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Contextual centrality: going 
beyond network structure
Yan Leng1 ✉, Yehonatan Sella2, Rodrigo Ruiz1 & Alex Pentland1

Centrality is a fundamental network property that ranks nodes by their structural importance. 
However, the network structure alone may not predict successful diffusion in many applications, 
such as viral marketing and political campaigns. We propose contextual centrality, which integrates 
structural positions, the diffusion process, and, most importantly, relevant node characteristics. It 
nicely generalizes and relates to standard centrality measures. We test the effectiveness of contextual 
centrality in predicting the eventual outcomes in the adoption of microfinance and weather insurance. 
Our empirical analysis shows that the contextual centrality of first-informed individuals has higher 
predictive power than that of other standard centrality measures. Further simulations show that 
when the diffusion occurs locally, contextual centrality can identify nodes whose local neighborhoods 
contribute positively. When the diffusion occurs globally, contextual centrality signals whether diffusion 
may generate negative consequences. Contextual centrality captures more complicated dynamics 
on networks than traditional centrality measures and has significant implications for network-based 
interventions.

Individuals, institutions, and industries are increasingly connected in networks where the behavior of one indi-
vidual entity may generate a global effect1–3. Centrality is a fundamental network property that captures an enti-
ty’s ability to impact macro processes, such as information diffusion on social networks1, cascading failures in 
financial institutions3, and the spreading of market inefficiencies across industries2. Many interesting studies 
have found that the structural positions of individual nodes in a network explain a wide range of behaviors and 
consequences. Degree centrality predicts who is the first to be infected in a contagion4. Eigenvector centrality cor-
responds to the incentives to maximize social welfare5. Katz centrality is proportional to one’s power in strategic 
interactions in network games6. Diffusion centrality depicts an individual’s capability of spreading in information 
diffusion7. These centrality measures operate similarly, aiming to reach a large crowd via diffusion, and are solely 
dependent on the network structure.

However, several pieces of empirical evidence show that reaching a large crowd may decrease the evaluations 
of the qualities of the products. For example, sales on Groupon8 and public announcements of popular items on 
Goodreads9 are effective strategies in reaching a larger number of customers. However, both studies show that the 
evaluations of online reviews are negatively affected as a consequence. This phenomenon can be explained by the 
fact that the increasing popularity will reach individuals who hold negative opinions, and hence, translate into less 
favorable evaluations of quality. Let us further consider two motivating examples to demonstrate the importance 
of accounting for the evaluations of the nodes, and more broadly, nodal characteristics.

Example 1. Viral marketing. During a viral marketing campaign, the marketing department aims to attract 
more individuals to adopt the focal product. If we have ex-ante information about the customers’ evaluation of the 
product or the likelihood of adoption, we can utilize this information to better target individuals who have higher 
chances of adoption and avoid wasting resources on others.

Example 2. Political campaign. Typical Get-Out-The-Vote (GOTV) campaigns include direct mail, phone calls, 
and social-network advertisement10,11. However, rather than simply encouraging every voter to get out the vote, a 
GOTV strategy should target voters who are more likely to vote for the campaigner’s candidate.

In this paper, we introduce contextual centrality, which builds upon diffusion centrality proposed in Banerjee 
et al. and captures relevant node characteristics in the objective of the diffusion7,12. Diffusion centrality focuses 
on the diffusion process and maximizes the number of individuals who receive the information. In other words, 
nodes are homogeneous. Contextual centrality is able to integrate the heterogeneity of nodes and aggregate the 
characteristics over one’s neighborhood; hence it can be used in applications in which reaching different nodes 
contributes differently to the policy-makers and campaigners. In other words, it generalizes and nests degree, 
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eigenvector, Katz, and diffusion centrality. When the spreadability (the product between the diffusion rate p and 
the largest eigenvalue λ1 of the adjacency matrix) and the diffusion period T are large, contextual centrality line-
arly scales with eigenvector, Katz, and diffusion centrality. The sign of the scale factor is determined by the joint 
distribution of nodes’ contributions to the objective of the diffusion and their corresponding structural positions.

We perform an empirical analysis of the diffusion of microfinance and weather insurance showing that the 
contextual centrality of the first-informed individuals better predicts the adoption decisions than that of the other 
centrality measures mentioned above. Moreover, simulations on the synthetic data show how network proper-
ties and node characteristics collectively influence the performance of different centrality measures. Further, we 
illustrate the effectiveness of contextual centrality over a wide range of diffusion rates with simulations on the 
real-world networks and relevant node characteristics in viral marketing and political campaigns.

Contextual centrality
Given a set of N individuals, the adjacency matrix of the network is A, an N-by-N symmetric matrix. The entry Aij 
equals 1 if there exists a link between node i and node j, and 0 otherwise. Let D = diag(d), where = ∑ =d Ai j

N
ij1  

denotes the degree of node i. With Singular Value Decomposition, we have A = UΛUT, where Λ = diag{Λ} = {λ1, 
λ2, …, λn} in a descending order and the corresponding eigenvectors are {U1, U2, …, Un} with U1 being the lead-
ing eigenvector. We let ◦ denote the Hadamard product (i.e., element-wise multiplication). We use bold lowercase 
variables for vectors and bold upper case variables for matrices.

The diffusion process in this paper follows the independent cascade model13. It starts with an initial active 
seed. When node u becomes active, it has a single chance to activate each currently inactive neighbor v with prob-
ability Puv, where ∈ ×P N N . We follow the terminology by Koschutzki to categorize degree, eigenvector, and 
Katz centrality as reachability-based centrality measures14. Reachability-based centrality measures aim to score a 
certain node v by the expected number of individuals activated if v is activated initially, s(v, A, P), and hence tend 
to rank higher the nodes that can reach more nodes in the network. In particular,

s v r vA P A P( , , ) ( , , ),
(1)i

N

i∑=

where ri(v, A, P) denotes the probability that i is activated if v is initially activated13,15,16. In practice, s(v, A, P) is 
hard to estimate. Different reachability-based centrality measures estimate it in different ways. Diffusion central-
ity extends and generalizes these standard centrality measures12. It operates on the assumption that the activation 
probability of an individual i is correlated with the number of times i “hears” the information originating from 
the individual to be scored. Diffusion centrality measures how extensively the information spreads as a function 
of the initial node12. In other words, diffusion centrality scores node v by the expected number of times some 
piece of information originating from v is heard by others within a finite number of time periods T, s’(v, A, P, T),

∑′ = ′s v T r v TA P A P( , , , ) ( , , , ),
(2)i

N

i

where r v TA P( , , , )i
′  is the expected number of times individual i receives the information if v is seeded. Equation 

(2) has at least two advantages over Eq. (1). First, r v TA P( , , , )i
′  is computationally more efficient than tedious 

simulations to get ri(v, A, P). Second, it nests degree, eigenvector, and Katz centrality7 . It is worth noting that Eqs. 
(1) and (2) differ in a couple of ways. First, since ′r v TA P( , , , )i  is the expected number of times i hears a piece of 
information, it may exceed 1. Meanwhile, since r v A P( , , )i  is the probability that i receives the information, it is 
bounded by 1. Second, in independent cascade model, each activated individual has a single chance to activate the 
non-activated neighbors. However, with the random walks of information transmission in contextual centrality, 
each activated individual has multiple chances with decaying probability to activate their neighbors.

Both Eqs. (1) and (2) assume that individuals are homogeneous and contribute equally to the objectives if 
they have been activated. However, in many real-world scenarios, such as the two examples mentioned above, 
the payoff for the campaigner does not grow with the size of the cascade. Instead, different nodes contribute dif-
ferently. Formally, let yi be the contribution of individual i to the cascade payoff upon being activated. Note that 
yi is context-dependent and is measured differently in different scenarios. For example, in a market campaign, yi 
can be i’s likelihood of adoption. In a political campaign, yi can be the likelihood that i votes for the campaigner’s 
political party. With the independent cascade model, an individual v should be scored according to the cascade 
payoff if v is first-activated, sc(v, A, p). With this, we present the following equation as a generalization and exten-
sion to Eq. (1) with heterogeneous y,

s v r v yA P A Pcascade payoff: ( , , ) ( , , )
(3)c

i

N

i i∑= .

Similar to diffusion centrality, we score nodes with the following approximated cascade payoff, ′s v TA p( , , , )c , 
with heterogeneous y,

∑= .′ ′s v T r v T yA P A Papproximated cascade payoff: ( , , , ) ( , , , )
(4)c

i

N

i i
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This formulation generalizes diffusion centrality and inherits its nice properties in nesting existing 
reachability-based centrality measures. Moreover, it is easier to compute than Eq. (3), with this scoring function, 
we now formally propose contextual centrality.

The computational complexity of the algorithm to score according to Eq. (3) is O(NMT), where M is the aver-
age degree, and T is the lengths of the paths that have been inspected. Note that the computational complexity of 
the formulation (5) is O(NMT). We repeat the operation of multiplying a vector of length N with a sparse matrix, 
which has an average of M entries per row for T times. This significantly reduces the run time.

Definition 1 Contextual centrality (CC) approximates the cascade payoff within a given number of time periods T 
as a function of the initial node accounting for individuals’ contribution to the cascade payoff.

∑=
=

TA P y P A yCC( , , , ): ( ) ,
(5)t

T
t

0

Heterogeneous diffusion rates across individuals are difficult to collect and estimate in real-world applications. 
Therefore, in the following analysis, we assume a homogeneous diffusion rate (p) across all edges. Hence, P ◦ A in 
Eq. (5) is reduced to pA. Similar to diffusion centrality, contextual centrality is a random-walk-based centrality, 
where (pA)t measures the expected number of walks of length t between each pair of nodes and T is the maximum 
walk-length considered. Since T is the longest communication period, a larger T indicates a longer period for dif-
fusion (e.g., a movie that stays in the market for a long period). In contrast, smaller T indicates a shorter diffusion 
period (e.g., a coupon that expires soon). On the one hand, when pλ1 is larger than 1, CC approaches infinity as T 
grows. On the other hand, when pλ1 < 1, CC is finite for T = ∞, which corresponds to a lack of virality, expressed 
in a fizzling out of the diffusion process with time. We can use the specific value of pλ1 to bound the maximum 
possible CC, given the norm of the score vector y. As presented in proposition 1 in the Supporting Information, 
the upper bound for CC grows with pλ1 and the norm of the score vector.

Let us further illustrate the relationship between CC and diffusion centrality, DC for short. In Banerjee et al.12, 
= ∑ = pADC ( )t

T t
1 . To derive the following relationship between CC and DC, we add the score of reaching the first 

seeded individual into computing diffusion centrality. Hence, = ∑ = pADC ( )t
T t

0 . Adding the first seeded individual 
into the scoring function produces the same ranking as the one used in Banerjee et al. We can represent y as, 

σ= × + ×y y z y( ) 1, where σ(y) and z are the standard deviation and the z-score normalization of y. Using the 
linearity of CC with respect to y, we can write

σ= ⋅ + ⋅ � ������� �������p T p T p TA y y A z y ACC( , , , ) ( ) CC( , , , ) CC( , , , 1)
(6)DC

Equation (6) shows the trade-off between the standard deviation σ(y) and the mean y of the contribution vector 
in CC. When y dominates over σ(y), network topology is more important in CC and it produces similar or opposite 
rankings to DC, depending on the sign of y. If the graph is Erdos-Renyi and T is small enough, then, on expectation, 
the term ⋅y DC dominates as the size of the network approaches infinity, as presented in Theorem 1 in the 
Supporting Information. However, when σ(y) dominates over y, CC and DC generate very different rankings.

The relevant node characteristics (y) provides the ex-ante estimation about one’s contribution. Whether to 
incorporate y is the main difference between our centrality and existing centrality measures. In the real-world 
data, the observation or estimation on y can be noisy, biased, or stochastic. Therefore, we discuss the robustness 
of contextual centrality in responses to perturbations in y in the Supporting Information.

We define the following terms, which we use throughout the paper:

•	 Spreadability (pλ1) captures the capability of the campaign to diffuse on the network depending on the dif-
fusion probability (p) via a certain communication channel, and the largest eigenvalue (λ1) of the network.

•	 Standardized average contribution 
σ( )y

y( )
 is computed as the average of the contributions normalized by the 

standard deviation of the contributions. The sign of 
σ

y
y( )

 indicates whether the average contribution is positive 
or not. Moreover, the larger the magnitude of 

σ
y
y( )

, the more homogeneous the contributions are.
•	 Primary contribution U y( )

T
1  measures the joint distribution of the structural importance and nodal contribu-

tions. It captures whether people who dominate important positions have positive contributions or not.

Properties of contextual centrality when pλ1 > 1 and T is large
Let us first provide the approximation of contextual centrality in this condition, which reveals one of the promi-
nent advantages of contextual centrality. By the Perron-Frobenius Theorem, we have λ λ≤j 1 for every j. 
Moreover, if we assume that the graph is non-periodic, then in fact λ λ<j 1 for all j ≠ 1. Note that the typical 
random graph is not periodic, so this assumption is reasonable. Thus, when pλ1 > 1, the term (pλ1)t grows expo-
nentially faster than (pλj)t for j ≠ 1 so that the j = 1 term dominates for sufficiently large values of T, and we obtain 
the approximation for contextual centrality (CCapprox):

∑ ∑ ∑λ λ= ≈ =










.
= = =

( )p pU U y U y UCC CC ( )
(7)j

n

t

T

j
t

j j
T

t

T
t T

1 0
approx

0
1 1 1
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This approximation reveals some desirable properties of contextual centrality. Crucially, CCapprox is simply a 
scalar multiple of the leading eigenvector when pλ1 > 1 and T is large. Therefore, the sign of U yT

1  determines the 
direction of the relationship between CCapprox and eigenvector centrality. By Perron-Frobenius Theorem, all ele-
ments in this leading eigenvector are nonnegative. Thus, the approximated cascade payoff, Eq. (4), for seeding any 
individual is nonpositive if <U y 0T

1 , pλ1 > 1 and T is large. This shows that in this condition, the approximated 
cascade payoff is nonpositive for seeding any individual, so the campaigner should select a diffusion channel with 
a lower diffusion rate to take advantage of the local neighborhood with positive contributions. Equation (7) nat-
urally suggests the following relationships between CCapprox and eigenvector centrality.

•	 If >U y 0T
1 , CCapprox and eigenvector centrality produce the same rankings.

•	 If <U y 0T
1 , CCapprox and eigenvector centrality produce the opposite rankings.

The approximation does not hold when =U y 0T
1 , which is also unlikely to happen in practice. Hence, we dis-

regard this case. Similarly, we relate contextual centrality to diffusion centrality (CDiffusion) and Katz centrality 
(CKatz),

p
p
p

p

U U
U
U y

U U
U
U y

C ( ) ( 1)
( ) ( 1)
( )

CC ,

C ( ) ( 1)
( ) ( 1)
( )

CC ,
(8)

t

t T t
t T

t
T t T

t

t T t
t T

t
T t T

Diffusion
1

1 1 1
1 1 1

0 1 1
approx

Katz
0

1 1 1
0 1 1

0 1 1
approx

∑

∑

λ
λ

λ

αλ
αλ

λ

∝ = ∑

∑

∝ = =∑

∑

=

∞
=

∞

=

=

∞
=

∞

=

where α is the decay factor in Katz centrality. Similar to Eq. (7), all terms on the right-hand-side of Eq. (8) are 
positive except for U yT

1 , which similarly determines the direction of the relationship.

Results
Predictive power of contextual centrality.  We study two real-world empirical settings, adopting micro-
finance in 43 Indian villages12 and adopting weather insurance in 47 Chinese villages17. In each setting, there is a 
set of first-informed households in each village who went on to spread the information. We compare contextual 
centrality with diffusion centrality and other widely-adopted reachability-based centrality measures – degree, 
eigenvector, and Katz centrality. We compute degree centrality by taking the degree of each node, normalized by 
N − 1. We compute eigenvector centrality by taking the leading eigenvector U1 with unit length and nonnegative 
entries. We compute Katz centrality as α∑ =

∞ A( ) 1t
t

0 , setting α, which should be strictly less than λ −
1

1, to λ. ⋅ −0 9 1
1. 

We compute diffusion centrality as ∑ = pA( ) 1t
T t

1 . For both diffusion and contextual centrality, we set T = 16, except 
for the microfinance in Indian villages setting, where we set T the same as Banerjee et al.12. We evaluate the adop-
tion outcome of all other households in the village, which are not first-informed. We use the adoption likelihood 
for the contribution vector y in computing contextual centrality, which is predicted using a model based on the 
adoption decisions of the first-informed households. In the empirical analysis of both settings, we build models 
to predict the adoption likelihood for each individual to use as y in computing contextual centrality. For each 
setting, we use the data provided in Banerjee et al.12 and Cai et al.17, respectively, as inputs to a feed-forward neu-
ral network trained to predict the adoption likelihood based on the adoption decisions of first-informed individ-
uals. Hyperparameters, including hidden layers, activation function, and regularization, were tuned using grid 
search with 10-fold cross-validation. For the microfinance in Indian villages, the covariates include village size, 
quality of access to electricity, quality of latrines, number of beds, number of rooms, the number of beds per cap-
ita, and the number of rooms per capita. For the weather insurance in Chinese villages setting, 39 of the provided 
characteristics are selected as inputs by choosing those for which all households had data after removing house-
holds with many missing characteristics. Similar to Banerjee et al.12, we evaluate the R2 of a linear regression 
model for both settings. The independent variables include the average centrality of first-informed households 
and the village size, a control variable. The dependent variable is the fraction of non-first-informed households in 
a village which adopted.

In Fig. 1, we show how the R2 for various measures of centrality varies with pλ1, in which the choice of p 
influences the two centrality measures that account for the diffusion process - diffusion centrality and contextual 
centrality. We see that the contextual centrality outperforms all other standard centrality measures, which indi-
cates that marketing campaigners or social planners will benefit from using contextual centrality as the seeding 
strategy to maximize participation. This result also highlights that utilizing ex-ante information about customers’ 
likelihood of adoption helps to design better targeting strategies. Similar results without control variables and 
with more control variables are presented in the Supporting Information as a robustness check.

Performance of contextual centrality relative to other centrality measures on random networks.  
To better understand CC’s performance with respect to different parameters (pλ1, 

σ
y
y( )

), we next perform simula-
tions on randomly generated synthetic networks and contribution vectors (y). For the synthetic setting, we gen-
erate a new random graph for each simulation, according to Barabasi-Albert, Erdos-Renyi, and Watts-Strogatz 
models. The size of n of each graph varies between 30 and 300. For Barabasi-Albert, m varied between 1 and n. 
For Erdos-Renyi, p varies between 0 and 1. For Watts-Strogatz, k varies between ln n and n, and p varies between 
0 and 1. Individual contributions y are sampled from a normal distribution with unit standard deviation. Note 
that the scale of y does not change the rankings of contextual centrality. Simulations of the diffusion process in 
each setting follow the independent cascade model13. For each centrality, the highest-ranked node is set to be the 
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initial seed. We compute cascade payoff by summing up the individual contributions of all the nodes reached in 
the cascade. For each parameter tested in different settings, we run 100 simulations. To compare the performance 
of contextual centrality against the other centrality measures, we use “relative change” (calculated as −a b

a bmax( , )
, 

where a is a given centrality’s average payoff and b is the maximum average payoff of the other centrality meas-
ures). We chose “relative change” for comparison since it gives a sense of when the payoffs are different from the 
optimal centrality while keeping the magnitudes of the payoffs in perspective. This measure has some desirable 
properties. First, its value is necessarily between −2 and 2, so our scale for comparison is consistent across scenar-
ios. Second, its magnitude does not exceed one unless a and b differ in sign, so we can tell if a centrality gets a 
positive average payoff while the rest do not.

Figure 2 displays the relative change between CC’s average payoff and the maximum average payoff of the 
other centrality measures aggregated over 100 runs of simulations for varying values of 

σ
y
y( )

 and pλ1 on three 
different types of simulated graphs. We can see that CC performs well when <y 0, pλ1 < 1, and 

σ
y
y( )

 is small in 
magnitude. We will now discuss each of these cases in more detail.

When <y 0, maximizing the reach of the cascade is not ideal because that will result in a cascade payoff, 
which more closely reflects y. CC differs from the other centrality measures in that it does not try to maximize the 
reach of the cascade. Note the dark blue diagonal band present in all plots in Fig. 2. Since the magnitude of the 
relative change exceeds one only when the values being compared have opposite signs, this region shows that 
there are many settings where the standardized average contribution is negative, nevertheless CC achieves a pos-
itive average payoff while the other centrality measures do not.

When pλ1 is small, it is essential to seed an individual whose local neighborhood has higher individual contri-
butions since there is not much risk of diffusing to individuals with lower individual contributions As an extreme 
case, consider pλ1 = 0. In this case, the diffusion rate is 0, so seeding an individual with a high individual pay-
off makes much more sense than seeding an individual with high topological importance. This highlights CC’s 
advantage in discriminating the local neighborhoods with positive payoffs from those with negative payoffs while 
the other centrality measures cannot.

When 
σ

y
y( )

 is small in magnitude, CC takes advantage of the greater relative variations between contributions. 
As → +∞

σ
y
y( )

, Eq. (6) tells us that CC will seed similar to DC, which explains why CC loses some of its advan-
tage. However, as → −∞

σ
y
y( )

, Eq. (6) tells us that CC will seed opposite to DC, which explains why CC maintains 
an advantage.

We now discuss the regions where CC does not seem to offer an advantage. Note that parameters for which 
CC’s average payoff is lower than that of some other centrality often neighbor similar parameters for which CC’s 
average payoff is the same, or sometimes higher, than those of the other centrality measures. This suggests that 
CC is performing comparably, which is what we expect as pλ1 increases since the initial seed matters less as the 
diffusion process reaches more individuals. In Figs. 3 and 4, we show the average payoffs of different seeding 
methods with 95% confidence interval when the standardized average contribution is 0 and 1, respectively, on 
(a) Barabasi-Albert, (b) Erdos-Renyi, and (c) Watts-Strogatz models. Note that when pλ1 is small, CC dominates 
the other seeding methods. As pλ1 increases, CC’s performance is on par with other centrality measures, as can 
be seen from the highly overlapping confidence intervals. This pattern holds for other values of the standardized 

Figure 1.  Predictive power of contextual centrality. We show how the average centrality of first-informed 
individuals predicts the eventual adoption rate of non-first-informed individuals in (a) microfinance and (b) 
weather insurance. The y-axis shows the 95% confidence interval of R2 computed from 1000 bootstrap samples 
from ordinary least squares regressions controlling for village size. The x-axis shows varying values for pλ1, 
which influences only diffusion centrality and contextual centrality.
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average contribution. Similar figures to Figs. 3 and 4 for other values of the standardized average contribution can 
be found in the Supporting Information.

Performance of contextual centrality relative to other centrality measures on real-world networks.  
Next, we analyze the performance of contextual centrality in achieving the cascade payoff, as defined in Eq. (3), 
using simulations on three real-world settings, namely adoption of microfinance, adoption of the weather insur-
ance, and political voting campaign, as shown in Fig. 5. For the political campaign experiment in Turkey, we use 
individual home and work locations to build a network and regional voting data on sampling voting outcomes to 

Figure 2.  Performance of contextual centrality relative to other centrality measures on random networks. Each 
plot shows the relative change, computed as −a b

a bmax( , )
 where a is CC’s average payoff and b is the maximum 

average payoff of the other centrality measures, for varying values of 
σ

y
y( )

 and pλ1. The plots correspond to the 
results on random networks generated according to the (a) Barabasi-Albert, (b) Erdos-Renyi, and (c) Watts-
Strogatz models.

Figure 3.  Average payoffs when standardized average contribution is 0. Here we show the average payoff with 
95% confidence interval when seeding with different methods on (a) Barabasi-Albert, (b) Erdos-Renyi, and (c) 
Watts-Strogatz models.

Figure 4.  Average payoffs when standardized average contribution is 1. Here we show the average payoff with 
95% confidence interval when seeding with different methods on (a) Barabasi-Albert, (b) Erdos-Renyi, and (c) 
Watts-Strogatz models.

https://doi.org/10.1038/s41598-020-62857-4
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use as y. Individuals belonging to the same home neighborhood are connected according to the Watts-Strogatz 
model with a maximum of 10 neighbors. Same for the work neighborhoods. These two networks are superim-
posed to form the final network. Since we do not know the political voting preferences on an individual level, 
individual voting outcomes are sampled to match voting data on a regional level. Specifically, we let the actual 
fraction of the population that voted for the AK Party in an individual’s home neighborhood be the probability 
that individual votes for the AK Party. We let yi = +1 represent a vote for AK party and yi = −1 represent a vote for 
any other party. We sample a new set of voting outcomes from the regional voting distributions for each diffusion 
simulation.

To compare the performance of contextual centrality against the maximum of centrality measures for each 
condition, we use “relative change” as before. We observe the network structure (A) and adoption decisions in 
the campaign for microfinance and weather insurance. In the campaign for political votes, we generate the net-
work structure and the contribution vector from the empirical distributions. We vary the diffusion rate of p in 
the independent cascade model to examine how it influences the performances of different centrality measures. 
We see that in (a) campaign for microfinance and (b) campaign for weather insurance, CC outperforms the other 
centrality measures when pλ1 is small. While in (c) campaign for political votes, CC outperforms the other cen-
trality measures for all pλ1. The standardized average contributions of (a), (b), and (c) are 2.29, 5.27, and −2.22, 
respectively. This result is consistent with the results presented in Fig. 2. It shows that contextual centrality can 
greatly outperform other centrality measures when the standardized average contribution is negative for a wide 
range of pλ1. When standardized average contribution is positive, contextual centrality outperforms other cen-
trality measures when the spreadability is small and achieves comparable results with other centrality measures 
as the spreadability further increases.

Approximation of contextual centrality and the importance of primary contribution.  A negative 
contextual centrality score indicates that seeding with the particular node will generate a negative payoff. Therefore, we 
design a seeding strategy in which we seed only if the maximum of contextual centrality is nonnegative. As shown by 
the blue dashed and solid lines in Fig. 6, the new seeding strategy, “Nonnegative”, performs better than always seeding 
the top-ranked individual. Building upon Eq. (7), we introduce a variation of eigenvector centrality, “Eigenvector 
adjusted”, as the product of eigenvector centrality and the primary contribution (U yT

1 ). This variation of eigenvector 
centrality performs on par with contextual centrality as pλ1 grows large as expected according to Eq. (7). “Eigenvector 
adjusted” greatly outperforms eigenvector centrality. Another variation of eigenvector centrality is to adjust eigenvector 
centrality by y. Note that the sign of U yT

1  does not always equal y. When the signs differ, seeding only when U yT
1  is pos-

itive produces a higher cascade payoff when pλ1 is not too large. However, as pλ1 further increases and the diffusion 
saturates most of the network, the sign of y predicts that of the cascade payoff. However, larger pλ1 is not as interesting 
as smaller ones, which happens more frequently in real life. We present average cascade payoff comparing the two 
strategies when <y U y( ) 0T

1  in the Supplementary Information.
Comparing the strategies in Fig. 6, the new strategy of accounting for the sign of the centrality measures 

improves the average payoffs by an order of magnitude. This pattern also highlights the importance of the pri-
mary contribution to campaign strategies. We present figures for the analogous variations of the other centrality 
measures in the Supporting Information.

Homophily and the maximum of contextual centrality.  Homophily is a long-standing phenomenon 
in social networks that describes the tendency of individuals with similar characteristics to associate with one 
another18. The strength of homophily is measured by the difference in the contributions of the neighbors, 

∑ −( )A y yi j
N

ij i j,

2
. We analyze the relationship between the strength of homophily and the approximated cascade 

payoff by seeding the highest-ranked node in contextual centrality in Fig. 7. After controlling for 
σ

y
y( )

 and pλ1, we 

Figure 5.  Performance of contextual centrality relative to other centrality measures on real-world networks, 
including (a) microfinance, (b) weather insurance, and (c) political campaign. Each plot shows the relative 
change for varying values of pλ1. We compare contextual centrality with degree centrality, diffusion centrality, 
eigenvector centrality, Katz centrality, and random seeding.
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regress the maximum of the contextual centrality on the strength of homophily of the network separately for three 
conditions of 

σ
y
y( )

. When the spreadability of contextual centrality is small, stronger homophily tends to correlate 
with a large approximated cascade payoff across all graph types. This result shows that stronger homophily of the 
network predicts higher approximated cascade payoff with small spreadability. When the network is 
Barabasi-Albert and >

σ
0y

y( )
, the relationship is the strongest. As the spreadability further increases, the correla-

tion between contextual centrality and homophily drops dramatically, and thereby we exclude the scenarios when 
pλ1 > 1.

Discussion
Contextual centrality sheds light on the understanding of node importance in networks by emphasizing node 
characteristics relevant to the objective of the diffusion other than the structural topology, which is vital for a wide 
range of applications, such as marketing or political campaigns on social networks. Notably, nodal contributions 
to the objective, the diffusion probability, and network topology jointly produce an effective campaign strategy. 
It should now be clear with the thorough simulations and empirical analysis in this study that exposing a large 
portion of the population in the diffusion is not always desirable.

•	 When the spreadability is small, contextual centrality effectively ranks the nodes whose local neighborhoods 
generate larger cascade payoffs the highest.

•	 When the spreadability is large, the primary contribution tends to predict the sign of the approximated cas-
cade payoff.

Meanwhile, for a given contribution vector (y), the policy-maker can influence the diffusion rate to take 
advantage of local diffusion and locate nodes whose local neighborhood generates large cascade payoff. In prac-
tice, the policy-maker can first estimate the contribution vector (y), and then calculate the maximum of contex-
tual centrality for a range of pλ1, which approximates the cascade payoff. Finally, the policy-maker can compute 
the optimal corresponding p given the leading eigenvector (λ1).

When the primary contribution is negative, the campaigner might need to reduce the spreadability of the 
campaign to take advantage of the individuals whose local neighborhoods generate positive approximated cas-
cade payoff in aggregation. To reduce the spreadability of the campaign, the campaigner can resort to campaign 
channels with lower diffusion probability and less viral features, such as direct mail.

As the standardized average contribution increases, the contribution vector becomes comparatively more 
homogeneous and comparatively less important than the network structure. Therefore, when the average contri-
bution is positive, seeding with contextual centrality becomes similar to seeding with diffusion centrality.

Moreover, contextual centrality emphasizes the importance of incorporating node characteristics that are 
exogenous to the network structure and the dynamic process. More broadly, contextual centrality provides a 

Figure 6.  Average cascade payoff for variations of contextual centrality and eigenvector centrality. The x-axis is 
pλ1, and the y-axis is the average payoff, with the shaded region as the 95% confidence intervals. For 
“eigenvector adjusted” centrality, we multiply eigenvector centrality with the primary contribution U yT

1 . For 
“Nonnegative”, we only seed if the maximum of the centrality measure is nonnegative, otherwise it is named 
“Always”.

https://doi.org/10.1038/s41598-020-62857-4


9Scientific Reports |         (2020) 10:9401  | https://doi.org/10.1038/s41598-020-62857-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

generic framework for future studies to analyze the joint effect of network structure, nodal characteristics, and the 
dynamic process. Other than applications on social networks, contextual centrality can be applied to analyzing a 
wide range of networks, such as the biology networks (e.g., rank the importance of genes by using the size of their 
evolutionary family as the contribution vector19), the financial networks (e.g., rank the role of institutions in risk 
propagation in financial crisis with their likelihoods of failure as the contribution vector3), and the transportation 
networks (e.g., rank the importance of airports with the passengers flown per year as the contribution vector20).

Methods
In this study, we compare contextual centrality with diffusion centrality and other widely adopted 
reachability-based centrality measures - degree, eigenvector, and Katz centrality. We compute degree centrality by 
taking the degree of each node, normalized by N − 1. We compute eigenvector centrality by taking the leading 
eigenvector U1 with unit length and nonnegative entries. We compute Katz centrality as α∑ =

∞ A( ) 1t
t

0 , setting α, 
which should be strictly less than λ −

1
1, to λ. ⋅ −0 9 1

1. We compute diffusion centrality as ∑ = pA( ) 1t
T t

1 . For both 
diffusion and contextual centrality, we set T = 16, except for the microfinance in Indian villages setting, where we 
set T as done by Banerjee et al.12.

Simulations of the diffusion process in each setting follow the independent cascade model13. For each central-
ity, the highest-ranked node is set to be the initial seed. We compute cascade payoff by summing up the individual 
contributions of all the nodes reached in the cascade. For each parameter tested in different settings, we run 100 
simulations.

In the empirical analysis of microfinance in Indian villages and weather insurance in Chinese villages, we 
build models to predict the adoption likelihood to use as y in computing contextual centrality. For each setting, 
we use the data provided in Banerjee et al.12 and Cai et al.17, respectively, as inputs to a feed-forward neural net-
work trained to predict the adoption likelihood based on the adoption decisions of first-informed individuals. 
For the microfinance in Indian villages, the covariates include village size, quality of access to electricity, quality of 
latrines, number of beds, number of rooms, the number of beds per capita, and the number of rooms per capita. 
For the weather insurance in Chinese villages setting, 39 of the provided characteristics are selected as inputs by 
choosing those for which all households had data after removing households with many missing characteristics.

For the political campaign experiment in Turkey, we use individual home and work locations to build a net-
work and regional voting data on sampling voting outcomes to use as y. Individuals belonging to the same home 
neighborhood are connected according to the Watts-Strogatz model with a maximum of 10 neighbors. Same for 
the work neighborhoods. These two networks are superimposed to form the final network. Since we do not know 
the political voting preferences on an individual level, individual voting outcomes are sampled to match voting 
data on a regional level. Specifically, we let the actual fraction of the population that voted for the AK Party in an 
individual’s home neighborhood be the probability that an individual votes for the AK Party. We let yi = +1 repre-
sent a vote for AK party and yi = −1 represent a vote for any other party. We sample a new set of voting outcomes 
from the regional voting distributions for each diffusion simulation.

Figure 7.  Homophily and maximum of contextual centrality when pλ1 < 1. We regress the maximum of 
contextual centrality on homophily after controlling for 

σ
y
y( )

 and pλ1. The y-axis is the OLS coefficients of 
homophily (with the vertical line as the 95% confidence interval) and the x-axis corresponds to three types of 
networks. We perform the analysis separately for 

σ
y
y( )

 being larger than, smaller than and equals to zero.
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For the synthetic setting, we generate a new random graph for each simulation, according to Barabasi-Albert, 
Erdos-Renyi, and Watts-Strogatz models. The size n of each graph varies between 30 and 300. For Barabasi-Albert, 
m varied between 1 and n. For Erdos-Renyi, p varies between 0 and 1. For Watts-Strogatz, k varies between ln n 
and n, and p varies between 0 and 1. Individual contributions y are sampled from a normal distribution with unit 
standard deviation. Note that the scale of y does not change the rankings of contextual centrality.
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