
MIT Open Access Articles

Deep Context Maps: Agent Trajectory
Prediction using Location-specific Latent Maps

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1109/LRA.2020.3004800

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/135990

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135990
http://creativecommons.org/licenses/by-nc-sa/4.0/

Deep Context Maps: Agent Trajectory Prediction
using Location-specific Latent Maps

Igor Gilitschenski1, Guy Rosman2, Arjun Gupta3, Sertac Karaman3, Daniela Rus1

Abstract— In this paper, we propose a novel approach for
agent motion prediction in cluttered environments. One of the
main challenges in predicting agent motion is accounting for
location and context-specific information. Our main contribu-
tion is the concept of learning context maps to improve the
prediction task. Context maps are a set of location-specific
latent maps that are trained alongside the predictor. Thus,
the proposed maps are capable of capturing location context
beyond visual context cues (e.g. usual average speeds and
typical trajectories) or predefined map primitives (such as lanes
and stop lines). We pose context map learning as a multi-
task training problem and describe our map model and its
incorporation into a state-of-the-art trajectory predictor. In
extensive experiments, it is shown that use of learned maps
can significantly improve predictor accuracy. Furthermore, the
performance can be additionally boosted by providing partial
knowledge of map semantics.

I. INTRODUCTION
Trajectory prediction of diverse agents in dynamic en-

vironments is a key challenge towards unlocking the full
potential of autonomous mobile robots. Particularly in safety
critical settings such as autonomous driving, obtaining re-
liable predictions of surrounding agents is a necessary
functionality for robust operation at speeds comparable to
human-driven vehicles. Predicting agent trajectories, such
as pedestrian motions, is an inherently challenging task:
First, in crowded environments, pedestrian behavior is highly
dependent on social interactions. Second, prediction systems
have to account for potential rapid changes in behaviour
(e.g. children unexpectedly running on the road). Finally,
the decision making process involves and depends on a high
variety of factors including the surrounding environment and
the complex interactions with it.

Several deep-learning based approaches have recently in-
corporated context to improve prediction accuracy [1], [2],
[3]. This was usually achieved by providing a top-down
view of the scenery to the prediction network [3], or by
adding information (e.g. about lanes) from a map of the
area [4]. This improves prediction performance but fails to
account for information that is not available through visual
cues or the content of a map. Furthermore, existing map-
based prediction approaches usually rely on a map creation
process that requires additional engineering and reasoning

*This work has been supported by the Toyota Research Institute. It,
however, reflects solely the opinions and conclusions of its authors and
not TRI or any other Toyota entity. The support is gratefully acknowledged.

1MIT Computer Science and Artificial Intelligence Lab (CSAIL),
igilitschenski@mit.edu, rus@csail.mit.edu

2Toyota Research Institute, guy.rosman@tri.global
3MIT Laboratory for Information and Decision Systems (LIDS),

argupta@mit.edu, sertac@mit.edu

Agent i Processor

Patch
Selection

Concat

Spatial
Embedding

Joint
E

m
bedding

Flatten

Trajectory
Embedding

Context Map

Trajectory i

Fig. 1: Map Embedding. Latent maps can be used for learn-
ing location-specific information. For the trajectory forecast-
ing task, we preprocess the latent map and the trajectory
resulting in a joint trajectory-map embedding.

about useful features for prediction. To the best of our
knowledge, there is no prediction approach that implicitly
learns a task-specific latent map.

We argue that prediction performance can be improved
by revising the way predictors and maps interact. Typical
local behavior is an important cue in predicting behaviors and
affordances. This is strongly evident in autonomous vehicle
fleets that regularly traverse the same roads. Maps should
therefore extend beyond the content of a top-down image
or an HD map with fixed semantics. They should provide
predictors with location-specific context in a structured way.
We propose learning a location-specific joint representation
(called context map) that explains top-down views, semantic
primitives, and the behavior of agents operating in the scene.

For instance, the ever-growing amount of raw trajectory
data contains a lot of information about local norms. Tra-
jectories also implicitly encode phenomena such as common
paths, potential obstacles, and traffic flow. Thus, they could
be a rich source of non-visual information. However, it is
an open problem how to incorporate such information into a
context representation for the prediction task. A related chal-
lenge is the decomposition of location-specific and location-
agnostic learned structures within the predictor’s architecture.

In this paper, we address these challenges by proposing
an approach for neural network-based prediction that incor-
porates context maps, a learned location-specific memory.
Instead of presuming a predetermined structure, we train
the maps as latent entities that can not only explain visual
features of the image, but also non-visual features for the
prediction task. The trained maps are implemented as a
set of location-specific biases that are injected into the
prediction network. Additional auxiliary loss terms based
on reconstruction, partial semantic annotations, and gradient
sparsity provide support to guide the map-learning process.

ar
X

iv
:1

91
2.

06
78

5v
2

 [
cs

.R
O

]
 1

9
Ju

n
20

20

Trajectories

Predictor (Modified SGAN)

Agent 1 Processor

...

Context Map

MapDecoder

Label Explanation

Map Regularization
 & || ||

R
an

do
m

 P
at

ch
S

el
ec

tio
n

...
Context Map Processor

Agent n Processor

Image & Map Explanation

MapDecoder MapEncoder

Agent 1 Processor

...

Agent n Processor

...

Fig. 2: Architecture Overview. The proposed overall architecture for learning context maps jointly with trajectory prediction.
For the prediction network, we use a modified variant of the Social GAN architecture ([5, Fig.2]) that introduces the context
map after the trajectory embedding [5, Eqns. 2 & 4]. Additional supervision for learning the context map is provided image
explanation, map explanation, and label explanation losses on randomly sampled map patches and the corresponding image
patches. Finally, the map is regularized using a norm penalization loss, and a gradient norm penalization loss to enforce
sparsity of the map gradient.

At test time, the network uses current locations of the agents
and the learned maps as input for prediction. To the best
of our knowledge, this is the first work focusing explicitly
on latent map learning for improving the prediction task.
Overall, our contributions can be summarized as follows:
• We develop a model for utilizing latent maps to explain

trajectories of road agents and integrate them as part of
a state-of-the-art trajectory prediction network.

• We show how we learn the maps from raw aerial
imagery as well as the observed motion patterns and
partial semantic labels.

• We demonstrate how the learned maps allow us to
better predict agents’ motion and outperform baseline
approaches for the prediction task. We show this on
standard benchmark datasets and probe the performance
contribution of the maps and additional semantic labels.

II. RELATED WORK

Trajectory modeling and prediction has been covered
in an extensive and diverse body of work. Early works
consider prediction in the context of tracking [6] or social
interaction modelling [7]. Recent advances in deployment
of autonomous vehicles have sparked renewed interest in
the prediction task (see [8], [9], [10] for recent surveys). A
main challenge remains the incorporation of environmental
context.

Social-Context Modelling One big line of work, inspired
by [7], considers improving prediction by properly modelling
social context and group dynamics. In [11], future trajectories
of all interacting agents are modeled by learning social
interactions from real data using a Gaussian process model.

An interaction-aware prediction network is used in [12] for
safely crossing an intersection. In [13], static obstacles and
surrounding pedestrians are explicitly modeled for improving
the forecasting task while [14] proposes an approach that
uses graphs for scene representation. Social Pooling modules
are proposed in Social LSTM [15] and Social GAN [5]. They
allow a deep learning-based predictor to jointly reason about
multiple agent trajectories. In contrast to these approaches,
the present work considers the orthogonal problem of seman-
tic context modelling and can be combined with modelling
social context as we demonstrate by integrating Context
Maps with Social GAN. We show that proper modelling
of semantic context has a stronger impact on prediction
accuracy than social pooling.

Semantic Context Modelling. Several recent approaches
consider broader semantic context information for trajectory
prediction. In [16], previously observed motion patterns are
used to estimate a probability distribution as motion model
and [17] estimates circular distributions at different locations
which are combined into a smooth path prediction. An exist-
ing map with annotated traffic lanes and centerlines is used
for prediction in [18] based on a Kalman Filter framework for
predicting vehicle motion. The work [19] proposes to extract
patch descriptors that encode the probability of moving to
adjacent patches and then uses a Dynamic Bayesian Network
for scene prediction. In [20], context features from the
environment (such as traffic light status and distance to
curbside) are incorporated into a Gaussian Process-based
predictor. Several deep learning-based approaches use visual
context cues for improving on the prediction task [1], [21],
[2], [22], [23], [3] by taking an image of the scenery as an

M
ed

ia
n

Fi
lte

r

Input Sequence Reference Image
t

t+1
t+2

t+3

Fig. 3: Reference Images. We create reference images of the
scenes by applying a median filter. This results in the removal
of most dynamic objects and supports scene reconstruction.

additional input to a network. Different map representations
for prediction in scenarios with static trackers are discussed
in [24], [25], [26], [27]. An explicit destination network is
used in [28] to model a grid of potential destinations for
subsequent trajectory prediction. An implicit consideration of
semantic information is achieved in networks that combine
multiple tasks such as [29], where a single convolutional
network is used to combine detection, tracking, and motion
prediction. In contrast to these works, our work extracts
location-specific semantic information during training and
stores it in a learned latent representation. We also use
different information sources to inform that representation.

Latent Representation Learning. Our work draws some
inspiration from several approaches that encode learned map
representations. An early approach of map learning was
presented in [30], where a Gaussian Process is used for
occupancy mapping without a priori discretization of the
world into grid cells. In [31], a differentiable mapper is
used to create a multiscale belief of the world in the agent’s
coordinate frame. Other recent neural mapping approaches
involve [32], [33], [34]. While these works mostly focus on
localization and navigation, we use a latent location-specific
memory to inform the prediction task.

The most similar work to ours is the predictor proposed
in [35]. This approach uses a displacement volume as a
network input and proposes a location-specific bias map of
the size of that volume. In contrast to this work, we consider
a model capable of simultaneously handling multiple scenes
and multiple map layers. We also propose a location-specific
training methodology and additional semantic supervision to
improve latent map quality.

III. CONTEXT MAP LEARNING FOR PREDICTION

The goal of the proposed approach is to capture the
ability of humans to account for environment and location-
specific habits and norms. We model this information by a
set of location-specific maps that are learned during predictor
training.

More formally, our goal is to predict a set of agent
trajectories Ŷ = {Y1, ...YN} at a place l ∈ P (with
P denoting the set of all considered places) from past
temporally overlapping trajectories X = {X1, . . . , XN} and
a learned location-specific map Ml, i.e.

Ŷ = f (X,Ml) .

such that Ŷ approximates the ground truth trajectories, Y,
as closely as possible. The trajectories are represented as
sequences Xi = {xi,t ∈ R2 | t = 1, . . . , O} and Yi =
{yi,t ∈ R2 | t = 1, . . . , P} with observation horizon O and
prediction horizon P . The neural network representing f is
trained together with the context maps Ml. The maps are
stored as tensors of size Hl × Wl × Fmap with Hl, Wl

denoting the reference image dimensions and Fmap the map
feature dimension. In our case, reference images are usually
top-down views of the environment obtained from the video
data of the considered datasets via median filtering as shown
in Fig. 3. The resulting reference images are visualized in
Fig. 4.

In addition to trajectory losses during predictor training
(Sec. III-A), we provide weak supervisory information to
obtain meaningful maps and ensure convergence. We train
the maps to reconstruct the reference image (Sec III-C),
to encode information about environment semantics without
providing full labels on the entire reference image (Sec III-
D), and add a gradient based penalty term to support map
smoothness (Sec III-E).

A. Predictor Integration

Recently several generative trajectory prediction ap-
proaches based on Generative Adversarial Networks
(GANs) [36] have been proposed demonstrating the capa-
bility for covering a variety of different plausible trajecto-
ries [5], [22], [2]. Motivated by these results and in order
to prove usefulness of maps even with elaborate predictors,
we integrated our map learning approach with Social GAN
(S-GAN) [5] as visualized in Fig. 2. The concept of context
map learning is applicable to most neural network based
predictors. We used S-GAN due to the free availability of
its implementation allowing for a fair baseline comparison.

The S-GAN generator network creates trajectory predic-
tions through a Long Short-Term Memory (LSTM) [37]
network which is broadly used by several of the above-
mentioned trajectory prediction models. Traditionally, for
trajectory prediction, the LSTM network takes in a sequence
of agent coordinates, encodes them into a state vector, and
a separate predictor network converts the state vector to the
future agent location. The S-GAN network simultaneously
processes the trajectories of all the pedestrians in a given
consecutive sequence of video frames and then “pools” the
resulting state vectors of the separate LSTMs before making
a prediction. The pooling mechanism serves for modeling
social interactions. More formally, for each trajectory Xi,
the S-GAN LSTM cell follows the following recurrence:

ec = MLP(xi,t) ,

ht = LSTM(ht−1, ec) ,
(1)

where MLP denotes a multi layer perceptron meant to encode
the coordinates of the agent, and ht is the hidden state of
the LSTM at time t. This computation is carried our for
each trajectory in X individually, however for simplicity of
notation, we do not carry the index of the trajectory as it is
clear for the context.

As the model is a GAN, it also includes a discriminator
network which scores the trajectory produced by the genera-
tor. This network is only used during training to improve the
generator and not part of the trajectory prediction network
at inference time.

We integrate context maps with the S-GAN model by
providing an additional input during the prediction phase to
the LSTM. We add a Convolutional Neural Network (CNN)
that takes in a patch of the context map for the given scene
at the current coordinate location and provides a processed
form to the first LSTM cell in the generator. This additional
input changes the recurrence in (1) to

em = MapDecoderP(Ci,t) , et = MLP(xi,t) ,

ec = Concat(et, em) , ht = LSTM(ht−1, ec) ,
(2)

where MapDecoderP(·) is a Convolutional Neural Network
creating a spatial embedding of the map and Ci,t is a patch
of the context map around the location xi,t. This process
is visualized in Fig. 1. To make a prediction on the future
location of the agent, we pass the most recent LSTM state
vector to a fully connected decoder network which outputs
the future position of the agent (analogous to [5, eq. (4)]).

At training time, the generator involves two loss terms.
In addition to the usual discriminator score Lscore, S-GAN
uses a L2 loss term between the predicted trajectory and the
true trajectory

Ltraj(Ŷ,Y) =

N∑
i=1

P∑
t=1

||ŷi,t − yi,t||2 . (3)

In our modified version, the discriminator also gets access
to the maps using the same augmentation process as for
the observed trajectories. However, in contrast to generator
training, the latent map is not modified during discriminator
training iterations.

B. Map Patch Selection

One of the conceptual choices for the predictor was
deciding between using global context of the entire scene (as
is done e.g. in [22]) or a local context notion. We decided
for the latter to simplify the learning task. To ensure local
use of context, the network is implemented such that during
each training and inference step only those parts of the map
Ml are used that correspond to locations in the current batch
or, for training only, to patches selected for auxiliary tasks.
This requires a patch selection mechanism which is simply
extracting subtensors of the map around a given point x of
size Hpatch ×Wpatch × Fmap denoted as

C = PatchSelection(Ml,x) .

Thus, Ci,t above is obtained as Ci,t =
PatchSelection(Ml,xi,t).

C. Image Explanation

Unless the size of the training set for a specific environ-
ment is very large, the trajectories will usually not cover all
walkable areas and, on their own, do not provide sufficient

(a) ETH (b) Hotel

(c) Zara1 (d) Students3

Fig. 4: Reference Images. The reference images that are
used as supervisory reconstruction labels for our networks
are generated by applying a temporal median filter [38] to
the video data in the datasets.

information about other objects in the environment. To help
the network better learn key features of the environment,
we introduce an image explanation mechanism as well as a
map explanation mechanism. We enforce this constraint by
including decoder and encoder modules according to

Limage(l) = ||Il −MapDecoderR(Ml)||
+ ||Ml −MapEncoderR(Il)|| .

(4)

We note that this methodology can potentially allow to use
this prediction approach in unseen scenes.

D. Semantic Label Reconstruction

We expect the latent map to decode semantic labels of the
scene where the annotation is present. To that end, we add
another module to decode the context map into semantic
class labels represented as a matrix Ll,i ∈ RHl×Wl for
each location l and label type i. For positive and negative
examples we set the values of Ll,i to 1 and -1 respectively
and leave it at 0 if there is no label information. The
label reconstruction loss is formulated as the difference
between the hand-annotated semantic labels and the decoded
annotation

Llabels(l) =
∑
i∈T

(Ll,i −Bl,i ◦MapDecoderS(Ml)i)
2 ,

where T denotes the set representing label types, ◦ is the
Hadamard product and Bl,i is a bitmask ensuring that no loss
is incurred for areas without any label (i.e. it is 0 wherever
Ll,i is 0 and 1 otherwise).

E. Sparsity

In order to ensure that the map is as simple as possible,
we add a sparsity prior on the gradient of the latent map,

Lsparsity(l) = ||∇Ml||1 .

Category ETH HOTEL STUDENTS3 ZARA1 ZARA2

Walkable

Obstacle

TABLE I: Annotated labels. The labels are given in terms of positive examples (green) and negative examples (red) encoded
as 1 and -1 respectively. They do not cover the full corresponding semantic area in every reference image. We demonstrate
that the information encoded in those labels can still be used to learn segmentation and support prediction in unlabeled
areas.

This is implemented using a finite differences approach
computed by applying a convolution with the two predefined
kernels 0 0 0

ε −ε 0
0 0 0

 and

0 ε 0
0 −ε 0
0 0 0

to the latent map. Then, we compute the norm by treating
the resulting output as a vector. We refer the reader to
[39] and references therein for further details about sparse
representations, and note that other image priors could have
been used as well.

F. Training

For a given scene, we initialize the context map and
network with random weights picked from a Gaussian
distribution. We alternate training between the trajectory
generator network and the discriminator network. To further
balance the training, the auxiliary map learning losses are
additionally restricted to a set of randomly selected patches
rather than the entire latent map.

1) Generator Step: To train the generator network, we
initially do a forward pass by first selecting sections of
the context map dependent on the scene and pedestrian
coordinates in the batch. We input the coordinates and map
sections into the network to predict the trajectories. We
compute several losses with respect to the context map and
the resulting trajectories to train the network.

During the training phase, we not only train the weights
of the encoder as well as the Social-GAN modules but also
the selected patches of the context map. Thus, the training
process enforces location-specific information in the context
map. The selected losses make sure that the information
stored in the map informs the trajectory prediction network
to make more accurate predictions and do so concisely in a
way that captures the key components of the reference image.

The total loss for the generator is thus obtained as

LG(Ŷ,Y, l) = w1 · Limage(l) + w2 · Llabels(l)

+ w3 · Lsparsity(l) + w4 · Lscore(Ŷ)

+ w5 · Ltraj(Ŷ,Y) .

2) Discriminator Step: The descriminator is trained to
provide Lscore in the same way as in Social GAN. We
first pass a partial pedestrian trajectory to the trajectory
generator to get a predicted full trajectory. We then pass the
predicted trajectory and true trajectory to the discriminator
network to obtain scores for the two trajectories. While we
did not modify the loss of the discriminator, we adapted
the discriminator’s first LSTM cell in the same way as in
the generator. However, the discriminator does not have an
own map encoder module and gets merely read-only access
to the generator’s maps, i.e. they are not changed during
discriminator training. Letting the discriminator see the maps
without modifying them allows for better convergence while
not violating the GAN’s theoretical equilibrium properties.

IV. EVALUATION

In our evaluation, we aim to capture the effects of using
context maps on trajectory prediction accuracy. By explic-
itly discussing dataset imbalances and different scales, we
demonstrate the utility of learned maps in the presence of
a diverse set of data. In what follows we first introduce the
baselines (Sec. IV-A) and datasets (Sec. IV-B), followed by
the implementation details (Sec. IV-C) of our evaluation, and
finally a discussion of our results (Sec. IV-D).

A. Baselines

We evaluate the proposed approach along the following
baselines including several variants of our own model to
understand the individual contribution of each component:

1) Linear: A simple Kalman filter (we used pykalman
0.9.5) running a constant acceleration model where the initial
state covariance, the model covariance, and the observation
covariance were estimated using an expectation maximiza-
tion method for each trajectory individually.

Sequence Linear S-GAN S-GAN-P Ours Ours no pooling Ours no labels
ETH 16.33 / 35.09 38.25 / 67.35 44.62 / 81.96 17.64 / 34.20 14.63 / 26.83 15.77 / 28.89
HOTEL 20.81 / 44.68 23.52 / 39.57 25.32 / 42.41 19.12 / 34.62 18.79 / 33.77 20.90 / 38.20
ZARA1 21.44 / 49.16 28.60 / 50.08 30.87 / 53.45 17.79 / 34.54 17.99 / 35.69 24.37 / 48.63
ZARA2 14.64 / 34.32 19.48 / 34.56 19.21 / 33.83 13.43 / 26.20 13.32 / 26.40 15.88 / 31.09
STUDENTS3 30.86 / 71.38 28.95 / 53.87 29.55 / 54.81 22.02 / 43.84 22.75 / 45.94 23.13 / 45.82
Average 20.81 / 46.93 27.76 / 49.09 29.91 / 53.29 18.00 / 34.68 17.50 / 33.72 20.01 / 38.53

TABLE II: Prediction Results given in terms of ADE (left) and FDE (right) in pixels for each sequence individually and a
(non-weighted) average. Use of context maps outperforms approaches that purely predict from trajectory data. Particularly
datasets underrepresented in the training data (in our case ETH) stand to benefit from the use of location-specific maps.

2) S-GAN-P: We compare our approach against the full
S-GAN model including their proposed pooling module. We
use the S-GAN predictor (with the modifications outlined
above) in our training pipeline and thus, this serves at the
same time as an ablation study for the use of context maps.

3) S-GAN: This baseline is basically the same as S-GAN-
P with the only difference being the removal of the pooling
module. That is, we train a simple LSTM-based GAN for
trajectory prediction.

4) Ours: Our full model involving all loss terms described
above.

5) Ours no pooling: Our full model without the pooling
module in the generator to evaluate the relative contribution
of pooling.

6) Ours w.o. labels: Our full model without semantic
labels in order to evaluate if weak semantic supervision helps
prediction.

B. Datasets

The evaluation of our model requires datasets with trajec-
tory data of multiple trajectories in the same location and a
corresponding reference image of the scenery. Unfortunately,
no such autonomous vehicle data is publicly available yet.
Thus, we use datasets based on a static tracker and evaluate
our work on the ETH and UCY standard benchmark datasets.

ETH Dataset [40] The ETH dataset, also known as BIWI
Walking Pedestrian dataset, is a collection of two sequences
(ETH and HOTEL) recorded around ETH Zurich. For both
sequences, it contains pedestrian positions and velocities
in meters and a video recording. Furthermore, it provides
homography matrices for transforming the data into image
coordinates. For dataset compatibility and to capture if the
maps help with different scales, we use pixel coordinates for
this dataset.

UCY Dataset [41]. The UCY ”Crowds-by-Example”
dataset contains several sequences with annotated pixel lo-
cation trajectories. Not all of these sequences also have
a corresponding video recording or the viewpoint of the
recording, is not suitable. Thus, we make only use of the
ZARA1, ZARA2, and STUDENTS3 sequences.

We process each dataset by stepping through sequences
of frames and taking subsequences of size 18 (with an
observation sequence length of O = 10 and an prediction
sequence length of P = 8). We only include pedestrians
that appear in the full sequence of sampled frames. Partial
pedestrian sequences are dropped. Since we use a sliding

window approach, taking multiple (only partially overlap-
ping) subsequences from each trajectory, we significantly
increase the size and variety of our dataset.

UCY is annotated at a rate of ten times that of ETH, so
we only take every tenth frame of UCY to ensure that there
are no large discrepancies in temporal scaling between the
generated sequences from the two datasets. At the same time,
we use each datapoint in both datasets as a potential starting
point for a sequence. This data augmentation measure creates
several partially overlapping sequences with more datapoints
from UCY than ETH. We do not compensate for this in
order to evaluate our hypothesis that context maps can better
account for imbalance by properly learning location-specific
information.

Once the datasets are processed, we split 10% of the data
in each scene into a validation set and 30% of the data
into a test set. The remaining 60% are used for training. It
is important to note that these percentages are taken from
each scene, not from the overall pool. This ensures that
there is a good representation of each scene in each of the
splits. Furthermore, the splits were made on a temporal basis
making sure that no two trajectories from the same point in
time end up in different splits while at the same time covering
most of the locations in training for context map learning.
In the original S-GAN work, different datasets were used
for training and evaluation. To ensure a fair comparison, our
approach uses the same data regime for our proposed method
and the baselines. We provided semantic label annotations
of the reference image for walkable areas and obstacles, i.e.
T = {walkable, obstacle}. They are visualized in Table I.

C. Implementation Details

For the loss weights during generator training of our
models, we use w1 = 0.05, w2 = 0.05, w3 = 0.5, w4 = 1,
w5 = 0.1. We use a batch size of 32 and we train the model
over 200 epochs for convergence. For the training process,
we alternate updates to the discriminator and the generator
per batch using an Adam optimizer for both with a learning
rate of 5e-3. For map patches, a size of Hpatch = Wpatch =
10px is used. This hyperparameter depends, in practice, on
the dataset and resolution of the reference image in practice.
For the MapEncoderR, we used the convolutional layers of
a ResNet18 model and append a 3-layer convolutional head
with [10, 10, 2] output channels (and quadratic kernels of
size [1, 3, 3]) respectively. For the semantic labels, prediction,
and reconstruction encoders we have used nonlinear (ReLU)

convolutional modules: feature count of [5, 5] and kernel size
of [5 × 5, 5 × 5] for MapDecoderS , [7, 5, 10] feature sizes
and pixelwise convolutions for MapDecoderP , and a single
5-feature pixelwise operator for MapDecoderR.

Once training is done, we use the model that had the best
performance on the validation set for reporting results on
the test set. For all S-GAN models, including our variant
based on latent maps, the evaluation is based on letting the
generator draw one sample. All decoder networks have been
implemented as CNNs. The full implementation will be made
available upon acceptance of this work.

D. Results

Similarly to [5], we evaluate the performance of our
model on trajectory prediction using two metrics: Average
Displacement Error (ADE) and Final Displacement Error
(FDE) which are also known as Mean L2 Error (ML2) and
Final L2 error (FL2) [3]. The ADE, given as

ADE =
1

N · P

N∑
i=1

P∑
t=1

||yi,t − ŷi,t|| ,

averages the error between every position in the prediction
and the ground truth. The FDE, given as

FDE =
1

N

N∑
i=1

||yi,P − ŷi,P || ,

denotes the error at the last predicted position. Both metrics
are averaged over the entire test set.

The results are visualized in Table II. Overall, use of
the newly proposed context maps strongly improves the
results compared to merely using different variants of S-
GAN. This is mainly due to the fact that it becomes easier
to tailor the prediction to the data and the environment.
The qualitative differences to the original S-GAN results
are mainly due to the fact that we learn directly on pixel
space and have a different data preparation and augmentation
process. Particularly the absence of a homography unifying
the scale of the trajectories makes it more challenging
to properly predict trajectories at different scales without
location-specific memory.

Our work confirms that the contribution of the pooling
module is minor (for the prediction task) compared to
storing context. This, however, is partially due to the datasets
not containing enough interactions such as near collisions.
Furthermore, the strong improvements on the ETH sequence
compared to not using context maps confirms our hypothesis
that learned maps are particularly beneficial in situations with
dataset imbalances and changing viewpoints.

E. Qualitative Examples

Several example trajectories from the ZARA2 and HOTEL
sequences are visualized in Figure 5. These examples also
involve some failure cases: In the ZARA2 sequence, the net-
work may assume that pedestrians are likely to enter the store
when close to the entrance as this is a frequently observed
behaviour at that location. Overall, however, this ability of

the proposed predictor to capture typical trajectories and
behaviours at a given location results in a better prediction
accuracy. At the same time, the auxiliary loss terms help to
avoid over-fitting during training.

V. CONCLUCSION

In this work, we presented Deep Context Maps, a
map learning approach for agent trajectory forecasting. We
demonstrated how this approach can be integrated into a
state-of-the-art predictor and that it achieves significant im-
provements on the agent trajectory forecasting task. Over-
all, maps promise to avoid over-fitting to the location of
the training set in deep-learning based inference tasks for
autonomous systems that are deployed in a big variety of
diverse environments.

REFERENCES

[1] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M. Chan-
draker, “DESIRE: Distant Future Prediction in Dynamic Scenes With
Interacting Agents,” in CVPR, 2017.

[2] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, S. H.
Rezatofighi, and S. Savarese, “Social-BiGAT: Multimodal Trajectory
Forecasting using Bicycle-GAN and Graph Attention Networks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[3] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi,
and S. Savarese, “SoPhie: An Attentive GAN for Predicting Paths
Compliant to Social and Physical Constraints,” in CVPR, 2019.

[4] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, et al., “Argoverse: 3d
tracking and forecasting with rich maps,” in CVPR, 2019, pp. 8748–
8757.

[5] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
GAN: Socially Acceptable Trajectories With Generative Adversarial
Networks,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[6] D. Koller, K. Daniilidis, and H.-H. Nagel, “Model-based object track-
ing in monocular image sequences of road traffic scenes,” International
Journal of Computer 11263on, vol. 10, no. 3, pp. 257–281, 1993.

[7] D. Helbing and P. Molnár, “Social force model for pedestrian dynam-
ics,” Physical Review E, vol. 51, no. 5, 1995.

[8] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion pre-
diction and risk assessment for intelligent vehicles,” ROBOMECH
journal, vol. 1, no. 1, p. 1, 2014.

[9] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human Motion Trajectory Prediction: A Survey,”
arXiv preprint:1905.06113, 2019.

[10] D. Ridel, E. Rehder, M. Lauer, C. Stiller, and D. Wolf, “A Literature
Review on the Prediction of Pedestrian Behavior in Urban Scenarios,”
in Proceedings of the International Conference on Intelligent Trans-
portation Systems (ITSC), 2018.

[11] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in Proceedings of the International Confer-
ence on Robotics and Automation (ICRA), 2017.

[12] N. Radwan, A. Valada, and W. Burgard, “Multimodal Interaction-
aware Motion Prediction for Autonomous Street Crossing,”
arXiv:1808.06887, 2018.

[13] M. Pfeiffer, G. Paolo, H. Sommer, J. Nieto, R. Siegwart, and C. Ca-
dena, “A Data-driven Model for Interaction-aware Pedestrian Motion
Prediction in Object Cluttered Environments,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), 2018.

[14] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent
trajectory modeling with dynamic spatiotemporal graphs,” in ICCV,
2019.

[15] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded
Spaces,” in CVPR, 2016.

[16] J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, “Probabilistic
trajectory prediction with Gaussian mixture models,” in Proceedings
of the Intelligent Vehicles Symposium (IV), 2012.

(a) Examples from the ZARA2 sequence.

(b) Examples from the HOTEL sequence.

Fig. 5: Example Predictions. Several selected example trajectories (red) from different scenes with corresponding predictions
by the network (green) and the observed past trajectories (blue) that were used for generating the predictions.

[17] P. Coscia, F. Castaldo, F. A. Palmieri, A. Alahi, S. Savarese, and
L. Ballan, “Long-term path prediction in urban scenarios using circular
distributions,” Image and Vision Computing, 2018.

[18] D. Petrich, T. Dang, D. Kasper, G. Breuel, and C. Stiller, “Map-based
long term motion prediction for vehicles in traffic environments,” in
Proceedings of the International Conference on Intelligent Transporta-
tion Systems (ITSC), 2013.

[19] L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese, “Knowl-
edge Transfer for Scene-Specific Motion Prediction,” in ECCV, 2016.

[20] G. Habibi, N. Jaipuria, and J. P. How, “Context-Aware Pedestrian
Motion Prediction In Urban Intersections,” arXiv preprint:1806.09453,
2018.

[21] J. F. P. Kooij, F. Flohr, E. A. I. Pool, and D. M. Gavrila, “Context-
Based Path Prediction for Targets with Switching Dynamics,” IJCV,
2018.

[22] A. Sadeghian, F. Legros, M. Voisin, R. Vesel, A. Alahi, and
S. Savarese, “CAR-Net: Clairvoyant Attentive Recurrent Network,”
in ECCV, 2018.

[23] H. Xue, D. Q. Huynh, and M. Reynolds, “SS-LSTM: A Hierarchical
LSTM Model for Pedestrian Trajectory Prediction,” in Proceedings of
the Winter Conference on Applications of Computer Vision (WACV),
2018.

[24] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
Forecasting,” in ECCV, 2012.

[25] D. Ridel, N. Deo, D. Wolf, and M. Trivedi, “Scene Compliant Trajec-
tory Forecast With Agent-Centric Spatio-Temporal Grids,” Robotics
and Automation Letters, vol. 5, no. 2, pp. 2816–2823, 2020.

[26] H. O. Jacobs, O. K. Hughes, M. Johnson-Roberson, and R. Vasudevan,
“Real-Time Certified Probabilistic Pedestrian Forecasting,” Robotics
and Automation Letters, vol. 2, no. 4, pp. 2064–2071, 2017.

[27] A. Rudenko, L. Palmieri, and K. O. Arras, “Joint Long-Term Pre-
diction of Human Motion Using a Planning-Based Social Force Ap-
proach,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), 2018.

[28] E. Rehder, F. Wirth, M. Lauer, and C. Stiller, “Pedestrian Prediction
by Planning Using Deep Neural Networks,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), 2018.

[29] W. Luo, B. Yang, and R. Urtasun, “Fast and Furious: Real Time End-
to-End 3D Detection, Tracking and Motion Forecasting With a Single
Convolutional Net,” in CVPR, 2018.

[30] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal
of Robotics Research, vol. 35, no. 14, 2016.

[31] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive Mapping and Planning for Visual Navigation,” in CVPR,
2017.

[32] E. Parisotto and R. Salakhutdinov, “Neural Map: Structured Memory
for Deep Reinforcement Learning,” arXiv preprint:1702.08360, 2017.

[33] J. Zhang, L. Tai, J. Boedecker, W. Burgard, and M. Liu, “Neu-
ral SLAM: Learning to Explore with External Memory,” arXiv
preprint:1706.09520, 2017.

[34] G. Avraham, Y. Zuo, T. Dharmasiri, and T. Drummond, “EMPNet:
Neural Localisation and Mapping Using Embedded Memory Points,”
in Proceedings of the International Conference on Computer Vision
(ICCV), 2019.

[35] S. Yi, H. Li, and X. Wang, “Pedestrian Behavior Understanding and
Prediction with Deep Neural Networks,” in ECCV, 2016.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in NeurIPS, 2014.

[37] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neu-
ral Computation, vol. 9, no. 8, 1997.

[38] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger,
“Review and evaluation of commonly-implemented background sub-
traction algorithms,” in ICPR, 2008.

[39] M. Elad, Sparse and redundant representations: from theory to appli-
cations in signal and image processing. Springer Science & Business
Media, 2010.

[40] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never
walk alone: Modeling social behavior for multi-target tracking,” in
Proceedings of the International Conference on Computer Vision
(ICCV), 2009.

[41] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by Example,”
Computer Graphics Forum, 2007.

	I INTRODUCTION
	II RELATED WORK
	III CONTEXT MAP LEARNING FOR PREDICTION
	III-A Predictor Integration
	III-B Map Patch Selection
	III-C Image Explanation
	III-D Semantic Label Reconstruction
	III-E Sparsity
	III-F Training
	III-F.1 Generator Step
	III-F.2 Discriminator Step

	IV EVALUATION
	IV-A Baselines
	IV-A.1 Linear
	IV-A.2 S-GAN-P
	IV-A.3 S-GAN
	IV-A.4 Ours
	IV-A.5 Ours no pooling
	IV-A.6 Ours w.o. labels

	IV-B Datasets
	IV-C Implementation Details
	IV-D Results
	IV-E Qualitative Examples

	V CONCLUCSION
	References

