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ABSTRACT: Reaction condition recommendation is an
essential element for the realization of computer-assisted
synthetic planning. Accurate suggestions of reaction con-
ditions are required for experimental validation and can have a
significant effect on the success or failure of an attempted
transformation. However, de novo condition recommendation
remains a challenging and under-explored problem and relies
heavily on chemists’ knowledge and experience. In this work,
we develop a neural-network model to predict the chemical
context (catalyst(s), solvent(s), reagent(s)), as well as
the temperature most suitable for any particular organic
reaction. Trained on ∼10 million examples from Reaxys, the
model is able to propose conditions where a close match to
the recorded catalyst, solvent, and reagent is found within the top-10 predictions 69.6% of the time, with top-10 accuracies for
individual species reaching 80−90%. Temperature is accurately predicted within ±20 °C from the recorded temperature in 60−
70% of test cases, with higher accuracy for cases with correct chemical context predictions. The utility of the model is illustrated
through several examples spanning a range of common reaction classes. We also demonstrate that the model implicitly learns a
continuous numerical embedding of solvent and reagent species that captures their functional similarity.

■ INTRODUCTION

Retrosynthetic planning is the process of proposing pathways
to synthesize target molecules from available starting
chemicals, and has demonstrated its importance and success
in the chemical industry.1,2 While retrosynthesis traditionally
requires extensive training and expertise of a chemist, recent
years have seen renewed interest in computer-assisted
synthetic planning (CASP).3−7 With the application of
powerful machine learning techniques to large data sets of
organic reactions like Reaxys8 and the USPTO database,9 there
have been major advances both in searching for possible
retrosynthetic pathways10−16 and in evaluating the feasibility of
the proposed reactions.5,17−22

While existing tools have been demonstrated to predict the
likelihood of success of reactions with good accuracy,20 one
obstacle to experimentally validating computer-proposed
reactions is the specification of reaction conditions, including
chemical context (catalyst, reagent, solvent) and other
operating conditions (e.g., temperature, pressure). In some
cases, small changes in reaction conditions can lead to
drastically different reaction outcomes. Therefore, recent
work on reaction outcome prediction has started to include
reaction conditions to improve the accuracy and specificity of
predictions.20,21 More importantly, reaction conditions are
necessary to evaluate opportunities for one-pot synthesis,

telescoping in flow, and amenability to the use of “green”
solvents for sustainability.
Extensive work has been done on the optimization of

conditions for specific reaction classes, using a combination of
domain knowledge and empirical optimization techniques to
automatically identify the best reaction condition.23−27 Never-
theless, the initial guess of reaction conditions for a new
reaction is predominantly considered a human task. Chemists
use heuristics and perceived similarity of new reactions to ones
they are familiar with to propose candidate conditions.
However, this approach has its limitations and challenges.
The recommendation might be biased by chemists’ preference
and familiarity with certain types of reactions; the heuristic
rules might not be all-encompassing or too abstract to narrow
down to specific chemicals, and conditions of a precedent
reaction may not be applicable to the new reactions even if the
reactants are structurally similar.
In addition to the potential utility of in silico condition

recommendation tools to practicing synthetic chemists, they
are a necessary component of computer-aided synthesis
planning. With thousands of plausible reactions generated in
a few minutes or even seconds, it would be impossible to rely
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on manual input for suggesting reaction conditions. Research
has shown that failure to specify appropriate reaction
conditions might result in false prediction of reaction
outcomes.21

However, computational condition recommendation re-
mains a rarely addressed and complex challenge. Most existing
work focuses only on specific elements of the chemical context
(e.g., only reagents or only solvents), or specific reaction
classes. Solvent selection, for instance, has been widely studied
as a standalone problem.28 Struebing et al. combined quantum
mechanical (QM) calculations with a computer-aided
molecular design procedure to identify solvents that accelerate
reaction kinetics.29 This approach was demonstrated to be
effective for specific examples, yet it is difficult to apply at a
larger scale due to the high computational cost of QM
calculations.
Data-driven approaches have been employed to recommend

conditions for specific types of reactions. Marcou et al.30 built
an expert system to predict the type of catalyst and solvent
used for Michael additions, trained on 198 known reactions.
The problem was formulated as multiple binary classification
subproblems of whether a certain type of solvent/catalyst
would be suitable for a specific Michael reaction. However, on
an external test set, only 8 out of 52 reactions had both
predicted solvent and catalyst matching the true context. Lin et
al. used a similarity-based approach to recommend catalysts for
desired deprotection reactions, and demonstrated the approach
in catalytic hydrogenation reactions.31

A study by Segler and Waller tackles a broader scope of
reactions using a knowledge graph model of organic chemistry
to infer complementary and analogous reactivity.32 Novel
reactions are treated as missing links in this graph. Reaction
context is taken as the combination of the first reactions that
are linked with reactant molecules. They tested this approach
on 11 reactions from the literature, and for most of them the
model was able to identify the exact same or similar reagent/
catalyst as used in the literature. This work demonstrated the
feasibility of reaction context inference based on reaction
patterns, yet context compatibility and temperature prediction
are not taken into consideration.
Similar to the aforementioned approach, one straightforward

method for identifying reasonable reaction conditions is to find
a similar reaction in the literature and simply employ exactly
the same reaction conditions reported for that precedent,

referred to as the nearest-neighbor approach. Indeed this is an
approach that many chemists may use implicitly. This can be
successful with a database of known reactions that is
sufficiently large and densely populated, but computationally,
a nearest-neighbor search against millions of species is RAM-
and CPU-intensive, even with optimized search strategies (e.g.,
using a ball tree). Furthermore, if some information in the
nearest-neighbor reaction is not present (i.e., data is
incomplete), that information cannot be inferred. The rigidity
of this approach precludes asking questions essential to
synthesis planning, such as whether the reaction could proceed
in a particular replacement solvent.
In summary, we identify some primary limitations of existing

approaches:

(1) There has not been a published method that accurately
predicts complete reaction conditions (catalysts, sol-
vents, reagents, and temperature) suitable for use with a
very large reaction corpus.

(2) The compatibility and interdependence of chemical
context and temperature are not taken into account in
previous approaches.

(3) No previous studies have performed quantitative
evaluation of reaction condition predictions on a large-
scale reaction data set. There are two major challenges
which have impeded progress: (i) There is not a
machine readable large data set available with catalysts/
solvents/reagents classified into different types. (ii) For
the similarity-based approaches it is difficult to
quantitatively assess the level of “correctness” of
conditions when comparing entire sets of conditions
associated with different literature reactions.

(4) Closer attention should be paid to balancing the
generality/specificity of representing chemical context.
If the representation is too general, such as manually
encoded types/groups, it might not fully characterize
functionality, and if it is too specific, e.g., copy−pasting
the entire conditions from other reactions, it does not
provide further information about chemical similarity.

New tools are needed that propose reaction conditions
intelligently and can handle a broad scope of reaction classes.
In this work we develop a neural-network-based model to
predict suitable reaction conditions for arbitrary organic
transformations. The model is trained on roughly 10 million

Figure 1. Change of the loss functions with the number of epochs (left figure, overall; right figure, chemical context and temperature).
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examples from the Reaxys8 database to predict the chemical
species used as catalysts, solvents, reagents, and an appropriate
temperature for the reaction. Prediction results are evaluated
both quantitatively, using a variety of accuracy metrics, and
qualitatively, using multiple sets of representative examples. It
is also demonstrated that the model learns the similarity of the
chemical context (e.g., different solvents/reagents) exclusively
from reaction data.

■ RESULTS AND DISCUSSION

A neural network model is trained to predict up to one catalyst,
two solvents, two reagents, and the temperature for a given
organic reaction. Detailed data processing and model
formulation steps are described in the Methods section. The
training process is essentially a multiobjective optimization that
minimizes the overall loss function which is a weighted sum of
the loss for each individual objective (namely, catalyst, solvent
1, solvent 2, reagent 1, reagent 2, and temperature). The
progress of training is reflected in the change of the overall and
individual loss, which is shown in Figure 1. Validation loss
(dashed red line) decreases for 2 epochs and then reaches a
plateau and stays higher than the training loss (solid red line).
Based on the plotted losses in Figure 1 the first solvent (s1,
yellow lines) and the first reagent (r1, orange lines) are the
most difficult to predict, with a significantly higher loss value
than the other objectives (not including temperature). There is
a large fraction of reactions which do not have a second solvent
(s2, blue lines) or reagent (r2, gray lines), in which cases the
model only needs to predict the NULL class, making these
second predictions easier to classify. The same principle
applies to catalyst, where many reactions do not use a catalyst,
and others have catalysts frequently recorded as reagents. The
mean squared error for temperature (T loss, green lines)
decreases steadily over the epochs, ending in 0.46 for the
training set and 0.50 for the validation set (after scaling by a
factor of 0.001 K−2).
Statistical Analysis. Evaluating the results of chemical

context prediction is a nontrivial task, mainly because it is a
combination of individual chemicals, and because we lack a
standard way of quantifying the “closeness” of the prediction
when each exact chemical is not predicted. Since there is often
more than one possible context combination suitable for a
reaction, we do not want to focus exclusively on the top-one
prediction, but also want to examine other highly ranked
suggestions. However, the number of total combinations grows
in a polynomial way (to the fifth power) with the increase of
number of candidates to include for every individual element;
e.g., if the top-three candidates are to be examined for the
catalyst, both solvents, and both reagents, the total number of
combinations is 243 (35), which is almost impossible to
evaluate manually, and difficult to analyze. Since the data for
catalyst, solvent 2 and reagent 2 are much more sparse than
solvent 1 and reagent 1, there is likely more value in examining
longer candidate list for the latter two. Therefore, we use the
top-three reagent 1 predictions and top-three solvent 1
predictions along with the top-two catalyst, top-one solvent
2, and top-one reagent 2 to construct 18 top combinations,
from which we can pick the top-three or top-10 combinations
with the highest overall scores, calculated as the product of
softmax probabilities for each individual element. The number
of top candidates is a heuristic choice and can be tailored by
model users for specific needs (e.g., the user can explore a

longer list of catalyst candidates instead of only the top-two
choices).
Evaluation is performed on the entire test set, and the

accuracy values described in the Methods section are shown in
Table 1. For the most difficult tasks of predicting solvent 1 and

reagent 1, the frequency with which the recorded chemical is
found in the top-10 combinations is 83.0% and 83.1%,
respectively. After including those close match predictions (de-
fined in the Methods section), the accuracy for solvent 1
increases by a margin of 2.4%, and the accuracy for reagent 1
increases by 1.8%. This suggests that, though not explicitly
coded, the model learns the chemical similarity of solvents/
reagents/catalysts which tend to be used in closely related
reactions.
Compared to the high accuracies for the individual

prediction tasks, the top-three accuracy for the full condition
recommendation (catalyst, two solvents, two reagents) is
50.1%, and the top-10 accuracy is 57.3% (53.2% and 60.3%
when including close match predictions). However, given that
these numbers represent the requirement to predict the full
combination (all five elements) of the exact recorded context, it
is expected to be more challenging than predicting individual
elements. We further computed the top-10 accuracy of a subset
of the combinationscatalyst, solvent 1, and reagent 1as
66.0% and 69.6% for exact matches and close match
predictions, respectively.
To evaluate the meaningfulness of the accuracies given in

Table 1, we compared the trained model with a baseline
model, where top-10 combinations are chosen based on the
frequencies of the catalysts, solvents, and reagents (Supporting
Information, Table S1). Detailed comparisons and statistical
parameters are given in the Supporting Information, Table S2.
It can be seen that 87.3% of the reactions do not use a catalyst;
85.6% of the reactions do not use a second solvent, and 82.3%
of the reactions do not use a second reagent. For these tasks,
predicting the NULL class can achieve relatively high accuracy,
but the trained model still performs better by a significant
margin. Meanwhile, the top-3 accuracy for predicting the
correct combination of chemical context is only 4.7%,
compared to 50.1% in the trained model, indicating that
simply using the most frequent combination of chemical
context is not an effective method.
The evaluation of temperature is less straightforward than it

seems, because the prediction of temperature is dependent on
the chemical context, which means, in the top-10 temperature
predictions, at least nine of them are based on chemical

Table 1. Accuracy of Prediction of the Chemical Context by
the Condition Recommendation Modela

Prediction task
Top-3 exact
matches

Top-10
exact

matches
Top-3 close
matches

Top-10
close

matches

c 93.6% 94.9% 94.9% 96.4%
s1 75.8% 83.0% 78.2% 85.4%
s2 90.1% 91.7% 90.2% 91.9%
r1 73.2% 83.1% 74.8% 84.9%
r2 89.3% 91.8% 89.3% 92.1%
c, s1, r1 57.3% 66.0% 60.4% 69.6%
c, s1, s2, r1, r2 50.1% 57.3% 53.2% 60.3%

ac, s1, s2, r1, and r2 refer to catalyst, solvent 1, solvent 2, reagent 1,
and reagent 2, respectively.
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Figure 2. Relationship between the true temperature and the top-one predicted temperature (left panel), and predicted temperature if the
predicted context matches the chemical context (right panel).

Figure 3. Example of model predictions compared with recorded context (temperature rounded to the closest integer; black text represents the
recorded conditions, and blue text represents the predicted conditions). (A) Nucleophilic epoxidation. (B) Deprotection of
fluorenylmethyloxycarbonyl (Fmoc). (C) Luche reduction of eneone, TBS = tert-butyl(dimethyl)silyl. (D) Buchwald−Hartwig aryl amination,
BINAP = 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl. (E) Suzuki-Miyaura coupling, CyJohnPhos = (2-biphenyl)dicyclohexylphosphine. (F)
Hoveyda−Grubbs cross metathesis.
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contexts that are at least partially different from the recorded
context. Practically speaking, however, temperature is relatively
easy to change and test in experiments, so suggesting an
approximate initial guess of the temperature would be
sufficiently helpful for the setup of experiments. The top-one
temperature prediction falls within the ±10 or ±20 °C range of
the recorded temperature in 36.7% and 57.7% of test cases,
respectively. If we isolate reactions whose predicted chemical
context matches the recorded chemical context, these
accuracies increase to 42.6% and 65.9%. The mean absolute
error (MAE) of temperature prediction for all reactions in the
data set is 25.5 °C, and when the correct chemical context is
found the MAE is 19.4 °C. Figure 2 visualizes this by plotting
the predicted temperature against the recorded temperature for
a 1% sample of the testing set. The fact that the quality of
temperature prediction is significantly improved with correctly
predicted chemical context demonstrates that the prediction of
temperature accounts for the compatibility with the chemical
context. This performance is also compared with a baseline
model that predicts the most frequent temperature (20 °C) for
every reaction in the Supporting Information. Figure S4 shows
the distribution of temperature for the test set. While a
majority of reactions use 20 °C, the distribution spans a wide
range, and simply predicting the room temperature (20 °C)
will result in a mean absolute error of 35.3 °C, which is
significantly larger than the prediction given by the trained
model and would be misleading for reactions that require high
or low temperatures.
Qualitative Evaluation of Reaction Examples. In

addition to the statistical analyses, qualitative evaluation of
reaction examples helps provide chemical insight in the model
predictions. We select reactions from a variety of common
types of organic reactions to evaluate the quality of model
predictions. We randomly select example reactions that are
labeled by reaction type (around five for each type) and
compare the true condition, top-one prediction, and the closest
prediction within top-10 candidates. The closest prediction is
defined as the prediction that has the largest number of
chemical elements exactly matching the true chemical context.
The reaction types we choose to test include hydrolysis,
esterification, alkylation, epoxidation, Wittig, reduction,
oxidation, deprotection, Suzuki−Miyaura coupling, Grubbs
metathesis, and Buchwald−Hartwig amination. Due to space
limitation, we only place a small part of the examples here in
the main text with the top-one prediction (Figure 3) and the
rest in the Supporting Information (Table S3) with both the
top-one prediction and the closest prediction.
Figure 3A is an epoxidation reaction where two CC bonds

are present.33 The recorded reagents for a nucleophilic
epoxidation, selective for the electron deficient alkene, are
correctly predicted by the model. Figure 3B shows a Fmoc
deprotection reaction where either acidic or basic conditions
can be used. In this case, basic conditions are proposed by the
model for removal of the Fmoc group which does not affect
the other acetate protecting groups in the molecule.34 Notably,
the predicted reagent (piperidine) is highly similar structurally
and functionally to the recorded reagent (morpholine),
demonstrating the model’s ability to capture chemical
similarity. Figure 3C is a Luche reduction that needs a Lewis
acid catalyst to selectivity reduce the carbonyl, and the model
recognizes this specificity by suggesting cerium(III).35 Figure
3D is a Buchwald−Hartwig aryl amination that uses BINAP as
the ligand.36 The metal atoms, ligands, the base, and the

solvents are all correctly predicted by the model. Figure 3E,F is
a Suzuki−Miyaura coupling reaction37 and Grubbs meta-
thesis,38 respectively, for which the model also successfully
predicts the exact chemical context.
It is worth pointing out the success of predicting the context

of catalytic reactions is partially attributable to a data cleaning
step that moves transition metal compounds from the reagents
field to the catalyst field. This only increases the overall
accuracy by a small margin (∼0.5%), but it significantly
improves the quality of model predictions for catalytic
reactions in the case studies. For example, before data cleaning,
Figure 3D had the catalyst predicted as a reagent, and Figure
3E missed the catalyst entirely. A complete list of 62 reactions
from 11 reaction types can be found in the Supporting
Information, Table S3. Finally, temperature is predicted within
a reasonable error from the true temperature (Figure 3 and
Supporting Information, Table S3), and examples with large
deviations are mostly cases with chemical contexts predicted
different from the recorded ones.
As mentioned in the Introduction, we also performed a

nearest-neighbor search for these reaction examples, shown in
the Supporting Information. The nearest-neighbor search is
analogous to searching for similar reactions in reaction
databases such as Reaxys or SciFinder. Results in the
Supporting Information, Table S6, show that the nearest-
neighbor method works comparably well in giving the first
suggestion for many examples, but it is more than 10 000 times
slower than the neural network method presented here.
Therefore, it is prohibitively expensive to evaluate the nearest-
neighbor approach on the entire test set, and only a qualitative
comparison is given on the examples described above. This
suggests that using the trained neural-network model can
achieve significantly faster speed in finding reasonable
condition recommendations compared to the nearest-neighbor
search method, and thus can be better integrated with
computer-assisted retrosynthetic programs.
The results in Figure 3 and the Supporting Information,

Table S3, show selected results pulled out of the test set of
some common classes of reactions such as oxidations,
reductions, and coupling reactions. Although these are
common reaction classes, there is much diversity in specific
conditions to achieve the desired reactivity depending on the
structure of the starting materials. The results in Figure 3
demonstrate that specific conditions can be chosen by the
model for many reaction classes. We also include in the
Supporting Information, Table S4, 100 completely random
examples from the test set that will not have the restriction of
the 11 reaction classes that we initially pulled examples from. It
can be seen that the prediction performance is good for most
of these random cases.
Nevertheless, it is important to also analyze examples with

the most incorrect predictions. We calculate the sum of binary
variables indicating whether the correct or similar c, s1, s2, r1,
and r2 are predicted and use it as a crude measure of
“correctness”. The test results are sorted in ascending order of
this sum, and examples are drawn from the first 10 000 entries
(this is about 1% of reactions from the test set with the
quantitatively worst predictions) in the reaction types
described above (five for each type, for some types fewer
than five as the reactions with labeled reaction types are sparse
in the database). A list of 40 reactions are generated and listed
in the Supporting Information, Table S5 (part of the examples
shown in Figure 4). Even in these ostensibly “worst” cases,
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many predictions are not unreasonable. Figure 4A represents a

common type of data quality issue in the data set, where water

is used to quench the reaction but recorded in the same way as

other reagents, despite being incompatible and explosive with

alkali metals in their pure form.39 However, the model

recommends reagents that are commonly used for a dissolving

metal reduction reaction. Figure 4B represents another type of

problem observed in the data set, where a multistage reaction

Figure 4. Examples of the reactions with the fewest chemical elements matching the recorded context (temperature rounded to the nearest integer;
black text represents the recorded conditions, and red text represents the predicted conditions). (A) Birch alkylation. (B) Hoveyda−Grubbs cross
metathesis, TBS = tert-butyl(dimethyl)silyl. (C) Suzuki-Miyaura coupling. (D) Azide reduction.

Figure 5. Embedding of the most common 50 solvents projected onto a two-dimensional space using t-SNE. Solvents are naturally clustered into
their corresponding classes (manually annotated).
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is recorded as a single transformation.40 In the original
reference, the Grubbs reaction and reduction are two isolated
steps, which is probably a rare case in the database, and the
model fails to recognize these two reactions simultaneously.
The top suggestion is indeed poor, whereas the 6th to 10th
suggestions all recognize the Grubbs reaction and suggest a
Grubbs catalyst (see the Supporting Information, Table S5). In
Figure 4C, the model suggests using tetrakis palladium(0)
where the true context is palladium(II) and triphenylphos-
phine which is commonly used to form palladium(0) in situ, so
the prediction seems to be a viable context combination for the
reaction.41 Figure 4D is a case of an azide reduction reaction.42

The model recognizes a reductant is needed, and suggests
hydrogen as a first choice. The fourth suggestion of the model
include two reagents: 1,3-propanedithiol and triethylamine
(Supporting Information, Table S5), which is a more plausible
alternative to the recorded reagent. More examples can be
found in the Supporting Information, Table S5, and many of
the “poorly matching” results are not close to the published
procedures but are not altogether unreasonable suggestions.
In addition, we include a test of predicting context for

Michael addition reactions that are the same as used by
Marcou et al.,30 which shows significant improvement; results
are presented in the Supporting Information.
Learned Embedding of Solvents and Reagents. While

no explicit relationship between chemical species is included in
the model, it implicitly learns the functional similarity of
solvents and reagents through training, as it can suggest similar
chemicals for the same reaction. Taking solvent as an example,
the similarity information can be extracted from the neural
network, specifically the weight matrix in the last hidden layer
before the final likelihood prediction and softmax activation. If

two rows in the weight matrix are similar, the model will tend
to predict similar scores for the corresponding two solvents. In
other words, each solvent can be represented by its
corresponding row from the weight matrix. This representation
contains information about how it is used in different reactions
and can be used to characterize functional similarity, implicitly
averaged over all training reactions. This is analogous to the
word embedding in natural language modeling where discrete
words are converted to vectors of real numbers which contain
similarity information (word2vec),43 though we arrive at the
representation indirectly, so we call the vector “solvent
embedding”.
To visualize the embedding of solvents, the top 50 solvents

with the highest frequency in the data set are selected, and
labeled manually into four types (nonpolar, polar nonprotic,
protic, and halogenated). The embeddings of the solvents are
normalized to account for their frequency of use and projected
into a 2-D space using the t-distributed stochastic neighbor
embedding (t-SNE)44 technique, shown in Figure 5. It is worth
noting that the solvent embedding vectors do not have a
physical interpretation, and t-SNE is a technique that aims to
preserve the similarity of the data points in a visualized low-
dimensional space. Therefore, the axes on Figure 5 do not have
direct meaningful representation. Nevertheless, it can be seen
that the solvents of the same type are clustered in the same
part of the graph, and we can even observe some chemically
reasonable trend across clusters (e.g., increasing polarity from
the bottom right to upper left). Some “close-neighbor” pairs
agree well with chemical knowledge (e.g., benzene and toluene,
methanol and ethanol). The model is not supplied with any
information about polarity or other electronic properties, but it

Figure 6. Embedding of the most common 50 reagents projected onto a two-dimensional space using t-SNE. Reagents are naturally clustered into
their corresponding classes (manually annotated).
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learns the difference by the ways that solvents are used in
various reactions.
The same plot for the most common 50 reagent embedding

is shown in Figure 6. The functionality of reagents is more
diverse than solvents, and the label list includes inorganic acid,
organic acid, Lewis acid, inorganic base, organic base,
reductant, oxidant, and activating reagents. While a 2-D
projection might be insufficient to fully represent the variance
of functionality, it can be observed that reagents of similar
function are reasonably clustered in the same area of the plot.
Additionally, incompatible reagents are segregated from each
other (e.g., acids and bases, reductants and oxidants)
demonstrating the ability of the model to not only recommend
similar reagents but also lower the chance of recommending
reagents that will likely to be reactive with one another.
The solvent and reagent embeddings extracted from the

condition recommendation model demonstrate the possibility
of understanding chemical functionality through reaction data,
and have many potential applications. Most directly, it can be
used as a tool to identify the closest alternative for the
currently used solvents/reagents that are, for example, less
toxic, cheaper, etc. It can also be used as input features for
other machine learning problems that are context dependent,
e.g., evaluation of reaction outcomes and solvent/reagent
property estimation.
Strengths and Limitations. The neural-network model

developed in this work overcomes many of the challenges
described in the Introduction as summarized below:

(1) By training on ∼10 million reactions from Reaxys, the
model covers a wide range of organic reactions.

(2) With a hierarchical neural network, the model predicts
all the elements in the reaction condition sequentially
with interdependence and relatively high accuracy.

(3) The chemicals are not precategorized into classes so
predictions can point to the specific chemicals that
might, for example, be used as either an acid or an
oxidant based on the reaction (e.g., sulfuric acid). On
the other hand, individual chemical species are modeled
as separate entities so that functional similarity can be
learned during training and extracted from the model.

(4) The model recommends reaction conditions much faster
(less than 100 ms for one reaction) than nearest-
neighbor search methods, and allows quantitative
evaluation of model predictions on a large scale. It can
also be used for efficient condition recommendation for
a large number of reactions suggested by computer-
assisted retrosynthetic analysis. The reaction conditions
can be utilized by forward evaluation tools to better
predict reactivity, especially for condition dependent
reactions. In addition, the learned embeddings of
solvents and reagents can be used to quantify similarity
of conditions of sequential reactions to estimate
separation requirements, and to find potential green
alternatives to toxic solvents/reagents, both of which are
helpful for pathway-level route screening and prior-
itization.

Meanwhile, the current model also has some limitations, as
summarized below:

(1) Since the chemical context is predicted in a sequential
manner, we must limit number of predictions at each
stage to obtain approximate top-10 combinations in a
short time period (similar to a beam search).

(2) Truncating the data based on minimal frequencies of
catalysts, reagents, and solvents lowers the total number
of trainable parameters and avoids data sparsity issues
during training, but also limits the ability to predict rare
contexts that are used by highly specific reactions.

(3) There are various other limitations imposed by the
imperfection of the training data. For example, even after
filtering, some reactions with multiple transformations
remain which confuses model prediction, and the
labeling of reagents is sometimes misleading (e.g.,
quenching chemicals included as a reagent); there are
some duplicated records or different labels for the same
chemical. While these situations are relatively uncom-
mon in the entire data set, a better curated data set can
potentially further improve the model performance.

■ METHODS
Overview. The task of condition prediction can be divided

into two parts: chemical context prediction (catalysts, solvents,
reagents) is treated as a set of multiclass classification problems
(i.e., choosing chemical species from a fixed list), while
temperature prediction is treated as a regression problem.
Pressure is not considered in this scope because the majority of
published reactions of interest are run at atmospheric pressure,
and databases often do not record pressure for such cases.
Concentration is also not considered because it is excluded
from tabulated reaction databases, although sparse information
is available in the form of mass or volume of some chemical
species. As mentioned in the introduction, all these parts
should be linked together in one model to solve these
classification and regression problems in a hierarchical
formulation to account for the interconnectedness of, e.g.,
solvent and catalyst selection. We choose to use neural
networks to construct the model architecture, because of their
flexibility to recognize highly nonlinear relationships and
because the size and diversity of the data warrant a high-
capacity model. The model is trained on published reaction
data from Reaxys8 to predict the recorded reaction conditions,
after which we are able to infer suitable reaction conditions for
novel reactions.

Data. We construct our training set starting from the
Reaxys reaction database that consists of 53 million reaction
records. The information we use includes the simplified
molecular-input line-entry system (SMILES) strings of the
reactants and products, the Reaxys chemical ID and SMILES
(if available) or name for the catalysts, solvents and reagents,
and the temperature for the reactions. Note that in this context
reagents are explicitly distinct from reactants, with the former
generally not contributing carbon atoms to the reaction
(typical reagents include acids, bases, oxidants, reductants,
etc.). We restrict our analysis to single-product and single-step
reactions to better align with the application to computer-aided
synthesis planning. In this context, single-product reactions are
defined as Reaxys reaction entries with only one recorded
major product. Few entries have multiple products (e.g.,
specifying all outcomes in cases of ambiguous site selectivity),
only 6.3% in this data set. Reactions are preannotated to
specify the number of reaction steps associated with the
recorded transformation; this attribute is used to filter out all
multistep reactions. Some reaction examples passing this filter
could still be considered as requiring multiple steps (as shown
in the Results section), but it is otherwise hard to
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systematically distinguish between single- and multi-step
reactions purely based on reactant and product structures.
Reactions without recorded structures (half reactions) or with
structures that could not be parsed by RDKit45 are removed.
We also discard reaction entries with no reaction condition
information (i.e., no catalyst, no solvent, no reagent, and no
temperature), and restrict the maximum number of unique
solvents and reagents per reaction to two per category, which
will be further explained in the Model Structure section. We
also note that there is some ambiguity between catalysts and
reagents in Reaxysmany catalysts are recorded as reagents,
causing the data to be sparser for catalysts and increasing the
number of distinct reagents. This issue can hardly be
eliminated completely since a strict separation between
reagents and catalyst is difficult to achieve. As a data cleaning
step to mitigate this issue, all chemicals that appear as catalysts
or reagents that include transition metals in the name are
marked as “catalyst exclusive” and consolidated to the catalyst
field.
For the remaining 12.1 million reaction examples, we

analyze the frequency of each solvent, reagent, and catalyst
species. A minimum frequency filter is applied to remove rare
catalysts, solvents, and reagents. Rare chemical species
significantly increase the number of classes over which the
condition prediction will be made, introducing concerns over
data sparsity, and including them contributes little to model
coverage (frequency vs rank plots for catalysts, reagents, and
solvents are provided in the Supporting Information, Figures
S1−S3). A minimum frequency of 100 is applied to solvents,
reagents, and catalysts. The final number of classesdistinct
chemical speciesfor solvents is 232, for reagents is 2247, and
for catalysts is 803; this is an appreciable reduction from the
original 11 246, 151 214, and 10 323, respectively. Meanwhile,
the number of reactions filtered out by this criterion is only
676 848, around 5% of the total reactions. The number of
reactions filtered out by each criterion is listed in Table 2.

Temperature is treated as a continuous variable. For those
reactions whose temperature is recorded as a range (e.g., 0−20
°C), the midpoint of the range is used. We require the reaction
temperature to be within −100 and 500 °C, which comfortably
contains the vast majority of organic transformations and only
excludes chemistry outside the scope of this study (e.g.,
hydrocarbon cracking). After the full data preprocessing
pipeline, there are a total of 11.4 M reaction records that
result in the final data set.
Molecular Representation. Morgan circular fingerprints,

as implemented in RDKit (with radius 2, calculated as bit
vectors with length 16 384, stereochemistry information

included, and feature-based invariants are not used),45 are
used to represent reactants and product species, as they are a
commonly used descriptor of organic molecules.11,15,46

Catalysts, solvents, and reagents are directly represented as
one-hot vectors, with each different chemical species (more
precisely, each chemical entity with a unique ID in Reaxys)
representing a unique class. A NULL class is added for each
element, to represent reactions where the corresponding
element is not recorded (e.g., no reagent, etc.). The lack of a
well-defined chemical structure for certain species (e.g., air)
precludes a richer descriptor-based representation, and we find
a one-hot representation to work well in practice.

Model Structure. The neural network takes the product
fingerprint and reaction fingerprint as two inputs. A reaction
fingerprint is calculated as the difference between product
fingerprint and reactant fingerprint, which represents the
substructures that change during the reaction.46 Predictions are
made sequentially so that information from precedent
elements can be incorporated into the prediction of
subsequent elements (e.g., the prediction of solvent will
depend on what catalyst is chosen). Temperature is the final
output of the model, such that it relies on the chemical context
recommendations. The workflow of the model (shown
graphically in Figure 7) is as follows:

(1) Reaction and product fingerprints are concatenated and
passed through two fully connected layers (ReLU
activation, size 1000; ReLU activation, size 1000, with
a 0.5 dropout) to generate a dense representation of the
fingerprints (referred to as Dense FP).

(2) Dense FP is passed through two fully connected layers
(ReLU activation, size 300; Softmax activation, size 803)
to predict the catalyst (or NULL) for the reaction.

(3) The one-hot vector of the catalyst prediction is then
concatenated with Dense FP and passed through two
fully connected layers (ReLU activation, size 300;
Softmax activation, size 232) to predict the first solvent
(or NULL).

(4) Step 3 is repeated for prediction of the second solvent
(size 228), the first reagent (size 2240), and the second
reagent (size 1979). The numbers are smaller than the
total class of solvents/reagents because some solvents/
reagents are only present in one of the fields (i.e., only as
Solvent/Reagent 1 or Solvent/Reagent 2).

(5) One-hot vectors of the catalyst, solvents, and reagents
and Dense FP are all concatenated and passed through
two fully connected layers (ReLU activation, size 300;
Linear activation, size 1) to predict the temperature.

Notable features of the model construction are as follows:

(1) One feature is the order of the prediction tasks. The
earlier it appears in the model, the more that task is able
to be performed solely based on the reaction,
independent of the other predictions. We experimented
with predicting single elements using fingerprint
information only and found that the validation accuracy
(top-one accuracy) is highest for catalyst (92.1%), and
similar for solvent and reagent (60.6% and 60.6%,
respectively). This is consistent with how chemists
generally approach this problem manually, i.e., identify if
the reaction requires a catalyst. Reagents are placed last
in the sequential prediction, so that information about
catalyst and solvent selection is included in predicting
reagents, which have the most unique possibilities and a

Table 2. Number of Reactions by Each Filter Criterion

criterion number of reactions

originally from Reaxys 53 143 003
temperature out of range 56 235
multistep 23 536 281
multiproduct 3 335 439
missing SMILES (including half reactions) 92 472
cannot be sanitized by RDKit 1 693 625
no condition information 9 684 738
exceeding one catalyst, two solvents, or two reagents 2 645 058
using rare catalysts, solvents, or reagents 676 848
f inal data set 11 422 307
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greater level of flexibility even when the catalysts and
solvents are fixed.

(2) Another feature is the number of catalysts, solvents, and
reagents for each reaction. Most of the reactions in the
data set have no catalyst or at most one catalyst
recorded, so the number of catalysts is limited to one. A
majority of reactions use one solvent, but there are still
many examples that use multiple solvent or multiple
reagent combinations. Few reactions in the data set use
three or more solvents or reagents, so limiting the
number of solvents and reagents to two for each
category keeps the model in a reasonable size. The final
model has 38 M parameters.

Training and Evaluation. The data set is split randomly
into training/validation/test sets with a ratio of 80/10/10. The
time-split strategy is not used because, in practice, the model
for condition recommendation is likely to be mainly used for
interpolating and generalizing historical condition information
to new substrates, but not designing fundamentally novel
conditions that have not been previously discovered. It is
worth noting that there can be multiple records for the same
reaction, possibly happening under different conditions. When
multiple records of the same reaction exist (i.e., if multiple
reactions share the same reactants and products, which is quite
common), they are grouped during shuffling to guarantee that
the reactions in the test set are not present in the training set.
Our model has intermediate outputs (catalysts, solvents, and
reagents) that are used as input for the next prediction, which
resembles the features of a recurrent neural network, so we
apply the teacher forcing technique47 during training. It takes
the ground truth output, instead of the predicted ones, as the
input for the next prediction task. This technique has been
shown to increase stability and accuracy of the training.
Categorical cross-entropy is used as the loss function for the
classification problems (i.e., catalysts, solvents, and reagents),
and mean squared error is used for regression (i.e., temper-
ature). A weighting factor of 0.001 is applied to temperature so
that the numeric values of the loss functions are approximately

on the same scale. Training continues until the validation loss
does not improve over five epochs.
Evaluation is performed both quantitatively and qualita-

tively. We calculated the accuracy of the true combined
chemical context as well as individual elements to be within the
top-three and top-10 predicted combinations. Additionally, we
extend this accuracy calculation to include some “close match”
predictions. The similarity of solvents is characterized by the
Euclidean distance between the Abraham parameters28 of the
two solvents if the parameters are available, and otherwise only
exact matches are considered. The methanol−ethanol pair is
used as a threshold to identify solvents that are close matches.
Catalysts and reagents are classified as close matches if they
have the same metal atoms (for organometallic compounds) or
if their feature-based Morgan fingerprints are exactly the same.
The feature definitions are as implemented in RDKit, adapted
from the definitions in Gobbi et al.,48 which define some
invariants that share the same feature, such as “halogen” (e.g.,
−Cl and −Br), “hydrogen bond donor” (−SH and −OH), and
unusual atoms (not H, C, N, O, F, S, Cl, Br, I; e.g., Na+ and
K+). A complete table of feature definitions is included in the
Supporting Information (Table S8).
For temperature, we calculated the percentage of cases when

the temperature is predicted to be within ±10 and ±20 °C of
the recorded temperature.
Besides the quantitative analysis, examples were chosen from

common types of chemical reactions to demonstrate the wide
applicability of the model and provide more insights into the
model prediction characteristics. Successful and unsuccessful
predictions in the test set are presented and analyzed to
demonstrate the performance of the model. In comparison, the
performance of the nearest-neighbor model on these reactions
is also tested, and results are discussed in the Supporting
Information.
This is a computational study, and we do not expect high

safety hazards to be encountered.

Figure 7. Graphical representation of the neural-network model for context recommendation (“Hard Selection” refers to setting the value of the
maximal element to one and zero for the rest, although the output of each classification task is a probability distribution).
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■ CONCLUSION

A neural network model was developed for the task of reaction
condition recommendation. Using a hierarchical design and
training on about 10 million reactions from Reaxys, the model
gives recommendations on the catalyst, solvent, reagent, and
temperature to be used for any organic reaction. The model is
tested on 1 million reactions outside the training set, and is
able to recover a context combination with the catalyst and at
least one solvent and reagent close to the true context in the
top-10 predictions in 69.6% of those cases. Qualitative
evaluation on common types of reactions reveals that the
model can predict the exact conditions or predict conditions
that have the same functionality as the true conditions.
Many failed predictions are due to highly specific reactivity or
data inconsistencies. Solvent and reagent embeddings are
extracted from the trained model, and the visualization of them
demonstrates that these representations capture the functional
similarity. The context information generated by this tool can
be used to aid experimental design, improve accuracy of in
silico evaluation of reactivity and pathway-level evaluation, and
improve chemical synthesis processes.
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