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ABSTRACT

High energy irradiation of materials can lead to void formation due to the aggregation of vacancies,

reducing the local stress in the system. Studying void formation and its interplay with vacancy

clusters in bulk materials at the atomic level has been challenging due to the thick volume of 3D

materials, which generally limits high resolution transmission electron microscopy. The thin nature

of 2D materials is ideal for studying fundamental material defects such as dislocations and crack

tips, and have potential to reveal void formation by vacancy aggregation in detail. Here, using

atomic resolution in-situ transmission electron microscopy of 2D monolayer MoS2, we capture

rapid thermal diffusion of S vacancies into ultralong (~60nm) 1D S vacancy channels that initiate

void formation at high vacancy densities. Strong interactions are observed between the 1D

channels and void growth, whereby Mo and S atoms are funneled back and forth between the void

edge and the crystal surface to enable void enlargement. Preferential void growth up to 100nm is

shown to occur by rapid digestion of 1D S vacancy channels as they make contact. These results

reveal the atomistic mechanisms behind void enlargement in 2D materials under intense high

energy irradiation at high temperatures and the existence of ultralong 1D vacancy channels. This

knowledge may also help improve the understanding of void formation in other systems such as

nuclear materials, where direct visualization is challenging due to 3D bulk volume.
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Structural imperfections in two-dimensional materials influence their electronic, optical and

chemical properties1–3 and this has fueled their studies to obtain deeper knowledge. In particular

the focus has been on characterizing both 0D point defects4,5 and 1D defects such as dislocations,6

grain boundaries7,8 and edges9 in graphene10,11 and other 2D materials.12–14 Monolayer

molybdenum disulfide (MoS2) is a direct band gap semiconductor with potential in thin electronic

and optoelectronic devices.15–17 It has been established that S atoms are easier to remove than Mo

in MoS2 and that S loss leads to linear defects that alter the band structure, leading to a local

semiconducting-to-metallic transition as the width of the line defect increases.18,19 However, upon

excessive vacancy density, the stability of materials become compromised and this is particularly

relevant for materials under intense high energy irradiation, such as materials used in nuclear

reactors like graphite.

In general, large numbers of isolated vacancies in materials are energetically unfavorable

and therefore agglomeration occurs when the energy barrier of migration is overcome, leading to

3-D voids, or dislocation loops.20 This is in principle determined by the relative magnitude of the

surface and strain energy for each clustered configuration. Surface energy increases for void

formation while strain energy increases for dislocation loops. In 2D materials, the edges of holes

are similar to the surfaces of 3D voids and dislocation loops are restricted to 2D. In monolayer

hexagonal boron-nitride (h-BN), for example, boron monovacancies have been observed to diffuse

and coalesce into larger triangular pores, driven by the reduction in surface energy of a larger

vacancy that possesses a lower edge to area ratio than several isolated small vacancies for the same

number of absent atoms.21 For monolayer graphene, the multi-vacancy complex for 10

monovacancies has been predicted to be a dislocation pair along a zigzag direction rather than a
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hole as in h-BN.22 In this case the compressional strain field at the ends of the dislocation influence

the migration pathway of neighboring monovacancies by reducing the activation barrier.

Prior work in MoS2 has demonstrated that S vacancies tend to aggregate into a small range

linear configurations.23,24 Dislocations are harder to form because the Mo atoms are difficult to

eject from the sample. However, due to the relatively high energy barrier of S vacancy migration

the reason for the linear arrangement is not clear from either experimental or theoretical

studies.23,25 In this report we study the details of the formation mechanisms of line defects and

voids at the atomic level under conditions where sufficient thermal energy is provided to the

system to overcome the diffusion barrier of S vacancies, along with excessive S loss driven by

high energy electron irradiation. An in-situ heating holder is used to study the behavior at 800oC

and have clean areas of MoS2, revealing the dynamics without interference from surface

contamination.

Results and Discussion

Ultralong 1D vacancy channels

Electron irradiation at room temperature using an accelerating voltage of 60-80kV typically leads

to linear vacancies that are ~5nm in length, figure 1a,b, and the sputtering rate is reduced when

amorphous carbon is covering the surface. However, when heating the sample to 800oC, the

amorphous carbon is removed and the clean MoS2 surface enables ultralong 1D S vacancy lines

up to 70nm. This is because the S vacancy diffusion is thermally activated and the S point vacancy

can rapidly migrate to the low energy positions, figure 1c. The linear vacancies at 800oC are often

atomically uniform over 50-70nm with periodic lattice structure, figure 1d-f. They occur along the

zig-zag direction, the same as room temperature, but at high temperature only a small number of
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long line vacancies form rather than many smaller line vacancies. The width of the line vacancies

at high temperature are mostly 3 S vacancies wide, but in some cases wider structures can be found.

The length of the line vacancy grows with irradiation time, figure S1.

Figure 1 a) Room temperature phase contrast AC-TEM image of an area of MoS2 with several short line

defects. b) Higher magnification image of (a). (c) Schematic diagram showing how S vacancy aggregation

into short or long line defects occurs for different mobility. Low mobility occurs at room temperature and

high mobility occurs at 800oC. (d) Phase contrast AC-TEM image of MoS2 at 800oC showing contrast
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features from two ultralong line defects. (e)-(f) Higher magnification AC-TEM images at 800oC of an

ultralong line defect in MoS2 showing uniform atomic periodicity. False colour used in (f).

Annular dark field scanning transmission electron microscopy (ADF-STEM) is used to

deduce the exact atomic configuration of the ultralong 1D vacancies at 800oC. Two main contrasts

are observed, as shown in figure 2a-f. Using DFT relaxation of atomic models combined with

multislice image simulations and their comparison to the experimental images, we were able to

deduce that both of the line defects are similar in composition with two adjacent S vacancy lines

in a staggered configuration, which has been confirmed to be energetically stable.23 Although these

have the same atomic composition, the two types of line defects have different reconstructed

configurations, denoted as type I and type II. Magnified images are shown in Figures 2a (type I),

2f and 3m (type II). The bright atomic column along the line defect shown in Figure 2f corresponds

to a superposition of more than one atom, which is confirmed to be a Mo and a S atom using DFT

calculations, Figures 2b to 2e. The experimental data matches the simulated images based on the

DFT relaxed models (Figure S2), with only slightly different degrees of out-of-plane distortion,

Figures S3a and b. The unit cell for a type I line defect is sufficient to enable curvature along the

width of the line, while that for a type II line defect possesses a terrace-like configuration. The

band structure calculations show a smaller band gap in the line defect region, figure 2g-2l. The

presence of two projections of the line vacancies is likely due to influences from nearby line defects

that cause some local rippling or strain fields.

DFT calculations were carried out to predict the electronic properties of the line defects.

Similar results were obtained for the two types of line defects due to their similar bonding

configurations and therefore only the results for type II are shown in Figures 2g to l (the results for
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type I line defect are shown in Figure S4). The two types of line defects were constructed by the

same procedure, but with different size of cells (3.1741.40 and 3.1752.63 angstrom2

respectively) to represent the possible configurations in various environments. The local bonding

character and thus the electronic properties are almost the same for the two configurations, which

can be seen from the slight energy difference (0.063 eV higher for type I compared to type II) and

the similar band structures (Figure S5). The models were set to infinity along the line defect length

direction to match the long and perfectly periodic line defects observed experimentally. The band-

edge dispersion relations for both line defects are parabolic with very small band gaps, 0.019 eV

and 0.017 eV (Figure 2g) respectively; 1% of the band gap of the intrinsic monolayer MoS2. The

band structures with a broader scope are shown in Figure S5. The orbitals around the Fermi level

mainly arise from the d-orbitals of the Mo atoms within and adjacent to the line defects, as shown

in Figures 2h and S6. The spin-up and spin-down components are symmetric, indicating zero

magnetization for both line defects. The wavefunctions around the Fermi level (Figures 2i to l) are

localized at the line defects, in particular along the two Mo-Mo bonding chains (highlighted with

blue ellipses in Figures 2c and 2e). This 1D quantum confinement explains the extremely small

effective masses for electrons and holes of 0.019 and 0.016 m0 respectively. Importantly, the

significant reduction of the band gap and effective mass of the line defects formed at elevated

temperatures indicates the possibility of tailoring the band gap of MoS2 by controlled introduction

of these line defects.
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Figure 2 Atomic structures and electronic properties of the extended 2S line defect with two different

orientations (type I and type II). Both type I and type II have the similar structure but slightly different

orientations and tilting. (a, f) ADF-STEM images of the MoS2 line defect with two different projections

observed. (a) Type I and (f) Type II. (b, d) DFT calculated atomic models corresponding to (a) and (f), with

their lateral view shown in (c) and (e). Orange dots indicate single S atoms due to vacancy effects, and
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green circle indicates the S vacancy sites before reconstruction. (g) Enlarged band structures of type II line

defects around the Fermi level showing the small band gap in the defective structure. Corresponding density

of state (DOS) are shown in h) with the contribution from each orbital separated. i-l) Wavefunctions for

states around the Fermi level for type II line defect. (m) ADF-STEM image of a long type II line vacancy.

In order to show that the line defect elongation occurs by the migration of highly mobile S

vacancies to a pre-existing line vacancy, we used the spatial control of the electron probe during

ADF-STEM imaging to selectively expose a small pristine nanoscale region next to a line defect,

as shown in Figure 3. The STEM probe limits the S vacancy production to the small area scanned,

(the boxed area in figure 3a), however extra vacancy lines and elongation of the existing line were

produced outside of this area. This confirms that the S vacancies are first generated in the irradiated

area and then rapidly migrate to the existing line defect (Figure 3b). After multiple (x10) controlled

high dose scans (30 µs per pixel dwell time) in the white boxed area, we then image the entire area

using a faster scan (16µs per pixel dwell time) to observe the change in the line defect length,

Figure 3g, revealing a long 40nm line defect that is straight and uniform. At room temperature,

electron irradiation causes sub-nanometer pores to be created within the scanned areas instead of

ultralong line defects.26 Long line defects are only created when the diffusion rate of S vacancies

is faster than their generation rate (high temperature and clean surface), while holes are generated

when the diffusion rate is relatively slow compared to the S vacancy generation rate (high dose,

room temperature).26 Short line defects are found when the generation and diffusion rate of S

vacancies are comparable, such as when imaging a clean surface at room temperature with

defocussed illumination.19

The growth direction of the line defect (indicated by the white arrows in figure 3b,c is along

the same zig-zag direction as its adjacent line defect, which was already present before the
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formation of the second one. We observed in many instances that the formation of second ultralong

1D vacancies occur along the same zig-zag direction as the first, indicating that there is some

interaction between the two. The formation of the second line defect (left side) in figure 3a-c

affects the first line defect (right side), temporarily resulting in a lattice distortion around the first

line defect that causes reduction in the contrast in Figure 3b at the original position of the first line

defect. In the initial stage, the line defects showed several kinks, highlighted in Figures 3b and 3c,

which gradually disappear during further growth (Figures 3d to 3g) as the line vacancy becomes

atomically precise in its periodicity. In the last frame, figure 3g, the created line defect reaches a

length of 61 nm. A further example of line defect growth dynamics is shown in Figure S1 where a

line defect keeps growing until it encounters a void.
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Figure 3 a-g) ADF-STEM images showing the growth of a line defect from the selected area (white box in

a)). The bright contrast features in e-f are metal nanoparticle impurities. Scale bars in (a-e), 2 nm; (f), 5 nm;

(g), 10 nm. Scale bar is 2nm. White boxes show the same area in different frames to help correlate similar

regions.

Interaction between line defects and migrating Mo and S atoms is likely to be governed by

strain in the system. Strain can be generated in monolayer graphene by intentionally introducing

dislocations using a focused electron beam.27 Unlike the dislocation cores in graphene which are

zero-dimensional and induce ‘hillock-basin’ ripples, a long linear defect will generated a series of

wavelike ripples whose wavelength is parallel to the line defect width (one of the armchair

orientations). In suspended pristine MoS2, intrinsic ripples have been detected28,29 which exhibit
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a quasi-periodic structure with all ripples being almost parallel and with height variations from

several Angstroms to tens of nanometers.28 The parallel ripples result in a periodic compressive

strain field, which has been reported to significantly lower the activation energy for the diffusion

of monovacancies in graphene.22 More examples of parallel line defect arrays are shown in Figure

S3. The distances between the line defects range from 1 nm to 30 nm. Non-parallel line defects

were also observed in our experiments along the other zig-zag directions (Figure 1d, 5a to 5i) and

these are believed to originate from distant locations. However, direct evidence of the rippling

nature of the MoS2 lattice cannot be observed as the amplitude of the ripples is not sufficient to

induce detectable tilt at a level that can be measured using geometric phase analysis.

Unlike broad line defects with more than three S vacancy lines created at room temperature,

the line defects created at elevated temperature are mostly narrow, composed of two S vacancy

lines, indicating that the S vacancies prefer to migrate to the tip rather than the side. This behavior

can be explained by the strain distributions around the defect. Figure 4a shows a line defect with

its normal strain field in y direction (εyy) in Figure 4b. The strain within the line defects at room

temperature has been discussed elsewhere so will not be included here.19 A compressive strain

field is detected beyond the tip of the line defect (Figure 4d). Within this area, the compressive

strain decays from 25% to 4% (the background fluctuation is about ±2%, as shown in Figure 4c,

which is most likely induced by out-of-plane distortion arising from the terrace structure). The

obvious compressive strain field at the line defect tip can act as a sink for vacancies.22 Although

direct observations are not possible due to the fast migration of S vacancies in comparison to the

imaging acquisition time, it is likely that a S vacancy created away from the line defect tip will

diffuse randomly until it feels the compressive strain field and then adds to the line defect

elongation. The strain field along the sides of the defect area is asymmetric with one side showing
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nearly no strain and the other side a compressive strain field ending at the second row of hexagonal

rings from the line defect boundary (Figure 4e). The compressive strain field is much lower than

the outer tip region, in the range of 4-6% and is most likely from the in-plane bond length variations

and the tilted projection of the lattice due to buckling.

Figure 4 Strain field mapping around a line defect (the same defect as shown in Figure 3f). a) AC-TEM

image of a line defect. b) Corresponding normal strain field along the y direction, with the contour of the

line defect indicated by the white zigzag lines. c) Background strain field in the white box in (a, b) showing

the background noise level at ±2%. d) Strain field from the tip of the line defect (yellow box in (a, b)). e)

Strain field within the green box in (a, b) showing and asymmetric strain field along the two sides.

Void/cluster formation

After extended electron beam irradiation the high concentration of S vacancies cause voids

to form in the MoS2. The initiation points for the void formation are typically from the intersecting

regions of non-parallel 1D ultralong vacancies or the surface bound Mo clusters at the ends of the
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1D line vacancies. Figure 5 shows a sequence of images of intersecting 1D vacancies, figure 5a,

which adjust to a single connected line vacancy with a 60o bend, figure 5b and 5c, and then a void

begins to open up and grow, figures 5d-h. In figure 5i, the void digests the large section of the 1D

vacancy to its left, and the remaining section connects to the lower newly formed 1D vacancy with

metal Mo nanoparticle at the tip, indicated by the red boxed area in figure 5i. This tip region is

examined in more detail in figure 5j-m, showing that a void opens up from this Mo nanoparticle

area. Figure 5n-q shows a series of AC-TEM images with atomic resolution that captures the void

formation process from the Mo nanoparticle cluster that sits at the line vacancy tip. As the void

opens up, figure 5p, the Mo cluster adjusts and binds to the void edge, figure 5q, and the void

grows with zigzag edge terminations. This process is very similar to recent results on Pt

nanoparticles on MoS2 monolayers, whereby the Pt etches voids in the MoS2 under electron beam

irradiation at high temperature.30
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Figure 5. (a)-(i) Time series of AC-TEM images showing the initial process of void formation from the intersection

of non-parallel 1D vacancies. Orange colour indicates 1D S vacancy lines, yellow indicates void area, and green

indicates surface formed Mo cluster. (j)-(m) Time series of AC-TEM images of the region indicated by the red box in

(i), showing the formation of a void from the Mo nanoparticle region. (n)-(q) Time series of atomic resolution AC-

TEM images showing the void opening at the tip point of a line defect containing a Mo surface cluster.

Newly formed 1D line vacancies created near pre-existing voids are also digested by the void when

the connect, causing void enlargement. Figure 6a-c shows a long S line vacancy within the MoS2

increasing its length until it reaches a pre-existing void, figure 6d. The line vacancy is then digested

by the void causing its disappearance through the migration of sulfur atoms from the void edge to

the line defect region, figure 6e-f. In figure 6d, the long line vacancy has just made contact to the

void edge, and then in the next frame, it has been digested and the region where it was in contact

with the void now has local sulfur depletion and the creation of small Mo rich wires. By the next

frame in figure 6f, the wires have transformed into a small Mo cluster and the void size has

enlarged, evident by tracking the green shaded area. This shows that once voids are formed within

the MoS2 monolayer, they can quickly digest large vacancy lines and prevent the formation of new

voids in the local area. This is why only a few large voids are created, and not many smaller ones.

This has the effect to reduce the overall strain energy in the system, where the strain is associated

with the bond reconstructions within the 1D line vacancies.
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Figure 6. (a)-(f) Time series of AC-TEM images showing the interaction between a growing S vacancy

line and a void. Green shaded area shows the void area change in each frame, and the orange line shows

the line vacancy length and position in each frame.

For the void to become enlarged, both Mo and S atoms need to be removed, but Mo

sputtering is limited at low accelerating voltages. This causes a build-up of Mo atoms at the void

edges that agglomerate into nanocrystals to lower the surface energy of the system. MoS wires

also form to terminate the void edges. The line defect connected to a void, shown in Figures 7a

and 7b, enables Mo atoms to migrate along the line defect away from the void edge to the MoS2

surface, highlighted in white boxes in Figures 7a and 7b. A preferred position for a single Mo atom

on the line defect is observed (5 out of 6 Mo atoms shown in Figures 7a and 7b adopt this location)

which is also predicted from DFT calculations (Figures 7c and 7d). The binding energy of this

configuration is calculated to be 5.7 eV, higher than any other examples we have examined

theoretically (Figure S8).
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The transport of Mo atoms also occurs when two non-parallel line defects interact during

growth, as shown in Figures 7e and 7f. The two line defects are bridged by an additional short line

defect with a wire consisting of consecutive hexagonal motifs with additional Mo atoms (inset to

Figure 7a). These are mostly likely to be attracted by the local strain field at the joint position.

Later frames (Figures 7g and 7h) show the formation of Mo clusters when additional Mo atoms

are present. The Mo chain also forms when a line defect is linked to a bulk Mo cluster (Figures 7i

and 7j). Image simulations for the atomic models shown in Figure S9, show that this is consistent

with two types of hexagonal structures, either with one (white box in Figure 7i) or two (blue box)

additional lines of Mo atoms. The bright hexagonal structures are due to a superposition of Mo

and S atoms, with a slight distortion as has been observed previously.31
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Figure 7 Transport of Mo atoms along line defects. a, b) ADF-STEM images of several Mo atoms

transported through a line defect from a hole, with a magnified image inset. The additional Mo atom is

indicated by the blue arrow. (c, d) Atomic model calculated using DFT showing the energetically favoured

position of a Mo atom on a line defect. The Mo atom is indicated by the red arrow. (e-h) A series of ADF-

STEM images of the interactions between several non-parallel line defects, with the Mo atoms forming

short bridges between hexagonal chains (yellow boxes) and clusters at the end of line defects (red circles).

i, j) Two consecutive images, 15s apart, showing a long, bright chain with additional Mo atom lines on the
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line defects. The white and blue boxes correspond to Figures S9a and d. Scale bars in (a, b), 1 nm; (e-h), 5

nm; i, j), 1 nm.

In order to understand the migration of Mo atom along a line defect, we performed DFT

simulations to explore the diffusion path connecting energetically favorable structures with the Mo

atom bonded to four surrounding S atoms (Figure 8.). A 511 supercell of the type-II line defect

was adopted to generate 13 images along the path, with the partial coordinate of Mo atom equally

distributed and frozen during the relaxation. As shown in Figure 8g, the hopping barrier for the

Mo atom between the most stable configurations (with 5.7 eV binding energy) is 1.6 eV, which is

even lower than that of the S vacancy diffusion (2.2 eV). This indicates that the diffusion of Mo

atom along the line defect is quite efficient at high temperature, consistent with our experimental

observations. For the reaction path connecting structures with relatively higher energy (5.2 eV

binding energy), we obtained a much higher barrier of 3.1 eV (Figure 8h). The large difference in

activation energies can be explained by the distinct configurations of the transition states: the Mo

atom is embedded in the substrate and connected to the underlying Mo atom for the first path

(Figure 8b), while lying on top of the substrate in the bridge configuration for the second path

(Figure 8e). The above results suggest that the fast Mo migration is likely to stem from the straight

Mo hopping along the line defect assisted by the substrate Mo atoms with low coordination number

(each Mo connected with 4 S atoms).
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Figure 8. Configurations of the (a),(d) initial, (b),(e) transition, and (c),(f) final states for the reaction paths

of the Mo atom (in blue) hopping along the line defects between stable structures with binding energies of

(a),(c) 5.7 eV and (d),(f) 5.2 eV, respectively. (g),(h) Reaction paths of the Mo atom hopping along the

line defects between stable structures with binding energies of (g) 5.7 eV and (h) 5.2 eV, respectively.

S atom migration also occurs along the 1D vacancy lines and to understand the migration barriers

we used DFT calculations. As shown in Figure S19, the migration of on-top S atom proceeds

through the bond breaking with one surface S atom and the sequential bond formation with the

neighboring S atom along the line defect, resulting in a 1.1 eV hopping barrier, figure S20.

Regarding the S vacancy, migration is accompanied with the variation of coordination number,
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wherein the transition states have the relevant S atom connecting to only two Mo atoms. The

activation energy is estimated to be 0.7 eV, figure S20. The small diffusion barriers for both paths

can be explained by the flexible structure within the line defect, as well as the relatively weak

binding of S atom compared to that of the most stable trigonal prismatic configuration. Speculated

from its much smaller barrier, S diffusion may proceed much faster than Mo diffusion, and thus

Mo migration is likely to serve as the rate-limiting step for the growth of line defect under our

experimental condition. This is also consistent with the observation that S diffusion is too fast to

be captured by our TEM measurement.

In addition to single Mo atoms, Mo clusters are also transported along the line defects at

high temperature, as shown in Figure 9. The Mo atoms generated from the void formation migrate

along the line defect ‘highway’ to reach the end of the line defect, where a Mo cluster gradually

grows on the MoS2 surface. As expected, the Mo cluster is always at the side of the line defect

with compressive strain. The cluster eventually joins a larger Mo crystal that resides on the MoS2

surface. We also observed that some freely migrating Mo clusters on the MoS2 surface are present,

probably resulting from the detachment of Mo clusters at the line defect ends, and that these can

also attach to a preformed 1D S vacancy.
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Figure 9 a-h) Consecutive AC-TEM images showing the migration of a Mo cluster (indicated by yellow

arrows) from a hole to the other end of a line defect. Scale bar 2 nm.

In figure 10, we discuss the overall processes involved in void formation and its link to the 1D line

vacancy growth and digestions. Figure 10a shows that after an hour of electron beam irradiation

at high temperatures, massive voids are formed in MoS2, reaching up to 100nm in diameter. The

MoS2 material surrounding the void area is still primarily pristine lattice due to the rapid diffusion

of vacancies to the voids, figure 10b. Many large Mo nanocrystal clusters are seen attached to the

edges of the voids, with dark contrast in figure 10b. A significant proportion of the void edges are

terminated with MoS wires, figure 10b and 10c. By considering the experimental data in the prior

figures, we present an overall schematic diagram, figure 10d-i, that shows the mechanism of void

enlargement. When a 1D S vacancy line defect connects to a triangular void, figure 10d-f, S atoms

are removed from the edge region by migrating along the vacancy line and filling empty states.

This creates local S depletion at the edge and the edge reconstructs into MoS wires, while at the

same time the 1D S line vacancy shrinks in length as the vacancy sites are filled. Eventually the

1D S vacancy line is diminished and disconnects from the void, figure 10g, leaving MoS

terminated void edges. When the 1D S vacancy grows again, figure 10h, and connects to the void

with MoS edge terminations, the Mo rich edges undergo transformation as more S atoms migrate

into the 1D S vacancy channel and the MoS wires become unstable. MoS wires transform to

nanocrystals attached to the void edge, returning the void edge back to normal zigzag lattice

termination. Also some Mo atoms migrate along the 1D S vacancy channel and aggregate at the

tip region, figure 10i, which leads to nanocrystalline Mo clusters on the surface of MoS2.
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Figure 10. Low magnification TEM imaging showing the large voids (up to 100nm) produced in MoS2 at

800oC after prolonged electron beam irradiation. The dark contrast from the Mo clusters are also visible.

(b) Atomic resolution AC-TEM image of the sample shown in (a), revealing the pristine lattice, large voids,

MoS wire terminated edges, and Mo nanoclusters attached to the edges. (c) ADF-STEM image of the MoS

wire attached to the zigzag MoS2 edge. (d)-(i) Schematic illustration of the void enlargement mechanism.

Line defects are indicated by red lines, MoS wires by green lines and Mo clusters by green. (d) A formed

triangular void with a growing 1D S vacancy line (red). (e) 1D S vacancy line (red) has extended and

connected to the void with a local region of S depletion at the edge and MoS wire initiation. (f) S atoms

from the edge migrate into the 1D S vacancy line, resulting in MoS wire formation at the edge and
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shortening of the 1D S vacancy line. (g) Large digestion of 1D S vacancy line and the complete termination

of void triangle by MoS wires, along with reduction in 1D S vacancy line length. (h) 1D S vacancy line

connects to void causing further S depletion, with MoS wire depletion, Mo cluster forming at the edge and

void enlargement. (i) Further void enlargement by Mo atom migration along the 1D S line vacancy to the

tip point to form Mo surface cluster.

Conclusion

We have shown that thermally activated S vacancies created by electron beam irradiation at high

temperature can diffuse into ultralong 1D S vacancy line defects along the zig-zag lattice directions.

The increased density of S vacancies causes the intersection of line vacancies along different zig-

zag directions that leads to Mo atoms migrating to the surface and the beginning of holes to appear.

These small holes grow into large voids with zig-zag edge faceting by first the depletion of S at

the zig-zag edge due to the migration of vacancies to the void edge, which causes the zig-zag edge

to turn into MoS wires, then as the S vacancy density further increases at the edge the MoS wires

become unstable and they turn into Mo clusters, with the edges back to zigzag termination and

then this process repeats for continual enlargement of void area. The voids strongly interact with

line vacancies, whereby S atoms rapidly diffuse along the vacancy channel from the void edges,

and in some cases the Mo atoms also migrate along these 1D channels. The digestion of line

vacancies by voids leads to small number of voids that grow larger, which enables the MoS2 to

handle a higher vacancy concentration before total decomposition compared to room temperature.

At room temperature, many small voids form and the material rapidly loses mechanical stability

and breaks apart. The high defect density at room temperature also corresponds to large strain

energy in the system, whereas at high temperature the void growth enables the reduction in strain

energy by the digestion of line vacancies to leave near pristine lattice surrounding the voids. These
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results reveal some of the most detailed insights into the mechanisms of void formation and its

connection to vacancy channels, enabled by the 2D structure of the MoS2 material.

Methods/Experimental

Experimental Methods

Monolayer MoS2 Synthesis and Transfer. The MoS2 domains were grown on a SiO2 (300 nm)/Si

substrate (University Wafer), which was sonicated in acetone and 2-propanol sequentially,

followed by an oxygen plasma treatment. The growth was carried out in a CVD system using 20

mg of MoO3 powder (99.5%, Sigma-Aldrich) and 500 mg of S (99.5%, Sigma-Aldrich) as the

precursor with Ar as carrier gas under atmospheric pressure. The S powder was placed at the

central area of the first furnace in the outer 1 inch quartz tube, while the MoO3 was loaded

separately upstream in the second furnace in an inner quartz tube having a smaller diameter of 1

cm. The growth system was first flushed with 500 sccm of Ar gas for 30 min, followed by a pre-

introduction of S vapor by heating the S powder to ∼180 °C for 10 min under an Ar flow rate of

150 sccm. The second furnace was maintained at 200 °C at the same time to avoid any deposition

of solid S on the substrate surface. This ensured that the reaction occurred under an S atmosphere

effectively controlling the initial MoS2 nucleation density. The second furnace was heated at a rate

of 40 °C min−1 to 800°C, while the MoO3 powder reached an approximate maximum temperature

of 300°C. The reaction was conducted at 800 °C for 20 min with 10 sccm Ar. After completion of

the reaction a fast cooling process was applied to quickly stop the growth. A thin film of PMMA

was then spin-coated on the MoS2 surface after growth, followed by floatation on 1mol/L KOH to

etch the SiO2. The PMMA/MoS2 film was then rinsed by transfer onto deionized water. The rinsed

film was subsequently transferred onto a prefabricated in situ heating chip and dried in air for 3

hours followed by baking at 180 °C for 30 min to increase the adhesion between the MoS2 and the
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heating chip. The PMMA was then removed by submerging the heating chip in acetone for 12

hours.

Transmission Electron Microscopy with an in Situ Heating Holder. AC-TEM was conducted

using Oxford’s JEOL JEM-2200MCO TEM operated at 80 kV accelerating voltage with a CEOS

imaging aberration corrector. TEM data was recorded using a Gatan Ultrascan 4K × 4K CCD

camera with 2s acquisition times. ADF-STEM was conducted using an aberration corrected JEOL

ARM300CF equipped with a JEOL ETA corrector operated at an accelerating voltage of 60 kV

located in the electron Physical Sciences Imaging Centre (ePSIC) at Diamond Light Source. Dwell

times of 5−20 µs and a pixel size of 0.006 nm px−1 were used for imaging with a convergence

semi-angle of 31.5 mrad, a beam current of 44 pA, and inner-outer acquisition angles of 49.5−198 

mrad.

High-temperature imaging up to 800 °C was performed using a commercially available in situ

heating holder from DENS Solutions (SH30-4M-FS). Heating the sample was achieved by passing

a current through a platinum resistive coil imbedded in the TEM chip (DENS Solutions DENS-C-

30). The resistance of the platinum coil was monitored in a four-point configuration, and the

temperature was calculated using the Callendar-Van Dusen equation (with calibration constants

provided by the manufacturer). Slits were fabricated in the Si3N4 membranes using focused ion

beam milling before transferring the MoS2.

Image Processing and Simulation. ImageJ was used to process the AC-TEM and ADF images.

For TEM images, a bandpass filter (between 100 and 1 pixels) and a Gaussian blur were carefully

applied to minimize long-range uneven illumination and reduce noise. For ADF images only the

brightness and contrast of the images was adjusted for visualisation. Multislice image simulations

for ADF images were performed using the multislice method implemented in the JEMS software
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with supercells generated from DFT calculations. Parameters for image simulations were based on

the experimental condition of the JEOL ARM300CF. The chromatic aberration at 60 kV is 0.89

mm with an energy spread of 0.42 eV. The probe size is 65 pm and the convergence semi angle is

31.5 mrad. The angle range for dark field imaging was set from 49.5 mrad to 198 mrad. Spherical

aberration was 5 µm.

Density Functional Theory

Standard ab-initio calculations within the framework of density-functional theory (DFT) were

implemented to explore the structural and electronic properties of ultra-long line defects in

monolayer MoS2, using the Vienna Ab Initio Simulation Package (VASP v5.4).32 Plane-wave and

projector-augmented-wave (PAW) type pseudopotentials were used,33 with GGA-PBE exchange-

correlation functional34 and a 400 eV kinetic-energy cutoff. Dipole correction in the vertical

direction was applied to correct the leading errors caused by the slight asymmetry of the surfaces.35

Spin-orbit coupling effects are taken into account for refinement of electronic structure. The length

of the periodic boxes across the type I and type II line defects are 52.6 and 41.4 Å, respectively. A

15 Å vacuum was constructed to eliminate artificial interactions between periodic images. The

structures were relaxed until all forces were smaller than 0.02 eV/ Å. Monkhorst-Pack k-point

grids5 of 9×1×1 and 36×1×1 were used for geometric optimization and electronic structure

calculations, respectively. Supercells with the size of 4×1×1 were generated to obtain the binding

energies of Mo atoms on line defects.

Supporting information
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Propagation rate of line defects, comparison of contrast profiles for ADF-STEM and DFT models.

DFT band structures of line defects, Strain analysis of line defects, DFT models of Mo atoms on

line defect sites, low magnification image of large voids.
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