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Introduction

Global square refers to the following principle discovered by Jensen:

There exists (C, : v is a singular limit ordinal) such that

a) C,isclubinvy

b) otpC,<v

¢) 7€limC, —Cyr=vNnC,
Global square is a deep combinatorial principle. It is used to prove the existence
of k*-Souslin trees, and to establish many two-cardinal theorems. Jensen’s elegant
proof of square in L in [B], is based on a condensation property of the fine structure
hierarchy for L. This thesis adapts a simplified version of Jensen’s argument, due
to Sy Friedman, to the core model context.

Mitchell has described a higher core model K which allows arbitrary sequences
of measures. My thesis closely studies a special case of Mitchell’s K in which all
measures have order zero. In this thesis, first a special hierarchy for K called
the “Delayed K-Hierarchy” is defined. Second, a condensation property for the
Delayed K-Hierarchy is shown. Finally, global square is established in the Delayed
K-Hierarchy using the condensation property in a proof that parallels Jensen’s proof
of global square in L.

With L in mind as a paradigm, I believe that there is a general approach
to establishing combinatorial principles in core models, based on an appropriate
condensation property. I believe that this condensation property appears when the
right hierarchy for the core model is chosen. This thesis establishes global square
for the special case of Mitchell’s core model where all measures have order zero in

a way that should generalize to core models with more general extender sequences.



The Delayed K-Hierarchy

In Jensen’s definition of a premouse N, a measure E is added at (s)N. In this
thesis, the definition of premouse is changed so that the measure is added later, at
(st+)VUN.E)  This delay leaves intact the related definitions of mice, core mice,
strong mice, weasels and universal weasels; the only difference being that the new
definition of premouse is substituted for the old. However, the new definition does
change the hierarchy of universal weasels to make possible a condensation property

from which a proof of square follows much as in L.

Here is the new definition of premouse:

Let M = (JE,F,). M is a premouse iff

A) F = {{{ab),v): (ab) € F,} and if M|v =4 (JF,F,) then for all v < a, M|v is
acceptable, and for all v < a, M|v is sound. Let M||v =4 JF

B) If v <« and F, # 0, then there exist § and & in M|v such that

1) Mlv = (B = «t and B = greatest cardinal). (From now on, let g.c.
stand for greatest cardinal.)

2) F, =U{g: for some z < B,¢ is a function with domain z such that
for all a < z,g(a) = (faya) Where f, is the a'® function from « to &
in M|v such that for 6 < &, fo(6) < 6*+.}. (ya is defined below.)

3) Let E, = {X :for some a < f3, fo is the characteristic function of X
and yo = 1}. Then E, is a normal measure on « in M|v.

4) Let 7 : M|v —E—:v N. (Here we are using Jensen’s notation where

T: M - N means that the ultrapower is fine-structure preserving,

or £*). Then for all a < B,ya = 7(fa)(K)

6



5) Letw:M|v £ N, Then

FNty=FM¥ 1y FN =0, and N | (v = £+),

C) The order zero hypothesis:

Suppose that F, # § and M|v |= (8 = * and 8 = gc).

Suppose that 7 > v but that J£ |= (8 = x*). Then F, = 0.

D) The Initial Segment Condition:

Suppose that F, # @ and M|v |= (8 = &+, 8 = gc)

Let W, = {fa}a<p, U = {Yata<s-

Let k£ < 7 < B and suppose there exists #' <  such that JF E(8'=xt,8 = gc).
Let W, = {fu € W, : fu € I} = {fu}acs

Let E, ={X € JF : X € E,} = {X € JF : 3f, € W,, f,, is the characteristic
function of X and y, = 1}.

Suppose that E, is a normal measure on x in JE. Let m: M|B' N N and suppose
that N |= (7 = xtt) "

Let U, = {(fa)(%)}a<p =as (¥ }ar <

Let Fr = {g € JF : for some z < B', domg = z and for all a < z,9(a) = (fayh)}
Suppose that (JF F,) satisfies A and B. Then F, = F.. .

The definitions of mice, weasels, and their properties follow from the definition
of premouse just as in the nondelayed hierarchy:

Let M be a premouse and suppose that FM = § codes a measure on & where
My |= (8 = «*). If M |= (~card ) then we say that FM and EM die in M. If
M |= (card B) then FM and EM live in M. Because a premouse can code measures

that die as well as live, there are two ways of iterating a premouse: simply and
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nonsimply.

Suppose F,, = (. Let M|a be the largest initial segment of M in which E, lives.
The ultrapower of M by E, is the ultrapower of M|a by E,, 7 : M|a T N. If
M = M]a, the iteration is simple. If M|a # M, the iteration is nonsimple and we

say M must be “cutoff” before it can be iterated by E,,.

Let M = (M;)i<s be an iteration of M = M, of length 6. Let E,, be a measure
on k;. Let mii41 : Mila —é:» M4, where M;|a; is the largest initial segment of M;

for which E,, lives. Then (k;v;):<¢ are the indices of the iteration. M is simple iff

a; = ht M; for all i. M is nonsimple otherwise.

A premouse M is a mouse iff all iterations (M;);<s of M can be continued, i.e.
iff all iterates of M are wellfounded. If M is a mouse and (M;)i<¢ is a nonsimple
iteration of M, then there are only a finite number of ¢ < 8 for which the iteration
Tii+1 : M; — N; is nonsimple. (M;)i<g is an iteration above 7 iff k; > r for all
i. If the iteration m : M — N is simple, it is £* (fine structure preserving). If
o0: M — Nis £* and N is a mouse, M is a mouse. Given a mouse M, the core
of M, or core(M), is the unique sound mouse that iterates simply above the w!?
projection of core(M) to M. If M = core(M), then wply = wplyy and wplt, < wply
for all n. In fact, if 7 : M — M is the iteration, then Ur'wply C wply for all
n and 7 sends the standard parameter of M to the standard parameter of M. If
¢ : M — N is simple and above wpy, then N is not sound. If (M;)ice is a
nonsimple iteration ol M, let M; be the place of last cutoff, M} = M;|a;. Then
Tjg M; — M is simple and above wp‘xl;, My is not sound, and M; = core(Msp).
To compare structures M! = (JA A,) and M? = (JB B,) (not necessarily premice),

we will define a comparison iteration (M});<s (M?)j<o : Let My = M* for i =1,2.
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Suppose (M})i<. and (M?)i<: have been defined. Let v, be the place of first
difference between M} and M?2. If either A} or B;_ is nonzero and does not code a
measure, th_e iteration terminates. Otherwise, if F) = 0,let vl,,, : M} — M2 be
the trivial iteration so that M} = M}, . If F} # 0, let M]|a. be the largest initial

segment of M} such that E} islive. Let 7}, : M}|a, . 1.1- Similarly for M2.

vr

If \ is a limit ordinal, let M} be the direct limit of (M} 7}, );x<a for i = 1,2. The
comparison iteration will have indices (x;v;) where F,. and/or F?, codes a measure
on ;. A comparison iteration is always normal. If either M or M? is a premouse
and not a mouse, the comparison iteration may terminate at stage j because M Jl
or MJ2 may not be well founded. M! and M? are said to be coiterable iff the
comparison iteration does not terminate because of a failure of wellfoundedness or
because some predicate does not code a measure. Two mice are always coiterable,
and their coiteration always terminates at a stage < co. Let {M!);<g(M?)i<o be a
comparison iteration that terminates at stage 8 < oo. If one side of the iteration is
nonsimple, the other side must be simple. Also, M} - M2 M3 < M}, or M} = M;.
If the M'-side of the iteration is nonsimple, then M} C M;. (Here, @ C R(Q - R)
is shorthand for Q is an initial (proper initial) segment of R.) Recall that if the
M-side of the iteration is nonsimple, then M} is not sound and M cannot be a
proper initial segment of MZ. W is a weasel iff W = JE and for all a, Wl|a is a
mouse. Any two weasels are coiterable, and so are a mouse and a weasel. If @) is
a structure and N a mouse or weasel, say that in the comparison of N and @, @
is passive below o iff ht Q > a and there is a normal iteration N — N; such

that N;Ja = Q|a, and if z is the place of first difference between N, and @, then

FQ = { or codes a measure on k > a. W is a universal weasel iff the comparison of



W and any coiterable premouse terminates. A mouse N is strong iff whenever M
is a premouse such that M|a = N and M is iterable above a, then M is iterable
and N = core(M)|a. It is also true that N is strong iff N can be extended to a
universal weasel, that is, there exists a universal weasel W such that N = W|a for
some a. The core model K is the minimal universal weasel in the sense that any

other universal weasel is an iterate of it by a simple iteration of length < oco.

K is defined by:
K0 = (00)

I\'|V + 1 = (Jf-}-l’@)
If A is a limit ordinal, then

(JFG) if G codes a measure such that(J{ G) is strong
(JFO)  if no such G exists .

xp={

Then K is uniquely defined.
In this thesis, a condensation property for any universal weasel is shown that

will be used to prove global square in any universal weasel including K.

Friedman Witnesses

If Q is a structure of the form (JF, F,, A) and o < a, then if A is empty, Qo =4
(JFF,). Otherwise, Q|lo =4s JF and Q | 0 =4 (JF,F, | 0,A | o), the truncation
at o.

If M is a premouse and FM # §), then v is active. Otherwise v is inactive.

Let AV(S) be the transitive collapse of hY(S), the £;-hull of S in N. If z € hY'(S),
let z collapse to Z in AN(S). If z € RM(S), let & in hY(S) collapse to z. If M =
AN(S), let M = AN (S).

In general, if M is a mouse, M will stand for core(M).
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If N is a structure, let vy be wp%, 7N bewp};, and let py be the standard parameter
of N.

Let H = A (a U (p)). p is witnessed in k) (aU (p)) iff p collapses to 5 in H, where
is the standard parameter of H above a. Let N = (N*)™ | A and H = kN (a U (p)).

Say that p is fully witnessed in h{¥(a U (p)) with respect to g iff

1) pis witnessed in AV (a U (p))
2) Whenn > 0,ifc : H Zo, (N*)™ is the inverse of the collapse
with o* : H* — N* its canonical expansion, and H = (H*)"? and

0*(g) = g, then (pg) is the standard parameter of H* above «

(So if n = 0 we can assume ¢ = 0. In this case, “p fully witnessed in k) (a U (p))
with respect to ¢” will mean p is witnessed in h¥(a U (p)).)

Let M be such that ypr = 7v}. Let ppr = (p1...pn), where p;y, is the standard pa-
rameter of (M)*P!i, Let N = Bi“’"_"”"-l('mu(pn)). Let 5 : N — (M)n—1pIn—1
be the inverse of the collapse with o : M — M its expansion. Then M = core(M).
(This defines core(M) even when M is not a mouse)

Let FW stand for Friedman witness. Let py = (p; ...pn) be the standard param-
eter for N. X is the i** Friedman witness for p in N iff X = AN (p; U (p1 ... pi=1)).
If N is a mouse, then all the FW’s for py are members of N.

Let X € h¥(a U (p)). Say that X witnesses p in b’ (e U (p)) iff X in hY(a U (p)) is
the set of Friedman witnesses for p.

If Q is a structure, say that @ is the zeroth or trivial reduct of Q.

Supose 0 : H — M is ¥; where M is a premouse (mouse), or there exists a
premouse (mouse) N such that ht N = A, F¥ # 0, F)¥ codes a measure on some &

with N = (8 =«%),M £ 8 =gcand M = N | 7. In the latter case also suppose

11



that F¥ N7 measures all the subsets of  in ran o and for all a € ran o there exists

an f such that (fa) € F¥ Nrano. If all these conditions exist, say that N makes

M a o-premouse (mouse).

Ifo:H— Mando [ § =1id [ 6, and o(8) # 6, then say that 6 is the critical

point of o, or § = crit(o).
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Condensation in a Universal Weasel

Let W be a universal weasel. It would be nice if whenever N is an initial
segment of W, h¥(a U (p)) is also an initial segment of W. Unfortunately, this is
not the case, but by putting certain conditions on p, we can get very close to W.
With these conditions on p, h)(a U (p)) will be at most one iterate (ultrapower)
away from an initial segment of W. If N = M™ is a reduct of an initial segment
of W, again by putting conditions on p, we can get k) (a U (p)) to be the reduct
of H where H is either an initial segment of W or one iterate away from an initial
segment of W. Actually, it turns out that N does not have to be a reduct of an
initial segment of W (recall that any M is the trivial reduct of itself). We can get
the same result as long as N is “strong enough”. If in the comparison of N and
W N is passive below a, then the above is still true: h¥(a U (p)) will be at most
one iterate away from being the reduct of an initial segment of W. This means, for
example, that if M is an iterate or a truncation of N, where N is the reduct of an
initial segment of W, then if we are careful, h¥(a U (p)) will still collapse to a reduct
of a mouse at most one iterate away from W. |

We will now prove some useful facts that will be needed for condensation and
square. Keep in mind that when looking at £;-maps ¢ : H — M or %,-hulls
k¥ (a U (p)), we need to be flexible enough to allow for M to be an iterate, reduct,
truncation, or some combination. Since a truncation of a premouse is not a pre-

mouse, M may not even be a premouse! (Of course we need to be careful how we

truncate.)

I. Let 0 : H — M be I, with crit(c) = 6. Let M be a o-premouse. Then
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H|6 = M|6 and in a comparison of H and M, all iterations on the H-side take place

above 6.

Proof: If M is not a premouse, let N make M a o-premouse with ht N = A, F}¥
coding a measure on g, N |= (8y = kf A By = gc), and M = N | 7 where T > f3,.
First we will prove that in a comparison of H and M, all iterations on the H-
side take place above 8. Suppose not. Let = be the place of first difference between
H and M. Because H|6 = M|é, = > é. So the only step of the iteration that can take
place above § is the first step. So assume FY #  and codes a measure on « < é.
Let H|z = (8 = k* A3 = gc). Because H||z = M||z, M|z = (8 =kt AB = gc) also.
Since crit(o) = 6, 8 is a cardinal in H, so either k < 3 <6 =z2,0r £ < f < z and
B = é. Suppose first that M is a premouse. If z < ht H, let v = o(z). Otherwise
let v = htM. Then EM Nz = EF : Let z € EH. Then for some a < 8, H =
(fo is the characteristic function of r and y, = 1). But then M |= (f, is the
characteristic function of z and y, = 1). So z € E‘I," . Similarly, E,f" Nz C Ef ,
basically because both H|z and M|z have the same subsets of k. So EM Nz = EH.
Similarly, WM Nz = WH. Now because H||z = M|z, EF is a normal measure on
win M|z Soif m: Mllz — N', then N' |= (2 = x**). Clearly (JF™ FH) satisfies
all the requirements of a p;emouse and so FH = FM_ Contradiction. Suppose now
that M is not a premouse. If = < htH or if rano C M|fp, then the above proof

shows that Ff = FM_ No.

So suppose z = htH and sup(ranc) > f. £ < f < 4, so o(k) = & and
o(B) = (st)M. If B < 6 then o(3) = B = (k*)M and § = z. But since § = htH
and sup(rano) > f, & must be kg, § must be By and P( ko)™ must be a subset of

rano. But then F¥ N7 = FY since FY N must measure all subsets of « in rano
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and P(xo)™ = P(xo)V. But if F' N .- = FY then M = N and M is a premouse.

No.

So assume B = 4. Then since z = ht H and sup(rano) > Sy, £ = k¢ and
o(B) = Bo. But now, kg, 3, and z are less than ;. Regard o as a £y-map from H
into N. Then the proof in the case that M is a premouse shows that EJ Nz =
EHW)¥Nnz=W! and EN = FH. Since z < 3y < 7, FN = FM. Contradiction.

So in a comparison of H and M, all iterations on the H-side take place above é.

Now suppose that M|6 # H|6. This means that F¥ # § and codes a measure
on £ < B < § where M|§ = (k = B%). Clearly H = (k = B%) also. Then
forall z < 6, M |= 36’ < o(8)(§' > z,Fy # 0,Fs codes a measure on k). So
H |38 < 6(8 > z,Fs # 0, Fs codes a measure on k). It follows that in H there
are at least two different places, say 6, and 63, both less than § and greater than
B where FH and FH both code up a measure on «. But (8 = x*)H1%, 50 no new
subsets of « are added to H|§ after 3. Therefore this is impossible by the initial

segment condition on premice. So H|6 = M|é.

II. Let 0 : H — M beZ,,0 [ 6§ =1id | §,p}; < 6. Let M be a o-mouse. Let W
be a universal weasel and let M|p}; = W/|p};. Assume that in a comparison of M

and W, M is passive below p};. Then H is a mouse.

Proof: If o is ¥£; and M a o-premouse, o captures enough “mouseness” of M for
H to be a premouse. So we must show H is iterable. Suppose H is iterable above
pl;. Consider the comparison iteration of W and H. Let it terminate at stage j. By
I, the iteration on the H-side is above p};. By the universality of W, the iteration

e : H — Hj is simple and therefore X*. If the iteration 7w : W — W; is simple,
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H; - W;. If Tw is nonsimple, H; C W;. Either way, H; is a mouse. Since 7y is ©*,

this means H is a mouse.

It remains to show H is iterable above p};. If M is a mouse, H is iterable above
pl; because o is T¢. So we must show H is iterable above pl; when M is not a
mouse. Let N make M a o-premouse: let A = ht N, F)¥ code a measure on x,
N E(B=xr%)and M = N | 7. Let (H;)icp be an iteration of H above p},. We
will show that it can be continued. First assume (H;);<¢ is simple. Let 7;; be the
iteration maps, {k;7;) the indices. We will define an iteration (N;);<g of N with
maps 7;; and indices (x;v;), together with maps o, : H; — N;, in this way: Regard
o as a Lg-map from H to N and let og be 0. If 5; has been defined, let x; = o;(&;).
If v; € H;, let v; = 0;(9;). Otherwise, let v; = ht N;. Let m;;y; : N; ? Niy.
Define 0,41 by oir1(Tiit1(f) (o)) = miit1(o:i(f)(s:)) for f € H; N "H;. Note that

because 7 < B, m;; is simple iff 7;; is simple. For n a limit ordinal, let N, be the

direct limit of (N;, 7;;)i j<y and let o, (7ip(2)) = mip(oi(2)).

If 8 = 7, a limit ordinal, let H be the direct limit of (HiTij)i j<o- Then og :
H — Ny defined by og(716(2)) = me(0i(2)), is order preserving. It follows that
H must be well founded and the iteration can be continued. Suppose # = z + 1. Let
F ,f * code a measure on K, and suppose Ej, lives in H,. Then F; ,f:’ : codes a measure
on k, and E,, livesin N,. Let j : H, — Ult(H,,E3,) and j : N, — Ult(N,, E,.).
Let a(7(f)(k:)) = j(0.(f)(k.)), where f € H, N *:H,. Then & is order preserving
and since Ult(N., E, ;) is well founded, so is Ult(H;, Ey.). It follows that (H;)i<.
can be continued simply above p};. Now let F. ,,i[ * code a measure on K, in H, where
H;, E (B, = k}). Suppose that E;, dies at &, < htH,. That is, H,|a, is the

largest initial segment of H, that believes 8. is a cardinal. Then &, must be less
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.

than 7o,(K) (where o(&) = &). It follows that F¥* codes a measure on , that dies
at a, = o(a;). But then o, | H.|&, : H.,la, — N,|a, is *. Since N,|a, is a
mouse, H.|&. is a mouse. So (H;)i<; can be continued nonsimply above p};. But
then it follows that if (H;)i<s is nonsimple it also can be continued.

So H is iterable above p}; and so H is a mouse.

III. Let H|yy = W/|yy where W is a universal weasel. Compare H and W. Let
the comparison terminate at stage j. Assume that H is not an initial segment of
W, that H is sound, and that H = H; or that H — H; is simple and above vp.

Then W; # H;.

Proof. We need this fact: let M and N be coiterable and let the iteration have
length 6. Let (M;)i<s (Ni)i<o be the comparison iteration. Then M; = N; iff
j=k=0,0r(j <&k, Mj — M, is the identity, and £ = ), or (k < j, Ny — N;
is the identity, and j = 6).

So suppose W; = H;. Clearly the iteration W — Wj, is nonsimple.

Case 1: The iteration on the W-side is always below yp. But then because
H|yy = Wlyy, we can assume j = 1 and Wy|8y — W) via a measure
on k¥ < vy coded at some z > yy. (Here stage zero is the last and
only cutoff stage.) Then yw, < & < vy since Wy|fBo = core(W;). But
H = core(H;) and vy = 7vH; . Since vH, # Yw,, H1 # W1. No.

Case 2: We can assume that after some stage s, the iteration on the W-side
is above vy. Let t be the place of last cutoff on the W-side. Then
W8 — W; is simple and above yy. Note that ¢ < j. Because

W; = Hj, yw; = vyH; = Yu. It follows that Wi|8, = core(W;) =
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core( H;) = H. But this is impossible by the preliminary fact.

IV Let o: H — M be &,. Let 0 | 6 =:id | 4 and let vy < 6. Assume that H is

the reduct of H*, a mouse, and that M|yy = W]|yy where W is a universal weasel.

Assume further that in a comparison of M and W, M is passive below yy. Then

H* = core(H*) E W.

Proof. Suppose not. Compare H* and W. Assume the comparison ends at stage

J-

Case 1:

Case 2:

The iteration H* — H 7 is nontrivial. By It is clear that because in

a comparison of M and W, M is passive below vy, the H* side of the
iteration takes place above vy . By the universality of W, H* — H i
is simple. Because vy < 8, H*lyy = H*|yw = M|yu = Wlyn.
It follows by III that W; # H;. Because H* —» If}‘ is simple and
above vy, H 7 cannot be sound. Therefore it cannot be the case that
W; 2 H*. Therefore W, g H*. But then W — W; is nonsimple and
If; C W;. Contradiction.

H* = —J‘-‘. So we have W — W; C H*. By III we know that
H* E W;. As before, the first possible difference between W and H*
occurs at some = > vy. So W, | (2 = B%) for some g > yy and
ht H* > z. But H* E W; and H* collapses to y4. Contradiction.

So H*C W.
+
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Let W be a universal weasel

Condensation in W

Let H = hM(6 U (p)) and let o : H — M be the inverse of the collapse with
crit(o) = 6. Let W|6 = M|é6 and assume that in a comparison of M and W, M
is passive below yy. Assume that M = (M*)" | X for some n,q,A and mouse
M* and that p is fully witnessed in AM (& U (p)) with respect to g. Assume that if
o*: H* — M?™ is the canonical expansion of o, then H* is a mouse. Then H* is

either an initial segment of W or a one-step iterate of an initial segment of W.

Proof: BylIV, H* g W. Since p is fully witnessed in A (6§ U (p)) with respect to g,
H, (the core of H) is the reduct of H*, the core of H*. It follows that H = H «—
H* = H*, and that (H is a one-step iterate of H) «— (H* is a one-step iterate of
H*). Suppose H # H. If § = vy, H = H (again by p being witnessed). So assume
vH < 6. Let 7 : H — H be the iteration map (whose canonical expansion is the
iteration of H* to H*). Since p is fully witnessed in h}(§ U (p)) with respect to
q, P is equal to py above § and (dp) is equal to pg where 7(d) < 6, 7(p) = p and
o(p) = p. Let z be the place of first difference between H and H. Let F¥ code a
measure on x. By I, H|§ = W6, by hypothesis W|6§ = M|6, by IV H*|§ = W|é, and
we know H*|6 = H|6. So H|6 = H|6 and z > 6.

Case 1: Suppose k£ < 6. Then k* = § in both H and H. (Recall that § =
crit(o) is a cardinal in H.)
H =h{(x U (r(d),B,))
and
Hy = hi'(x +1U(r(d), )
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where 79, : H — H, is the first step of the iteration. But then since
k%t = 6§ in H, also, H; = hF (6 U (p)) = H. So H here is exactly a
one-step iterate of H. So H* in this case is exactly one iterate away
from H* E w.
Case 2: Suppose & > 6.
Then H = hf (kU (p)) = H. It follows that H* = H*.
It’s worth noting that the above proof shows that the only time H* can fail to

be an initial segment of W is when M |= (|6| = « and —(x measurable)).
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Global Square in K

Here are a few more definitions: A structure () singularizes v or is a singular-
izing structure for v iff either v = ht @ or @ |= (v is regular) and for some n there
is a partial ¥,(Q) function from vy < v cofinally into v. In this case, say that Q
singularizes v in a X,-way. Let H be the n** x-reduct of Q iff H = Q™?'" where p

is the standard parameter of Q.

Global Square refers to the following principle:

There exists (C, : v is a singular limit ordinal) such that

a) C, is closed and unbounded in v

b) otpC, <v

¢c) 7€limC,=C,=C,Nv
Global Square in K will be proved by choosing an appropriate singularizing struc-
ture A(v) for each singular limit ordinal. Once the A(v) are chosen, the proof will

parallel the proof of square in L.

Before embarking on the proof of square, let me state a property of Skolem
hulls which will be used over and over again:
Let a € h?(/\ U (z)). Let o = sup h2(AU (z)) and v = sup r2(AU (z)) Na.

Then v = sup A2 (v U (z)) N a.

Proof: Let y € h2(v U (z) N a. Then for some v' and o' members of 2\ U
(z)),y € h?r’l(u' U (z)). But h?r”’(u' U (z)) is itself a member of r2(A U (z)). So

sup h?r"(u' U(z))Na <suph@(AU(z))Na=v,and y < v.
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Let me also prove this fact about Friedman witnesses before going on to square: Let
p be the standard parameter of M. Let X be the FW for pin M. Let M; =AM ¥(aU

(p)) and suppose that X € kM (a U (p)). Then p is witnessed in M (a U (p)).

Proof: Let o : M, — M | 4 be the inverse of the collapse. If z € hfm(a U (p)),
let # = 0~!(z). Assume wlog that p = (pop;). It will be enough to show that if
X = hM(p, U (po)), then there exists a Y in hflré(a U (p)) such that Y collapses
to AM (5, U (po)) in RM1%(a U (p)). Let 7: X —s M be the inverse of the collapse
and let 7(zo) = po.
Let Zp = min{z € ord X : M, = Vy-¢(yBpo) and
X |= ¢(2B%0) where
¢ is some Yy-formula and 3 is a finite

sequence of parameters less than p, }

Fix ¢ and 8 be such that M; = Vy-¢(yBpo) and X = #(Z08X0). Let 29 = 7(20).
Claim: ¢ M [ 6

Proof of Claim: X = ¢(208%0) <= X E ¢(200(8)Xo <= M k= ¢(300(8)po). But
by definition of zy, M) = Vy—¢(yBpo). So M | § = Vy—é(yo(B)po). So zp is not a
member of M | 6.

But now it is true that if v is a string of parameters less than p; and ¢ is a Zo-
formula, then M; | Jyy(yyho) = X I 20 k= Jyv(yr3o) : My | yd(yvio) =
M | 6 = yy(yo(v)pe) = M | Jy < 8¢(yo(v)po) = M = Jy < Zoyp(yo(v)po) =
X = 3y < 209(yo(7)x0) = X | 3y < Zo(yv%0) = X | 20 k= yy(yrdo)- By
the minimality of Zo, My = Yy-¢(yvpo) = X | 20 E Vy-~9¢(y7Xo). It follows
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that if Q = 715”%(131 U (Xo)),Q € M, and letting ¥ = Q and o(Q) = Y finishes

the proof.

Now for the proof of square:

Assume that for each singular ordinal v, the singularizing structure A(v) has
been defined. Assume that 4(v) singularizes v in a £,-way. Let p be the standard
parameter for A(v) above v. If v < ht A(v), let z be the least parameter string less
than v such that v € hf(")((pz)). If v = ht A(v), let z = ¢. Let a(v) = sup{v <
v:U =sup hf(")(ﬁ U(pz))Nv}. If v =sup h'{‘(”)(a(u) +1U (pz)) N v, say that v is

of type I and define ay = vy = a(v). Define:
C.={o<v:o=sup h'lA(")(a U (aopz)) N v for some a}

and leave C? undefined.

If v # sup h1*)(a(v) + 1U (pz)) N v, say that v is of type II and define
- C® = {5 < v: there exists @ > a(v) such that

v = sup h{ ) (a U (pz)) N v}

If C? is defined and bounded in v, define v, ap and C2*! : v, = sup(C}) Nv.
ay, is such that v, = sup hf(")(a,, U(pzag...ap-1))Nv and v = sup h'lA(")(a,. +
1U(prag...apn—1))Nrv. C**! = {4 < v : there exists a such that ¥ = sup hf(”)(au
(pzag...an))Nv}. If C} is defined and unbounded in v, let a, be the least ordinal
a such that v = sup i (e U (pzag ... an_1)) Nv. If 7 € CP, let B(7) the the least
ordinal f such that # = sup h;‘("’(ﬂu (pzag ...an-1))Nv and let o(7) be such that
o(?) = sup () (BU (pzag ... an_1)).

Clearly, if C?*! is bounded in v then ap4; < ap. It follows that there exists

some least n for which either C? is unbounded in v or for which C} = 0. If C} =0

then cof v = w.
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Asin L, for all n it is true that otp C] < v and CJ is closed. If n is the least
number such that either C! = @ or C is unbounded in v, and C = 0, let C,, be
the least w-sequence in K cofinal in v.

If n is as above, but CJ} is unbounded in v, let D, = {V < v : ¥ > sup{z,vp,...Vn—1},
7 € C?, and if A(v) is the n*® reduct of a mouse M (so that A(r) = M™9 for some

m, q, and mouse M), then p is fully witnessed in hf

) r“(‘—')(17 U (p)) with respect
to q}

For all 7 sufficiently close to v, p will be fully witnessed in 27" (5 U (p))
with respect to ¢ if A(v) = M™? for some mouse M. So D, is a final segment of C}}
and is club in v . If A(v) = (v = v%) for some v, let D, = D, \ v. Let D, = D,
otherwise. If A(v) | (v, is inactive, v = «**, lim card x) and v is not bad, let
C, =D, \ {# <v:iisbad}. Otherwise, let C, = Dj,.

Badness will be defined later and it will be shown that in the case that A( 1/)|=
(v is inactive, v = k*t, lim card «) and v is not bad, C, is a final segment of D,
and so is club in v. Assume for now that in all cases, C, is a final segment of C}.

Suppose that # € limC,. Then define B(7) = 1_1’14("”6('7)(17 U (p)) and let
7: B(v) — A(v) | o(7) be the inverse of the collapse. Then B(7) singularizes 7,

and if v € A(v),7 € dom 7 and 7(¥) = v. If v = ht A(v) then v = ht B(7). Also,
B) (7 =7%) > Alv) E (v = 7).

Claim: A(7) = (v)

Assuming the claim, it follows that for 7 € limC,,#vNC, =Cj :

Proof: Let C, be a final segment of C'. Let # € lim C,. For ease of notation, let
B = B(7) and o = a(p). A(p) = k{1 (5 U (p)). (By claim.) Let 7 : A(7) —
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A(v) [ o be the inverse of the collapse. Note that by the witnessing condition on p
in h'IA(") r"(17U (p)), p collapses to p, the standard parameter for A(7) above . Recall
that if 7 € domr then 7(#) = v. Also, 7(x) = = and ¢ is the smallest parameter
string less than v in A(v) such that v € hf(p)((rﬁ)).

First, a(v) = a(v) :

Since a(v) < v,a(v) = suph'{u"”a(a(v) U (pr)) N v, so a(v) < a(v). If
a(v) <y, Alv) E Jo'36(6 € hf(”)ral(y J(pz))Nvand § >y). Soif y € h'lA(")(B U
(pzaq...an_1))Niand y > a(v), then sup A7 (yU(pz))No > y. Let a(v) < y <
7. Find v' minimal such that v' € k) (3U(prag...an-1))Nv and y < v'. Then by
the above, for some 6§ < V', 6 € hf(")(ﬂu(pxao .e.Qp_1)),Sup h'lA(") r”(5U(p:l:))ﬁl7 >
y, and a(v) = a(D).

If vis of type II, and n = 0, then if v' € ’NC,, V' = sup h'lA(")(ﬂ(V')U (pz))Nw.
Since v' < 0,3(v') < B and o(v') < 0. So v’ = sup hf(v)r”(ﬂ(v’) U (pz)) N o and
v' € CL Ifv' € C let v' = sup h'lA(ﬁ)(ﬂ( v")U(pz))Nv = sup hf(”)ra(ﬂ(v’)u(px))Uﬁ.
Again, since B(v') < B, o' = sup hf‘(")(ﬁ(v’) U (pz)), is less than o and V' =
sup 7 17(B(v') U (pz)) Nv and v' € C2N 5. So here C; = 7N C, if 7 € lim CY.

If v is of type I then since a(v) = aq,sup{f, ag,...an—1} is less than or equal
to a(v). It follows that & = sup hf“"””(a(v) +1U (pz))N . So v is also of type 1.
The same proof as in the case n = 0 shows that if n = 1 and v is of type I then

Co=vnC, whenv € limC,.

To prove that C; = PN C, when n > 0 and v is of type Il or when n > 1
and v is of type I, we need to establish that a¥ = a? and v; = ; fori < n :
Suppose v is of type I, so that ay > a(v). vy = sup h'lA(")(ao U (pz)) N v. Let

0o = sup hf(”)(ao U (pz)). So 1y = sup hf(v)r”"(uo U (pz)) N v and vy > ag. Recall
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that ¥ > vy. Suppose op < 0. Then vy = sup h’f("””(uo U (pz))Nv. But vy > ap >
sup{B, @0, ..., an-1}. So 7 = sup h{"”’!’ (v U (pz)) N v. Contradiction. So oy < o.
But then vy = sup hf("”"(aou(pm))ﬂ . Because ag+1 > sup{f, ag,...ap1},v =
sup h]‘“"”"(ao +1U(pz))Nv. So af = af and vy = Dp. A similar proof shows that

a? = a? and v; = ; for 0 < ¢ < n for v of either type I or type IL

vNCP ={v'<0:v' =sup hf(”)(ﬂ' U (pza,...an—1) N 7}. But now, because
a? = a? and vy = ¥; for ¢ < n, just as before, v N C}) = C} and so for & € limC,,
C? must be unbounded in # and C; = ¥ N C,,. So square will be established for K

once A(v) is defined and the claim that B(v) = A(v) is proven.

Let X, be the shortest initial segment of K that singularizes v, and suppose it
singularizes v in a £,-way. Let N, be the *-(n — 1)** reduct of X, . If there is a ¥
such that N, = (v = ¥ and 7 is measurable), let M, be the result of iterating N,

once by its measure on v. (Note that both N, and M, singularize v in a ;-way).

In most cases, A(v) will be N,. However, look at what can happen if N, =
(v = 4% and - (v measurable) and lim card ¥) : Suppose C, is the club sequence
derived from N, and 7 = sup A" (8(7) U (ay . .. anpz)) Nv,0(7) = sup aNe (B(m) U
(ao ...anpz)) as usual. Then B(v) = I-z{v" rc'(r')(z"/ U (p)). Since N; = (—y measur-
able), v cannot be measurable in B(7). But it’s possible that “locally” in K, v is
measurable, i.e. N; |= (v measurable). It turns out in this case that B(7) equals
M;. The solution here is to let A(v) = M, when N, |= (v = 4t and v measurable).
Another problem arises when v is active: Let N, = v = k**, and let C,, be the club
sequence derived from N, so 7 = sup h¥* (8(7)U(ao . .. @n)) and B(#) = i_ziv" ().

Here B(7) is no longer even a reduct of a mouse. Furthermore, since # > «* cannot
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be active in K, N; would seem at first to be too horribly different from », for Cj
to equal # N C,. In this case, the singularizing structure for v remains N,, but for

appropriate 7 between k and k*, A(7) will be N, | # = (K||v, F, | 7).
The Definition of A(v) and the proof that A(v) = g(v):

Suppose that N, = (v = ¥+ and lim card v). If N, = (v measurable), let
A(v) = M,. If N, = —(y measurable), let A(v) = N,. Then it follows that for
v€{v:N, E(v=+7 and lim card v)}, B(?) = A(D).

Proof: First, suppose that N, = (v = v+ and 7 measurable). Then A(v) = M,,.
Let C, be the club sequence derived from M,. Let # € imC,,, ¥ = sup h{"“ (B(v)u
(a0 ...0n_1pz)) Nv. Then B(7) = A" )5 U (p)) where o(7) = sup hM* (B(7) U
(ag...an—1pz)). Let T : B(#7) — M, | o(¥) be the inverse of the collapse. Clearly
v < ht M, so if M, is a mouse, M, | o(¥) is a T-mouse and B(7) is a mouse. If
M, = (N)™ for some n > 0, then regard 7 as a £y map from B(¥) to M,. Then
the canonical expansion of T from B’ to N is at least £,. Since N is a mouse, B’
is a mouse and B(¥) is the reduct of a mouse. M, ||v = K||v and in a comparison
of M, and k, M, is obviously passive below v > vp(;). Since ¥ € C,, p is witnessed
in hi"" MY (p)) and if M, = (N)™ for some n > 0 then p is fully witnessed in
hiw" 10(9)(5 U (p)) with respect to g. It follows by condensation that B(7) = N; or
B(9) = M. If B(¥) = N;, then N; |= (7 =~*, lim card v, and - (7 measurable).
If B(v) = Mj, then N; | (# = 4%, lim card v, and v measurable). Either way,
B(7) = A(#). Now, suppose that N, |= (v = v* and -y measurable). Then
A(v)=N,. If ﬁ' € lim C, where C, is the club sequence derived from N,, exactly

as above, it follows that B(7) = A(¥).
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Now consider R, the union of {v : v < ht N, and ~(N, = (v = vt and
lim card v))} and {v : v = ht N, and =(N, | v is active)}. Let v € R. Let
C, be the club sequence derived from N, and let ¥ € limC,,,# = sup hf"‘(ﬂ(z?) u
(ag ... ap—1pz))Ny, o(7) = sup hM-(B(7)U{aq . .. an-1pz)). Then by condensation,
N; = hf’" r”(“(ﬂ U(p)). If 7: N — N, | a(7) is the inverse of the collapse, then

since 7(7) = v, (N; = lim card # <= N, = lim card v),(N; = 7 is an n'*

h

successor cardinal <= N, |= v is an n'" successor cardinal), and (N; = 7 is active

<= N, [= v is active).
It follows that if .A(v) is defined to be N, for v such that forno k N, = (v =
k**+ and lim card &), then A(v) = B(v). It remains to define .A{v) for those v such

that for some «, N, |= (v = k** and lim card «). First, badness must be defined:
v is bad iff
1) N,E(v=«k*t,v<htN,)
2) Let B = kM (k +1 U (p,)) where p, is the standard for N, above v. Let
m : B — N, be the inverse of the collapse. Then there exists v* such that
m(v*) = v and v* is active in K.

Condition 2 requires B is not 1-sound above x: Let B = core(B), then B is
the reduct of an initial segment of K. Since v* is active in K, v* is active in B
and since v* is inactive in B, B # B. As B is the reduct of an initial segment
of K,ht B > a = suphM (k +1U (p,)) N «*. So the first difference between B
and B must occur at or above . It follows that v* = x** in both B and B. But
since the iteration of B to B is simple, the first difference between B and B must
occur at v*. It must also be that B = N,, since B collapses a. Note also that

x = sup k" (kU (p,)) Nv, since B iterates to B with critical point &.
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Define F! to be 7[F,.]. (Here F,. = FX). Then because K|v* = ﬁ:q". (a),v =
sup{y : {(zy) € F, and z € K|a}. Define P, = (K||v,F,). Then K|v* = RY" (@)
hf"(a) ={y:(zy) € F, and z € Kl|a}, v = suphf’(a) and a = suphf“(a)ﬂ kt.
If v is such that for some «, N, |E (v = k** and lim card ¢:) and v is bad, define

A(v) = P,. Otherwise set A(v) to be N,.

Now that A(v) has been defined, it remains to show that A(v) = B(v) for v

such that for some k, N, = (v = «** and lim card «).
Claim 1: If vis bad and ¥ € limC,, then ¥ is bad and P, | v = P, = B(p).

Proof: Let v,v*, k,a, B and B be as above.
Let 7 = suphP*(AU(ao, ... a,)) where (¥) = A is less than « and for all ,0; < .
Let 8 =suphP*(AJ(ag...an)) Nkt
For the sake of notation, let P | v stand for P, | v = (x||p, F, N D)
Then, h{"*(8) = {y : (zy) € F} z € K|B}

v =suphy "*(B)

B=suph "(B)Nrt
Let j : B — B be the iteration map and choose 7 such that j sends Ng cofinally
into j(Ng) | 7. Let pg be the standard parameter for Ng. Then:
v N BN (6 4+ 10 (i(ps)) = (5(F)(x) : f € K|BN "k and for all § < K, f(6) <
§++)

Proof: C: Suppose that z is the unique least member of j(Ng) | T such that
J(Ng) | 7 E J2¢(2,6,k,5(ps)) where ¢ is £y and § < k. Then there exists some

t in Ng such that j(Ng)|j(t) | 32¢(26kj(pg)). Define f(a) = zo «— x4 is the
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unique member of Ng|t such that Nj|t = Jz2¢(z8apg), for all & < x. Then f € Npg

and j(f)(k) = z. Since z < v* we can assumef € "« and for all § < &, f(6) < §**.

D: Let f € K|B. Then f € N3 and so f € h*(kU(pg)). But then if f(§) < 6+
for all 6 < k and f € *x, j(f)(r) € v* N RNk 4+ 1U (j(pp))). 4

But {j(f)(x): f € K|B,f € “k, and f(6) < 6%t for § < k} = {y : (zy) €
F,.,z € K|B}. But then, n[{y : (zy) € F,e,z € K|B}] = {y : (zy) € F, z €
K|B} = hP1°(B). So sup A]VPN ™, L 1 U (mj(pp))) N v = # (Here p is chosen
so that 7j sends Njs cofinally into 7j(Ng) | p). As usual, # = sup h;rj(N"”"(D U
(r3(pg))) Nv. Note that because Ng = th"(fc U (pg)), all the FW'’s for mj(pg) in

7j(Ns) are contained in ]’V T#(x U

(r3(pg))). So mj(pg) is fully witnessed in
h;’j(N‘) r"(17 U (mj(pg))). N3 is a reduct of an initial segment of N,. It follows that
7j(Ng) is a reduct of an initial segment of N,, a reduct of an initial segment of K.
It follows by condensation that N, = l_zfj (No) (vu{rj(pp))) and 7j(pg) collapses

to the standard parameter of N; above o.

Let M = kN (k +1U (pg)) = I-z;rj(N")r"(n + 1U (7j(pg))). We showed that
vN h;rj(N")r”(rc +1U (rj(pg))) = hT1?(B). Let z : M — 7j(Nj) be the inverse
of the collapse. Then z(w*) = v where K|w* = I-zfr'-'(ﬂ). If z: M — Nj is the

inverse of that collapse, then 3(w*) = ¥ and w* is active in K.
So 7 is bad.

Let 20 : M — RPN, (nj(pg))) = Ny, and let 2y : Ny — ASALIOTY
(7j{pg))) be inverses of the collapses. zy[F, -] =v N h;rj(N")r"(n +1U (mj(pg))) =
F,No.Since z; | v =1d | v, z120[F,+] = F,»Nir and P, = (K||7, F,» N 7). Finally,
B(»)=kPP@y =P, tv=P, .
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Claim 2: If v is active and ¥ € limC,, then v is bad, and P, = (K||», F,) = B(v).

Proof: Exactly as in Claim 1 with some substitutions: Let E, be the measure

on k in N, where N, = (v = k**). Let j : N, — (N,))’ be the iteration via E,.

.
v

Then, substitute N, for N,, N, for P,,F, for F, (N,) for B,j: N, —E—v (N,) for
j': B — B, k* for a, v for v*, and id for 7. "

Note: at the point in the proof where one contemplates M = i_z;'j (N )r"(rc +
1U(7j(pg))), (in this case M = kI (x + 1U ((j(pg)))), M still turns out to be
the reduct of an initial segment of A" because even though j(Nj3) is now the reduct

of an initial segment of (N, ), instead of N,, M is very small. M is of size &, and

below v,(N,) is equal to N,.. So the proof is not affected by this difference.

Claim 3: Let v < ht N, and suppose v is not bad. Then C, is a final segment of

D,.

Proof: For ease of notation, let N = N, and p = p, where p, is the standard
parameter of N, above v. We can assume that N |= (v is inactive, v = 7%, lim
card &, v < ht N). Then for all v; in D,, N,, = (v is inactive, v; = £*t, lim card
K, vi < ht N,,). Again, for ease of notation, let N,, = N; and p,;, = p; where p,, is
the standard parameter of N,, above v;. For each ¢, N; = E{V [ (y; U (p)) for some
appropriate o; with sup(s;) = ht N. Let B = RN (k + 1 U (p)) and for each i let
Bi =AMk +1U (p); Then for all i, B; = h?1* (k41U (p)) for some appropriate
a; with sup(a;) = ht B and p collapsing to p in B. Suppose B is 1-sound above &.
Then B =. hB(k U (z)) where z is the standard parameter for B above . But then
for i large enough, z € h31%(k + 1U (p)), z is witnessed in 2™ (x + 1U (p)), and

B; = hP1*i(kU(z)) is 1-sound above &. Therefore, for i large enough, v; is not bad.
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So in this case, C, is a final segment of D,.

Suppose B is not 1-sound above k. Let # : B — N be the inverse of the
collapse. Let w(v*) = v. Then v* must be inactive in « and if B = core B, then
B iterates to B above v*. This can only happen if k € hB(x U (z)) where z is the
standard parameter of B above «. But then for i large enough, « and z are members
of hB1%i(xx U (2)) and z is witnessed in R31%(x U (z)). This means that core(B;)
iterates to B; above (k*+)Bi Therefore v; cannot be bad. Again, a final segment

of D, is not bad and C, is club in v.

Claim & Completes the proof of global square in x. The proof that global square
holds in « is really a proof that global square holds in any universal weasel. (And

universality was used only in the proof of condensation.)
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