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Abstract

Optical monitoring of blood glucose levels for non-invasive diagnosis is a growing area of 

research. Recent efforts in this direction have been inclined towards reducing the requirement of 

calibration framework. Here we are presenting a systematic investigation on the influence of 

variation in the ratio of calibration and validation points on the prospective predictive accuracy of 

spectral models. A fiberoptic probe coupled Raman system has been employed for transcutaneous 

measurements. Limit of agreement analysis between serum and partial least-square regression 

predicted spectroscopic glucose values has been performed for accurate comparison. Findings are 

suggestive of strong predictive accuracy of spectroscopic models without requiring substantive 

calibration measurements.
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Introduction

Diabetes mellitus (DM) caused by impairment in the glucose metabolism is a worldwide 

epidemic, it is estimated that by the year of 2035 there will be approximately 592 million 

people affected by this disease [1,2]. DM is caused by a defect in insulin secretion and 

results in a change in the blood glucose levels. Therefore, DM is diagnosed or monitored by 

measuring levels of glucose in the blood. It is important to frequently monitor blood glucose 

levels and maintain it within the prescribed range to avoid secondary complications 

including strokes, heart attacks, blindness and coma [3,4]. In addition, DM patients with an 

established diagnosis of insulin-dependent diabetes (all type-I, and many type-II) require 

frequent glucose measurements for monitoring and adjustment of insulin doses. Currently, 

DM patients use the hand-held glucose-monitoring device to monitor the BG levels. The 

device requires small blood sample (<1 μL) obtained by a ‘finger-pricking’ followed by 

electrochemical sensing using a portable ‘glucometer’. Unfortunately, the procedure is 

inconvenient and painful; thus, resulting in poor patient compliance [5,6]. Other clinical tests 

require either blood or interstitial fluids for measurement of glucose levels. In this regard, it 

is important to develop a device that can enable non-invasive monitoring of blood-glucose 

levels.

Significant research has been undertaken in the quest of identifying a novel diagnostic tool 

for managing DM [7–9]. This research can be broadly categorized into electrochemical and 

optical sensing approaches. Electrochemical sensing of blood glucose levels utilizes 

enzymatic or non-enzymatic methods. Optical methods can be further subdivided into 

fluorophores (fluorescein) and non-fluorophores based approaches [10]. Recent 

advancement in the instrumentation and analysis methods has provided a great momentum 

to non-fluorophores based approaches such as near-infrared (NIR) absorption spectroscopy, 

optical coherence tomography (OCT), photoacoustic spectroscopy and polarization 

spectroscopy for glucose sensing [11,12,7,13]. Our laboratory has pioneered the applications 

of NIR Raman spectroscopy (RS) for measuring blood glucose, urea, lactic acid, and 
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cholesterol levels [14–19]. RS is based on inelastic scattering of light, where changes in the 

molecular polarizability lead to a shift in the wavelengths associated with specific chemical 

bonds and this, in turn, provides a molecular fingerprint with both qualitative and 

quantitative information. Other benefits of RS include non-destructive and label-free nature, 

no sample preparation requirement, minimum water interference and real-time evaluation. 

Overall methodology of Raman spectroscopic glucose sensing involves transcutaneous 

spectral measurement followed by feature extraction using multivariate chemo metric 

modeling approaches such as partial least square regression (PLSR), principal component 

regression (PCR) or support vector regression (SVR) followed by cross-validation. 

Typically, a calibration model is developed by tying up the blood glucose values with 

corresponding Raman spectra. Leave-one-out or K-fold cross-validation methods are 

employed to establish the accuracy of spectral models against the reference values. Our 

long-term efforts in realizing the goal of non-invasive Raman glucose sensing have been 

evaluated by clamping studies in animals and oral glucose tolerance test (OGTT) in humans 

[17,20,21]. Recently Shao et al. has shown that by focusing laser directly in to the blood 

stream of mouse models, problem of strong background can be avoided to some extent [22]. 

Shih et al. has demonstrated feasibility of non-invasive transcutaneous measurement of 

blood glucose using dogs [20]. Scholtes-Timmerman et al. reported a human trial involving 

186 subjects using a system with fairly large spot size (8 mm). PLS modeling coupled with 

cross validation yielded encouraging results [23]. Weber et al. developed a tabletop confocal 

Raman system to collect signals from interstitial fluid and tested this set-up on a group of 35 

patients[24]. Even though results of these studies have provided substantial evidence in 

support of RS for monitoring glucose level one of the major hindrances in successful 

translation of spectroscopic glucose sensors for routine clinical usage is the unavailability of 

appropriate exit criterion for analyzing the unknown samples [21]. Efforts have been made 

towards developing a universal calibration model. However, it is limited by non-linearity of 

glucose concentration, site, and inter-personal-variance in terms of skin color and thickness, 

basal metabolic rates and hydration status [25]. To overcome these issues, ‘patient-specific’ 

calibration strategies with minimum blood reference values are preferred. Our recent efforts 

have been inclined towards minimizing the requirement of blood reference values for 

calibration [26]. Here we are presenting a systematic investigation of the predictive accuracy 

dependence of spectroscopic models on the ratio of calibration and validation points. Three 

different calibration strategies using 50%, 30% and 18% of the total data as a reference have 

been employed and prediction accuracies of spectroscopic models are evaluated. In contrast 

to earlier studies where the accuracy of spectroscopic models was mostly accessed by 

‘leave-one-out cross-validation’, here we have employed an ‘independent test prediction’ 

approach to obtain a realistic prospective read-out [17,21,20]. Also, an accurate reference 

method based on serum glucose has been used for better correlation. Findings of the study 

will be helpful in not only reducing the requirement of unnecessary finger-pricks and 

associated discomfort but also providing an appropriate validation to RS methods with 

respect to the clinical OGTT.
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Materials and methods

Oral glucose tolerance testing

This pilot study was conducted at the Clinical Research Center of MU-Institute of Clinical 

and Translational Sciences, University of Missouri – Columbia. The study protocol was 

approved by Health Sciences Institutional Review Board (Protocol number: 2002948) at 

University of Missouri – Columbia. Written informed consent prior to participation was 

obtained from each of the participants of the study. A total of 23 healthy non-diabetic and 

non-pregnant volunteers aged 18 years or older (median age: 33 years) were chosen for the 

study. Of the 20 qualified volunteers, 45% were male and remaining 55% were female. 

Fasting blood glucose (FBG) values less than or equal to 125mg/dL were set as an inclusion 

criterion for the subjects in the study. The blood glucose levels of the subjects were checked 

prior to the study and those qualified were given a standard glucose drink, used in clinics for 

OGTT (75 g of glucose-rich beverage Dextrose, Azer Scientific Inc.). The spectral 

acquisition was initiated immediately after the drink and thereafter every 10 minutes for 160 

minutes. Serum glucose measurements were performed concurrently every 10 minutes using 

YSI glucose analyzer. Finger prick measurements were also performed every 30 minutes 

using Accucheck™ blood glucose meters to corroborate YSI-measurements.

Raman set-up and spectral acquisition

In contrast to our previous free-space glucose Raman instruments, a fiber-optic probe 

coupled glucose Raman unit was used in the present study, Fig. 1A [17,20]. A wrist support 

with a small hole to hold the probe at the same tissue spot over the course of the experiment 

was fabricated (Fig. 1B). This wrist support minimizes unwanted light interference and 

allows Raman measurements under the ambient room light. A diode laser (Process 

Instruments) of 830 nm is used as an excitation source. Excitation light is launched into the 

central fiber of the probe. Fiber background signals are removed by incorporating a short 

pass filter at the other end of the fiber. The filtered excitation beam is delivered into the 

tissue through a sapphire ball lens and back scattered signal is collected by the same lens. 

The Rayleigh scattered light is eliminated by a long pass filter in front of the six collection 

fibers surrounding one central excitation fiber, and the filtered Raman signal is delivered to 

the imaging spectrograph. Collection fibers are aligned as a line at the spectrograph entrance 

and the signal is dispersed by an imaging spectrograph (LS785, Princeton Instruments). 

Dispersed spectrum is detected by a back-illuminated deep-depletion CCD (Spec-10:400BR-

XTE, Princeton Instruments). The Raman instrument for glucose monitoring is built inside 

of a portable cart (84cm × 48cm × 100cm) for easy transfer between laboratory and clinical 

research center. Spectral preprocessing steps included standard normal variate (SNV) 

correction to remove scaling differences from the spectra followed by subtraction of 3rd 

order polynomial function for objective baseline correction.

Data analysis

Partial least square regression (PLSR) and Clarke error grid analysis using MATLAB based 

in-house codes was employed. Blood glucose values obtained by serum measurements and 

corresponding Raman spectra at 17-time points during the course of OGTT of 20 patients 

was recorded. Data from 2 patients weren’t included due to poor spectral quality. Three 
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different calibration models using 50, 30 and 18% corresponding roughly to 9/17, 5/17 and 

3/17 spectra of individual OGTT were developed. Rest of 50, 70 and 82% data were used as 

independent test data. Appropriate ranks of PLS calibration ranging from 3 to 5 were used in 

accordance with the general assumption of having samples numbers at least 3 times to the 

rank of PLS calibration [27].

Results and Discussion

In the present study, a calibration model is developed by tying up serum glucose values with 

corresponding Raman spectra. Typical transcutaneous Raman spectra acquired from one of 

the subjects during the course of OGTT is shown in Fig. 2A. Corroborating with the spectral 

profiles noted in our previous studies, major spectral features are suggestive of collagen, 

lipids and structural proteins [26,28]. Strongest peak at 1445 cm−1 is assigned to CH2 

stretching, other features at 859 cm−1, 938 cm−1 (collagen), 1004 cm−1 (phenylalanine), 

1273 cm−1, 1302 cm−1 (amide III) and 1655 cm−1 (amide I) were also observed. Even 

though near infrared (NIR) excitation is used, as the spectra were obtained transcutaneous, 

large fluorescence envelope is observed, Fig. 2A. Expectedly, small Raman bands related to 

glucose are overwhelmed by the background and thus necessitating requirement of 

multivariate analysis to identify these variations with respect to time and serum glucose 

concentration. Mean OGTT curve along with standard deviation with every 10-minute read-

out is shown in Fig. 2B. OGTT is a standard diabetes screening procedure, where a subject 

is given a glucose-rich drink to induce a substantive rise in the blood glucose level. Blood 

samples are then withdrawn using an intravenous (IV) line at specific time intervals (10 

mins) to investigate the rate of clearance of glucose from the blood and therefore to infer the 

effectiveness of the subject’s insulin-based glucose regulation mechanism. Standard bell-

shaped OGTT curve of subjects shown in Fig. 2B suggests healthy nature of the participants 

in the study.

Choosing an appropriate ‘local calibration model’ is a prerequisite for employing regression 

analysis in spectroscopic quantitative measurements. Raman spectra were acquired at 17-

time points (0 to 160 minute) on 20 patients during OGTT. Random sampling approach was 

employed and in the first step, 50% of the total data was used for developing a calibration 

model. Rest of data were used as ‘independent test data’. Clarke error grid analysis (EGA), 

approved by food and drug administration (FDA) is one of the widely utilized methods for 

evaluating clinical accuracy of new method/devices in estimating blood glucose with respect 

to a reference method [29,30]. The Clarke error grid plots with independent test data 

predictions are shown in Fig. 3. As per the FDA, guidelines zone, A and B in the plots 

correspond to the area with ± 20% error rate and are clinically acceptable. Rest of the areas 

C, D, E are clinically irrelevant and considered to be potentially dangerous. As shown in Fig. 

3A, most of the ‘independent test data’ fall into the clinically acceptable zone A (71%) and 

zone B (26%) region of the error grid. Further, we reduced the number of calibration point to 

30% and 18% of the total data using random sampling approach. As can be seen from Fig. 

3B and C, a total of 97 and 96% of the test data for these two calibrations strategies, 

respectively are still in the clinically relevant zones of the Clarke error grid. Overall findings 

of EGA are suggestive of high accuracy of spectroscopic models for predicting analogues 

glucose values. As shown in Table 1, clinically valid predictions obtained with three 
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calibration strategies further supports applicability of transcutaneous spectroscopic 

measurements for glucose monitoring.

The measurement of a variable with two different methods will always have some degree of 

error as neither can provide unequivocally same value. An accurate estimation of the degree 

of agreement can provide valuable information about the efficiency of both methods. The 

correlation coefficient (r) and coefficient of determination (r2) are two widely utilized 

parameters to access the linear relationship between two measurements [31]. As shown in 

Table 1, an average correlation value of ~63% was observed. However, this value is not 

reliable as it measures only the strength of relation or percentage common variance between 

two variables, not the agreement between them. Limit of agreement (LOA) is quantified by 

defining mean and standard deviation(s) of the difference between two methods. The 

difference between the measurements (A-B) is plotted against the mean of difference (A

+B)/2. Two different methods are considered to be in good agreement if ~95% data points 

are in the ± 2 standard deviations (1.96) of the mean difference. Bland-Altman (B&A) plots 

are generally employed to perform ‘the analysis of difference’ between two quantitative 

measurements [32]. The analysis of difference plots using YSI-analyzer values as a 

reference method against Raman spectroscopic predictions are shown in Fig. 4. Parameter 

‘bias’ is an indicator of the average difference in the predicted and reference glucose values. 

As shown in Table 1, spectral models with 50, 30 and 18% calibration points have ‘bias’ of 

−1.02, 1.23 and −4.47 mg/dl, respectively. Most of the points (>95%) are in the ‘range of 

agreement’ suggesting analogous blood glucose values predicted by Raman measurements. 

Overall, the results obtained are an indicator of the high accuracy of spectroscopic models in 

predicting independent test samples even with minimum number of calibration points.

As glucose constitutes less than 0.1% of human tissue by weight, spectral differences 

induced by concentration changes are mitigated by skin variations during transcutaneous 

measurements [3,25]. Therefore, use of multivariate algorithms to identify the subtle 

changes in a temporal manner becomes a necessity. Regression methods coupled with 

different cross-validation strategies have been employed largely to link the spectral changes 

with glucose concentration. However, even though cross-validation is widely used its 

validity for the larger data set and prospective predictions is debatable [33]. As the 

probability of having an equivalent pair of spectrum and reference blood glucose values 

increases in larger data set, the root mean square error calculation can turn overly optimistic. 

Therefore, partitioning of samples into independent calibration and validation sets is a 

preferred approach. Although it hasn’t been studied in great detail with respect to glucose 

sensing, available reports suggest it to be a heuristic task [33]. Random sampling approach 

for selecting a representative sub set of calibration and validation samples from the pool of 

data is commonly employed because of its simplicity and the fact that group of data 

randomly extracted from a larger set follows the statistical distribution of the entire set [34]. 

The main objective of spectroscopic glucose sensing methods is to replace/reduce the finger 

pricks or blood withdrawals required for glucose monitoring. However, all the spectroscopic 

devices require a calibration framework to predict unknown concentrations. Minimizing the 

number of calibration steps needed for continuous monitoring using non-invasive devices 

can help in comprehending the ultimate goal. In the present study, we have evaluated 

prediction accuracy of Raman spectroscopic sensors with different number of calibration 
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points during OGTT. Spectra were randomly divided into three different calibration sets with 

50, 30 and 18% of the total data set. In all three cases, ~97% of the independent test data 

falls into the clinically acceptable area of the Clarke error grid. The rise in number of 

predictions in zone B of the error grid with reducing calibration points is expected due to 

non-linear nature of spectroscopic signatures and decreasing variance cover. Further, the fact 

that random sampling approach employed in the present study doesn’t always guarantee the 

inclusion of borderline samples in calibration models, could be another factor. The bias 

between the predicted and reference value is a good indicator of the predictive power of 

calibration models. As per the ISO15197 guidelines a difference of 15 mg/dl (for values 

<100 mg/dl) or 15% (for values ≥100 mg/dl) is considered to be acceptable accuracy of new 

devices [35]. As shown in Bland Altman plots and Table 1, the bias between predicted and 

reference blood glucose values was minimal for spectral model with highest number of 

calibration points (50%) followed by 30 and 18%. These values were in the acceptable 

range, suggesting small number of calibration points can also lead to a good predictive 

accuracy, provided accurate blood referencing methods are used.

Overall findings of the present study further provided evidence in support of the prospective 

application of Raman spectroscopic methods for non-invasive glucose monitoring. In 

contrast to earlier studies, by utilizing an accurate reference method we have successfully 

demonstrated the strong predictive accuracy of spectroscopic models with minimum 

calibration information. Further efforts are underway to examine the predictive accuracy in 

DM patients. Our future studies will also focus on improving the accuracy by replacing 

random sampling methods with new algorithms for more effective partitioning of calibration 

and validation sets to improve the predictive ability and robustness of the resulting model.
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Fig. 1. 
(A) Schematic of portable Raman system employed in the study and (B) Fiber optic probe-

holding adapter
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Fig. 2. 
(A) Typical transcutaneous Raman spectrum acquired over the course of OGTT. Spectrum at 

time points 0, 100 and 160 minutes are marked as T0, T100 and T160, respectively. (B) 

Mean OGTT curve along with standard deviation obtained from all the participants of the 

study
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Fig. 3. 
Clarke error grid plots showing independent test prediction accuracy of spectroscopic 

models with different number of calibration points. (A) 50% (B) 30% (C) 18%
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Fig. 4. 
Bland Altman plot demonstrating degree of agreement between reference and Raman 

predicted values with different number of calibration points. (A) 50% (B) 30% (C) 18%. 

(LOA-limit of agreement)
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Table 1

Summary of predictive accuracy of spectroscopic models with different calibration strategies

Spectral Model Independent
predictions in A

region of the
Clarke error grid

Independent
predictions in B

region of the Clarke
error grid

Correlation
coefficient (R

values)

Bias among reference
and predicted glucose

values (mg/dl)

50% calibration +
50 % validation

71.05% 26.31% 69.36% −1.02

30% calibration +
70 % validation

70.23% 27.90% 65.61% 1.23

18% calibration +
82 % validation

60.65% 36.06% 53.33% −4.47
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