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Purpose: To improve the image quality of highly accelerated multi-channel MRI 
data by learning a joint variational network that reconstructs multiple clinical con-
trasts jointly.
Methods: Data from our multi-contrast acquisition were embedded into the vari-
ational network architecture where shared anatomical information is exchanged by 
mixing the input contrasts. Complementary k-space sampling across imaging con-
trasts and Bunch-Phase/Wave-Encoding were used for data acquisition to improve 
the reconstruction at high accelerations. At 3T, our joint variational network ap-
proach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for retro-
spective under-sampling at R = 6 (2D) and R = 4 × 4 (3D) acceleration. Prospective 
acceleration was also performed for 3D data where the combined acquisition time 
for whole brain coverage at 1 mm isotropic resolution across three contrasts was less 
than 3 min.
Results: Across all test datasets, our joint multi-contrast network better preserved 
fine anatomical details with reduced image-blurring when compared to the corre-
sponding single-contrast reconstructions. Improvement in image quality was also ob-
tained through complementary k-space sampling and Bunch-Phase/Wave-Encoding 
where the synergistic combination yielded the overall best performance as evidenced 
by exemplary slices and quantitative error metrics.
Conclusion: By leveraging shared anatomical structures across the jointly recon-
structed scans, our joint multi-contrast approach learnt more efficient regularizers, 
which helped to retain natural image appearance and avoid over-smoothing. When 
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1 |  INTRODUCTION

Fast imaging techniques have been widely adopted into clin-
ical practice to speed up MRI scans and, thus, help improve 
patient throughput, reduce the sensitivity to involuntary pa-
tient motion,1 improve patient compliance, and potentially 
obviate the need for sedation in pediatric patients.2 However, 
conventional parallel imaging (PI) algorithms (eg SENSE,3 
GRAPPA,4 etc) are constrained to moderate acceleration 
rates, R, (eg typically R = 3 for 2D and R = 2 × 2 for 3D) 
to avoid structural artifacts and large noise amplification. To 
enable higher accelerations with improved image quality, 
advanced encoding and reconstruction techniques have been 
proposed.

Among these techniques, 2D-CAIPIRINHA5 is applica-
ble to volumetric 3D acquisitions and employs a staggered 
ky-kz under-sampling pattern to create controlled aliasing 
in the phase (y) and partition (z) encoding plane, which in-
creases the distance between the aliasing voxels and enables 
better utilization of coil sensitivity information in the recon-
struction. Wave-CAIPI6 adopts this scheme and combines it 
with Bunch Phase Encoding (BPE)6 by playing additional 
sinusoidal gradients on both the Gy and Gz gradients with 
a quarter-cycle phase shift during the readout. This enables 
controlled aliasing along all three spatial dimensions, in-
cluding the readout axis (x), which significantly reduces 
artifacts and g-factor noise amplification when compared 
to 2D-CAIPIRINHA. At 3T, the Wave-CAIPI technology 
was demonstrated to provide up to 9-fold acceleration for 
3D sequences7-9 with comparable diagnostic quality as 
GRAPPA at the lower acceleration rate of R = 4. Moreover, 
Wave-CAIPI was employed in Simultaneous Multi-Slice 
(SMS) sequences, where there is no 

√
R-SNR penalty from 

multiband (MB) acceleration, allowing up to R = 12-fold 
effective acceleration.10 However, in general the efficiency 
of this technique is significantly reduced when applied to 
2D sequences (without SMS) where controlled aliasing is 
limited to the x-y domain (cf. BPE). Besides artifacts also 
SNR can be a challenge at very high acceleration (both for 
2D and 3D) due to the inherent 

√
R-noise penalty and may 

necessitate going to higher magnetic field strength (as in 
Wave-GRAPPA11) or using frameworks like Compressed 
Sensing (CS)12 and LORAKS,13 which have also been syn-
ergistically combined with Wave-CAIPI.14,15

However, for techniques like CS to work robustly, several 
pre-requisites need to be fulfilled. Aliasing artifacts must be 
incoherent which is commonly achieved by non-Cartesian or 
random under-sampling, but since most clinical sequences 
employ Cartesian sub-sampling, incoherence is in practice 
limited to dynamic and 3D imaging sequences but remains a 
challenge for 2D acquisitions. Moreover, CS requires the ex-
istence of a representation in which the reconstructed images 
become sparse. Commonly used transformations are wave-
let,12 total-variation (TV),16 and total generalized variation 
(TGV),17 which in combination with the �1 norm achieve at 
least approximate sparsity. However, the use of the �1 norm 
entails iterative optimization algorithms which are often 
computationally demanding and yield longer reconstruction 
times. Also, the choice of the regularization parameter(s) 
is critical to balance between over-smoothing and residual 
artifacts.

Recent developments in deep learning have the potential 
to lift some of these barriers. On highly accelerated data, 
neural networks have outperformed existing techniques 
both in terms of image quality, artifact reduction as well 
as reconstruction time. The algorithms proposed in Hyun 
et al and Polak et al18,19 operate on coil-combined images 
and were trained to un-aliase zero-padded reconstructions 
or enhance the image quality of conventional methods such 
as SENSE, GRAPPA or CS, etc. Moreover, further improve-
ment was demonstrated by reconstructing multiple clinical 
contrasts jointly. This idea was previously investigated for 
PI-CS reconstructions where additional sparsity constraints 
along the contrast dimension were used,20-23 and this con-
cept has now also been applied to deep learning.24 By ex-
ploiting the redundancy across the jointly reconstructed 
contrasts, these techniques enable better image quality 
than single-contrast methods. However, the pixel-wise loss 
used in these approaches requires the multi-contrast data 
to be spatially registered, which may pose a challenge for 
clinical routine. A recent work25 discovered the relevance 
of this issue and proposed a conditional GAN with cy-
clic consistency loss26 to jointly reconstruct unregistered 
multi-contrast data.

Several groups have demonstrated the benefits of incor-
porating the multi-channel MRI data into the deep learn-
ing reconstruction. RAKI27 is a k-space based technique 
where a convolutional neural network (CNN) is trained 

synergistically combined with advanced encoding techniques, the performance was 
further improved, enabling up to R = 16-fold acceleration with good image quality. 
This should help pave the way to very rapid high-resolution brain exams.

K E Y W O R D S
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to synthesize non-acquired lines in k-space. When com-
pared to GRAPPA, which is a linear interpolation method, 
this non-linear extension yields improved noise resilience 
at high acceleration. Also, RAKI may be favorable as the 
training is performed solely on the subject specific ACS 
data; hence, large amounts of training data are not required. 
AUTOMAP28 takes this one step further by learning the 
entire transformation from under-sampled multi-channel 
k-space data to the final image without ever explicitly using 
the Fourier transformation. This may present a flexible al-
ternative for the reconstruction of non-Cartesian k-space 
trajectories where the exact inverse transform may not 
exist.

Inspired by traditional iterative techniques for inverse 
problems, several approaches29-31 have posed the MRI image 
reconstruction as an unrolled gradient descent optimization 
where the physics model is embedded in the reconstruction 
and regularizers/priors are learnt from training data. This 
formulation can be understood as a generalization of CS 
where neural networks are utilized instead of hand-crafted 
domain transformations (such as wavelet or TV). With this 
framework many existing physics- and CS-based techniques 
have been outperformed while enabling much shorter recon-
struction times.29 In a recent work32 such a network was also 
utilized to reconstruct a highly accelerated Wave acquisition 
where imperfections of the sinusoidal Wave gradient trajec-
tory were automatically estimated by the network without ad-
ditional time-consuming optimizations (eg AutoPSF33).

In this contribution, we augment the unrolled gradient de-
scent optimization in the variational network (VN) architec-
ture29 to jointly reconstruct multiple clinical contrasts (T1w, 
T2w, T2-FLAIR) from accelerated MRI acquisitions. By tak-
ing advantage of the shared anatomical information across 
the jointly reconstructed scans, our joint variational network 
(jVN) approach learns more efficient regularizers which im-
proved the image quality when compared to single-contrast 
VN reconstructions. Moreover, we investigated how com-
plementary k-space sampling across imaging contrasts and 
advanced acquisition techniques such as BPE and Wave-
encoding can be utilized to further boost the reconstruction 
performance. We validated these techniques both on 2D and 
3D data and ultimately demonstrate the feasibility of obtain-
ing T1w, T2w and T2-FLAIR contrasts at 1  mm isotropic 
resolution with R  =  16-fold acceleration in less than three 
minutes of scan time.

2 |  METHODS

2.1 | Network architecture of jVN

This work is based on the variational network (VN) archi-
tecture,29 which aims to solve the PI problem as an unrolled 
gradient descent (GD) optimization (Figure 1), where each 
step contains a traditional data-fidelity operation as well as 
a learnt regularizer. In the VN architecture the regularization 

F I G U R E  1  jVN is based on the variational network architecture29 and poses the image reconstruction as an unrolled gradient descent (GD) 
optimization. Each gradient descent step GDt contains a convolutional filter kt which mixes the different input contrasts u⃗t and creates Nk feature 
channels. Non-linear activation �t and the transposed filter k

t

 reduce the Nk feature channels to the number of input contrasts Nc. Data-fidelity is 
computed individually for each contrast, where each forward model matrix Ac contains a contrast-specific under-sampling mask that can vary 
between contrasts to enable complementary k-space sampling (compare Figure 2). For BPE/Wave acquisitions, Ac additionally contains the Wave 
point-spread-function (Psf) to account for the voxel spreading along the readout direction
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term was based on the Fields of Expert model,34 a generaliza-
tion of TV, where linear convolutional filter and non-linear 
potential functions are learnt during the training. Our joint 
variational network (jVN) augments this technique by recon-
structing multiple clinical contrasts simultaneously. This is 
achieved by stacking eg T1w, T2w and T2-FLAIR-weighted 
images along the channel dimension of the network. Starting 
from an initial reconstruction u⃗0, each gradient descent step 
mixes the Nc input contrasts by convolving them with the 
filter kernels kt resulting in Nk feature channels. Next, learned 
activation functions �t and the transposed filter k

t
 are applied 

to reduce the number of feature channels to the number of 
input contrasts. Note, that the transposed filter kernels k

t
 are 

applied when calculating the gradient update rule for the 
Fields of Expert model (see Hammernik et al29 for details). 
Moreover, a data-fidelity term AH

c
(Acut

c
− fc) is computed 

individually for each contrast c (no mixing between scans), 
where Ac denotes the parallel imaging encoding matrix, ut

c
 the 

current image estimate and fc the undersampled multi-chan-
nel scanner data. The data-fidelity is weighted by a trained 
regularization parameter �t

c
 and subtracted from u⃗t during 

each iteration.
As explored by previous contributions,35 the image qual-

ity of multi-contrast reconstructions can be improved using 
complementary k-space under-sampling, eg by varying the ac-
celeration factor across the input contrasts and/or including a 
contrast-dependent shift in the k-space sampling. This results 
in different aliasing and image artifacts in the initial SENSE-
based reconstructions of the different image contrasts, which 
can be leveraged in multi-contrast reconstructions. In this work, 
we chose to keep the acceleration factor fixed but shift the uni-
form under-sampling pattern (see Figure 2) for each contrast. 
Particularly in 3D, this approach simplifies the data handling 
as the coupled voxel locations are identical across all contrasts; 
note, that we use jVNc to refer to joint variational network re-
constructions with complementary k-space sampling.

Moreover, we utilized BPE to improve the quality of our 
2D scans and Wave-encoding for our 3D acquisitions. Since 

these techniques couple the readout dimension (x) into the 
PI problem, the encoding matrix is no longer separable 
along this dimension and reconstructing a full dataset at 
once may be intractable on state-of-the-art GPUs (espe-
cially for high-resolution 3D scans). To mitigate this issue, 
we constrained our acquisitions to uniformly under- 
sampled k-space masks with fixed acceleration. This allowed 
the PI reconstruction to be split into smaller sub-problems of 
collapsing voxels in image space. In our implementation, we 
divided the reconstructed 3D volume into stacks of coupled 
2D slices, eg, at R = 4 × 4 acceleration, Rz = 4 coupled 2D 
slices were fed to the network and reconstructed simultane-
ously. We modified the network's forward model operator 
Ac =

∑
zj

∑
yi


−1
x

PsfxCpc
7 to account for these changes 

where the index c denotes the contrast dependency and x the 
Fourier transformation along x. The Ac operator first applies 
a linear phase ramp pc to reflect shifts in the  
uniform k-space sampling mask and then multiplies with the 
coil sensitivity C and Wave point-spread-function Psf in hy-
brid space 

[
kx, y, z

]
. Ultimately, Ac sums over the collapsing 

voxels yi, zj 
(
i∈ [1…Ry], j∈

[
1…Rz

])
 corresponding to the 

acceleration factors Ry and Rz.
Furthermore, the following modifications were imple-

mented: As no internal autocalibration scan (ACS) data 
were used for any of the reconstructions (ie no fully sampled 
k-space center), we generated input images u0 from an ini-
tial SENSE-based instead of a zero-padded reconstruction (in 
contrast to Hammernik et al29). We empirically observed that 
this improved the image quality for all evaluated reconstruc-
tions. Moreover, we trained individual networks for every 
output contrast, which was found to provide overall better 
image quality than a single network. We implemented this in 
the training stage by extracting one image contrast from the 
vector u⃗T (containing all jointly reconstructed contrasts) be-
fore minimizing the �2-loss with respect to the corresponding 
ground truth data. In this way, the loss function only mea-
sured the fidelity in a single contrast instead of all the input 
images.

F I G U R E  2  Joint multi-contrast 
reconstructions (jVNc) employ 
complementary k-space under-sampling by 
imposing a contrast-dependent shift on the 
uniform sub-sampling mask
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2.2 | Data acquisition and pre-processing

2.2.1 | Retrospective acceleration

With IRB approval and informed consent, fully sampled 
training data were acquired on nine healthy subjects using 
two 3T scanners (MAGNETOM Prisma and Skyra, Siemens 
Healthcare, Erlangen Germany) and a product SPACE se-
quence (variable flip angle 3D turbo spin echo36) with T1w, 
T2w and T2-FLAIR-weighted contrasts (field of view: 
256 × 256 × 192 mm3, resolution: 1 × 1 × 1 mm3, orienta-
tion: sagittal, BW: 592Hz/px, product Siemens 32-channel  
head coil, more details are summarized in Supporting 
Information Table S1). Next, the acquired datasets were  
co-registered channel-by-channel using FSL FLIRT,37 to 
mitigate any inter-scan motion between the acquisitions of 
T1w, T2w and T2-FLAIR-weighted scans.

This multi-contrast data were utilized for accelerated 2D 
and 3D imaging where a variety of sampling strategies were 
analyzed. For our 2D experiments, the fully sampled data 
were reformatted into axial orientation with 1 mm in plane 
resolution and 4 mm slice thickness (whole-brain coverage). 
For 3D, sagittal orientation and 1  mm isotropic resolution 
were retained. Next, the central 20 × 20 lines of k-space were 
extracted from the T2-FLAIR-weighted scan and coil sensi-
tivity maps were computed using ESPIRiT38; BPE (for 2D) 
and Wave-encoding (for 3D) were synthesized by convolving 
the fully sampled datasets with a point-spread-function (Psf) 
corresponding to the following Wave acquisition parameters: 
four sinusoidal Wave cycles per readout with 16 mT/m maxi-
mum gradient amplitude; two-fold readout oversampling (see 
Ref. [9] and Supporting Information Figure S1). We retrospec-
tively undersampled the data at R = 6 for 2D and R = 4 × 4 
for 3D where in both cases no integrated ACS lines were 
kept. Each dataset was then reconstructed in MATLAB using 
SENSE with Tikhonov regularization. The corresponding reg-
ularization parameter was optimized to reduce NRMSE with 
respect to the fully sampled reference.

2.2.2 | Prospective acceleration

On three separate subjects, additional scans were performed 
to test prospective acceleration. For these acquisitions at 
R = 4 × 4 (no integrated ACS lines), we used a prototype Wave 
SPACE sequence9 with complementary k-space sampling and 
the Wave acquisition parameters described above. The com-
bined acquisition time for T1w, T2w and T2-FLAIR-weighted 
SPACE was TA  =  2:53  min including a two second exter-
nal GRE reference scan for the computation of coil sensitivity 
maps. Imperfections of the sinusoidal Wave gradient trajectory 
were estimated entirely data-driven using AutoPSF33 (no ad-
ditional calibration scans). The resulting Wave Psf was then 

utilized in the initial SENSE and all variational network recon-
structions. For benchmark of comparison, the same contrasts 
were also acquired without Wave-encoding at R = 4 × 4 and 
R = 2 × 2 and reconstructed using SENSE.

2.3 | Training and testing

To assess the benefit of reconstructing multiple contrasts 
jointly and/or utilizing complementary k-space sampling and 
BPE/Wave, separate networks were trained while the follow-
ing parameters were held constant: T = 10 iterations, Nk = 24 
real/imaginary filter pairs with filter size 11  ×  11, learned 
activations from 31 radial basis functions distributed equally 
between [−1, 1]. For each contrast, initial SENSE recon-
structions u0

c
 and acquired k-space data fc were individually 

pre-normalized by u0
c
=

u0
c

‖u0
c‖2

, fc =
fc

‖u0
c‖2

. All pre-processing 

steps were implemented in MATLAB, while training was 
performed in TensorFlow (Python) using a Nvidia GeForce 
GTX1080 GPU and the IPALM optimizer39 (250 epochs). 
For our 2D scans, 1008 axial slices from seven subjects were 
used for training (batch size: 5), testing was performed on 
two subjects who were not used in the training.

We also characterized potential artifacts in the presence of 
inter-scan motion where the jointly reconstructed scans are not 
spatially registered. The performance of a preliminary motion 
correction technique was evaluated for these experiments. 
Fully sampled data were acquired on a separate subject with 
and without instructed inter-scan motion (Ω = 1.7° in-plane 
rotation for T2w and Ω = −3.1° for T1w; negligible transla-
tion and through-plane rotation). We reconstructed these test 
datasets using our jVNc + BPE network that was solely trained 
on registered images. Moreover, we evaluated a preliminary 
correction technique where registration of the image estimates 
u⃗t was performed within each stage of the unrolled network. 
For this, additional translation and rotation operators were 
placed before the convolutional filter kt and corresponding 
inverse transformations after k

t
 to retain agreement with the 

acquired scanner data (note that translation and rotation oper-
ations were implemented in TensorFlow using an image trans-
form function with bilinear interpolation). We tested this setup 
using the estimated motion parameters that were obtained by 
registering the initial SENSE reconstructions u⃗0 (MATLAB 
imregister) and compared the image quality and NRMSE to 
corresponding reconstructions without inter-scan motion.

For our 3D datasets at R = 4 × 4, separate networks were 
trained with and without complementary k-space sampling 
and Wave-encoding using the same architecture as described 
for 2D. However, as each training sample now consisted of 
four sagittal slices (Rz = 4), the batch size was reduced to two 
to limit the required GPU memory. Overall, 336 training sam-
ples (1344 slices) from seven subjects were used for training, 
while testing was performed on 48 samples (192 slices) from 
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one subject. Moreover, VN and jVNc + Wave were tested on 
prospective scans from three subjects at R = 4 × 4 acceler-
ation where Wave-encoding was used in the acquisition and 
was not synthesized.

3 |  RESULTS

Figure 3 demonstrates the results for T2-FLAIR at R = 6-fold 
acceleration. As shown, the encoding capability of SENSE 
was insufficient at such high acceleration, causing large noise 
amplification and residual aliasing artifacts. However, the 
single-contrast VN mitigated most of these issues, but the ar-
tifact and noise reduction came at the cost of over-smoothing 
and loss of spatial resolution, as indicated by the zoom-in. 

When reconstructing T1w, T2w and T2-FLAIR-weighted 
contrasts jointly (jVNc) or utilizing BPE (VN  +  BPE), the 
NRMSE was decreased (NRMSE was computed across  
36 slices). Moreover, fine anatomical details were also better 
preserved as demonstrated by the improved conspicuity of 
a region of cerebrospinal fluid (CSF) in the posterior of the 
brain for VN + BPE (red arrows). However, the overall best 
performance was achieved when jVNc was synergistically 
combined with BPE. This is best seen in the zoom-in, where 
for example the gray-white matter boundary (blue arrows) 
or a small line of CSF (green arrows) became visible which 
were over-smoothed in all other reconstructions. These im-
provements are also reflected in better NRMSE, SSIM and 
PSNR which are provided in Table 1. Similar results were 
also obtained on the second test subject as demonstrated in 

F I G U R E  3  At R = 6-fold acceleration, the SENSE reconstruction of T2-FLAIR resulted in large noise amplification and aliasing artifacts, 
which were mostly mitigated using the single-contrast VN. However, by reconstructing T1w, T2w and T2-FLAIR-weighted contrasts jointly (jVNc) 
or utilizing BPE (VN + BPE), fine anatomical details were better preserved and the over-smoothing reduced. The overall best performance was 
achieved by jVNc + BPE which is also reflected in the lowest NRMSE (computed across 36 slices)

T A B L E  1  Quantitative metrics (NRMSE, SSIM, and PSNR) computed across 36 slices (test subject #1) are provided for T2-FLAIR,  
T2w and T1w reconstructions at R = 6-fold acceleration

    SENSE VN jVN jVNc VN + BPE jVN + BPE jVNc + BPE

T2-FLAIR NRMSE [%] 17.95 10.29 8.69 7.50 6.63 5.88 5.49

SSIM 0.834 0.948 0.960 0.968 0.975 0.981 0.983

PSNR 31.56 36.39 38.00 39.31 40.26 41.42 41.96

T2w NRMSE [%] 18.25 10.51 8.55 7.14 6.08 5.59 5.25

SSIM 0.855 0.952 0.968 0.975 0.983 0.986 0.986

PSNR 32.62 37.22 39.00 40.56 41.96 42.68 43.24

T1w NRMSE [%] 13.39 9.83 7.99 7.22 5.59 5.21 4.94

SSIM 0.885 0.948 0.961 0.957 0.982 0.985 0.985

PSNR 35.68 38.21 40.09 41.25 43.05 43.75 44.34

Note: Improvement over VN was achieved by either reconstructing all contrasts jointly (jVN), employing complementary under-sampling (jVNc) or utilizing BPE. The 
overall best results were obtained from the synergistic combination (jVNc + BPE) and are highlighted in bold.
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Supporting Information Table S2. Moreover, a comparison 
to single- and multi-contrast PI-CS with corresponding error 
metrics is provided in the Appendix (Figure A1).

Figure 4 displays the results for T1w, T2w and T2-
FLAIR at R = 6-fold acceleration. Across all imaging con-
trasts, jVNc  +  BPE better retained the spatial resolution 
when compared to VN which is best seen in the anterior 
part of the brain (red arrows) where the gray-white mat-
ter boundary is over-smoothed. Moreover, the comparison 
demonstrates that the sequence-specific contrast was pre-
served without signal leaking from one scan to another. 
This is best seen in the center of the brain where green ar-
rows mark a circular region of CSF (low signal intensity in 
T1w and T2-FLAIR, hyper-intense in T2w scan). Despite 
the non-linear mixing of all input contrasts in the convolu-
tional filters of the joint variational network, no change in 
signal intensity was observed in any of the reconstructions, 

while the conspicuity of this anatomical feature was much 
improved when compared to VN and SENSE. Moreover, 
jVN distinguished the structure of CSF from the structure 
of a blood vessel (blue arrows) even though the shape and 
size were similar (low-signal intensity of blood was re-
tained for all contrasts).

In Figure 5, the effect of inter-scan motion in joint 
multi-contrast reconstructions was analyzed. Our jVNc + BPE 
network without motion correction resulted in residual alias-
ing artifacts (green arrows) when the input images were not 
aligned. Using our preliminary motion correction technique 
such artifacts were largely mitigated providing comparable 
image quality to that observed without inter-scan motion. 
This is also reflected in the quantitative NRMSE metric, 
where our correction technique enabled up to 19% reduc-
tion and only slightly higher NRMSE when compared to the 
no-motion reconstructions.

F I G U R E  4  Throughout all contrasts, jVNc + BPE better preserved the spatial resolution (red arrows) and achieved lower NRMSE compared 
to VN. Moreover, the comparison demonstrates that jVNc + BPE retained the scan-specific contrast. Signal leakage from one contrast to another 
was not observed, as exemplarily demonstrated for a region of CSF (green arrows) which is hyper-intense in T2w, but dark in T1w and T2-FLAIR. 
Moreover, jVN distinguished the structure of CSF from the structure of a blood vessel (blue arrows) even though the shape and size were similar 
(low-signal intensity of blood was retained for all contrasts)
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The results of the 3D reconstructions at R  =  4  ×  4 ac-
celeration are displayed in Figure 6. Again, the SENSE re-
construction suffered from 

√
R-SNR loss and g-factor noise 

amplification. In contrast, the VN mitigated large noise en-
hancement, but the coronal reformats exhibit residual aliasing 
(green arrows) and striping artifacts (blue arrows) due to the 
ill-conditioning of the reconstruction which was performed 
sequentially across the aliasing coronal slice groups (convo-
lutional filters in VN were applied to sagittal cuts). Moreover, 
the zoom-in reveals residual aliasing and loss of spatial reso-
lution (red arrows) in regions of high g-factor where the en-
coding capability of the 32-channel head coil is limited. In 
contrast, jVNc with complementary under-sampling helped to 
reduce some of these artifacts and improved NRMSE, but the 
striping artifacts were only mitigated when the PI problem 

was better conditioned using Wave. The lowest NRMSE was 
obtained by jVNc + Wave, as demonstrated in the zoom-in, 
where the gray-white matter boundary was best preserved.

Finally, we tested our variational networks on prospec-
tively accelerated data (R = 4 × 4) from three test subjects 
acquired with and without Wave-encoding. The results are 
displayed in Figures 7 and 8, where a conventional acquisi-
tion at R = 2 × 2 acceleration (no Wave-encoding) served 
as the reference. Both variational network reconstruc-
tions were able to preserve the sequence-specific contrast, 
however, jVNc  +  Wave more efficiently removed aliasing 
artifacts (green arrows) and better preserved the spatial res-
olution (red arrows) across all test subjects. Nevertheless, 
at such high acceleration also jVNc + Wave suffered from 
slight image blurring, eg in the cerebellum of T2-FLAIR. 

F I G U R E  5  Inter-scan motion caused artifacts (green arrows) in our joint multi-contrast reconstructions (jVNc + BPE), which were 
significantly reduced using our motion mitigation technique. This enabled up to 19% reduction in NRMSE and comparable image quality as 
obtained without inter-scan motion



1464 |   POLAK et AL.

Moreover, the results demonstrate that our networks gener-
alized to prospective acquisitions although the training data 
were under-sampled retrospectively and Wave-encoding 
was synthesized.

4 |  DISCUSSION

In this contribution, we developed a framework to recon-
struct data from multiple clinical imaging contrasts jointly 

F I G U R E  6  At R = 4 × 4 acceleration, VN efficiently denoised the initial SENSE reconstruction but resulted in residual aliasing (green 
arrows), striping artifacts (blue arrows) and over-smoothing (red arrows). This was improved in multi-contrast jVNc, however, striping artifacts 
were only mitigated in the Wave reconstructions. The overall best performance was obtained by jVNc + Wave

F I G U R E  7  The variational networks were tested on prospectively accelerated data acquired at R = 4 × 4 acceleration (combined 
TA = 2:53 min). The sequence specific contrast was retained in all scans, but jVNc + Wave better preserved fine anatomical details (red arrows) 
and exhibits fewer artifacts (green arrows) than VN. Nevertheless, at such high acceleration (R = 16) also the jVNc + Wave reconstructions resulted 
in small image blurring, for example in the cerebellum of T2-FLAIR
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using the variational network architecture. By utilizing 
shared anatomical information across the imaging contrasts, 
jVN learned more efficient regularizers, which enables the 
reconstruction of highly under-sampled datasets with signifi-
cantly reduced artifacts and image blurring. Moreover, we 
incorporated advanced encoding techniques in our acquisi-
tions and demonstrated the benefit of complementary k-space 
under-sampling and BPE/Wave-encoding. This allowed 
T1w, T2w and T2-FLAIR-weighted scans to be acquired and 
jointly reconstructed at R = 6-fold acceleration for 2D and up 
to R = 16-fold acceleration for 3D (combined TA < 3 min), 
while retaining good image quality.

We quantitatively assessed the benefits from recon-
structing multiple contrasts jointly and/or utilizing ad-
vanced encoding schemes such as BPE or Wave and showed 
that the synergistic combination yielded the overall best 
results. While the former technique allows the network to 
learn more efficient regularizers by leveraging shared ana-
tomical structures across the jointly reconstructed contrasts, 
the latter improves the overall conditioning of the PI re-
construction by exploiting variations of the coil sensitivity 
also along the readout. It was observed that the combined 

approach enabled higher improvement for 2D compared to 
3D, where at R = 6-fold acceleration the standard SENSE 
reconstructions resulted in large residual aliasing due to 
the insufficient encoding capability. In contrast, the R  =   
16-fold accelerated SENSE-reconstructions for 3D were 
less effected by artifacts but dominated by the 

√
R-SNR 

and g-factor noise penalties (
√

R  =  4). This suggests that 
learning more efficient regularizers in jVNc mainly helps 
to resolve structural aliasing (as in our 2D scans) but is less 
beneficial in the presence of low SNR and few artifacts 
(such as in our 3D scans).

Our joint variational network was also compared to single- 
and multi-contrast PI-CS reconstructions (see Appendix). 
Here, additional regularization across the contrast dimen-
sion helped to preserve some fine anatomical details but only 
yielded slight image quality improvements. The learnt regu-
larization in jVN better exploits shared anatomical structures 
and outperformed PI-CS. This may be a result of the vast con-
trast differences between T1w, T2w and T2-FLAIR-weighted 
scans where there is typically little to no linear dependence. 
Moreover, the joint TGV regularization restricted exchange 
of shared information to the spatial gradient domain, while 

F I G U R E  8  VN and jVNc + Wave were tested on three subjects at R = 4 × 4 acceleration. Across all test cases, jVNc + Wave better mitigated 
aliasing artifacts (green arrows) and loss of spatial resolution (red arrows)
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learnt filters in jVN operate directly on the multi-contrast 
image data and thus provide more degrees of freedom than 
traditional approaches.

We also assessed the performance of jVN in the presence 
of inter-scan motion, where the different clinical contrasts 
were not spatially aligned. Such motion may occur eg be-
tween pre- and post-contrast acquisitions, where there is 
typically a delay of several minutes. Our preliminary results 
on 2D data with inter-scan motion revealed that spatial mis-
alignment in joint multi-contrast reconstructions may result 
in residual aliasing artifacts. This is intuitively clear, as the 
training was solely performed on registered data and the net-
work learned to leverage this property as an additional prior 
in the reconstruction. However, such artifacts were almost 
entirely removed using our proposed motion mitigation 
technique which embeds translation and rotation operators 
in the network and utilizes the initial SENSE reconstructions 
to estimate the motion parameters. While good image qual-
ity was obtained on all test datasets, NRMSE was slightly 
higher when compared to the no-motion reconstructions. 
This was likely caused by small inaccuracies in the motion 
parameter estimation which was performed on the initial 
SENSE reconstructions u⃗0. Better performance may be ob-
tained when estimating these transformation variables on 
single-contrast VN reconstructions which typically provide 
higher image quality. Moreover, the bilinear interpolation 
used in all translation and rotation operations causes image 
smoothing which affects the data-fidelity term. However, 
we anticipate that more advanced interpolation techniques 
such as spline or sinc can reduce these effects at the cost of 
some increase in computation time. Also, it is important to 
note that rotations clip the corners of k-space and hence lead 
to some loss of spatial resolution. While not present in this 
work, further complications might arise from through-plane 
and intra-scan motion. In the latter case, prospective40 or 
retrospective (data-driven) correction techniques41,42 could 
help to reduce associated artifacts.

Also, special attention was payed to potential artifacts 
caused by the mixing of clinical contrasts in the convo-
lutional filters. While this was found to be beneficial for 
the reconstruction of highly accelerated datasets, it bears 
the risk of signal leaking from one scan to another, which 
could impede the clinical diagnosis. All test slices were 
carefully reviewed, however, such artifacts were never 
observed and we have the following explanation for this. 
In jVN multiple data-fidelity computations are embedded 
throughout the feed-forward path of the network which 
helps to hold the contrast-mixing in check. If signal leaked 
from one scan to another, the data inconsistency between 
the current estimate of the image and the acquired scanner 
data would increase. Also, due to the coupling in the PI 
problem, artifacts would not only remain at the location of 
origin but spread to all coupled voxel locations, a global 

penalty which the filters in jVN efficiently learnt to avoid. 
Nevertheless, due to the small number of test subjects 
available in this study, further investigation with larger pa-
tient cohorts is necessary to confirm these initial findings 
especially in the presence of pathology.

In this work, a joint multi-contrast reconstruction was 
performed across T1w, T2w and T2-FLAIR-weighted 
scans which are commonly used in clinical brain exams. To 
ensure that jVN provided superior reconstruction quality 
than VN for every output contrast, individual joint networks 
were trained. This improved the ability of jVN to leverage 
shared anatomical structures, despite large contrast and 
SNR differences between the jointly reconstructed scans 
and enabled consistent image enhancement over VN for 
all output contrasts. Moreover, we anticipate that further 
acceleration feasibility can be achieved by increasing the 
number of clinical contrasts, eg by including T2*w (SWI)7 
and/or post-contrast T1w8 and/or diffusion weighted im-
aging (DWI). This would not only provide improved regu-
larization from increased anatomical information but also 
enable more efficient complementary k-space sampling 
and could pave the way for a very rapid multi-contrast 
brain exam9,43. However, in such undertaking, it will be 
important to assess and potentially refine the jVN archi-
tecture to enable robust reconstructions across imaging 
contrasts with large background phase differences. In this 
work, all scans were acquired using a 3D TSE sequence, 
which resulted in the same image phase across all con-
trasts. However, phase variations may also arise from the 
coil sensitivity maps themselves which in the development 
phase of this work were calculated from the fully sampled 
k-space data of each imaging contrast individually and then 
included in the forward model of the reconstruction. It was 
observed that such phase differences can cause degrada-
tion in the reconstruction performance when compared to 
reconstructions that use the same set of coil sensitivities 
across all the contrasts. We anticipate that such behavior 
is specific to the VN architecture, where real and imagi-
nary feature maps are summed after the convolutional fil-
tering (kt) and are not being kept as separate channels32. 
The integration of diffusion weighted imaging (DWI) into 
jVN may be challenging for several reasons: DWI is typi-
cally acquired at a smaller matrix size than most structural 
scans which will require interpolation to match the field 
of view and resolution of the remaining scans. Moreover, 
our current jVN implementation requires each contrast to 
be distortion free (similar spatial features), whereas DWI 
typically exhibits artifacts from several off-resonance ef-
fects, which need to be corrected. Susceptibility induced 
distortions can be reduced by increasing the acceleration 
factor. Moreover, modelling the B0 field in the MRI for-
ward model was shown to mitigate distortions in multi-shot 
EPI with Blip Up-Down Acquisitions (BUDA)44 and we 
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expect that necessary adaptions in the data term can be im-
plemented into jVN. Residual artifacts from eddy currents 
and subject motion are often corrected as a post-processing 
step,45 these corrections may be inserted into jVN before 
and after the convolutional filters. However, at high accel-
eration these transformation variables accounting for eddy 
currents and subject motion might be hard to estimate and 
may require repeated application of jVN to improve the 
DWI reconstruction while refining necessary parameters.

Variational networks were utilized in this work, as these 
architectures combine elements of deep learning with clas-
sical physics-based reconstructions. This allows advanced 
encoding techniques such as complementary k-space sam-
pling and BPE/Wave-encoding to be integrated into the 
network and leveraged in the reconstruction. However, we 
expect that further image quality improvements can be ob-
tained from deeper network architectures and/or expand-
ing regularization in jVN to all three spatial dimensions. 
Currently, such implementations exceeded our GPU com-
pute power and memory limitations but should be feasible 
on more advanced hardware. In this work, we employed 2D 
convolutional filters (regularization in x, y and contrast di-
mension), as 3D convolutions would have resulted in a 50-
fold increase in GPU memory consumption (assuming that 
the entire 3D dataset was reconstructed at once). Instead 
we propose to expand our 2D technique by including sur-
rounding slices in the reconstruction rather than the entire 
volume. This would allow regularization also in the parti-
tion-encoding direction using 3D convolutions but at much 
smaller computational cost and memory demand. Moreover, 
we expect that this strategy will be particularly suitable for 
3D Wave acquisitions which are commonly SNR- and not 
encoding-limited. In such reconstructions the primary ob-
jective is the mitigation of noise for which the localized sig-
nal statistics is most relevant. Also, more sophisticated loss 
functions, such as SSIM,46 and/or adversarial loss47 can be 
utilized to improve the image sharpness and preservation of 
fine details.48,49 In contrast to �2 which measures pixel-wise 
differences, SSIM considers the signal intensity statistics in 
localized patches and hence provides a better representation 
of the human perceptual system.50 Similarly, adversarial 
loss may help to reduce blurring and improve image sharp-
ness especially in the presence of low SNR,49 which would 
be beneficial for our T2-FLAIR reconstructions.

In conclusion, we demonstrated the benefit of reconstruct-
ing multiple clinical contrasts jointly and investigated how 
complementary under-sampling and BPE/Wave-encoding 
can be facilitated to improve the image quality. We carefully 
evaluated the performance of our networks both on 2D and 
3D acquisitions, analyzed potential artifacts from inter-scan 
motion and finally demonstrated the feasibility of obtaining 
T1w, T2w and T2-FLAIR-weighted contrasts at high isotro-
pic resolution in less than three minutes of scan time.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

TABLE S1 Acquisition parameters for T1w, T2w and  
T2-FLAIR-weighted SPACE
TABLE S2 Quantitative metrics (NRMSE, SSIM and PSNR) 
computed across 36 slices (test subject #2) are provided for 
T2-FLAIR, T2w and T1w reconstructions at R  =  6-fold 
acceleration
FIGURE S1 Sampling trajectory for BPE at 1 mm isotropic 
resolution and R = 6-fold acceleration (note, only modulation 
along ky is shown, but analogous for kz)
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APPENDIX 
Figure A1 compares SENSE, VN, and jVNc to a combined 
non-linear PI-CS reconstruction technique (R = 6-fold ac-
celeration, uniform sampling without integrated ACS). 
We utilized Total Generalized Variation (TGV)17 for the 
single contrast (SC-TVG) reconstruction and Vectoral 
Total Generalized Variation for the multi-contrast 
(MC-TGV)23 reconstruction across T1w, T2w and T2-
FLAIR-weighted data. SC-TVG significantly reduced 
aliasing artifacts and NRMSE when compared to SENSE. 
Moreover, reconstructing all contrasts jointly (MC-TVG) 
slightly improved the image quality and enabled better 
preservation of fine details. This is best seen in the zoom-
in, where the spatial resolution at the intersection between 
CSF and white matter was better retained. Nevertheless, 
learnt regularization in VN still outperformed both PI-
CS techniques at R = 6-fold acceleration based upon the 
quantitative metrics. The overall best image quality was 
achieved by jVN, which enabled 30% NRMSE improve-
ment over VN.

F I G U R E  A 1  Comparison of VN and jVNc against single and multi-contrast PI-CS reconstructions with TGV regularization. NRMSE was 
computed for a single slice
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