing
the R, G, and B channels individually. A black and white version of this image can be seen in
Photograph (8.1-61].

ID #(P036)
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Photograph [8.1-38]. Color Frog image compressed by NSIi to 2.0 bits per pixel by compressing
the R, G, and B channels individually. A black and white version of this image can be seen in
Photograph [8.1-62].

ID #[P038)
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Photograph [8,1-39]; Color Lena image compressed by NSI to 2.0 bits per pixel by compressing
the Y, |, and Q channels individually. A black and white version of this image can be seen in
Photograph [8.1-63].

ID #(P037]
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“Ffbg'
Y1Q.

.1£9bpp"' 

P039

Photograph [8.1-40}: Color Frog image compressed by NSI to 1.9 bits per pixel by compressing
the Y, |, and Q channels individually. A black and white version of this image can be seen in
Photograph [8.1-64].

ID #{P039)
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“Evye

“original

mag 8x
CPosr .

Photograph [8.1-42]. Criginal 8.0 bits per pixel Eye image. Magnitied eight times to show detail.

ID #{PO41]
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Photograph [8.1-43]. Samples (represented as white dots) chosen by NSI when compressing
the Text image of Photograph [8.1-41]. Magnified four times.

1D #[{P063)
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Photograph [8.1-44]: Samples (represented as white dots) chosen by NSI when compressing

the Eye image of Photograph [8.1-42]. Magnified eight times.

ID #{P062)
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Photograph [8.1-45]; Text image scaled by four using the NSI bilinear scaling algorithm.

1D #{P042)
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Eve 7

‘bilinear
8xscale

:i“?" 

Photograph {8.1-46]. Eye image scaled by eight using the NSI bilinear scaling algorithm
ID #{P043)
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Eve. -
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P4y

Photograph [8.1-48]. Eye image scaled by eight using the NSI enhanced scaling algorithm.

ID #[PO44]
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s E}"e -

antialias
8 x scale
“PO46

Photograph [8.1-5Q). Eye image scaled by eight using the NSI anti-aliased scaling algorithm.
ID #{P046)
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_Moonl»igh,t._\__'_

8.0bpp -
P0O59 « - T

Photograph [8,1-51]; Original 8.0 bit per pixel Moonlight image.

ID #{P059)
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subband
4xscale .
POG0

Photograph [8.1-52]. Subband compressed Moonlight image. Image is reconstructed from a
three level subband decomposition. The higher level subbands were synthesized by using NS!
to scale lower leve! subbands.

ID #{P060)
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Moonlight

LF
mag4x
Po66 -

Photograph [8,1-53]. Low frequeicy components of the quarter sized Moonlight image in
Photograph [8.1-55). Magnified tour times.
ID #{P066]
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Photograph {8.1-54]. High frequency components of the quarter sized Moonlight image in
Photograph [8.1-55]). Magnified four times.

ID #{PO55]
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Photograph [8.1-55]; Quarter sized Moonlight image. Magnitied tour times.
ID #{P052)
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P064

Photograph [8.1-56). Moonlight image reconstructed at half size using a Laplacian pyramid and
NSI to synthesize the scaled high frequency information. Magnified two times.

1D #{P064)



166

Moonlight = -

NSI
“4.dbpp |
2xscale.
mag2x °
FO67

Photograph [8.1-57). Moonlight image scaled to half size using the NS anti-aliased scaling
algorithm. Magnified two times.

ID #{P067]
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Moonlight -
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‘_24.)(\81\;\’@[»8 g 4‘
065

Photograph {8.1-88]. Moonlight image reconstructed at full size using a Laplacian pyramid and
NSI to synthesize the scaled high frequency information.
ID #{P0O65)
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Photograph {8.1-89). Moonlight image scaled to full size using the NSi anti-aliased scaling
algorithm.

1D #(P068]
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Photograph [8.1-60]; Black and ‘white version of the color Frog image in Photograph [8.1-36].

ID# [P069)
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Lena BW |

RGB  ~
2.0 bpp
'?070

Photograph [8.1-61). Black and white version of the color Lena image compressed by NS1to 2.0
bits per pixel by compressing the R, G, and B channels individually. The color original of this
image can be seen in Photograph [8.1-37].
1D #{PC70]
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FrogBW

RGB
2.0 bpp

P072

Photograph [8.1-62]. Black and white version of the color Frog image compressed by NSI to 2.0

bits per pixel by compressing the R, G, and B channels individually. The color original of this

image can be seen in Photograph (8.1-38].
1D #{P072]
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Photograph [8.1-63]. Black and white version of the color Lena image compressed by NS1to 2.0

bits per pixel by compressing the Y, |, and C; channels individually. The color original of this image
can be seen in Photograph {8.1-39].
1D #(PO71)
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Photograph [8,1-64]. Biack and white version of the color Frog image compressed by NSito 1.9

bits per pixel by compressing the Y, I, and Q channels individually. The color original ot this image

can be seen in Photograph [8.1-40].

(D #(FO73]
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8.2 Subjective evaluation data

8.2.1 Statistical analysis of the data

An important part of the analysis of the data from the subjective irnage quality tests
described in this thesis is the statistical analysis performed to evaluate which images were ranked
statistically differently from each other. This analysis was performed using the Wilcoxon signed
ranks test as described in [Siege! and Castellan 88]. A confidence level of 95% was used with a
corresponding z-statistic of 1.641. Table (8.2-1] lists the calculated z-statistics trom the
experimental subjective ranking data. The actual calculations were performed by Joyce Farrell at
Howlett-Packard Laboratoriss. Valuss for images pairs which were ranked equivaiently are shown
in bold.

Pic T[ D6 DS D4 D3 D2 D1 N6 NS N4 N3 N2 N1

D6 "Q.OO :3.721-3.72)-368]-372]|-3.72|-327|-3.72|-3.72|-3.72]-3.72] -3.72
D5 I 3.7210.00f-3.72]-3.66]-3.72|-3.72| 3.01[1.09]|-2.81|-3.66]-3.72]-3.72
D4 113.7213.7210.00)-294|-3.72]|-3.72[/3.72| 3.72 | 3.46 | 50.0 | -3.68 -3.72
D3 I3.68 3.66129410.00/-2.05[{10.0]368]3.68]3.46]|294/]-0.5|270
D2 " 3.7213.7213.721205]0.00]24.0[3.72|3.72]372|372|1.45| 390
D1 "3.72 3.7213.72]110.]96.6]0.00]| 3.72| 3.72 | 3.72]1 3.72| 2.66| 59.5
N6 " 3.271-3.01]1-3.72]1-3.68|-3.72]-3.72|0.00| -3.64|-3.72|-3.72|-3.72|-3.72
N5 1[ 3.721-1.11-3721-368|-372|-3.72|3.64({0.00]-3.72(-3.72]-3.72]-3.72
N4—"_3.72 2.811-346]1-3461-3.72]|-3.72|3.72|3.72]0.00}|-3.62]|-3.72|-3.72
N3 ||3.72]366]41.0-294(-3.72]-3.72]3.72]3.72|362|0.00]-3.72 -3.72
N2 [13.72]1372]1368[0.52[-1.5|-266/3.72]|3.72|3.72|3.720.00 -2.20

N1 J|3.7213721372]93.0[/81.0]31.5]|3.72|3.72{3.72|372]|220]0.00

Iable [8.2-1]; Z statistics calculated by the Wilcoxon signed rank test. Values for image pairs which are

rarked equivalently are shown in bold.
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8.3 Rate-distortion data

8.3.1 Overview

This section contains rate-distortion data comparing the tinal version of the algorithm developed In
this thesis (NSI) to the discrete cosine transform (DCT) for three images Lena, Tiff and Smag. These
original versions of these images can be seen in Photographs [8.1-1], [8.1-2), and [8.1-3], respectively.
This data is displayed as a set of rate-distortion graphs as well as tables for the data actually contained in

these graphs. (The equation for calculating peak signal to noise ratio (PSNR) is described in the body of
the thesis.)

6.3.2 Data for "Lena" mage
BIt rate PSNR In dB
4.201 44.761
2.281 39.834
1.520 37.539
1.157 36.004
0.934 34.822
0.789 33.806
0.686 32.999
0.613 32.279
0.546 J1.636
0.494 31.056
0.450 30.566
0.406 30.114
0.377 29.714
0.346 29.299
0.320 28.958
0.299 28.621
0.276 28.251
0.260 27.905
0.243 27.632
0.230 27.356
0.176 26.298
J.136 25.263
0.110 24 519
0.094 23.757
0.080 22.910
0.049 19.978
0.033 18.021
0.028 17.009

Table [8.3-1) Data for NSI. Compression rate in bits per pixel versus image quality in PSNR for "Lena.”

Bit rate PSNR In dB
1.610 39.245
1.106 37.742
1.075 37.486
0.836 36.205
0.553 33.506




0.457 31.965
0.400 30.664
0.319 27.298
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Table [8.3-2). Data tor the DCT. Compression rate in bits per pixel versus image quality in PSNR for

"Lena.”
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Graph [8,3-1]; Comparative rate-distortion curves for the DCT and NS for "Lena.”

8.3.3 Data for "Tiff" Image

! Bit rate PSNR in dB |
3.981 44.970
2.210 40.254
1.485 37.930
1.119 36.321
0.891 35.144
0.731 34.206
0.616 33.415
0.526 32.721
0.454 32.124
0.393 31.619
0.344 31.108
0.303 30.670
0.273 30.253
0.239 29.829
0.214 29.472
0.196 29.163
0.179 28.864
0.164 28.564
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0.150 28.280
0.139 28.021
0.108 27.032
0.090 26.341
0.076 25.502
0.069 24.806
0.063 24.025
0.039 21.238
0.027 19.582
0.020 18.621

Iable {8.3-3); Data for NSI. Compression rate in bits per pixel versus image quality in PSNR for "Titf "

Bitrate PSNR in dB
1.665 39.484
1.539 39.029
1.087 37.645
1.015 37.139
0.583 34.079
0.459 32.490
0.403 31.429
0.377 28.972

[able [8.3-4]; Data for the DCT. Compression rate in bits per pixel versus image quality in PSNR for “Titf
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Graph [8.3-2]; Comparative rate-distortion curves for the DCT and NSI for "Tift."

8.3.4 Data for "Smag" Image
Bit rate PSNR In dB
6.531 46.477
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5.092 40.250
4.249 37.071
3.626 34.680
3.088 32.780
2.628 31.310
2.247 30.130
1.954 29.182
1.724 28.415
1.543 27.780
1.403 27.252
1.291 26.812
1.200 26.366
B 1.121 25.962
1.056 25.591
1.004 25248
0.957 24 .931
0914 24.610
0.877 24.319
0.842 24.005
0.719 22.828
0612 21.688
0.511 20.956
0.421 20.365
0.353 19.819
0.134 17.666
0.069 16.304
0.036 15.225
[able [8.3-O]. Data for NSI. Compression rate in bits per pixel versus image quality in PSNR for “Smag "
Bit rate PSNR in dB
1.725 31.588
1.477 30.327
1.285 29.328
1.043 7.907
0.629 24.462
0.506 22.797
0.445 21.608
0.332 18.567

Iable [8.3-6). Data for the DCT. Compression rate in bits per pixel versus image guality In PSNR tor

"Smag.”
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Graph [8.3-3]; Comparative rate-distortion curves for the DCT and NS for "Smag "



