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The rapid accumulation of omics data from biological specimens has revolutionized the field of cancer
research. The generation of computational techniques attempting to study these masses of data and
extract the significant signals is at the forefront.

We suggest studying cancer from a thermodynamic-based point of view. We hypothesize that by mod-
elling biological systems based on physico-chemical laws, highly complex systems can be reduced to a
few parameters, and their behavior under varying conditions, including response to therapy, can be pre-
dicted.

Thermodynamic-based approach

Surprisal analysis

Information theory

Drug response prediction
inhibitor, dasatinib.

Here we validate the predictive power of our thermodynamic-based approach, by uncovering the pro-
tein network structure that emerges in MCF10a human mammary cells upon exposure to epidermal
growth factor (EGF), and anticipating the consequences of treating the cells with the Src family kinase

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The growing realization of the complexity of cancer systems,
coupled with the increasing availability of omics data (genomics,
transcriptomics, proteomics, etc.), have spurred the development
of several computational techniques that aim to unfold the intri-
cacy of cancer and find an underlying order that can be utilized
in terms of anti-cancer therapy [1-6]. These techniques include
Bayesian methods (based on elucidating the relationships between
a few genes at a time [7]), reverse-engineering algorithms (based
on chemical kinetic-like differential equations [8]), multivariate
statistical methods which include clustering methods [9], principal
component analysis [10], singular value decomposition [11], meta-
analysis [12], information-theoretical approaches inferring statisti-
cal information about the network structure [13-15], and machine
learning [16] (additional discussion can be found in references
[17,18]). However, despite enormous progress in the fields of data
analysis [17] and cancer research, aggressive tumors still respond
poorly to the current therapies, suggesting that our understanding
of patient-specific signaling networks is incomplete.

We study biological phenomena from a thermodynamic-
based point of view, utilizing surprisal analysis [18-24]. We
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hypothesize that biological phenomena can be modelled based
on physico-chemical laws, in order to discover the rules that
govern the behavior of these complex systems. Thermody-
namic-based approaches have been applied to the analysis of
biological systems in a number of cases (for example, see refer-
ences [25-28]). Understanding the set of rules that drive biolog-
ical systems should allow prediction of the systems’ behavior
upon exposure to various environmental conditions, including
drugs, for example. We assume that every biological system
that is free of environmental and genomic constraints can reach
a balanced state, which is minimal in free energy. Upon the
application of constraints, the system deviates from its balanced
state and reaches a new state, characterized by a higher free
energy. We hypothesize that deciphering the complete set of
constraints that operate on the system, and the altered molec-
ular processes that have consequently emerged, will allow
designing a rationalized method to guide the system back to
its normal, balanced state.

We have tested our approach in a number of experimental set-
tings. For example, we have demonstrated our ability to elucidate
the molecular processes that govern the directed movement of
glioblastoma (GBM) cells, and to intentionally and specifically
interfere with their directed motion [23,24]. Based on the knowl-
edge we gained, we predicted that aggressive GBM cells will tend
to scatter to larger cell-cell distances, whereas less aggressive
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GBM cells will tend to form more compact patterns, consistent
with observations of others in vivo [23,29].

Cancer is a biological system that has obviously deviated from
its balanced state. Every tumor is driven by multiple oncogenic
aberrations, and its survival and progression depend on a number
of altered signaling pathways [30,31]. Surprisal analysis discovers
the complete set of molecular processes gone awry in each tumor.
Identifying these aberrations in a patient-specific manner, and
simultaneously blocking the entire signaling flux through the
altered pathways is key to effective personalized anti-cancer ther-
apy that will destroy the tumor.

We have demonstrated the power of the approach in detecting
patient-specific proteomic structures, comprising patient-specific
sets of unbalanced molecular processes (Flashner-Abramson et al.
submitted for publication and reference [32]).

Here we analyze a dataset obtained from MCF10a human mam-
mary cells that have been stimulated with epidermal growth factor
(EGF) in the presence or absence of the Src family kinase inhibitor,
dasatinib [33]. We demonstrate the predictive power of surprisal
analysis, by studying the protein network structure that emerged
in the cells upon EGF stimulation, and then successfully foreseeing
the response of the MCF10a protein network to dasatinib
treatment.

2. Materials and Methods
2.1. Surprisal analysis

Surprisal analysis is a thermodynamic-based information-theo-
retic approach [19,20,34]. The analysis is based on the premise that
biological systems reach a balanced state when the system is free
of constraints [35-37]. However, when under the influence of envi-
ronmental and genomic constraints, the system is prevented from
reaching the state of minimal free energy, and instead reaches a
state which is higher in free energy (in biological systems, which
are normally under constant temperature and constant pressure,
minimal free energy equals maximal entropy).

For example, if the system under study is a living cell, an envi-
ronmental constraint can be exposure to a drug, which inflicts a
change in protein concentrations and activities in the cell. The sys-
tem can be influenced by genomic constraints as well, such as
genomic mutations that in turn affect protein function, often
requiring alteration of specific signaling pathways to oppose the
functions of the damaged protein.

Surprisal analysis can take as input the expression levels of var-
ious macromolecules, e.g. genes, transcripts, or proteins. However,
be it environmental or genomic alterations, it is the proteins that
constitute the functional output in living systems, therefore we
base our analysis on proteomic data. Since the varying forces, or
constraints, that act upon living cells ultimately manifest as alter-
ations in the cellular protein network, these constraints can also be
viewed as unbalanced molecular processes that emerge in the
system.

For every protein, i, surprisal analysis calculates its expected
expression level when the system is balanced and free of con-
straints: X?. This term was shown to be constant, i.e. is indepen-
dent of time and of the actual state of the system [18,21,38,39].
In terms of information theory, X? represents the state of maximal
entropy, or minimal information. X;(t) is the actual, experimentally
measured expression level of the protein i at the time point t. In
cases where X;(t)=X? we assume that the expression level of the
protein i was altered due to constraints that operate on the system.
Surprisal analysis discovers the complete set of constraints operat-
ing on the system at any given time, t, by utilizing the following
equation:

InXi(t) = In X7 (£) = > _Giala(t) (1)

The term ), ,Gi,2(t) represents the sum of deviations in
expression level of the protein i due to the various constraints, or
unbalanced processes, that exist in the system at the time t. The
processes are indexed oo = 1,2,3,..., such that the significance of
the process decreases with increasing index, i.e. unbalanced pro-
cess 1 acts on the system longer (in more time points) than unbal-
anced processes 2, 3 etc.

The difference between the balanced state expression level, X?,
and the actual expression level, X;(t), represents the amount of
information we have about protein i. A protein that is influenced
by constraints, i.e. is influenced by one or more unbalanced pro-
cesses and is therefore functionally linked to other proteins, cannot
take any possible expression level. Rather, its expression level is
affected by the expression levels of other proteins.

The term G;, denotes the degree of participation of the protein i
in the unbalanced process «, and its sign indicates the correlation
or anti-correlation between proteins in the same process. For
example, in a certain process «, proteins can be assigned the val-
ues: Gproteinl,oz = —0.50, Gprotein 2,0 = 024, and Gprotein 30 = 000, indi-
cating that this process altered proteins 1 and 2 in opposite
directions (i.e. protein 1 is upregulated and protein 2 is downreg-
ulated, or vice versa due to the process o), while not affecting pro-
tein 3. Note that each protein can take part in a number of
unbalanced processes at once.

Importantly, not all processes are active all the time. The term
Jo(t) represents the importance of the unbalanced process o at
time point t. Its sign indicates the correlation or anti-correlation
between the same processes in different time points. For exam-
ple, if the process o is assigned the values: 2,(0s)=3.1,
75(20s) = 0.0, and 2,(80 s) = 2.5, it means that this process influ-
ences the sample in the same direction at t=0s and t=80s,
while it is inactive at t=20s.

The partial deviations in expression level of the protein i due to
the different constraints sum up to the total change in expression
level (relative to the balance state level), >, _; GixAx(£).

Mathematically, the algorithm is based on the construction of a
covariance matrix of the logarithm of protein expression levels.
SVD (singular value decomposition) [11] and the method of
Lagrange undetermined multipliers are utilized to calculate the
maximal entropy and the various constraints that exist in the sys-
tem under study, i.e. to determine X7, /,(t) and G, values. The Z,(t)
values represent the Lagrange multipliers. We determine the min-
imal number of unbalanced processes needed to accurately recon-
struct the experimental protein expression levels, as described in
the next section. For more details regarding the mathematical
analysis see references [21] and [24].

As explained above, the zeroth term In X} (t), is the logarithm of
the expression level of protein i at the balanced state of the system.
This term is utilized as a reference against which the deviation
terms are identified. In the current analysis, the dataset contained
only measurements of phosphorylated proteins, and therefore the
reference state includes an imbalance that reflects a change in gen-
eral phosphorylation resulting from EGF stimulation, with an
importance, Ao(t), that gradually increases with time (see Supp.
Tables 2 and 3). See reference [32] for more details regarding this
general phosphorylation event.

2.2. Determination of the number of significant unbalanced processes

The analyses of the training and test datasets provided 9 x 9
matrices of 4,(t) values, such that every row in the matrices con-
tained 9 values of /,(t) for 9 time points, and each row corre-
sponded to an unbalanced process (see Supp. Tables 2 and 3).
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However, not all unbalanced processes are significant. Our goal is
to determine how many unbalanced processes are needed in order
to reconstruct the experimental data, i.e. for which value of n:
InX;(t) = InX] (t) — >°0_,Giy/(t). To find n, we performed the fol-
lowing two steps:

(1) Processes with significant amplitudes were selected: Three

separate analyses were conducted for every dataset: (1)
when the input was the experimental data; (2) when the
input was the data plus standard deviations; (3) when
the input was the data minus standard deviations. The
Jy(t) values presented in Supplementary Tables 2 and 3
are the average values obtained from the 3 analyses, with
the corresponding standard deviations. An unbalanced pro-
cess was considered significant only if it was assigned sig-
nificant 1,(t) values, i.e. if for at least one of the time
points its value exceeds the noise threshold (the standard
deviations).
Analysis of the training dataset revealed that from o =4,
the importance values, /,(t), become insignificant (i.e. do
not exceed the noise threshold), suggesting that 3 unbal-
anced processes are enough to describe the system. Anal-
ysis of the test dataset revealed that from o =3, the
importance values, /,(t), become insignificant, suggesting
that 2 unbalanced processes are enough to describe the
system.

(2) Reproduction of the experimental data by the unbalanced pro-
cesses was verified: To verify that the numbers of processes
identified in step (1) are correct, we plotted
InX?(t) — >, _1Giu/s(t) against InX;(t) for different values of
n, and examined the correlation between them as n was
increased. An unbalanced process, « = n, was considered sig-
nificant if it improved the correlation significantly relative to
o =n— 1. In any case, a perfect correlation (with a correla-
tion coefficient R = 1) was not expected due to random noise
in the biological system.

To verify that 3 unbalanced processes are enough to describe
the training dataset, we plotted InX7(t) — >, _;Giuds(t) for
different values of o and compared it to the experimental
expression levels, InX;(t). As shown in Supplementary
Fig. 1, the quality of the correlation increased until o =3
(reaching R = 0.99). Addition of another unbalanced process,

4 N [~ )
20 nM EGF 20 nM EGF + 100 nM dasatinib
9 samples, 0 - 80 seconds™ (SFK inhibitor)
9 samples, 0 - 80 seconds*

Training dataset Test dataset
. / J

MCF10a human
mammary cells

* Treatment ranged from 0 to 80 seconds, with 10 second intervals.

Fig. 1. The working datasets. The dataset, obtained in the laboratory of Forest White,
was divided into a training dataset (containing proteomic data obtained from
MCF10a cells that were stimulated with 20 nM EGF for 0-80 s), and a test dataset
(containing the data obtained from MCF10a cells following treatment with 20 nM
EGF and 100 nM dasatinib (SFK inhibitor) for 0-80 s). Both datasets contained the
same list of 88 phosphoproteins. These datasets will be analyzed independently.

i.e. o = 4, did not improve the correlation, strengthening our
assumption that following o = 3, the rest of the processes
represent noise in the biological system.

A similar process was carried out for test dataset, in order to
verify that 2 unbalanced processes are enough to describe
this system. Supplementary Fig. 2 shows that the quality
of the correlation increased until o = 2 (reaching R = 0.99),
and that addition of a third process did not improve the
correlation.

2.3. Determination of proteins with significant weights in every
unbalanced process

The analyses of the training and test datasets provided 9 x 88
matrices of G, values, such that every row in the matrices con-
tained 9 values of G;, for 9 unbalanced process (not all significant,
see previous section), and each row corresponded to a protein (see
Supp. Tables 2 and 3). For every unbalanced process considered

A. Construction B. Biology

Building blocks
S @
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o ®
(] ®)
\4 \4
Unbalanced processes
of
® (a) >
©
\/

Biological samples

Proteins

Buildings

&
I
4

Fig. 2. An illustrative depiction of our approach. (A) In construction, a collection of
building blocks can be used to assemble different types of buildings. Specific
subsets of buildings can exist in different cities. (B) Similarly, in biology, unbalanced
molecular processes (buildings) are made up of a collection of proteins (blocks).
Each biological sample (city) can contain a unique subset of unbalanced processes
that maintain its current state. A certain protein can participate in different
unbalanced processes simultaneously. In the figure, the proteins are represented by
circles, such that the diameter of the circle denotes its relative weight in the process
(analogous to size of blocks in each building), e.g. protein A is important in the red
process, less important in the blue process, and does not participate in the green
and black processes. The size of the entire process in each sample (or size of
building in each city) denotes its sample-specific importance. For example, the red
unbalanced process is relatively important in sample 3, less important in sample 1,
and insignificant in sample 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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significant, a threshold value was determined for G, to filter out
proteins that were assigned a value of G, that is insignificant
and results from noise in the system. The process is described in
detail in reference [21].

2.4. Generation of functional networks

The functional networks presented in Figs. 5 and 6 were gener-
ated using a python script. The goal was to generate a functional
network according to STRING database, where proteins with nega-
tive G values are marked blue and proteins with positive G values
are marked red, in order to easily identify the correlations and anti-
correlations between the proteins in each network. The script takes
as an input the names of the proteins in the network and their G
values, obtains the functional connections from STRING database
(string-db.org), and then plots the functional network.

2.5. Generation of barycentric plots

Proteins with significant positive G values were selected, and
their G values for unbalanced processes 1, 2~ and 3~ were nor-
malized such that for every protein, i, G- + G- + G- = 1. These
values were then projected onto a triangle by calculating the dot
product of the G vectors and the following array: [[0,0],[1,0],[cos
(60),sin(60)]]. The size of each circle was set in proportion to the
sum Gj;- + Gip- + G3- before normalization to 1, thus representing
the relative weight of the protein i in the three unbalanced
processes.

A balanced system

A system influenced
by constraints

@ Balanced proteins and connections

r‘.",‘ “® Unbalanced molecular processes
o%e

-=--  Rewired connection
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'
)3
< —y —
5 a=1
Q
=
©
5 3 i
g_ Time
= a=3
v

3. Results
3.1. Obtaining the working datasets

We utilized surprisal analysis to study the protein network
structure that emerged in MCF10a human mammary cells in
response to epidermal growth factor (EGF) stimulation, and to pre-
dict the effect of the Src family kinase (SFK) inhibitor, dasatinib, on
this network structure [33]. The dataset, which was obtained in the
laboratory of Forest White [33], contained the mass-spectrometry-
based proteomic measurements of the expression levels of 88 tyr-
osine-phosphorylated proteins found in serum-starved MCF10a
cells following stimulation with 20 nM EGF for 9 different periods
of time (ranging from 0 to 80 s with 10 s intervals), in the presence
or absence of 100 nM dasatinib (a SFK inhibitor) (Fig. 1 and Supp.
Table 1).

We divided the dataset into 2 parts: (1) A training dataset, con-
taining the data obtained from EGF-stimulated cells, in the absence
of dasatinib; (2) A test dataset, containing the data obtained from
cells that were stimulated with EGF in the presence of dasatinib
(Fig. 1).

3.2. A brief overview of the theoretical approach

A detailed explanation of the approach can be found in the Mate-
rials and Methods section. Here we will provide a brief description
of the method, beginning with an illustrative explanation (Fig. 2).

B.

Expression levels can deviate
from the balanced state

e

A normal distribution suggests
that the protein is at its
balanced state

# of samples

Protein levels

ST T T

Unbalanced

Unbalanced Unbalanced

process #1 process #2 process #3
Protein A -0.24 0.15 0.01
Protein B 0.21 0.19 0.02
Protein C 0.16 0.01 -0.20
Protein D 0.18 0.07 0.24
Protein E -0.22 0.16 0.06
Protein F 0.20 -0.21 0.05
Protein G 0.15 0.06 -0.18
Protein H 0.07 0.10 0.09

Fig. 3. The thermodynamic principle at the base of surprisal analysis. (A) We base our approach on the premise that every biological system can reach a balanced, steady state,
which is minimal in free energy, when it is free of constraints. The application of environmental or genomic constraints on the system deviates it from its balanced state, and
drives the emergence of unbalanced processes in the system. (B) Surprisal analysis discovers for every protein whether it is at its balanced state level, or rather has it deviated
from its balanced level due to the influence of constraints, or unbalanced molecular processes. (C) The analysis provides the time-dependent importance (A4(t)) of every
unbalanced process in the system. (D) The relative weights of the proteins in every unbalanced process (G,) are discovered by the analysis. (The reader is referred to the web

version of this article to view the colored version of the figure.)
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An overview of the thermodynamic principles on which we base
the algorithm will follow (Fig. 3 below).

In our approach, biological samples are analogous of construc-
tion sites (Fig. 2). The algorithm makes use of surprisal analysis
[21], a theoretical approach originally developed for use in chem-
istry and physics by Levine et al. [19,20]. We have previously
demonstrated the application of surprisal analysis to biological
systems [18,21-24]. Surprisal analysis takes as input the experi-
mental expression levels of proteins (can also be genes/transcripts)
in different samples, and identifies the basic building blocks that
are needed to reconstruct the entire dataset. Consider a city con-
taining different types of buildings (Fig. 2A). A finite number of
types of building blocks is enough to rebuild the buildings in this
city. In biological terms, our building blocks are the proteins, and
these proteins assemble the processes (buildings) that exist in a
specific sample (city) (Fig. 2B). Different sizes of a specific building
block can be used in construction (Fig. 2A, middle). Similarly, in a
specific biological process, certain proteins play key roles, while
other proteins contribute only modestly to the process. Accord-
ingly, surprisal analysis provides the relative weights of the differ-
ent proteins in every process (denoted by the sizes of the circles in

Fig. 2B, middle). A certain protein (block) can participate in differ-
ent unbalanced processes (buildings) simultaneously (Fig. 2A and
B, middle panels). This is an important attribute of surprisal anal-
ysis, enabling to address the complexity of biological protein net-
works, which frequently demonstrate non-linearity and rewired
protein connections [31,40]. The collection of buildings that can
be built using the existing building blocks enables the construction
of different cities, each containing a specific subset of buildings
(Fig. 2A, bottom). Correspondingly, different biological samples
can harbor different subsets of unbalanced processes out of the col-
lection of processes identified by the analysis (Fig. 2B, bottom).
While two cities can both harbor the same types of buildings, the
sizes of the buildings may differ (Fig. 2A, bottom). Similarly, a
specific unbalanced molecular process can exist in different sam-
ples, but its importance may vary, e.g. it can be very significant
in one sample, while it can be secondary in significance or insignif-
icant in another sample (Fig. 2B, bottom).

The thermodynamic principle that underlies the approach is
that every biological system can reach a steady, balanced state,
and that it can deviate from this balanced state upon the
application of environmental or biological constraints (Fig. 3A). A
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* The values presented are only for demonstration purposes and do not represent the actual experimental values

** Note that the unbalanced processes are each assigned an importance value that represents the degree to which they affect every specific
sample. For simplification of the illustration this is not demonstrated here.

*** The unbalanced processes (buildings) may appear in different combinations and sizes in each sample (city), as illustrated in Figure 2.

Fig. 4. A schematic workflow. We will begin by analyzing the training dataset, aiming to decipher the accurate structure of the protein network in MCF10a cells upon EGF
stimulation (step 1). Based on the results of the analysis, we will predict the effect of addition of dasatinib, a SFK inhibitor, to the system (step 2). Finally, we will analyze the
test dataset (step 3), and verify whether the structure of the protein network that emerged in the cells agrees with our prediction. (The reader is referred to the web version of

this article to view the colored version of the figure.)
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Fig. 5. 3unbalanced processes emerged in MCF10a cells upon EGF stimulation. Analysis of the training dataset, containing the data obtained from MCF10a cells that were stimulated
with 20 nM EGF for 0-80 s, revealed that 3 unbalanced processes emerged in the system. The processes are indexed according to their general significance, such that unbalanced
process 1~ is the most significant and unbalanced process 3~ is the least significant. The superscript (—) indicates the absence of dasatinib. For each process, the proteins that
participate significantly in the process (see Material and Methods) were assembled into networks with functional connections between the proteins according to String database
(left panels). Red proteins are upregulated by the process and blue proteins are downregulated by the process (assuming 4, (t) > 0). The time-dependent importance of every
process is presented in the right panels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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deviation from the balanced state can manifest as a change in
protein concentrations as well a change in the protein network
structure [18] (Fig. 3A and B). Surprisal analysis identifies which
proteins are at their balanced levels, and which proteins have
deviated from their balanced levels. Mathematically, this is done
by utilizing the following equation for every protein i:
InX;(t) =InX} - >0 _, where X;(t) is the experimental
expression level of the protein i at time t, X’ is its expression level
at the balanced state, and Y~ , Gi,/,(t) is the sum of the deviations
in expression level from the balanced state level, due to the various
constraints, o, that operate on the system at time t. Each constraint
represents an unbalanced process that emerged in the system. The
unbalanced processes represent groups of proteins that exhibit
deviations (or partial deviations) from the balanced state in a cor-
related manner. Every constraint, or unbalanced process, is
assigned an importance, A,(t), which can change with time in a
specific sample, or vary in different given samples (Fig. 3C; the
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importance of the process is represented by the size of the pro-
cess/building in Fig. 2). The unbalanced processes are indexed such
that their importance decreases with increasing index. For every
unbalanced process, o, each protein i is assigned a weight, G,
which denotes the degree to which it participates in the process
(Fig. 3D; see size of protein/block in Fig. 2).

3.3. Three unbalanced processes emerged in MCF10a cells following
stimulation with 20 nM EGF

Our overarching goal in this study was to demonstrate the
ability of our approach to predict the response of EGF-stimulated
MCF10a cells to the SFK inhibitor, dasatinib (Fig. 4). To make such
a prediction, we first set out to unravel the protein network struc-
ture that emerged in the cells in response to EGF stimulation. This
was achieved by applying surprisal analysis to the training dataset
(Fig. 4, step 1).

20 nM EGF + 100 nM dasatinib
(SFK inhibitor)
9 samples, 0 - 80 seconds

Fig. 6. Inhibition of SFK proteins induced 2 unbalanced processes in MCF10a cells. Analysis of the test dataset, containing the data obtained from MCF10a cells that were
stimulated with 20 nM EGF for 0-80 s in the presence of dasatinib, revealed that 2 unbalanced processes emerged in the system. +D indicates the presence of dasatinib. For
each process, the proteins that participate significantly in the process (see Material and Methods) were assembled into networks with functional connections between the
proteins according to String database (left panels). Red proteins are upregulated by the process and blue proteins are downregulated by the process (assuming 4,(t) > 0). The
time-dependent importance of every process is presented in the right panels. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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The analysis of the training dataset revealed that following EGF
stimulation, the unbalanced protein network in MCF10a cells con-
sisted of 3 distinct unbalanced processes (Supp. Table 2 and Fig. 5).
For clarification, these processes will be indexed 17, 2~ and 37,
denoting that these processes emerged in the system before the
addition of dasatinib. These 3 unbalanced processes are enough
to reproduce the experimental training data (Supp. Fig. 1 and
Material and Methods). The proteins marked red are proteins that
were assigned a positive G, value (i.e. are upregulated by the pro-
cess when Z,(t) >0 and downregulated by the process when
74(t) < 0), and the proteins marked blue are proteins that were
assigned a negative Gy, value (i.e. are downregulated by the process
when Z,(t) > 0 and upregulated by the process when /,(t) < 0)
(colors are indicated in the online version). The connections
between the proteins denote known functional interactions
according to String database [41]. The importance of each of the
3 unbalanced processes changes over time (Fig. 5A-C, right). For
example, the importance of unbalanced process 3~ is negligible
until t =40 s, and then peaks after 50 s of stimulation with 20 nM
EGF (Fig. 5C, right). Therefore, in each time point, the system is
characterized by a specific subset of these 3 unbalanced processes
(see Figs. 2 and 3).

3.4. Unbalanced processes 1 and 3 are predicted to be most affected by
addition of the SFK inhibitor, dasatinib

Our next step was to predict the effect of addition of dasatinib
to MCF10a cells, based on the analysis of the training dataset
(Fig. 4, step 2). Inspection of the unbalanced subnetworks that
emerged in MCF10a cells upon EGF stimulation reveals that Src
family proteins - Fyn, Yes and Lyn - are activated in processes
1~ and 37, and not in process 2. Note that the tyrosine phospho-
rylation sites pY(5 0 8)Lyn and pY(5 3 7)Yes are inhibitory phos-
phorylation sites, and therefore their downregulation indicates
an increase in protein activity (see unbalanced processes 1~ and
37 in Fig. 5A and C, respectively). In contrast, pY(4 2 0)Fyn is an
activating phosphorylation site, and therefore its downregulation
in process 2~ indicates a decrease in protein activity (Fig. 5B).
Hence, we predict that addition of the SFK inhibitor, dasatinib, to
the system will not completely reduce the imbalance that was cre-
ated in the system upon EGF stimulation, but rather will mainly
affect the proteins involved processes 1~ and 3°.

3.5. Two unbalanced processes emerged in MCF10a cells that were
treated with EGF in the presence of the SFK inhibitor, dasatinib

To test our prediction, we conducted an additional computa-
tional analysis, independent of the previous analysis. This time
we analyzed the test dataset, i.e. only the measurements obtained
when the cells were exposed to 20 nM EGF and 100 nM dasatinib
together (Fig. 4, step 3).

The analysis revealed that only 2 unbalanced processes
emerged in the system when dasatinib was present (Fig. 6, Supp.
Table 2 and Supp. Fig. 2). These processes will be indexed 1*P
and 2*P, denoting that these processes emerged in the system fol-
lowing the addition of dasatinib.

The first important question that arises is whether the pro-
cesses that emerged upon addition of dasatinib are the processes
that emerged before its addition, e.g., is unbalanced process 1*P
the same as unbalanced process 1~? Or rather are these new pro-
cesses that were induced as a result of the actions of dasatinib in
the system? To answer this, we examined the weights of the 88
phospho-proteins in each of the unbalanced processes, reasoning
that if two processes are the same process, the relative weights
of the proteins should be highly correlative with each other. In
other words, the relative weights of the proteins in a specific

process can be viewed as the structure of the process: some pro-
teins are key proteins in this process and will therefore be assigned
a significant G;, value (significantly higher or lower than 0), and
some do not participate significantly and will be thus assigned
an insignificant G;, value. Two processes possessing a highly simi-
lar protein structure are considered to be the same process. We
note that we do not expect a perfect correlation due to possible
protein-protein rewiring in the system in the presence of dasatinib,
as well as random fluctuations in the system. We found that the
relative weights of the proteins in unbalanced process 1~ highly
correlated with the weights of the proteins in unbalanced process
1*P (Fig. 7A). Similarly, the relative weights of the proteins in
unbalanced process 2~ highly correlated with the weights of the
proteins in unbalanced process 2*P (Fig. 7B). In addition, the
time-dependent importance of processes 1*° and 2*P (Fig. 6A and
B, right panels) markedly resembles the time-dependent variation
of process 1~ and 27, respectively (Fig. 5A and B, right panels). In
contrast, the weights of the proteins in unbalanced process 3~
did not correlate with any of the unbalanced processes that
emerged following addition of dasatinib (Supp. Fig. 3). This was
expected, considering that unbalanced processes 1*P and 2*P suf-
ficed to reproduce the experimental data (Supp. Fig. 2). The corre-
lations between all pairs of processes can be found in
Supplementary Fig. 3. From these results, we deduce that unbal-
anced processes 1~ and 2~ persisted in the system, while unbal-
anced process 3~ was completely eliminated by dasatinib
treatment. It is important to recognize that the fact that processes
1~ and 2™ persisted in the system does not necessarily indicate the
degree to which these processes were affected by dasatinib. For
example, the degree of participation of specific proteins within
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Fig. 7. The same unbalanced processes 1 and 2 were independently identified in
MCF10a before and after addition of dasatinib. The relative weights of the proteins in
the unbalanced processes that emerged in the system before and after addition of
dasatinib were compared, attempting to find out whether they are the same
processes that persisted in the system. (A) The relative weights of process 1
highly correlated with the weights of process 1-. (B) The weights of process 2*P
highly correlated with the weights of process 27. See Supplementary Fig. 3 for the
reciprocal correlation plots.
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the process may be affected, as well as the general importance of
the process in the system. To infer whether our prediction regard-
ing the effect of dasatinib on EGF-stimulated MCF10a cells was cor-
rect, the protein network structure that emerged in the test dataset
will be explored in depth below.

3.6. Comparison of the unbalanced processes that emerged before and
after addition of dasatinib to the cells

By inspecting the unbalanced processes as they appear in Fig. 5
(EGF alone) and Fig. 6 (in the presence of dasatinib), it is difficult to
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assess whether dasatinib indeed affected unbalanced process 1~
more than it affected process 27, as we predicted. This is because
some proteins participate in a number of processes at once, and
therefore, in biological terms, the unbalanced processes are not
entirely independent of each other. For example, our analysis
determined that pY(4 0 6)Gab1 and pY(1 5 0)tensin4 both partici-
pated only in unbalanced process 1~ (Fig. 8A, left). According to
our prediction, since SFK proteins are upregulated by process 1~
(Fig. 5A), pY(4 06)Gab1 and pY(1 5 O)tensin4 should be signifi-
cantly affected by dasatinib treatment. Inspection of the experi-
mental expression levels of these proteins before and after
addition of dasatinib revealed that, indeed, they were both signif-
icantly inhibited upon the addition of dasatinib (Fig. 8A, left). pY
(1100)ARHGEF5 and pY(1097)ARHGEF5 participate only in unbal-
anced process 27, and according to our prediction should not be
affected by dasatinib. Correspondingly, their expression levels
were not significantly changed upon the addition of dasatinib
(Fig. 8A, middle). In the above examples, the prediction regarding
the effect of dasatinib treatment is relatively straight forward. In
contrast, in the case of proteins that participate in a number of
unbalanced processes the prediction becomes more complex. For
example, pY(6 07)PI3K and pY(4 5 3)GAREM were assigned by
our analysis to both processes, 1~ and 2. Their expression levels
demonstrate a limited response to dasatinib treatment (Fig. 8A,
right).

Therefore, to analyze the response of the protein network to
dasatinib in a more rigorous manner, we took the weights of the
proteins that were upregulated upon EGF stimulation by unbal-
anced processes 1~ and 27, and projected them onto triangular
barycentric coordinates (Fig. 8B and C). Each circle represents a
protein. The weights of the proteins were normalized such that
for each protein its weights in unbalanced processes 1, 2~ and
3~ sum up to 1. The location of each protein demonstrates its rel-
ative participation in the 3 unbalanced processes. For example,
protein 2 in Fig. 8B, top panel, participates the most in unbalanced
process 17, to a lesser extent in unbalanced process 37, and not at
all in unbalanced process 2, while protein 3 in the top panel of
Fig. 8C participates equally in all 3 processes — 1*2, 2P, and 3*P.
For additional clarity, each circle was colored according to its loca-
tion (colors are indicated in the online version). The closer to pro-
cess 1, the more red color; the closer to process 2, the more green
color; the closer to process 3, the more blue color. The size of the
circle indicates the general importance of the protein in all 3 pro-
cesses (i.e. according to the actual weights before normalization).
See Materials and Methods for a detailed explanation of the con-
struction of the barycentric plots.

Fig. 8B shows the proteins that upon EGF stimulation were
upregulated by unbalanced process 1~ (as shown in Fig. 5A). As
explained above, we predicted that these proteins should be highly
affected by SFK inhibition, due to the participation of SFK proteins

in this process. The top panel presents the distribution of these
proteins before the addition of dasatinib, according to their
weights as obtained from analysis of the training dataset (Gjy).
The bottom panel shows the distribution of these proteins follow-
ing the addition of dasatinib, according to their weights as
obtained from analysis of the test dataset (G{P). A general shift of
these proteins away from unbalanced process 1 is clearly shown,
as indicated by the disappearance of the red color.

Similar barycentric plots were generated for the proteins that
were upregulated upon EGF stimulation by unbalanced process
2~ (Fig. 8C; as shown in Fig. 5B). According to our analysis of the
training dataset, these proteins should not be significantly affected
by dasatinib, because SFK proteins were not upregulated by this
process. Fig. 8C demonstrates that, indeed, the distribution of these
proteins (especially the green proteins associated significantly
with process 27) remains similar, regardless of the presence of
dasatinib in the system.

4. Discussion and conclusions

The accurate resolution of protein networks in biological sam-
ples is crucial for devising effective personalized drug combina-
tions [1,42]. In terms of diagnosis and treatment, it is essential to
identify not only the key oncogenic proteins upregulated in a
specific tumor sample, but rather to resolve the complete protein

network, as well as the structure of the network. For example, a
number of oncoproteins may be upregulated in a particular tumor,
but participate in distinct unbalanced processes (as shown in this
study). Inhibition of the protein targets from one process will not
necessarily lead to the inhibition of the proteins from another pro-

cess. Targeting of the entire unbalanced signaling flux, by means of
directing drugs to central proteins in each unbalanced process, is
essential for the treatment to be effective. Therefore, an in depth
understanding of the protein network structure, including the divi-
sion into distinct subnetworks, or unbalanced processes, should
allow for improved design of combination therapy.

In this work we demonstrated the power of the resolution of the
complete protein network structure, by analyzing the protein net-
work that develops in MCF10a human mammary cells following
exposure to EGF for different periods of time, and using this knowl-
edge to foresee the response of the system to inhibition of Src fam-
ily proteins by dasatinib. Based on our analysis, we anticipated that
treatment with dasatinib alone will not collapse the entire unbal-
anced signaling network in MCF10a cells, but rather will target 2
out of the 3 distinct unbalanced processes that were induced by
EGF stimulation of the cells. Indeed, analysis of the protein expres-
sion levels in MCF10a cells that were exposed to EGF in the pres-
ence of dasatinib, revealed that unbalanced process 1~ was
significantly harmed by dasatinib, and unbalanced process 3~

<

Fig. 8. A general shift away from unbalanced process 1 is evident upon inhibition of SFK proteins, while not from unbalanced process 2. (A) 6 representative proteins were
selected to demonstrate the independent influences of unbalanced process 1~ and 2. pY(4 0 6)Gab1 and pY(1 5 0)tensin4, which are influenced only by unbalanced process
17, were significantly downregulated upon addition of dasatinib. In contrast, pY(1100)ARHGEF5 and pY(1097)ARHGEF5, which are influenced only by unbalanced process 2™,
demonstrated no significant response to dasatinib. pY(6 0 7)PI3K and pY(4 5 3)GAREM, which participate in both processes, exhibited a partial response to dasatinib addition.
(B, C) The weights of the proteins upregulated by processes 1~ and 2~ were normalized such that for every protein Gj- + Gp- + G- =1 (top panels) and
Giyo 4+ Gyeo + G0 = 1 (bottom panels), and plotted on triangular barycentric graphs. Each circle represents a protein, and its location and color denote its distribution
among the three processes - bottom left corner and red color denote high participation in process 1~; bottom right corner and green color denote high participation in process
27; top corner and blue color denote high participation in process 3. The plots show that the proteins upregulated by process 1~ (B, top panel), shifted away from process 1
upon addition of dasatinib (B, lower panel), while the proteins upregulated by process 2 (C, top panel), remained localized to the same area of the graph (C, lower panel).
Proteins in panel (B): 1 - pY(4 0 6)Gab1 (KDASSQDc(pY)DIPR), 2 - pY(6 2 7)Gab1 (GDKQVE(pY)LDLDLDSGK), 3 - pY(4 5 5)Cbl, 4 - pY(1148)EGFR, 5 - pY(1 5 O)tensin4, 6 - pS
(77 6)Y(7 8 O)tensin3, 7 - pY(1173)EGFR, 8 - pY(3 1 7)Shc, 9 - pY(6 2 7)Gab1 (QVE(pY)LDLDLDSGK), 10 - pY(4 0 6)Gab1 (DASSQDc(pY)DIPR). Proteins in panel (C): 1 - pY(4
53)GAREM, 2 - pY(2 3 9)Shc, 3 - pY(2 6 0)ATP1A1, 4 - pY(4 5 5)Cbl, 5 - pS(2 2 9)Y(2 3 1)CENTD2, 6 - pY(1100)ARHGEF5, 7 - pY(1173)EGFR, 8 - pY(3 1 7)Shc, 9 - pY(1140)
ARHGEF5, 10 - pY(6 0 7)PI3K, 11 - pY(7 6 7)GAREM, 12 - pY(1097)ARHGEFS5. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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was completely abolished by the treatment. As per our prediction,
unbalanced process 2~ was not significantly affected by dasatinib,
underscoring the importance of targeting the complete set of
unbalanced processes in order to restore the balance in the system.

We note that in the dataset analyzed, only a single dose of dasa-
tinib was tested. A higher dose of the drug could possibly abrogate
processes 1~ and 3~ completely.

According to our analysis, combining dasatinib with an EGFR
inhibitor, such as erlotinib, should bring about the collapse of the
entire unbalanced network in EGF-stimulated MCF10a cells.

Efforts are underway in our laboratory to test the approach in
additional experimental systems, and to pave the way towards
the development of a computational approach that can be used
by clinicians to analyze patient samples and assign smart, person-
alized drug combinations.
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