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Abstract The sound of crashing waves, the roar of fast-
moving cars – sound conveys important information about
the objects in our surroundings. In this work, we show that
ambient sounds can be used as a supervisory signal for learn-
ing visual models. To demonstrate this, we train a convolu-
tional neural network to predict a statistical summary of the
sound associated with a video frame. We show that, through
this process, the network learns a representation that con-
veys information about objects and scenes. We evaluate this
representation on several recognition tasks, finding that its
performance is comparable to that of other state-of-the-art
unsupervised learning methods. Finally, we show through
visualizations that the network learns units that are selec-
tive to objects that are often associated with characteris-
tic sounds. This paper extends an earlier conference paper,
Owens et al (2016b), with additional experiments and dis-
cussion.
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1 Introduction

Sound conveys important information about the world around
us – the bustle of a café tells us that there are many people
nearby, while the low-pitched roar of engine noise tells us to
watch for fast-moving cars (Gaver 1993). Although sound is
in some cases complementary to visual information, such as
when we listen to something out of view, vision and hear-
ing are often informative about the same structures in the
world. Here we propose that as a consequence of these cor-
relations, concurrent visual and sound information provide
a rich training signal that can be used to learn useful repre-
sentations of the visual world.

In particular, an algorithm trained to predict the sounds
that occur within a visual scene might be expected to learn
about objects and scene elements that are associated with
salient and distinctive noises, such as people, cars, and flow-
ing water (Figure 1). Such an algorithm might also learn
to associate visual scenes with the ambient sound textures
(McDermott and Simoncelli 2011) that occur within them.
It might, for example, associate the sound of wind with out-
door scenes, and the buzz of refrigerators with indoor scenes.

Although human annotations are indisputably useful for
learning, they are expensive to collect. The correspondence
between ambient sounds and video is, by contrast, ubiqui-
tous and free. While there has been much work on learning
from unlabeled image data (Doersch et al 2015; Wang and
Gupta 2015; Le et al 2012), an audio signal may provide in-
formation that is largely orthogonal to that available in im-
ages alone – information about semantics, events, and me-
chanics are all readily available from sound (Gaver 1993).

One challenge in utilizing audio-visual input is that the
sounds we hear are only loosely associated with what we
see. Sound-producing objects often lie outside of our visual
field, and objects that are capable of producing characteristic
sounds – barking dogs, ringing phones – do not always do
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Image space
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(a) Videos with similar audio tracks (b) Audio-visual structures

Fig. 1: Predicting audio from images requires an algorithm to generalize over a variety of visual transformations. During the
learning process, a sound-prediction algorithm will be forced to explain why the images in (a) are closely clustered in audio
feature space. This requires detecting the water in the scene (or its close correlates, such as sand), while ignoring variations
in appearance – the scene illumination, the angle of the camera, the presence of people in frame – that do not affect the
sound. A sound-prediction model thus must (b) learn to recognize structures that appear in both modalities.

so. A priori it is thus not obvious what might be achieved by
predicting sound from images.

In this work, we show that a model trained to predict
held-out sound from video frames learns a visual representa-
tion that conveys semantically meaningful information. We
formulate our sound-prediction task as a classification prob-
lem, in which we train a convolutional neural network (CNN)
to predict a statistical summary of the sound that occurred at
the time a video frame was recorded. We then validate that
the learned representation contains significant information
about objects and scenes.

We do this in two ways: first, we show that the image
features that we learn through our sound-prediction task can
be used for object and scene recognition. On these tasks,
our features obtain performance that is competitive with that
of state-of-the-art unsupervised and self-supervised learn-
ing methods. Second, we show that the intermediate layers
of our CNN are highly selective for objects. This augments
recent work (Zhou et al 2015) showing that object detec-
tors “emerge” in a CNN’s internal representation when it is
trained to recognize scenes. As in the scene recognition task,
object detectors emerge inside of our sound-prediction net-
work. However, our model learns these detectors from an
unlabeled audio-visual signal, without any explicit human
annotation.

In this paper, we: (1) present a model based on visual
CNNs and sound textures (McDermott and Simoncelli 2011)
that predicts a video frame’s held-out sound; (2) demon-
strate that the CNN learns units in its convolutional layers
that are selective for objects, extending the methodology of
Zhou et al (2015); (3) validate the effectiveness of sound-
based supervision by using the learned representation for
object- and scene-recognition tasks. These results suggest
that sound data, which is available in abundance from con-

sumer videos, provides a useful training signal for visual
learning.

2 Related Work

We take inspiration from work in psychology, such as Gaver’s
Everyday Listening (Gaver 1993), that studies the ways that
humans learn about objects and events using sound. In this
spirit, we would like to study the situations where sound tells
us about visual objects and scenes. Work in auditory scene
analysis (Ellis et al 2011; Eronen et al 2006; Lee et al 2010)
meanwhile has provided computational methods for recog-
nizing structures in audio streams. Following this work, we
use a sound representation (McDermott and Simoncelli 2011)
that has been applied to sound recognition (Ellis et al 2011)
and synthesis tasks (McDermott and Simoncelli 2011).

The idea of learning from paired audio-visual signals
has been studied extensively in cognitive science (Smith and
Gasser 2005), and early work introduced computational mod-
els for these ideas. Particularly relevant is the seminal work
of de Sa (de Sa 1994a,b), which introduced a self-supervised
learning algorithm for jointly training audio and visual net-
works. Their method works on the principle of minimizing
disagreement: they maintain a codebook (represented as a
small neural network) that maps audio and visual examples
to a label. They then iteratively refine the codebooks until
they assign the same labels to each exemplar.

More recently, researchers have proposed many unsu-
pervised learning methods that learn visual representations
by solving prediction tasks (sometimes known as pretext
tasks) for which the held-out prediction target is derived
from a natural signal in the world, rather than from human
annotations. This style of learning has been called self super-
vision (de Sa 1994b) or “natural” supervision (Isola 2015).
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With these methods, the supervisory signal may come from
video, for example by having the algorithm estimate cam-
era motion (Agrawal et al 2015; Jayaraman and Grauman
2015) or track content across frames (Wang and Gupta 2015;
Mobahi et al 2009; Goroshin et al 2015). There are also
methods that learn from static images, for example by pre-
dicting the relative location of image patches (Doersch et al
2015; Isola et al 2016), or by learning invariance to sim-
ple geometric and photometric transformations (Dosovitskiy
et al 2014). The assumption behind these methods is that, in
order to solve the pretext task, the model will have to learn
about semantics, and therefore through this process it will
learn features that are broadly useful.

While we share with this work the high-level goal of
learning image representations, and we use a similar tech-
nical approach, our work differs in significant ways. In con-
trast to methods whose supervisory signal comes entirely
from the imagery itself, ours comes from a modality (sound)
that is complementary to vision. This is advantageous be-
cause sound is known to be a rich source of information
about objects and scenes (Gaver 1993; Ellis et al 2011),
and because it is largely invariant to visual transformations,
such as lighting, scene composition, and viewing angle (Fig-
ure 1). Predicting sound from images thus requires some de-
gree of generalization to visual transformations. Moreover,
our supervision task is based on solving a straightforward
classification problem, which allows us to use a network de-
sign that closely resembles those used in object and scene
recognition (rather than, for example, the siamese-style net-
works used in video methods).

Our approach is closely related to recent audio-visual
work (Owens et al 2016a) that predicts soundtracks for videos
that show a person striking objects with a drumstick. A key
feature of this work is that the sounds are “visually indi-
cated” by actions in video – a situation that has also been
considered in other contexts, such as in the task of visu-
ally localizing a sound source (Hershey and Movellan 1999;
Kidron et al 2005; Fisher III et al 2000) or in evaluating
the synchronization between the two modalities (Slaney and
Covell 2000). In the natural videos that we use, however,
the visual motion that produces the sound may not be easily
visible, and sound sources are also frequently out of frame.
Also, in contrast to other recent work in multi-modal repre-
sentation learning (Ngiam et al 2011; Srivastava and Salakhut-
dinov 2012; Andrew et al 2013), our technical approach is
based on solving a self-supervised classification problem
(rather than fitting a generative model or autoencoder), and
our goal is to learn visual representations that are generally
useful for object recognition tasks.

This work was originally introduced in a conference pa-
per (Owens et al 2016b). In this expanded version, we in-
clude additional results. In particular: (1) a comparison be-
tween an audio representation learned from unlabeled data

and “ground-truth” human-annotated audio labels (Section 6),
(2) additional visualizations using class activation maps (Sec-
tion 4.1), and (3) an expanded comparison of our learned
image features (Section 5).

Since our original publication, researchers have proposed
many interesting audio-visual learning methods. In partic-
ular, Arandjelović and Zisserman (2017) solved a similar
unsupervised learning problem, but instead of using hand-
crafted audio features, they jointly learned audio and vi-
sual CNNs. To do this, they used an embedding-like model,
whereby they trained visual and audio CNNs to predict whether
a given pair of audio and visual examples were sampled
from the same video. Likewise, Aytar et al (2016) introduced
a method for transferring object labels from visual CNNs to
audio CNNs. To do this, they used a form of cross-modal
distillation (Gupta et al 2016), and trained an audio CNN to
predict which semantic labels a pre-trained visual CNN will
assign to a paired audio-visual example.

Researchers have also developed methods for learning
from multiple self-supervision tasks (Doersch and Zisser-
man 2017), which could potentially be used to combined
audio-based training with other methods. They have also de-
veloped a variety of new, successful self-supervised learning
approaches, such as methods based on colorizing grayscale
images (Zhang et al 2016, 2017) and predicting how objects
move (Pathak et al 2017). We include additional compar-
isons with these new methods.

There has also been recent work in visualizing the in-
ternal representation of a neural net. For example, Bau et al
(2017) quantified the number of object-selective units in our
network, as well as other recent networks trained with self-
supervised learning. This work arrived at a similar conclu-
sion as in this work, with a different visualization methodol-
ogy: namely, that the model learned units that are selective
to objects.

3 Learning to predict ambient audio

We would like to train a model that, when given a frame of
video, can predict its corresponding sound – a task that re-
quires knowledge of objects and scenes, among other factors
like human behavior, semantics, and culture.

3.1 Statistical sound summaries

A natural question, then, is how our model should represent
sound. Perhaps the first approach that comes to mind would
be to estimate a frequency spectrum at the moment in which
the picture was taken, similar to Owens et al (2016a). How-
ever, this is potentially suboptimal because in natural scenes
it is difficult to predict the precise timing of a sound from
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(a) Video frame (b) Cochleagram (c) Summary statistics

Fig. 2: Visual scenes are associated with characteristic sounds. Our goal is to take an image (a) and predict time-averaged
summary statistics (c) of a cochleagram (b). The statistics we use are (clockwise): the response to a bank of band-pass
modulation filters (sorted left-to-right in increasing order of frequency); the mean and standard deviation of each frequency
band; and the correlation between bands. We show two frames from the YFCC100m dataset (Thomee et al 2015). The first
contains the sound of human speech; the second contains the sound of wind and crashing waves. The differences between
these sounds are reflected in their summary statistics: e.g., the water/wind sound, which is similar to white noise, contains
fewer correlations between cochlear channels.

visual information. Upon seeing a crowd of people, for in-
stance, we might expect to hear the sound of speech, but
the precise timing and content of that speech might not be
directly indicated by the video frames.

To be closer to the time scale of visual objects, we esti-
mate a statistical summary of the sound, averaged over a few
seconds of audio. While there are many possible audio fea-
tures that could be used to compute this summary, we use
the perceptually inspired sound texture model of McDer-
mott and Simoncelli (2011), which assumes that the audio
is stationary within a temporal window (we use 3.75 sec-
onds). More specifically, we closely follow McDermott and
Simoncelli (2011) and filter the audio waveform with a bank
of 32 band-pass filters intended to mimic human cochlear
frequency selectivity (producing a representation similar to
a spectrogram). We then take the Hilbert envelope of each
channel, raise each sample of the envelope to the 0.3 power
(to mimic cochlear amplitude compression), and resample
the compressed envelope to 400 Hz. Finally, we compute
time-averaged statistics of these subband envelopes: we take
the mean and standard deviation of each frequency channel,
the mean squared response of each of a bank of modulation
filters applied to each channel, and the Pearson correlation
between pairs of channels. For the modulation filters, we

use a bank of 10 band-pass filters with center frequencies
ranging from 0.5 to 200 Hz, equally spaced on a logarithmic
scale.

To make the sound features more invariant to gain (e.g.,
from the microphone), we divide the envelopes by the me-
dian energy (median vector norm) over all timesteps, and in-
clude this energy as a feature. As in McDermott and Simon-
celli (2011), we normalize the standard deviation of each
cochlear channel by its mean, and each modulation power
by its standard deviation. We then rescale each kind of tex-
ture feature (i.e. marginal moments, correlations, modula-
tion power, energy) inversely with the number of dimen-
sions. The sound texture for each image is a 502-dimensional
vector. In Figure 2, we give examples of these summary
statistics for two audio clips. We provide more details about
our audio representation in Section A.

3.2 Predicting ambient sound from images

We would like to predict sound textures from images – a task
that we hypothesize leads to learning useful visual represen-
tations. Although multiple frames are available, we predict
sound from a single frame, so that the learned image fea-
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Fig. 3: Visualization of some of the audio clusters used in our model (5 of 30 clusters). For each cluster, we show (a) the
images in the test set whose sound textures were closest to the centroid (no more than one frame per video), and (b) we
visualize aspects of the sound texture used to define the cluster centroid – specifically, the mean and standard deviation of the
frequency channels. We also include a representative cochleagram (that of the leftmost image). Although the clusters were
defined using audio, there are common objects and scene attributes in many of the images. We train a CNN to predict a video
frame’s auditory cluster assignment (c).

tures will be more likely to transfer to single-image recog-
nition tasks. Furthermore, since the actions that produce the
sounds may not appear on screen, motion information may
not always be applicable.

While one option would be to regress the sound texture
v j directly from the corresponding image I j, we choose in-
stead to define explicit sound categories and formulate this
visual recognition problem as a classification task. This also
makes it easier to analyze the network, because it allows
us to compare the internal representation of our model to
object- and scene-classification models with similar network
architecture (Section 4). We consider two labeling models:
one based on a vector quantization, the other based on a bi-
nary coding scheme.

Clustering audio features In the Clustering model, the
sound textures {v j} in the training set are clustered using
k-means. These clusters define image categories: we label
each sound texture with the index of the closest centroid,
and train our CNN to label images with their corresponding
labels.

We found that audio clips that belong to a cluster often
contain common objects. In Figure 3, we show examples of
such clusters, and in the supplementary material we provide
their corresponding audio. We can see that there is a cluster
that contains indoor scenes with children in them; these are

relatively quiet scenes punctuated with speech sounds. An-
other cluster contains the sounds of many people speaking
at once (often large crowds); another contains many water
scenes (usually containing loud wind sounds). Several clus-
ters capture general scene attributes, such as outdoor scenes
with light wind sounds. During training, we remove exam-
ples that are far from the centroid of their cluster (more than
the median distance to the vector, amongst all examples in
the dataset).

Binary coding model For the other variation of our model
(which we call the Binary model), we use a binary coding
scheme (Indyk and Motwani 1998; Salakhutdinov and Hin-
ton 2009; Weiss et al 2009) equivalent to a multi-label clas-
sification problem. We project each sound texture v j onto
the top principal components (we use 30 projections), and
convert these projections into a binary code by thresholding
them. We predict this binary code using a sigmoid layer, and
during training we measure error using cross-entropy loss.

For comparison, we also trained a model (which we call
the Spectrum model) to approximately predict the frequency
spectrum at the time that the photo was taken, in lieu of a full
sound texture. Specifically, for our sound vectors v j in this
model, we used the mean value of each cochlear channel
within a 33.3 ms interval centered on the input frame (ap-
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Fig. 4: The number of object-selective units for each
method, as we increase the threshold used to determine
whether a unit is object-selective. This threshold corre-
sponds to the fraction of images that contain the object in
question, amongst the images with the 60 largest activations.
For our analysis in Section 4, we used a threshold of 60%.

proximately one frame of a 30 Hz video). For training, we
used the projection scheme from the Binary model.

Training We trained our models on a 360,000-video sub-
set of the YFCC100m video dataset (Thomee et al 2015)
(which we also call the Flickr video dataset). A large fraction
of the videos in the dataset are personal video recordings
containing natural audio, though many were post-processed,
e.g. with added subtitles, title screens, and music. We di-
vided our videos into training and test sets, and we randomly
sampled 10 frames per video (1.8 million training images
total). For our network architecture, we used the CaffeNet
architecture (Jia et al 2014), a variation of Krizhevsky et al
(2012), with batch normalization (Ioffe and Szegedy 2015).
We trained our model with Caffe (Jia et al 2014), using a
batch size of 256, for 320,000 iterations of stochastic gra-
dient descent with momentum, decreasing the learning rate
from an initial value of 0.01 by a factor of 10 every 100,000
iterations.

4 What does the network learn to detect?

We evaluate the image representation that our model learned
in multiple ways. First, we demonstrate that the internal rep-
resentation of our model contains convolutional units (i.e.,
neurons) that are selective to particular objects, and we ana-
lyze those objects’ distribution. We then empirically evalu-
ate the quality of the learned representation for several im-
age recognition tasks, finding that it achieves performance
comparable to other feature-learning methods that were trained
without human annotations.

Previous work (Zhou et al 2015) has shown that a CNN
trained to predict scene categories will learn convolutional
units that are selective for objects – a result that follows nat-
urally from the fact that scenes are often defined by the ob-
jects that compose them. We ask whether a model trained
to predict ambient sound, rather than explicit human labels,
would learn object-selective units as well. For these exper-
iments, we used the Clustering variation of our model, be-
cause the structure of the network is the same as the scene-
recognition model used in Zhou et al (2015) (whereas the
Binary model differs in that it solves a multi-label predic-
tion problem).

Labeling object-selective units Following Zhou et al
(2015), we visualized the images that each neuron in the
top convolutional layer (conv5) responded most strongly to.
To do this, we sampled a pool of 200,000 images from our
Flickr video test set. We then collected, for each convolu-
tional unit, the 60 images in this set that gave the unit the
largest activation. Next, we applied the visualization tech-
nique of Zhou et al (2015) to approximately superimpose
the unit’s receptive field onto the image. Specifically, we
found all of the spatial locations in the layer for which the
unit’s activation strength was at least half that of its maxi-
mum response. We then masked out the parts of the image
that were not covered by the receptive field of one of these
high-responding spatial units. We assumed a circular recep-
tive field, obtaining its radius from Zhou et al (2015).

We then labeled the neurons by showing the masked
images to human annotators on Amazon Mechanical Turk
(three per unit), asking them: (1) whether an object is present
in many of these regions, and if so, what it is; (2) to mark
the images whose activations contain these objects. Unlike
Zhou et al (2015), we only searched for units that were selec-
tive to objects, and did not allow labels for textures or other
low-level image structure. For each unit, if at least 60% of its
top 60 activations contained the object in question, we con-
sidered it to be selective for the object (or, following Zhou
et al (2015), we say that it is a detector for that object). We
(an author) then assigned an object name to the unit, us-
ing the category names provided by the SUN database (Xiao
et al 2010).

We found that 91 of the 256 units in our model were
object-selective in this way, and we show a selection of them
in Figure 5 (additional examples are provided in Figure 14).
In Figure 4, we study how the number of object-selective
units changes as we make our evaluation criteria more strin-
gent, by increasing the 60% threshold.

Explaining which objects emerge We compared the num-
ber of object-selective units to those of a CNN trained to
recognize human-labeled scene categories on Places (Zhou
et al 2015). As expected, this model – having been trained
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Neuron visualizations of the network trained by sound
field sky grass

snowy ground ceiling car

waterfall waterfall sea

baby baby baby

person person person

person person person

grandstand grandstand grandstand

Neuron visualizations of the network trained by visual tracking (Wang and Gupta 2015)
sea grass road

sea pitch sky

Neuron visualizations of the network trained by egomotion (Agrawal et al 2015)
ground sky grass

ground sky plant

Neuron visualizations of the network trained by patch positions (Doersch et al 2015)
sky sky baby

Neuron visualizations of the network trained by labeled scenes (Zhou et al 2014)
field tent building

pitch path sky

Fig. 5: Top 5 responses for convolutional units in various networks, evaluated on videos from the YFCC100m dataset.
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Training by sound (91 Detectors)

Training by labeled scenes (Zhou et al 2014) (117 Detectors)

Training by visual tracking (Wang and Gupta 2015) (72 Detectors)

Fig. 6: Histogram of object-selective units in networks trained with different styles of supervision. From top to bottom:
training to predict ambient sound (our Clustering model); training to predict scene category using the Places dataset (Zhou
et al 2014); and training to do visual tracking (Wang and Gupta 2015). Compared to the tracking model, which was also
trained without semantic labels, our network learns more high-level object detectors. It also has more detectors for objects
that make characteristic sounds, such as person, baby, and waterfall, in comparison to the one trained on Places. Categories
marked with ∗ are those that we consider to make characteristic sounds.

Method Sound Places

# Detectors 91 117
# Detectors for objects with characteristic sounds 49 26
Videos with object sound 43.7% 16.9%
Characteristic sound rate 81.2% 75.9%

Table 1: Row 1: the number of detectors (i.e. units that are selective to a particular object); row 2: the number of detectors for
objects with characteristic sounds; row 3: fraction of videos in which an object’s sound is audible (computed only for object
classes with characteristic sounds); row 4: given that an activation corresponds to an object with a characteristic sound, the
probability that its sound is audible. There are 256 units in total for each method.
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Training by sound (67 detectors)

Training by labeled scenes (Zhou et al 2014) (146 detectors)

Training by visual tracking (Wang and Gupta 2015) (61 detectors)

Fig. 7: The number of object-selective per category, when evaluating the model on the SUN and ImageNet datasets (cf.
Figure 6, in which the models were evaluated on the YFCC100m video dataset).

person car ceiling

waterfall text pitch

Fig. 8: A selection of object-selective neurons, obtained by testing our model on the SUN and ImageNet datasets. We show
the top 5 activations for each unit.

with explicit human annotations – contained significantly
more such units (117 units). We also asked whether object-
selective neurons appear in the convolutional layers when a
CNN is trained on other tasks that do not use human labels.
As a simple comparison, we applied the same methodology
to the egomotion-based model of Agrawal et al (2015) and
to the tracking-based method of Wang and Gupta (2015).
We applied these networks to large crops (in all cases resiz-

ing the input image to 256×256 pixels and taking the center
227×227 crop), though we note that they were originally
trained on significantly smaller cropped regions.

Do different kinds of self-supervision lead to different
kinds of object selectivity? Using the unit visualization method,
we found that the tracking-based model also learned object-
selective units, but that the objects that it detected were of-
ten textural “stuff,” such as grass, ground, and water, and
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Input image Flowing water Speech

Fig. 9: Class activation maps (CAMs) for speech and flow-
ing water sounds. The categories correspond to the third and
fifth examples in Figure 10. The CAM is colored such that
red corresponds to high probability of an audio category.

that there were fewer of these detection units in total (72
of 256). The results were similar for the egomotion-based
model, which had 27 such units. In Figure 6, we provide
the distribution of the objects that the units were selective
to. We also visualized neurons from the method of Doersch
et al (2015) (as before, applying the network to whole im-
ages, rather than to patches). We found a significant number
of the units were selective for position, rather than to ob-
jects. For example, one convolutional unit responded most
highly to the upper-left corner of images – a unit that may
be useful for the training task, which involves predicting the
relative position of image patches (moreover, Doersch et al
(2015) suggests that the model uses low-level cues, such as
chromatic aberration, rather than semantics). In Figure 5, we
show visualizations of a selection of object-detecting neu-
rons for all of these methods.

The differences between the objects detected by these
methods and our own may have to do with the requirements
of the tasks being solved. The other unsupervised methods,
for example, all involve comparing multiple input images or
cropped regions in a relatively fine-grained way. This may
correspondingly change the representation that the network
learns in its last convolutional layer – requiring its units to
encode, say, color and geometric transformations rather than
object identities. Moreover, these networks may represent
semantic information in other (more distributed) ways that
would not necessarily be revealed through this visualization
method.

Next, we asked what kinds of objects our network learned
to detect. We hypothesized that the object-selective neurons
were more likely to respond to objects that produce (or are
closely associated with) characteristic sounds1. To evaluate
this, we (an author) labeled the SUN object categories ac-
cording to whether they were closely associated with a char-

1 For conciseness, we sometimes call these “sound-making” objects,
even if they are not literally the source of the sound.

acteristic sound in the videos that contained the top detec-
tions. We denote these categories with a ∗ in Figure 6. We
found that some objects, such as fireworks, were usually as-
sociated in these videos with the sound of wind or human
speech, rather the sound of the object itself. We therefore
chose not to count these as objects associated with charac-
teristic sounds. Next, we counted the number of units that
were selective to these objects, finding that our model con-
tained significantly more such units than a scene-recognition
network trained on the Places dataset, both in total number
and as a proportion (Table 1). A significant fraction of these
units were selective to people (adults, babies, and crowds).

Analyzing the types of objects that were detected Fi-
nally, we asked whether the sounds that these objects make
were actually present in the videos that these video frames
were sampled from. To do this, we listened to the sound of
the top 30 video clips for each unit, and recorded whether the
sound was made by the object that the neuron was selective
to (e.g., human speech for the person category). We found
that 43.7% of these videos contained the objects’ sounds
(Table 1).

To examine the effect of the dataset used to create the
neuron visualizations, we applied the same neuron visual-
ization technique to 200,000 images sampled equally from
the SUN and ImageNet datasets (as in Zhou et al (2015)).
We show examples of these neurons in Figure 8 and plot
their distribution Figure 7. As expected, we found that the
distribution of objects was similar to that of the YFCC100m
dataset. However, there were fewer detectors in total (67 vs.
91), and there were some categories, such as baby, that ap-
peared significantly less often as a fraction of the total de-
tectors. This may be due to the differences in the underlying
distribution of objects in the datasets. For example, SUN
focuses on scenes and contains more objects labeled tree,
lamp, and window than objects labeled person (Zhou et al
2015). We also computed a detector histogram for the model
of Wang and Gupta (2015), finding that the total number of
detectors was similar to the sound-based model (61 detec-
tors), but that, as before, the dominant categories were tex-
tural “stuff” (e.g., grass, plants).

4.1 Visualizing sound predictions

These neuron visualizations suggest that our model, inter-
nally, is coding for different object categories, To more di-
rectly visualize the relationship between visual structures
and sound categories, we trained a variation of our model
to predict a class activation map (CAM) (Zhou et al 2016).
Following Zhou et al (2016), we replaced the fully con-
nected layers of our model with convolutions whose acti-
vations are spatially averaged to produce class probabilities
(i.e. using global average pooling (Lin et al 2014)). Under
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Speech

Speech

Speech

Wind

Flowing water

No characteristic sound (mixture of many sounds)

Silence

Fig. 10: For 7 (of 30) audio categories, we show the network’s most confident predictions and their CAMs, and we provide
a description of their sound. We show results from the YFCC100m video dataset (to avoid having redundant images from
similar videos, we show for each category at most one example per Flickr user).
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this model, each spatial position independently casts a vote
for each sound category. These spatial votes, then, can be
used to localize the visual structures that the network is de-
tecting.

In Figure 10 we show, for 7 of 30 audio classes, the
images for which our model assigned the highest proba-
bility, along with their corresponding CAMs (displayed as
heat maps). We also provide a qualitative description for the
audio categories, which we (an author) obtained by listen-
ing to the audio clips that are nearest to its centroid (similar
to Section 3). Together, these visualizations help to link vi-
sual structures with sound. We see, for example, that speech
sounds often correspond to faces, while flowing water sounds
correspond to waterfalls. In Figure 9 we also show qualita-
tive examples where CAM visualizations from two different
audio categories – one corresponding to speech, another to
flowing water sounds – localized two different object types.

5 Evaluating the image representation

We have seen through visualizations that a CNN trained to
predict sound from an image learns units that are selective
for objects. Now we evaluate how well this representation
conveys information about objects and scenes.

5.1 Recognizing objects and scenes

Since our goal is to measure the amount of semantic infor-
mation provided by the learned representation, rather than
to seek absolute performance, we used a simple evaluation
scheme. In most experiments, we computed image features
using our CNN and trained a linear SVM to predict object
or scene category using the activations in the top layers.

Object recognition First, we used our CNN features for
object recognition on the PASCAL VOC 2007 dataset (Ev-
eringham et al 2010). We trained a one-vs.-rest linear SVM
to detect the presence of each of the 20 object categories in
the dataset, using the activations of the upper layers of the
network as the feature set (pool5, fc6, and fc7). To help un-
derstand whether the convolutional units considered in Sec-
tion 4 directly convey semantics, we also created a global
max-pooling feature (similar to Oquab et al (2015)), where
we applied max pooling over the entire convolutional layer.
This produces a 256-dimensional vector that contains the
maximum response of each convolutional unit (which we
refer to as max5). Following common practice, we evalu-
ated the network on a center 227×227 crop of each image
(after resizing the image to 256×256), and we evaluated the
results using mean average precision (mAP). We chose the

SVM regularization parameter for each method by maximiz-
ing mAP on the validation set using grid search (we used
{0.5k | 4≤ k < 20}).

The other unsupervised (or self-supervised) models in
our comparison (Doersch et al 2015; Agrawal et al 2015;
Wang and Gupta 2015; Zhang et al 2016; Pathak et al 2017)
use different network designs. In particular, Doersch et al
(2015) was trained on image patches, so following their ex-
periments we resized its convolutional layers for 227×227
images and removed the model’s fully connected layers2.
Also, since the model of Agrawal et al (2015) did not have
a pool5 layer, we added one to it. We also considered CNNs
that were trained with human annotations: object recogni-
tion on ImageNet (Deng et al 2009) and scene categories on
Places (Zhou et al 2014). Finally, we considered using the
k-means weight initialization method of Krähenbühl et al
(2016) to set the weights of a CNN model (we call this the
K-means model).

As shown in Table 2, we found that the overall best-
performing model was the recent colorization method of Zhang
et al (2016), but that the best-performing variation of our
model (the binary-coding method) obtained comparable per-
formance to the other unsupervised learning methods, such
as Doersch et al (2015).

Both models based on sound textures (Clustering and
Binary) outperformed the model that predicted only the fre-
quency spectrum. This suggests that the extra time-averaged
statistics from sound textures are helpful. In Table 4, we
report the accuracy on a per-category basis for the model
trained with pool5 features. Interestingly, the sound-based
models outperformed other methods when we globally pooled
the conv5 features, suggesting that the convolutional units
contain a significant amount of semantic information (and
are well suited to being used at this spatial scale).

Scene recognition We also evaluated our model on a
scene recognition task using the SUN dataset (Xiao et al
2010), a large classification benchmark that involves rec-
ognizing 397 scene categories with 7,940 training and test
images provided in multiple splits. Following Agrawal et al
(2015), we averaged our classification accuracy across 3 splits,
with 20 examples per scene category. We chose the linear
SVM’s regularization parameter for each model using 3-fold
cross-validation. The results are shown in Table 2.

We found that our features’ performance was slightly
better than that of other unsupervised models, including the
colorization and patch-based models, which may be due to
the similarity of our learning task to that of scene recogni-
tion. We also found that the difference between our models
was smaller than in the object-recognition case, with both

2 As a result, this model has a larger pool5 layer than the other meth-
ods: 7× 7 vs. 6× 6. Likewise, the fc6 layer of Wang and Gupta (2015)
is smaller (1,024 dims. vs. 4,096 dims.).
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Method
VOC Cls. (%mAP) SUN397 (%acc.)

max5 pool5 fc6 fc7 max5 pool5 fc6 fc7

Sound (cluster) 36.7 45.8 44.8 44.3 17.3 22.9 20.7 14.9
Sound (binary) 39.4 46.7 47.1 47.4 17.1 22.5 21.3 21.4
Sound (spect.) 35.8 44.0 44.4 44.4 14.6 19.5 18.6 17.7
Colorization (Zhang et al 2016) 38.8 48.3 49.1 51.0 16.0 20.3 21.2 18.4
Object motion (Pathak et al 2017) 32.4 40.8 31.5 23.6 12.9 15.8 7.5 3.4
Texton-CNN 28.9 37.5 35.3 32.5 10.7 15.2 11.4 7.6
K-means (Krähenbühl et al 2016) 27.5 34.8 33.9 32.1 11.6 14.9 12.8 12.4
Tracking (Wang and Gupta 2015) 33.5 42.2 42.4 40.2 14.1 18.7 16.2 15.1
Patch pos. (Doersch et al 2015) 27.7 46.7 - - 10.0 22.4 - -
Egomotion (Agrawal et al 2015) 22.7 31.1 - - 9.1 11.3 - -

ImageNet (Krizhevsky et al 2012) 63.6 65.6 69.6 73.6 29.8 34.0 37.8 37.8
Places (Zhou et al 2014) 59.0 63.2 65.3 66.2 39.4 42.1 46.1 48.8

Table 2: Mean average precision for PASCAL VOC 2007 classification, and accuracy on SUN397. Here we trained a linear
SVM using the top layers of different networks. We note in Section 5 that the shape of these layers varies between networks.

Method (%mAP)

Random init. (Krähenbühl et al 2016) 41.3
Sound (cluster) 44.1
Sound (binary) 43.3
Motion (Wang and Gupta 2015; Krähenbühl et al 2016) 47.4
Egomotion (Agrawal et al 2015; Krähenbühl et al 2016) 41.8
Patch position (Doersch et al 2015; Krähenbühl et al 2016) 46.6
Calibration + Patch (Doersch et al 2015; Krähenbühl et al 2016) 51.1

ImageNet (Krizhevsky et al 2012) 57.1
Places (Zhou et al 2014) 52.8

Table 3: Mean average precision on PASCAL VOC 2007 using Fast-RCNN (Girshick 2015). We initialized the CNN weights
using those of our learned sound models.

the Clustering and Binary models obtaining performance
comparable to the patch-based method with pool5 features.

Pretraining for object detection Following recent work
(Wang and Gupta 2015; Doersch et al 2015; Krähenbühl
et al 2016), we used our model to initialize the weights of a
CNN-based object detection system, Fast R-CNN (Girshick
2015), verifying that the results improved over random ini-
tialization (Table 3). We followed the training procedure of
Krähenbühl et al (2016), training for 150,000 SGD itera-
tions with an initial learning rate of 0.002. We compared our
model with other published results (we report the numbers
provided by Krähenbühl et al (2016)). We found that our
model performed significantly better than a randomly initial-
ized model, as well as the method of Agrawal et al (2015),
but that other models (particularly Doersch et al (2015))
worked significantly better.

We note that the network changes substantially during
fine-tuning, and thus the performance is fairly dependent on
the parameters used in the training procedure. Moreover all
models, when fine-tuned in this way, achieve results that are
close to those of a well-chosen random initialization (within
6% mAP). Recent work (Krähenbühl et al 2016; Mishkin
and Matas 2015) has addressed these optimization issues by
rescaling the weights of a pretrained network using a data-
driven procedure. The unsupervised method with the best
performance combines this rescaling method with the patch-
based pretraining of Doersch et al (2015).

5.2 Audio representation

Do the predicted audio categories correlate with the pres-
ence of visual objects? To test this, we used the (log) poste-
rior class probabilities of the CAM-based sound-prediction
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Method aer bk brd bt btl bus car cat chr cow din dog hrs mbk prs pot shp sfa trn tv

Sound (cluster) 68 47 38 54 15 45 66 45 42 23 37 28 73 58 85 25 26 32 67 42
Sound (binary) 69 45 38 56 16 47 65 45 41 25 37 28 74 61 85 26 39 32 69 38
Sound (spect.) 65 40 35 54 14 42 63 41 39 24 32 25 72 56 81 27 33 28 65 40
Colorization 70 50 45 58 15 45 71 50 39 30 38 41 72 57 81 17 42 41 66 38
Tracking (Wang and Gupta 2015) 67 35 41 54 11 35 62 35 39 21 30 26 70 53 78 22 32 37 61 34
Object motion 65 39 39 50 13 33 61 36 39 24 35 28 69 49 82 14 19 34 56 31
Patch Pos. (Doersch et al 2015) 70 44 43 60 12 44 66 52 44 24 45 31 73 48 78 14 28 39 62 43
Egomotion (Agrawal et al 2015) 60 24 21 35 10 19 57 24 27 11 22 18 61 40 69 13 12 24 48 28
Texton-CNN 65 35 28 46 11 31 63 30 41 17 28 23 64 51 74 9 19 33 54 30
K-means 61 31 27 49 9 27 58 34 36 12 25 21 64 38 70 18 14 25 51 25

ImageNet (Krizhevsky et al 2012) 79 71 73 75 25 60 80 75 51 45 60 70 80 72 91 42 62 56 82 62
Places (Zhou et al 2014) 83 60 56 80 23 66 84 54 57 40 74 41 80 68 90 50 45 61 88 63

Audio class probability 25 6 12 14 8 6 28 15 21 5 12 15 10 7 75 7 4 9 10 8

Table 4: Per-class AP scores for the VOC 2007 classification task with pool5 features (corresponds to mAP in (a)). We
also show the performance obtained using the predicted log-probability of each audio category, using the CAM-based model
(Section 4.1).

network as (30-dimensional) feature vectors for object recog-
nition. While the overall performance, unsurprisingly, is low
(14.7% mAP), we found that the model was relatively good
at recognizing people – perhaps because so many audio cate-
gories correspond to speech. Its performance (75% AP) was
similar to that of the much higher-dimensional pool5 fea-
tures of the Doersch et al (2015) network (which obtains
78% AP). We show the model’s per-category recognition ac-
curacy in Table 4.

Sound cluster prediction task We also asked how well
our model learned to solve its sound prediction task. We
found that on our test set, the clustering-based model (with
30 clusters) chose the correct sound label 15.8% of the time.
Pure chance in this case is 3.3%, while the baseline of choos-
ing the most commonly occurring label is 6.6%.

Number of clusters We also investigated how the number
of clusters (i.e. audio categories) used in constructing the au-
dio representation affected the quality of the visual features.
In Figure 11, we varied the number of clusters, finding that
there is a small improvement from increasing it beyond 30,
and a substantial decrease in performance when using just
two clusters. We note that, due to the way that we remove
examples whose audio features are not well-represented by
any cluster (Section 3.2), the models with small numbers
of clusters were effectively trained with fewer examples – a
trade-off between cluster purity and data quantity that may
affect performance of these models.

Fig. 11: Object recognition performance (recognition per-
formance on PASCAL VOC2007) increases with the num-
ber of clusters used to define the audio label space. For our
experiments, we used 30 clusters.

6 Studying the role of audio supervision

It is natural to ask what role audio plays in the learning pro-
cess. Perhaps, for example, our learning algorithm would
work equally well if we replaced the hand-crafted sound
features with hand-crafted visual features, computed from
the images themselves. To study this, we replaced our sound
texture features with (512-dimensional) visual texton his-
tograms (Leung and Malik 2001), using the parameters from
Xiao et al (2010), and we used them to train a variation of
our clustering-based model.

As expected, the images that belong to each cluster are
visually coherent, and share common objects. However, we
found that the network performed significantly worse than
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Training by sound on AudioSet (Gemmeke et al 2017) (84 detectors)

Fig. 12: We quantify the number of object-selective units for our Cluster method trained on AudioSet (Gemmeke et al 2017).
As before, we visualize the units using the Flickr video dataset (cf. Figure 6).

instrument instrument instrument

Fig. 13: Object-selective neurons for a new category (instrument), obtained by training our model on AudioSet (Gemmeke
et al 2017). We show the top 5 activations for each unit.

Method
VOC Cls. (%mAP)

max5 pool5 fc6 fc7

Annotations 48.8 55.6 56.3 58.1
Binary 38.5 48.6 47.7 49.3
Cluster (30 clusters) 38.2 47.5 45.9 46.1
Cluster (120 clusters) 40.3 48.8 47.3 48.4

ImageNet 63.6 65.6 69.6 73.6

Table 5: Comparison between a model trained to predict
ground-truth sound annotations and our unsupervised mod-
els, all trained on AudioSet (Gemmeke et al 2017). As in
Section 5, we report mean average precision for PASCAL
VOC 2007 classification, after training a linear SVM on the
feature activations of different layers.

the audio-based method on the object- and scene-recognition
metrics (Table 2). Moreover, we found that its convolutional
units rarely were selective for objects (generally they re-
sponded responded to “stuff” such as grass and water).

Likely this large difference in performance is due to the
network learning to approximate the texton features, obtain-
ing low labeling error without high-level generalization. In
contrast, the audio-based labels – despite also being based
on another form of hand-crafted feature – are largely invari-
ant to visual transformations, such as lighting and scale, and
therefore predicting them requires some degree of general-
ization. This is one benefit of training with multiple, com-
plementary modalities (as explained in Figure 1).

6.1 Human-annotated sounds

Ideally, the audio clustering procedure would produce clus-
ters that map one-to-one with sound sources. In practice,
however, the relationship between sound categories and clus-
ter membership is significantly messier (Figure 3).

We asked what would happen if, instead of labeling the
sound using a clustering procedure, we were to use “ground-
truth” audio annotations provided by humans. To study this,
we trained a model to predict audio categories from videos
in the AudioSet dataset (Gemmeke et al 2017). The videos
in this dataset contain 527 sound categories, such as music,
speech, vehicle, animal, and explosion. From this dataset,
we sampled 962,892 ten-second videos and extracted the
middle frame from each one. We then trained a network
(similar in structure to the Binary model) to predict the audio
labels. For comparison, we also retrained our audio-based
models on this data.

We found, first, that the model that used human annota-
tions performed well (Table 5): its features performed sig-
nificantly better than the state-of-the-art unsupervised meth-
ods, while still lagging behind ImageNet-based training. Sec-
ond, we found that it substantially outperformed our unsu-
pervised models trained on the same dataset. This suggests
that there is substantial room for improvement by choosing
audio representations that better capture semantics.

We note that the AudioSet labels may implicitly make
use of visual information, both through the use of human
annotators (who watched the videos during the labeling pro-
cess) and due to the fact that visual classifiers were used
as an input during the collection process. As such, the an-
notations may be best viewed as an upper bound on what is
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achievable from methods that derive their supervision purely
from audio.

To study the difference between the internal representa-
tion of a model learned on (unlabeled) videos in AudioSet,
and those of a model trained on the YFCC100m video dataset
(Flickr videos), we quantified the object-selective units (Fig-
ure 12). As before, we performed this comparison using the
unsupervised Cluster model. While there were many simi-
larities between the networks, such as the fact that both have
a large number of units tuned to human faces, there are also
significant differences. One such difference is the large num-
ber of units that are selective to musical instruments (Fig-
ure 13), which likely emerge due to the large number of mu-
sic and instrument-related categories in AudioSet.

7 Discussion

Sound has many properties that make it useful as a super-
visory training signal: it is abundantly available without hu-
man annotations, and it is known to convey information about
objects and scenes. It is also complementary to visual in-
formation, and may therefore convey information not easily
obtainable from unlabeled image analysis.

In this work, we proposed using ambient sound to learn
visual representations. We introduced a model, based on con-
volutional neural networks, that predicts a statistical sound
summary from a video frame. We then showed, with visu-
alizations and experiments on recognition tasks, that the re-
sulting image representation contains information about ob-
jects and scenes.

Here we considered one audio representation, based on
sound textures, which led to a model capable of detecting
certain objects, such as people and waterfalls. It is natu-
ral to ask whether a better audio representation would lead
the model to learn about other objects. Ideally, one should
jointly learn the audio representation with the visual repre-
sentation – an approach taken in recent work (Arandjelović
and Zisserman 2017). More broadly, we would like to know
which visual objects one can learn to detect through sound-
based training, and we see our work as a step in this direc-
tion.
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A Sound textures

We now describe in more detail how we computed sound
textures from audio clips. For this, we closely follow the
work of McDermott and Simoncelli (2011).

Subband envelopes To compute the cochleagram features
{ci}, we filter the input waveform s with a bank of bandpass
filters { fi}.

ci(t) = |(s∗ fi)+ jH(s∗ fi)|, (1)

where H is the Hilbert transform and ∗ denotes cross-correlation.
We then resample the signal to 400Hz and compress it by
raising each sample to the 0.3 power (examples in Figure 2).

Correlations As described in Section 3, we compute the
correlation between bands using a subset of the entries in
the cochlear-channel correlation matrix. Specifically, we in-
clude the correlation between channels c j and ck if | j− k| ∈
{1,2,3,5}. The result is a vector ρ of correlation values.

Modulation filters We also include modulation filter re-
sponses. To get these, we compute each band’s response to
a filter bank {mi} of 10 bandpass filters whose center fre-
quencies are spaced logarithmically from 0.5 to 200Hz:

bi j =
1
N
||ci ∗m j||2, (2)

where N is the length of the signal.

Marginal statistics We estimate marginal moments of the
cochleagram features, computing the mean µi and standard
deviation σi of each channel. We also estimate the loudness,
l, of the sequence by taking the median of the energy at each
timestep, i.e. l = median(||c(t)||).

Normalization To account for global differences in gain,
we normalize the cochleagram features by dividing by the
loudness, l. Following McDermott and Simoncelli (2011),
we normalize the modulation filter responses by the variance

of the cochlear channel, computing b̃i j =
√

bi j/σ2
i . Simi-

larly, we normalize the standard deviation of each cochlear

channel, computing σ̃i =
√

σ2
i /µ2

i . From these normalized

features, we construct a sound texture vector: [µ, σ̃ ,ρ, b̃, l].
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