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Abstract8

An accurate, fast and robust spectral-element/Fourier smoothed profile9

method (SEF-SPM) for turbulent flow past 3D complex-geometry moving10

bluff-bodies is developed and analyzed in this paper. Based on the con-11

cept of momentum thickness δ2, a new formula for determining the interface12

thickness parameter ξ is proposed. In order to overcome the numerical in-13

stability at high Reynolds number, the so-called Entropy Viscosity Method14

(EVM) is introduced in the framework of large-eddy simulation. To over-15

come resolution constraints pertaining to moving immersed bodies, the Co-16

ordinate Transformation Method (Mapping method) is incorporated in the17

current implementation. Moreover, a hybrid spectral-element method using18

mixed triangular and quadrilateral elements is employed in conjunction with19

Fourier discretization along the third direction to efficiently represent a body20

of revolution or a long-aspect ratio bluff-body like risers and cables. The21

combination of the above algorithms results in a robust method which we22

validate by several prototype flows, including flow past a stationary sphere23

at 200 ≤ Re ≤ 1 000, as well as turbulent flow past a stationary and moving24

cylinder at 80 ≤ Re ≤ 10 000. Finally, we apply the new method to sim-25

ulate a self-excited rigidly moving dual-step cylinder and demonstrate that26

SEF-SPM is an efficient method for complex VIV problems.27
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1. Introduction30

Prediction of the vortex induced vibration (VIV) of flexible risers is still31

a challenging task even by employing the state-of-the-art numerical methods32

on a supercomputer, e.g. in deep ocean oil exploration where the aspect ratio33

of the risers could be well over 1 000. This large aspect ratio requires a very34

large computational domain that direct numerical simulation (DNS) even at35

low Reynolds number seems computationally prohibitive. Furthermore, the36

complexity of the shape of the riser such as buoyancy modules (see figure 1)37

in conjunction with the high Reynolds number lead to additional difficulties38

in achieving accurate simulations.39

Over the past several decades, the vast majority of the investigations of40

the VIV phenomena focused on uniform cylinders, see the comprehensive re-41

views in [1, 2, 3, 4, 5]. For the VIV of cylinder with complex shapes, especially42

for the flexible cylinder with large buoyancy module, only a few experimental43

investigations or semi-empirical simulations can be found in the literature,44

[6, 7, 8, 9]. To the best of our knowledge, no full-scale three-dimensional45

simulation results have been published for such cases. The main challenge46

in performing full-scale three-dimensional simulation of VIV of cylinder at47

high Reynolds number is that solving the 3D unsteady Navier-Stokes equa-48

tions is computationally almost prohibitive. To meet this challenge, the49

spectral-element/Fourier (SEF) method that employs two-dimensional spec-50

tral element in one plane and Fourier expansion on the span-wise direction51

was proposed in [10] and subsequently was applied to DNS of VIV of flexible52

Figure 1: A model of the flexible riser with buoyancy modules used in our ongoing ex-
periments at MIT. The small-diameter cylinder (white color) is the flexible riser and the
large-diameter cylinders (black color) are the buoys. (Courtesy of Dixia Fan, MIT.)
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risers in a number of studies [11, 12, 13, 14], where the Coordinate Trans-53

formation method (refer to Mapping method herein) was used to account54

for the unsteady boundary deformation. However, it is not straightforward55

to apply the Fourier method to a computational domain with varying ge-56

ometric boundary along the span-wise direction, which is exactly the case57

of flow past a cylinder with buoyancy modules. To address this issue, we58

propose to combine SEF with the Smooth Profile Method (SEF-SPM). By59

utilizing the SPM indicator function, we can transform the non-uniformity of60

the geometric boundary into a smoothed indicator field that could be repre-61

sented by Fourier series. The combination of SPM and Fourier method was62

first proposed by Nakayama and Yamamoto [15] to investigate fluid hydrody-63

namic interactions in colloidal suspensions and subsequently was applied to64

model flows containing charged particles [16, 17], Brownian particles [18] and65

for predicting the sedimentation of particles [19]. Subsequently, Luo et al.66

[20, 21] improved SPM by developing a high-order splitting scheme and im-67

plemented it on the 3D spectral-element code Nektar. Kang and Suh [22]68

proposed a one-stage SPM that potentially could save computational cost69

significantly by eliminating the additional pressure Poisson-equation solver.70

Also, Mohaghegh and Udaykumar [23, 24] showed that SPM is competitive71

against sharp interface approaches for particulate flows at moderate parti-72

cle Reynolds numbers. Moreover, the application of SPM was extended to73

convective heat transfer by [25] and flow past a cylinder with random wall74

roughness in Zayernouri et al. [26].75

The aforementioned applications of SPM have focused mostly on flows at76

small to moderate Reynolds number. The only SPM simulation of flow at77

high Reynolds number was reported in Luo et al. [27], who applied the 3D78

SPM spectral-element method to simulate waterjet flow at Re ≥ 2.3 × 105,79

using the Variational Multiscale Large-eddy simulation(VMS-LES) model for80

turbulence. It was reported that accurate and sustainable turbulent motions81

could be captured by SPM with VMS-LES approach but at high compu-82

tational cost. As suggested in that paper, to use SPM in more industrial-83

complexity applications, further improvements of SPM to facilitate the effi-84

cient simulation of flow at high Reynolds number in complex-geometry, and85

more rigorous validations by modeling some prototype turbulent flows are86

required.87

In the current paper, we will present a new implementation of SPM within88

the framework of SEF method together with the Mapping method that has89

been fully validated by modeling several VIV problems. We note that the90

3



overall method derives its efficiency from the Fourier discretization along the91

long direction that significantly accelerates the simulation. However, for flow92

past a moving body at high Reynolds number, in order to account for the93

moving boundary, SPM requires a very large computational domain with high94

resolution. To resolve this issue, we employ the Mapping method in conjunc-95

tion with properly refined mesh, which together with the Fourier method (fast96

FFTs) lead to enhanced computational efficiency. With regards to modeling97

turbulence here we incorporate a new model, the so-called Entropy-viscosity98

method (EVM) that was originally proposed in Guermond et al. [28, 29] for99

hyperbolic conservation laws to stabilize simulations at insufficient resolu-100

tion. EVM can be thought of as an Implicit Large-eddy simulation (ILES)101

approach and it was first validated for homogeneous isotropic turbulence102

in [30]. We have further developed the EVM by determining the only free103

parameter α by employing an analogy of the entropy-viscosity to the eddy104

viscosity of the Smagorinsky model. We have implemented our EVM in the105

SEF framework and have validated it systematically for fully developed tur-106

bulent pipe flow at Reynolds number up to 44 000 as well as for turbulent107

flows in a vibrating pipe, see Wang et al..108

Lastly and perhaps most importantly, we propose here a new formula for109

determining the optimal value of the interface thickness parameter ξ of SPM.110

Previous works have shown that ξ has a great influence on the accuracy of the111

simulation results. Luo et al. [20] developed a rule based on the simulations of112

2D Couette flow, which limits the value of the time step ∆t. More recently,113

Mohaghegh and Udaykumar [23] proposed a formula for ξ that relates to114

both mesh size and the time step. The most effective value of ξ in these two115

rules depends on the discretization method and mesh, which is apparently116

not desirable in simulation of turbulent flow at high Reynolds number. To117

this end, we propose here a linear correlation between ξ and the momentum118

thickness δ2 that is used often in boundary layer theory. We will demonstrate119

the accuracy of the new rule by simulating several prototype turbulent flows120

in subsequent sections.121

The rest of the paper is organized as follows: in section 2 we will present122

the algorithms to solve the governing equations of incompressible flow and123

structure dynamics in the framework of the SEF method and the Mapping124

method. In the same section, we will also propose the new formula for deter-125

mining ξ and relate it to the resolution requirements. In section 3, we will126

validate our method by simulating flow past a stationary sphere, a station-127

ary cylinder and a self-excited rigidly moving cylinder at Reynolds number128
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up to 104. In section 4, we will apply our method to predict the response129

of an elastically mounted dual-step cylinder subject to vortex shedding at130

Red = 1 000, where d is the diameter of the small cylinder.131

2. Computational methods132

In this section, we will present the main steps of the SPM in the framework133

of spectral-element method following the work of [20]. In particular, our134

method combines elements from the work of [11] and [20].135

2.1. Equations and numerical methods136

We represent the immersed bluff-body by the following hyperbolic tangent137

function,138

φ(x) =
1

2
[tanh(

−d(x)

ξ
) + 1], (1)

where d(x) is the signed distance to surface of the immersed body, ξ is the139

interface thickness parameter, and φ(x) is a function of spatial coordinates140

x; it is equal to 1 inside the riser, 0 in the fluid domain, and varies smoothly141

between 1 and 0 in the solid-fluid interfacial layer.142

The fluid flow is governed by the incompressible Navier-Stokes equations:143

∇ · u = 0, (2)
144

∂u

∂t
+ u · ∇u = −∇p+ (ν + νt)∇2u + A. (3)

In equation 3, p and ν are pressure and kinematic viscosity, respectively. A145

is the additional acceleration introduced by the transformation of coordinate146

system; the detailed form of A can be found in [11].147

In equation 3, νt is the entropy-viscosity, which was proposed in [28] and148

we further developed it here. It is calculated from the following formula in149

each element K at the collocation points ijm:150

νt|K = min{β‖u‖L∞(K)δK , α
‖RK

ijm(u)‖L∞(K)

‖EK
ijm(u)− Ē(u)‖L∞(Ω)

δ2
K}, (4)

where we use the maximum norm L∞(K) over an element K or L∞(Ω) over151

the entire domain Ω. We define the various quantities as follows:152

EK
ijm(u) =

1

2
(‖u‖Kijm − ‖u‖L∞(Ω))

2, Ē(u) =

∫
Ω
EK
ijm(u) · dX∫

Ω
dX

(5)
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RK
ijm(u) = u · (∂u

∂t
+ u · ∇u +∇p− 1

Re
∇2u−A)|Kijm, (6)

where δK is the minimum distance between two quadrature points in element153

K.154

Note that there are two parameters in equation 4: α and β. In our155

simulations, β = 0.5, which prevents the magnitude of νt exceeding the arti-156

ficial viscosity of first-order upwind scheme [28]. However, the choice of α is157

somewhat depending on the type of flow. In our previous study on decaying158

homogeneous isotropic turbulence, we have found α = 0.5 could give correct159

spectrum and Taylor scale Reynolds number, see [31]. For internal flow, for160

instance turbulent pipe flow, our simulations showed that α should be tuned161

to as small as α = 0.005. Here we note that for all the simulations in this162

paper, unless otherwise stated, the EVM parameter α is equal to 0.5. Fur-163

thermore, in the current simulations the entropy viscosity is always smaller164

than the artificial viscosity corresponding to a first-order upwind-scheme.165

Given (un, pn, φ), we first explicitly integrate the nonlinear term N(u) =166

u · ∇u and A as follows:167

û−
∑J−1

q=0 αqu
n−q

∆t
=

J−1∑
q=0

βq[−N(u) + A]n−q, (7)

where αq and βq are the coefficients of the stiffly-stable integration scheme we168

employ with J = 2 the integration order. Note that the prescribed velocity169

boundary condition is also updated at this stage as follows,170

un+1 = −v (8)

where v is the velocity of the reference frame. In the next stage we solve the171

intermediate pressure field,172

∇2p∗ = ∇ · ( û

∆t
), (9)

with the following pressure boundary condition at all the velocity Dirichlet173

boundaries,174

∂p∗

∂n
=

J−1∑
q=0

[−N(u) + A− ν∇× (∇× u)]n−q · n, (10)
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where n is the unit outward normal vector at the boundaries.175

In the third stage of the method we compute the intermediate velocity176

u∗,177

(∇2 − γ0

ν∆t
)u∗ = − û

ν∆t
− νt
ν
∇2u∗,n+1, (11)

where γ0 is the scaled coefficient of the stiffly-stabled scheme, see [32, 20].178

u∗,n+1 =
∑J−1

q=0 βqu
n−q represents the J th order explicit approximation of179

un+1.180

If this is the first iteration, then the fourth stage to obtain the immersed181

body velocity is as follows,182

up = φVs, (12)

where Vs is the translational velocity of the immersed bluff-body in the non-183

inertial coordinate frame. If SPM is coupled with the Mapping method, then184

Vs is always zero!185

Next, we solve the extra pressure field pp due to the immersed bluff-body,186

∇2pp = ∇ · (γ0φ(up − u∗)

∆t
). (13)

Here the following is used as the boundary conditions for pp at any velocity187

Dirichlet boundary,188

∂pp
∂n

=
γ0φ(up − u∗)

∆t
· n. (14)

Finally, the total velocity field is updated as follows,189

γ0u
n+1 − γ0u

∗

∆t
=
γ0φ(up − u∗)

∆t
−∇pp. (15)

Note that through equations (7-15), the no-slip and no-penetration boundary190

conditions are fulfilled automatically, see [20].191

Since we are interested in simulating VIV, we also specify the structure192

response governed by a linear tensioned-beam dynamic equation:193

∂2y

∂t2
− ω2

c

∂2y

∂z2
+ ω2

b

∂4y

∂z4
=
F

m
. (16)

In equation 16, y and m represent displacement and mass on each cross-194

section of the immersed body, respectively; ωb and ωc are beam and cable195
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phase velocities, respectively. F is the hydrodynamic force exerted on the196

cross-section of the immersed body, and its value at step n+ 1 is defined as:197

F n+1 =

∫
Ω

[
φ(u∗ − up)

∆t
− ∆pp

γ0

] dx, (17)

where the subscript Ω represents the entire computational domain. It is198

noteworthy that equation 17 provides a very convenient way to obtain the199

hydrodynamic forces exerted on the immersed bluff-body, as this equation200

only involves a volume integral. We employ the Newmark integration scheme201

to solve the structure dynamic equation 16, the details of which could be202

found in [11, 12].203

The numerical schemes listed in equations (2-17) were implemented in204

the parallel code Nektar that employs Jacobi polynomial-based expansion205

basis in (x, y)-plane and Fourier expansion in the homogeneous direction (z206

direction); more details can be found in [33].207

2.2. The interface thickness parameter ξ and grid resolution208

SPM simulation results are quite sensitive to the interface thickness pa-209

rameter ξ. Since the first paper on SPM by Nakayama and Yamamoto [15],210

there have been several studies on the most effective value of ξ. Nakayama211

and Yamamoto [15] obtained the correct value of drag coefficient by choosing212

an integer factor of the grid size for ξ in their simulation of creeping flow at213

Re ≤ 20; Kang and Suh [22] and Romanó and Kuhlmann [25] adopted this214

approach in their SPM simulations. Luo et al. [20] extended the application215

of SPM to moderate Re (a few hundred) flows by using a semi-implicit high216

order splitting scheme and implementing it in the context of 3D spectral-217

element discretization. It was found that for the best accuracy, the following218

equation should be followed,219

2.76
√
ν∆t ≈ 2.07ξ, (18)

where the left-hand-side term represents the Stokes layer thickness, the220

right-hand-side term denotes the effective interface layer thickness, and ∆t221

is the time step. This formula works well for flow at Re ≤ 500, but the222

drawback is it implies that ξ is dependent on ∆t, which is not desirable223

in numerical simulations. More recently, Mohaghegh and Udaykumar [23]224

proposed another correlation to tune ξ and ∆t, which is225

ξ = κ∆x(0.20 + 1.7Re−0.4)(10CFL)(0.65+0.1/Re)Re−0.11, (19)
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where κ is a factor that is equal to 6 in three-dimensional simulation and 3226

in two-dimensional simulation, ∆x is the grid size and CFL is the advection227

time step limit. The above formula seems to work well for the cases in [23, 24],228

however, this formula is still mesh size or time step dependent.229

Here, based on our numerical experiments of SEF-SPM simulation of230

flow past a bluff-body (sphere and cylinder) at moderate and high Reynolds231

number (80 ≤ Re ≤ 104), we propose the following rule to determine the232

value ξ,233

ξ = ε δ2, (20)

where δ2 represents the momentum thickness and ε is a constant factor.234

Assuming that the curvature effects are not important, at the location of the235

sphere or cylinder where x = πD
4

(measured from the front stagnation point),236

Schlichting and Gersten [34] gives an estimate of the the smallest value of δ2237

as follows,238

δ2 =
0.664√

0.25Re · π
. (21)

Surprisingly, similar to factor κ in the correlation of [23], we have found the239

value of ε for two-dimensional simulation should be half of that of three-240

dimensional simulation; specifically, ε = 0.2 for two-dimensional simulation241

and ε = 0.4 for three-dimensional simulation give rise to accurate results.242

Having decided the value of ξ, the grid resolution could also be deter-243

mined. We note that SEF-SPM requires the indicator field φ to be suffi-244

ciently smooth. To this end, we found that if there is at least one supporting245

points (quadrature points) within the inter-facial region, the simulation is246

accurate and stable. For our SEF-SPM, we found the resolution requirement247

in (x, y)-plane is stricter than that in z direction. Specifically, the following248

two rules work well for our simulations of flow past a sphere and cylinder,249

LE
M
≤ ξ, (22)

250

Lz
P
≤ 6 ξ, (23)

where LE is the length of the element edge, Lz is the length of the domain251

in z direction, M is the order of spectral-element polynomial, and P is the252

number of Fourier planes, see figure 2.253
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3. Validation by a stationary and moving bluff-body254

In this section we will validate systematically SEF-SPM by simulating255

turbulent flow past bluff bodies and compare against available experimental256

results and direct numerical simulations (DNS).257

3.1. Flow past a stationary sphere258

To demonstrate that the SEF-SPM is able to produce accurate results259

of flow past a 3D shape immersed body, we have performed systematic sim-260

ulations of flow past a stationary sphere at Re = 200, 300 and 1 000. The261

numerical study of [35] shows that wake flow behind a stationary sphere262

is steady and axisymmetric at Re = 200, non-axisymmetric with steady263

‘double-thread’ like streamwise vortices at Re = 300, and leads to unsteady264

shedding vortex at Re = 1 000, i.e., the three values of Re correspond to265

three different wake patterns. Hence, this is a good testbed to validate the266

SEF-SPM on modeling flow past a 3D complex immersed-body.267

The mesh has 2676 conforming elements: 62 triangles and 2614 quadran-268

gles. The overall dimensions of the computational domain in terms of the269

diameter of the sphere d are: [−6.5 d, 25 d]× [−10 d, 10 d] with the center of270

the sphere located at (0, 0), while the length on span-wise direction (z) is 8 d.271

Figure 2(a) shows part of a two-dimensional section (x−y plane) of the com-272

putational domain and the corresponding mesh. Note that, as shown in the273

lower panel of figure 2(a), on one hand, in order to resolve the immersed body274

within the square [−0.55 d, 0.55 d]× [−0.55 d, 0.55 d] that contains the sphere,275

a structured mesh consisting of 34× 34 quadrilateral elements was used; on276

the other hand, to maintain an overall low number of elements triangles are277

used in order to transition from small quadrilateral elements to large quadri-278

lateral elements. In the refined square, the grid resolution is LE/M ≤ 0.011d279

in x−y plane and Lz/P ≤ 0.0625d on z direction. Concerning the boundary280

conditions, uniform velocity u = (1, 0, 0) is prescribed at the inlet boundary,281

periodicity is imposed at all side boundaries, while at the outlet boundary,282

∂u
∂n

= 0 for velocity and p = 0 for pressure are employed.283

We have performed a dozen of simulations to verify the correlation be-284

tween ξ and δ2 proposed in equation 20. Moreover, we examined the sen-285

sitivity of SEF-SPM results to mesh size and time step. Table 1 shows the286

values of M , P and ∆t used in each computation and the simulation results.287

Values of the drag coefficient CD and Strouhal number St from literature288
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(a) (b)

Figure 2: Examples of computational domains and hybrid meshes (triangles and quad-
rangles) for SEF-SPM simulations of flows past a sphere or a cylinder: (a) MESH1, a
structured mesh is embedded inside an unstructured hybrid mesh used for cases that the
immersed body is stationary and the Reynolds number is relatively low; (b) MESH2,
body-aligned mesh for case that the Reynolds number is high or the immersed body is
moving. The figures on the lower panel are enlargements of the area that contains the
immersed body. The sketch defines the length in equations 22.

are also presented in table 1. We see that the result of the SEF-SPM sim-289

ulation is sensitive to ξ, but as long as ξ is close to the most effective value290

obtained by equation 20, it leads to accurate results for the drag coefficient.291

SEF-SPM under-predicts the St by at most 8% compared with DNS when292

ξ has the optimal value. It is noteworthy that the under prediction of the293

vortex shedding frequency is not rare for a diffusive interface method, see294

Romanó and Kuhlmann [25]. Another observation from table 1 is that there295

is very minor quantitative variation as the time step ∆t is decreased, pro-296

vided the ξ follows equation 20. Furthermore, from the table, it can be seen297

that the variation of the simulation results due to mesh refinement both in298

(x− y) plane and z direction is negligible, which means our SEF-SPM is not299

sensitive to the mesh size under the condition that the resolution fulfills the300

requirement imposed by equation 22.301

Now let us turn to the wake structures of flow past a sphere at Re = 300302

and Re = 1 000, both of which are shown in figure 3. Here the vortices303

are visualized by the Q-criterion. In figure 3(a), we see that there is an304

11



Table 1: Flow past a stationary sphere: Mesh resolution, interface thickness and pressure
and force coefficients. δ2 represents the momentum thickness, CD = FD

0.5U2
∞AD

the drag

coefficient, St = fD D
U∞

the Strouhal number, where FD is the drag force, AD is the pro-
jection area of the sphere, fD is the frequency of the wake velocity on y direction, and
CD,F , CD,P correspond to the first and second terms on the right-hand-side of equation
17, respectively. P is the number of Fourier planes, M is the order of spectral-element
polynomial.

Re Method Mesh resolution δ2 ξ CD,F CD,P CD St

200

DNS Johnson and Patel [36]

0.053

- - - 0.8 -

SEF-
SPM

P = 128, M = 3, ∆t = 0.005 0.02 0.589 0.146 0.735 -
P = 128, M = 3, ∆t = 0.005 0.0212 0.628 0.164 0.792 -
P = 128, M = 3, ∆t = 0.003 0.0212 0.632 0.165 0.797 -
P = 128, M = 3, ∆t = 0.005 0.03 0.656 0.169 0.825 -

300

DNS [35]

0.043

- - - 0.67 0.136

SEF-
SPM

P = 128, M = 3, ∆t = 0.005 0.03 0.598 0.147 0.745 0.123
P = 128, M = 3, ∆t = 0.005 0.0172 0.527 0.127 0.654 0.125
P = 128, M = 4, ∆t = 0.003 0.0172 0.539 0.136 0.676 0.125
P = 256, M = 3, ∆t = 0.005 0.0172 0.531 0.132 0.663 0.126
P = 128, M = 4, ∆t = 0.003 0.015 0.504 0.138 0.640 0.126
P = 128, M = 4, ∆t = 0.003 0.01 0.481 0.122 0.603 0.126

1000
DNS [35]

0.024
- - - 0.48 0.195

SEF-
SPM

P = 128, M = 4, ∆t = 0.002 0.011 0.373 0.094 0.467 0.185
P = 256, M = 4, ∆t = 0.002 0.011 0.369 0.110 0.479 0.181

unsteady non-axisymmetric hairpin vortex detached from the sphere for flow305

at Re = 300. When the Reynolds number is increased to 1 000, as shown in306

figure 3(b), the shear layer is rolled-up and more small scale flow structures307

appear. The visualization of the vortices in figure 3(a) is very similar to308

the experimental images in Johnson and Patel [36], while that in figure 3(b)309

resembles the DNS result of Yang and Balaras [37], suggesting that SEF-SPM310

can accurately model flow past non-uniform 3D immersed-bodies.311

3.2. Flow past a stationary cylinder312

Here we validate the SEF-SPM for unsteady flow past a stationary cylin-313

der. We have carried out both two-dimensional simulations of laminar flow314

wake and three-dimensional simulations of turbulent wake for Reynolds num-315

ber up to 104. For all the simulations in this section, the computational316

domain is the same: [−6.5 d, 23.5 d] × [−10 d, 10 d] with the center of the317

cylinder located at (0, 0). Note that we have used two types of mesh: for318

the two-dimensional simulation at Re ≤ 500 as well as the three-dimensional319
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(a) Re = 300 (b) Re = 1 000

Figure 3: Flow past a sphere: instantaneous structure of hairpin vortices visualized by
iso-surfaces of Q = 0.1. The iso-surfaces are colored by pressure p: red, p > 0; blue,
p < 0. The pattern of (a) resembles the visualization presented in figure 33 in [36], while
the pattern in (b) resembles figure 3 in [37].

simulation at Re = 1 000 the mesh (MESH1, see the caption of figure 2)320

includes a structured sub-mesh that contains the cylinder, as shown in fig-321

ure 2(a). For the 3D simulations at Re = 4 000 and Re = 10 000, the mesh322

(MESH2, see the caption of figure 2) is generated so that the mesh boundaries323

are aligned with the surface of the cylinder but are not necessary body-fitted,324

as shown in figure 2 (b). MESH1 consists of 4813 elements: 200 triangles and325

4613 quadrangles, while MESH2 consists of 3008 elements: 56 triangles and326

2952 quadrangles. Using a meshing approach as in MESH2 we can greatly327

reduce the number of elements without involving adaptive mesh refinement328

technology. For the three-dimensional simulations at Re = 1 000, Re = 4 000329

and Re = 10 000, 32, 64 and 128 Fourier planes are used, respectively. The330

boundary conditions are the same as those of flow past a sphere.331

Table 2 presents the comparison between SEF-SPM solutions and those332

in the literature, for values of ξ obtained from equation 20. In general, we333

can see that SEF-SPM solutions match the corresponding reference values334

very well. Concerning the coefficients in table 2, the agreement between the335

current 2D SEF-SPM solution and our own DNS is almost perfect. The336

difference for drag coefficient CD between the current simulation from that337

of [38] is due to the effect of domain size. For 3D turbulent flow, the current338

SEF-SPM solutions are consistent with those in the literature. At Re = 1 000339

and Re = 4 000, the difference among current SEF-SPM solutions and those340

of DNS or LES is less than 4% for all the coefficients. However, for the length341

of the re-circulation bubble Lr at Re = 10 000, the difference is over 13%,342

and this may be due to the relatively small size of our domain as well as the343
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effect of parameter α of EVM , see the magnitude of Lr at different α in344

table A.4 in Appendix A.345

Table 2: Flow past a 2D and 3D stationary cylinder at different Re numbers: pressure
(−CP = p∞−p

0.5U∞
) and drag (CD) coefficients, Strouhal number (St), and length of the re-

circulation bubble (Lr). 2D and 3D DNS were performed in current study on the same
mesh as SEF-SPM.

Re Study δ2 ξ CD −CP St Lr

80

2D DNS
Henderson [38]

0.084

- 1.341 0.676 0.154 -

2D DNS - 1.452 0.657 0.156 1.65

2D SEF-SPM 0.0168 1.479 0.672 0.165 1.65

200

DNS
Henderson [38]

0.053

- 1.341 0.999 0.197 -

2D DNS - 1.403 0.979 0.201 0.85

2D SEF-SPM 0.0106 1.416 1.014 0.201 0.82

500

2D DNS
Henderson [38] 0.034

- 1.445 - 0.225 -

2D DNS - 1.494 1.408 0.228 0.51

2D SEF-SPM 0.007 1.502 1.433 0.224 0.50

1000

3D DNS
Evangelinos and Karniadakis [12]

0.024

- 1.019 0.843 0.202 -

3D DNS - 1.106 0.86 0.204 1.42

3D SEF-SPM 0.01 1.103 0.84 0.201 1.45

4000

3D DNS
Dong et al. [39]

0.012

- - 0.93 0.208 1.36

3D LES
Kravchenko and Moin [40]

- 1.04 0.94 0.207 1.40

3D SEF-SPM 0.005 1.08 0.92 0.206 1.43

104
3D DNS

Dong et al. [39] 0.008
- 1.143 1.129 0.203 0.82

3D SEF-SPM 0.003 1.151 1.024 0.197 0.98

Next let us examine the pressure coefficient Cp along the surface of the346

cylinder. Figures 4 (a) and (b) compare the SEF-SPM solution of Cp with347

those of DNS and experiments at Re = 500 and Re = 4 000. We observe that348

the SEF-SPM solution agrees with the corresponding DNS and experiments349
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very well. Figure 5 shows the comparison of the mean stream-wise velocity350

<u>
U∞

along the center line (y/d = 0) in the cylinder wake. Again, we could351

observe that the SEF-SPM solution matches well with that of DNS at Re =352

500 and the PIV experiments at Re = 3 900. Note that the slight shift353

between SEF-SPM solution of <u>
U∞

and that of PIV indicates that the PIV354

experiment at Re = 3 900 captured a longer recirculation bubble that is355

Lr = 1.67, see [41]; this is due to the relatively small domain size in our356

simulation.357

Figure 6 compares the <u>
U∞

among SEF-SPM solution, experimental mea-358

surements by [41] and Lourenco and Shih at three locations (x/d = 1.06, 1.54, 2.02)359

in the near wake. We can see that the SEF-SPM solution agrees well with360

the measurements of [41] for <u>
U∞

at all three locations.361

Figure 7 presents the cross-flow spectra at the near wake location x/d =362

0.54, y/d = 0.65 and further downstream location x/d = 3.14, y/d = 0.4.363

The spectra of DNS of [39] at the same locations are plotted together. Note364

that the current calculation of the spectra is based on averaging along the365

span-wise direction. The overall agreement between the current simulation366

and DNS is good, indicating that SEF-SPM could predict all the large scale367

motion at both locations. However, due to the dissipation by using α = 0.5,368

SEF-SPM yields a faster decay at the inertial subrange of the spectrum as369

expected. We examine the effect of α on the spectra at higher Reynolds370

number in Appendix A.371
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(a) Re = 500

(b) Re = 4 000

Figure 4: Flow past a cylinder: pressure coefficients along the surface of the cylinder.
(a) Re = 500, 2D flow: blue solid line, current DNS; red dashed line, SEF-SPM. (b)
Re = 4000, 3D flow: red line, SEF-SPM; blue circles, experimental measurements of
Norberg [43] at Re = 4 020; blue dashed line, LES of Kravchenko and Moin [40].
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(a) Re = 500

(b) Re = 4 000

Figure 5: Flow past a stationary cylinder: mean stream-wise velocity in the wake of the
cylinder. (a): blue solid line, current DNS; red dashed line, SEF-SPM solution. (b): red
line, SEF-SPM solution; blue circles, PIV measurements at Re = 3 900 of Parnaudeau
et al. [41].
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Figure 6: Flow past a stationary cylinder: mean stream-wise velocity at three locations
in the wake of the cylinder at Re = 4 000. Red line, SEF-SPM solution; blue circles, PIV
measurements at Re = 3 900 of Parnaudeau et al. [41]; black crosses, measurements by
Lourenco and Shih.
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(a)

(b)

Figure 7: Flow past a stationary cylinder: cross-flow velocity spectra at Re = 4 000. (a)
point x = 0.54 and y = 0.65; (b) point x = 3.14 and y = 0.4. Red lines are SEF-SPM
solutions, blue dashed lines are DNS of Dong et al. [39].
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(a) (b)

Figure 8: Flow past a self-excited rigidly moving cylinder at Re = 1 000: (a) cross flow
displacement versus time, (b) span-averaged lift coefficient versus cross-flow displacement.
It is noteworthy that both figures resemble figure 3(a) and figure 3(b) in [12].

3.3. Rigidly moving cylinder372

Here, we will validate SEF-SPM by simulation of flow past a self-excited373

rigidly moving cylinder at Red = 1 000. The computational domain along374

the x direction is the same as that of stationary cylinder, but along the y375

direction it is expanded to [−20d, 20d]. The domain consists of 3072 elements:376

56 triangles and 3016 quadrangles. The mesh is similar to MESH2 (see the377

caption of figure 2)). It is worth mentioning that here SEF-SPM employs378

the Mapping method that can account for boundary deformations on a fixed379

mesh. The parameters of the structure dynamic equation 16 are the same380

as those used in [12]: m = 2, ωc = 0. and ωb = 2π fN , where fN = 0.238 is381

the natural frequency of the rigid cylinder. Figure 8(a) shows the harmonic382

motion induced by the periodic vortex shedding. We observe that the SEF-383

SPM simulation produces a maximum amplitude response y/d ≈ 0.73 that384

is slightly smaller than the corresponding value y/d ≈ 0.74 in [12]. Same385

as that in [12], our simulation also shows that the motion is synchronized386

(lock-in) with the span-averaged lift coefficient as shown in figure 8(b). As387

regards the response frequency, the SEF-SPM result of the non-dimensional388

structure frequency (obtained from the spectrum of cross-flow motion) is389

f d/U∞ = 0.186 and vortex shedding frequency (obtained from cross-flow390

velocity in the wake at x/d = 3, y/d = 0.) is f d/U∞ = 0.192, both of which391

are less than 6% smaller compared with those of [12].392
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4. Applications to flow past a dual-step cylinder393

Having validated the SEF-SPM both for the stationary and moving immersed-394

bodies, here we apply it to simulate flow past a stationary and rigidly moving395

dual-step cylinder, which is comprised of a large diameter cylinder (D) at396

the midspan of a small cylinder (d). We chose this case given existing PIV397

measurements at 1 000 ≤ Red ≤ 2 500 published in [44, 45, 46] as well as398

the numerical study at Red = 150 presented in [47]. The measurements re-399

vealed a strong dependence of the vortex shedding on the aspect ratio L/D,400

diameter ratio D/d and Reynolds number, where L is the length of the large401

cylinder along the span-wise direction. Moreover, the measurements also re-402

vealed two distinct vortex shedding frequencies, one due to the large cylinder403

and the other one due to the small cylinder. However, in the aforementioned404

studies, the dual-step cylinder was stationary and no detailed information of405

the hydrodynamic force was presented. To the best of our knowledge, the406

VIV characteristics of the dual-step cylinder, which is a simplified model of407

the buoyancy-module that is often employed in the deep-sea oil industry, has408

not been investigated thoroughly. Hence, the simulation of VIV of dual-step409

cylinder we present here will not only provide a further validation of the410

SEF-SPM but will also provide new physical insight into the vibration of the411

buoyancy-module in [8, 9].412

4.1. Stationary dual-step cylinder413

The experimental and simulation models are shown in figure 9. Note that414

various models with different L/D, D/d and Reynolds number were tested in415

experiments but in our simulation the focus is on a model corresponding to416

L/D = 1, D/d = 2 and Red = 1 000. As regards the discontinuity in diam-417

eter, one notable difference between the experimental model and simulation418

model is that the radius of our simulation model (r) is varied gradually from419

the smaller one to larger one as follows,420

r =
d

2
+
D − d

2
[tanh( sign(z′)

z − Z ′

δ
) + 1], (24)

where z is the coordinate along the span-wise direction, with the parameter421

δ = 0.2 d controlling the steepness of the r profile; sign(·) is the sign function,422

z′ and Z ′ are defined as z′ = z − Lz
2

and Z ′ = Lz−sign(z′)L
2

, respectively. A423

smoothed variation of the radius is required for SEF-SPM due to the Fourier424

discretization along the span. However, we will demonstrate later that the425
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(a) (b)

Figure 9: Sketch of the dual-step cylinder under investigation. Figure (a) is the experi-
mental model of [46] while figure (b) is the current simulation model. d and D represent
the small and large diameter, respectively. Ld and LD are the length of small and large
cylinder along the span-wise direction, respectively.

impact of the gradual-change of the radius is negligible compared with the426

experimental measurements that was carried out on a steep-change cylinder,427

in terms of the mean flow characteristics. Another difference between the428

aforementioned experimental works and our simulations is the aspect ratio429

Ld/d. In the experiment, Ld/d was large enough to make the small cylinder430

behave similar to an ‘infinite’ cylinder, e.g., as shown in the table 3, Ld/d >431

15 [45]. For our SEF-SPM simulation, as shown in section 3, the resolution432

along the span-wise direction is restricted by the variation of the radius of the433

cylinder, therefore a larger aspect ratio of the small cylinder requires many434

more Fourier modes. Fortunately, as suggested in [48] the vortex shedding435

from a uniform cylinder mounted between end-plates was close to that from436

an ‘infinite’ cylinder when the aspect ratio was larger than 7, thus we have437

used a model with Ld/d = 8 in our simulations. Indeed, we have first studied438

the impact of Ld/d, the results of which will be discussed in the following.439

For the simulations of this section, the computational domain has as a440

size of [−10 d, 30 d]× [−20 d, 20 d] with the center of the cylinders located at441

(0, 0). The mesh has the MESH2 pattern similar to figure 2 (b), consisting442

of 84 triangles and 3 735 quadrangles. On the (x − y) plane we employed443

third order Jacobi polynomial (M = 3) while along the span-wise direction,444

Lz = 18 d, we have used 384 Fourier planes. First, we examine the impact445

of Ld/d. From table 3, we observe that the vortex shedding frequencies StD,446
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Std and drag coefficient Cd vary less than 1% as Ld/d is increased from 8 to447

9. Moreover, for the case of Ld/d = 8, the difference between the SEF-SPM448

solution from that of the experimental measurements in [45] is less than 2%449

for all the coefficients presented in table 3. In the table, we could also observe450

that the span-averaged r.m.s. value of lift coefficient CL is sensitive to Ld/d451

when Ld/d < 7. However, we can also find in figure 12b that at Ld/d = 8452

the predicted value CL is approaching that of a uniform cylinder. Overall,453

we can conclude that Ld/d = 8 is adequate to eliminate the end-plates effect.454

Table 3: Flow past a stationary dual-step cylinder at Red = 1 000: Strouhal number
StD = fD d/U∞, where fD is the vortex shedding frequency due to the large cylinder;
Strouhal number Std = fd d/U∞, where fd is vortex shedding frequency due to the small
cylinder; Cd is span averaged cross-sectional drag coefficient defined as Fd

1
2 U2

∞d
; CL is span

averaged cross-sectional root mean square value of lift coefficient defined as FL
1
2 U2

∞d
, where

Fd and FL are the drag force and lift force on each cross-section, respectively.

Red Study Ld/d StD Std Cd CL

1 050 Morton and Yarusevych [45] > 15 0.13 0.205 - -

1 000
SEF-
SPM

5 0.135 0.196 1.06 0.027

8 0.133 0.201 1.03 0.038

9 0.131 0.202 1.02 0.039

11 0.132 0.201 1.03 0.043

The instantaneous wake topology of the stationary dual-step cylinder at455

Red = 1 000 is illustrated in figure 10. The pattern of the vortices resembles456

the experimental visualization of hydrogen bubble presented by Morton and457

Yarusevych [45]. At the spanwise positions that |z/d| > 7, the vortices shed458

from the small cylinder are almost parallel to the cylinder axis, while at459

the spanwise positions that |z/d| < 7, the vortices from the small cylinder460

seem to be deformed due to the vortices from the large cylinder; no hairpin-461

like vortices could be observed in the wake behind the large cylinder. The462

mean stream-wise velocity on the y/d = 0 plane is shown in figure 11. In463

general, the wake pattern looks very similar to the corresponding PIV image464

presented in figure 2(b) of [46]. From figure 11, we observe that there is a465

notable re-circulation bubble both behind the large and small cylinders. In466

our simulation the re-circulation bubble behind the large cylinder extends467
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Figure 10: Flow past a stationary dual-step cylinder at Red = 1 000: Instantaneous iso-
surfaces of Q = 1. Red: ωz > 0; cyan: ωz < 0. Note we have shifted z/d = 0 to the
middle of the large cylinder.

about 3.5d while in the PIV experiments by Morton et al. [46] it extends468

approximately 4d. Figure 12 exhibits the time-averaged Cd and CL along the469

cylinder span: blue lines Ld/d = 12; red lines Ld/d = 8. The magnitude of470

Cd on the large cylinder is lower than that on small cylinder. We also observe471

that Cd is symmetric with respect to the midplane (z/d = 0). Starting from472

one end of the cylinder (|z/d| > 9), the magnitude of Cd has a constant473

value around 1.08 until the position |z/d| ≈ 6. Subsequently, in the range474

1.75 ≥ |z/d| ≥ 3, the magnitude of Cd deceases rapidly and reaches its475

minimum value 0.575 at z/d = 1.75. However, from z/d = 1.75, which476

is also the starting point of the large cylinder, to z/d = 0 the magnitude477

of Cd increases to 0.84. The span-averaged Cd is about 9% smaller than478

that of a uniform cylinder. It is noteworthy that drag reduction due to479
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Figure 11: Flow past a stationary dual-step cylinder at Red = 1 000: Contours of mean
stream-wise velocity u/U∞ on plane y = 0. Note that our simulation result of u/U∞
resembles the PIV measurements shown in figure 2(b) of [46].

step-cylinder was also reported in [49], who observed 15% reduction in their480

experimental studies at ReD ≥ 20 000. In figure 12 (b), the time-averaged481

CL looks nearly symmetric with respect to the midplane. The magnitude482

of time-averaged CL is approaching to the uniform cylinder value only in a483

range of |z/d| ≥ 8. It decreases to a minimum 0.026 at |z/d| ≈ 3.2. In484

the range of 1.4 ≤ |z/d| ≤ 3.2, the magnitude increases to 0.045, while in485

the subsequent small range 0.8 < |z/d| ≤ 1.4, it decreases again to 0.042.486

Finally, in the range |z/d| ≤ 0.8, the magnitude reaches 0.052.487
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(a)

(b)

Figure 12: Flow past a stationary dual-step cylinder at Red = 1 000: figure (a) and figure
(b) are the time-averaged drag and lift coefficient, respectively. Red line represents the
result of Ld/d = 8, while blue line represents the result of Ld/d = 11. Green dashed
horizontal line in figure (a) represents our simulation result of CD of uniform cylinder at
Red = 1, 000, while green dashed horizontal line in figure (b) represents CL of uniform
cylinder at Red = 1, 000 from [3]. Black lines in figure (a) and (b) represent the profile of
the radius of the dual-step cylinder along the span (rescaled accordingly). Note we have
shifted z/d = 0 to the middle of the large cylinder.
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4.2. Rigidly moving dual-step cylinder488

The simulations of the stationary dual-step cylinder show that there are489

two frequencies due to the different diameters. In practical offshore appli-490

cation, one of the problem that has been experimentally investigated [50] is491

which frequency dominates the excitation of the vibration? To address this492

question, in this section, we study an elastically mounted dual-step cylinder493

at Red = 1 000. For all the simulations herein, the density of the entire494

dual-step cylinder is assumed to be uniform; the mass per unit length of495

the small cylinder is m = 2, which gives rise to the real mass ratio of the496

small cylinder be m · 4
π
≈ 2.55. The response of the dual-step cylinder is also497

related to the parameters of the structure. In equation 16, we set ωc = 0,498

then we systematically tuned ωb = 2π fN , where 0.094 ≤ fN ≤ 0.295 is499

the structure natural frequency. Note that according to [14], the modified500

natural frequency f ∗N is equal to fN
√

m
m+π

4
Cm

, where Cm is the added mass501

coefficient that is taken equal to 1. As a result, the corresponding f ∗N range502

is [0.08, 0.25], which leads to the reduced velocity U∗ = U∞
f∗N d

range [4, 12.5].503

The simulation results of the maximum response amplitude are presented in504

figure 13. We see that the overall pattern of the response curve with respect505

to the reduced velocity U∗ is quite similar to that of a bare cylinder. One506

notable difference is that the maximum non-dimensional amplitude in fig-507

ure 13 is about 0.68, which is smaller than the predicted value 0.73 of bare508

cylinder, see subsection 3.3. The results of response frequencies and vortex509

shedding frequencies of the rigidly moving dual-step cylinder are shown in510

figure 14. We can clearly see that this response is divided into three regimes:511

A, B and C. In regime A, where U∗ ≤ 5.90, the vortex shedding frequency512

of the large cylinder is different from that of the small one, and the dual-513

step cylinder is locked in to the vortex shedding of the small cylinder. In514

regime B, the response frequency is more complicated: at U∗ = 6.94, the515

vortex shedding frequency of the large and small cylinders is the same, but516

the vibrating frequency is slightly higher than the vortex shedding frequency;517

in the sub-regime 7.82 ≤ U∗ ≤ 8.74 , both the vortex shedding frequencies518

and vibrating frequency have the same value. Finally, in regime C, e.g. at519

U∗ = 10.73 , the vortex shedding frequency of the large cylinder and that of520

the small cylinder is different, but now the dual-step cylinder is locked in to521

the vortex shedding of the large cylinder.522

In figure 15 we present four power spectral densities (PSD) of the cross-523

flow velocity time histories that were recorded at two positions: blue line is524
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at x/d = 3, y/d = 0, z/d = 4.5 and red line at x/d = 3, y/d = 0, z/d = 9.525

The former position is behind the small cylinder while the later is behind the526

large cylinder. In figure 15(a), U∗ = 4.0 is in regime A where the system is527

locked in to the wake of small cylinder; the primary peak of the spectrum of528

the large cylinder wake is apparently far from that of small cylinder wake.529

Moreover, we can see that the peak of spectrum of the large cylinder wake is530

stronger than that of the small cylinder wake, but the system is still locked in531

to the vortices of the small cylinder. This is because the reduced velocity of532

the peak frequency of the large cylinder wake based on the large diameter D533

is 2 (U∗ = U∞
f∗N D

= 2), which is very close to the lower bound of the response534

regimes in which VIV occurs [51], thus the system of the dual-step cylinder535

cannot lock in to the large cylinder wake. Increasing the value of U∗ to 6.94536

in regime B, the magnitude of the peak of the spectrum of the small cylinder537

wake is much lower than that of the previous case, also the spectrum of the538

large cylinder wake doesn’t exhibit any primary peaks. The weak peak of539

the spectra reveals the fact that the system is locked in to a frequency that540

is a little bit higher than the vortex shedding frequencies, i.e. the vibration541

is not synchronized with the vortex shedding. Further increasing U∗ to 7.82542

but still in regime B, the two primary peaks coincide and the system is locked543

in to this peak, as shown in figure 15(c). In figure 15(d), U∗ = 10.73 that544

is in regime C, and the primary peak of spectrum of the large cylinder wake545

is again shifted away from that of the small cylinder. Note that U∗ = 10.73546

is close to the upper bound of the response regime, but the corresponding547

reduced velocity based on the large diameter U∗D = 5.37, which is in the548

middle of the response regimes, thus the system of the dual-step cylinder549

could be locked in to the large cylinder vortex shedding. Note that the550

overall length of the large cylinder is quite small (LD/Ld = 1
9
, see figure 9 ),551

thus it is expected that the response amplitude is smaller than that of the552

case when the system is locked in to the wake of small cylinder. Moreover,553

now the secondary peak appears in the spectrum of the small cylinder wake554

that is induced by the vibration.555

In summary, the main finding from the simulations presented in this sec-556

tion is that the dual-step cylinder could either vibrate at the vortex shedding557

frequency of the large cylinder or the small cylinder, providing that the cor-558

responding reduced velocity based on its own diameter is in the response559

regimes that is characterized by Khalak and Williamson [51] for uniform560

rigid cylinder. In particular, for small values of the reduced velocity, the sys-561
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Figure 13: Flow past a self-excited rigidly moving dual-step cylinder at Red = 1 000:

maximum response amplitude varies with the reduced velocity. f∗N = fN
√

m
m+π

4 Cm
is the

modified natural frequency that takes into account the added mass.

tem locks in to the small cylinder frequency. For intermediate values of the562

reduced velocity, the system locks in to a frequency close to the frequency of563

the large cylinder. For large values of the reduced velocity, the system locks564

in to a modified frequency, which is below the frequency of the large cylinder565

and far from the frequency of the small cylinder.566
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Figure 14: Flow past a self-excited rigidly moving dual-step cylinder at Red = 1 000:
response frequency and dominant vortex shedding frequencies. Black solid triangle rep-
resents the frequency of vibration, blue blank circle is the frequency of vortex shedding
from small cylinder, red cross is the frequency of vortex shedding from large cylinder. The
pink horizontal dashed lines represent the corresponding vortex shedding frequencies of
the stationary small and large cylinders; the green vertical lines divides the plot into three
regimes: A, B and C.
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(a) U∗ = 4.00 (b) U∗ = 6.94

(c) U∗ = 7.82 (d) U∗ = 10.73

Figure 15: Flow past a self-excited rigidly moving dual-step cylinder at Red = 1 000:
power spectral density of cross-flow velocity at two positions of in near wake. Red line
is behind the large cylinder at x/d = 3, y/d = 0, z/d = 4.5, blue line is behind the small
cylinder at x/d = 3, y/d = 0, z/d = 2.
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5. Summary567

We have presented a robust and flexible method, the spectral-element568

/Fourier Smoothed Profile Method (SEF-SPM), for simulating VIV prob-569

lems involving industrial-complexity turbulent flows. Our method has the570

following attractive properties:571

• It is a fast solver for simulating flow past a long riser with complex exter-572

nal surface, e.g., buoyancy module or strakes. SEF-SPM creates a smoothed573

indicator field by employing a hyperbolic tangent function accounting for the574

presence of solid-body, which makes Fourier expansion be applicable, hence575

we can use FFTs.576

• It is a robust solver in terms of simulating turbulent flow at high577

Reynolds number. The entropy-viscosity method (EVM) developed in this578

paper could efficiently stabilize the simulation that is often under-resolved.579

• It is based on a new correlation for the interface thickness parameter ξ580

that determines the grid resolution. It has a simple linear relationship with581

the momentum thickness δ2, and it can be resolved with 2 to 3 grid points.582

This new correlation is physics-based and is independent of the mesh size583

and time step. The accuracy of this method is validated by simulation of584

turbulent flow past a cylinder at Reynolds number up to 10 000.585

• It employs a Coordinate Transformation(Mapping method) that signif-586

icantly reduces the number of mesh cells for VIV problems.587

The SEF-SPM simulation of flow past a self-excited rigidly moving dual-588

step cylinder at Red = 1 000 shows that the cylinder could either vibrate589

at the vortex shedding frequency of the large cylinder or the small cylin-590

der. Currently, our method is being applied to predict the response of a591

flexible riser with multiple buoyancy modules, in conjunction with ongoing592

experimental work in [8, 9].593
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Appendix A. The study of parameter of α599

In equations (6) and (5), R(u) and E(u) have the units that are m2

sec3
600

and m2

sec2
, which are same as that of the turbulence dissipation rate ε and601

turbulence kinetic energy k, respectively, therefore intuitively, we propose602

the following approximation:603

‖RK
ijm(u)‖L∞(K)

‖EK
ijm(u)− Ē(u)‖L∞(Ω)

≈ Cx
ε

k
, (A.1)

where Cx is a constant. Then by substituting equation (A.1) into equation604

(4), and assuming that the entropy-viscosity obtained from equation (4) is605

equal to the eddy viscosity of the Smagorinsky model, we obtain:606

αCx
ε

k
(δK)2 ≈ (CsδK)2S. (A.2)

In the above equation, the right-hand-side is the eddy-viscosity of Smagorin-607

sky model, where S = (2Sij Sij) is defined based on the rate-of-strain tensor,608

and609

Cs =
1

π

( 2

3CK

)3/4
(A.3)

is the Smagorinsky coefficient, where CK = 1.5 is the Kolmogorov constant.610

Equation (A.2) could be simplified as:611

α ≈ (Cs)
2

Cx
S
k

ε
. (A.4)

Furthermore, [52] (page 589) gives an estimation that612 〈
S

2〉1/2
k

ε
≈ π2/3(

3

2
CK)1/2(

∆

L
)−2/3, (A.5)

where ∆ is a filter width and L = k3/2/ε is the flow lengthscale. Note that613

in above equation we assume
〈
S

2〉1/2 ≈ S. By substituting equations (A.3),614

(A.5) into equation (A.4), we obtain,615

α = (
3

2
CKCx)

−1π−4/3(
∆

L
)−2/3. (A.6)

In equation A.6, the constants ∆
L

and Cx need to estimate.616
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First of all, [52] (page 187) writes that the lengthscale splitting the inertial617

subrange and energy-containing range is defined as LEI = 1
6
L. Moreover, [52]618

(page 560) recommends that for LES, the filter width ∆ should be fine enough619

to resolve 80% of the energy, which corresponds to the following estimation620

[52] (page 577),621

∆

L
=

1

12
. (A.7)

Next, in particular, if we assume Cx = 1, we could obtain a specific value622

for α:623

α ≈ 0.5. (A.8)

Here we study the impact of parameter α by simulating flow past a sta-624

tionary cylinder at Re = 10 000. Table A.4 shows that −Cp and CD increase625

as α increases, and the length of re-circulation bubble behind the cylinder626

decreases. It is noteworthy that the results at α = 0.5 agree better with627

that of DNS of [39]. Examining the distribution of Cp on the surface of628

the cylinder in figure A.16, we can observe that the separation angle barely629

changed when α is changed from 0.5 to 0.05, but there is notable decreasing630

of Cp behind the separation point. Figure A.17 presents the cross-flow veloc-631

ity spectrum at a location that x/d = 3.0, y/d = 0.0. It could be observed632

that both simulations at α = 0.5 and α = 0.05 could accurately capture633

the primary and secondary peaks, but as expected, the spectrum at α = 0.5634

exhibits more diffusion than that of α = 0.05.635

To summarize, for EVM simulation of turbulent flow past a cylinder,636

α = 0.5 leads to best prediction in terms of mean flow characteristics.637
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Table A.4: Flow past a stationary cylinder at Re = 10 000 : pressure (−CP ) and drag
(CD) coefficients, Strouhal number (St), and length of the separation bubble (Lr). DNS
values are from [39]

Re study α p CD −CP St Lr

104
SEF-
SPM

0.5
64 1.239 1.196 0.196 0.93
128 1.151 1.024 0.196 0.98

0.25
64 1.292 1.251 0.197 0.82
128 1.209 1.086 0.198 0.88

0.05
64 1.410 1.379 0.197 0.65
128 1.324 1.278 0.199 0.78

DNS - 128 1.143 1.129 0.203 0.82

Figure A.16: Flow past a stationary cylinder at Re = 10 000: pressure coefficient along
the surface of the cylinder. Red line, SEF-SPM solution at α = 0.5; green line, SEF-SPM
solution at α = 0.05; blue line, SEF-SPM solution at α = 0.05; black circles, experimental
measurements of Norberg [43] at Re = 8 000; black dashed line, high resolution DNS of
Dong et al. [39] at Re = 10 000. Note here SEF-SPM employs 64 Fourier planes.
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Figure A.17: Flow past a stationary cylinder at Re = 10 000: cross-flow velocity spectra
at x/d = 3.0, y/d = 0. Red line, SEF-SPM solution at α = 0.5; green line SEF-SPM
solution at α = 0.25; blue line, SEF-SPM solution at α = 0.05. black dashed line is DNS
of Dong et al. [39] at the point that x/d = 3.01, y/d = 0.38; black dotted line is the − 5

3
power law. Note here SEF-SPM employs 64 Fourier planes.
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