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Growth morphology and symmetry selection of
interfacial instabilities in anisotropic
environments†

Qing Zhang, a Amin Amooie,b Martin Z. Bazant bc and Irmgard Bischofberger*a

The displacement of a fluid by another less viscous one in a quasi-two dimensional geometry typically

leads to complex fingering patterns. In an isotropic system, dense-branching growth arises, which is

characterized by repeated tip-splitting of evolving fingers. When anisotropy is present in the interfacial

dynamics, the growth morphology changes to dendritic growth characterized by regular structures. We

introduce anisotropy by engraving a six-fold symmetric lattice of channels on a Hele-Shaw cell. We

show that the morphology transition in miscible fluids depends not only on the previously reported

degree of anisotropy set by the lattice topography, but also on the viscosity ratio between the two

fluids, Zin/Zout. Remarkably, Zin/Zout and the degree of anisotropy also govern the global features of the

dendritic patterns, inducing a systematic change from six-fold towards twelve-fold symmetric dendrites.

Varying either control parameter provides a new method to tune the symmetry of complex patterns,

which may also have relevance for analogous phenomena of gradient-driven interfacial dynamics, such

as directional solidification or electrodeposition.

Introduction

Pattern growth is ubiquitous in nature and leads to the forma-
tion of complex structures.1–3 Many interfacial patterns can be
grouped into two ‘essential shapes’ or morphologies: isotropic
dense-branching growth and anisotropic dendritic growth.
Dense-branching growth arises from repeated tip-splitting of
the structures and leads to a ramified pattern with many
branches,4,5 controlled by the gradient-driven transport of
mass, heat or charge to the interface. In contrast, anisotropic
dendritic growth is characterized by protrusions that are stable
towards tip-splitting and leads to more regular patterns with
global symmetries.6–11 Here, we show that dendritic patterns –
with tunable symmetry – can arise when the growth occurs in
anisotropic environments.

The phenomenon of viscous fingering has played an important
role in elucidating the basic principles of these two types of
growth,12–15 as well as methods to control the resulting
patterns.16–27 Viscous fingers result from the Saffman–Taylor
instability, when one fluid is displaced by another less viscous
one in the quasi-two dimensional geometry of a Hele-Shaw
cell.28,29 It has been shown that dendritic growth requires aniso-
tropy in the interfacial dynamics.7,30–32 In its absence, dense
branching is instead the generic mode of growth.13 Anisotropy
fixes the tip of an advancing interface into a stable parabolic shape
that prevents it from splitting7,33–35 and introduces global symme-
tries along preferred growth directions, which are also seen in
discrete models of diffusion-limited aggregation on crystal
lattices.36–38 Experimentally, anisotropy can be introduced either
externally in the growth environment or internally in one of the
fluids. External anisotropy can be imposed by engraving ordered
channels on one of the plates of a Hele-Shaw cell, by using
channels confined with elastic membranes or by placing air
bubbles at the tips of growing fingers.30,33,39–43 Internal anisotropy
can be induced by replacing one of the fluids with a liquid crystal
in the nematic phase.44

Previous studies have considered a particular limit of the
viscous-fingering instability; the limit where the viscosity ratio
between the less-viscous inner fluid and the more-viscous outer
fluid, Zin/Zout, is very low, which is typically the case when air or
water displace a viscous liquid. The patterns are then characterized
by one single growing length scale, the finger length. Under these
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conditions, experiments using a Hele-Shaw cell with engraved
ordered channels have identified the degree of anisotropy, defined
as the ratio between the channel height h and the plate spacing b,
h/b, as a control parameter for the morphology transition from
dense-branching to dendritic growth;30 dendritic structures form
beyond a critical value of h/b. When the two fluids are miscible,
the degree of anisotropy is the only control parameter for the
morphology transition. In the case of two immiscible fluids, the
capillary number sets the critical h/b for the transition.31,45 For
miscible fluids and for immiscible fluids at high capillary
number, the dendrites directly reflect the underlying symmetry
of the lattice; four-fold symmetric dendrites grow in a four-fold
symmetric lattice, six-fold symmetric dendrites grow in a six-fold
symmetric lattice.10 Dendrites grow in the direction of the
channels, which are the regions of largest effective plate spacing
within which the flow velocity is highest.30,31

We here reveal how a previously unexplored control parameter,
the ratio of the viscosities of the inner and the outer fluid, Zin/Zout,
modifies both the morphology transition and, remarkably, the
symmetry of the dendritic structures in miscible fluids in aniso-
tropic environments. Recent studies in isotropic environments
have identified the viscosity ratio as an important control para-
meter that governs not only the onset of the instability,46–50 but
also the global features of the patterns introducing a second length
scale, the radius of a central region of complete outer-fluid
displacement that grows concomitantly with the fingers.49,51–53

This central region becomes increasingly larger, and therefore
the relative length of the fingers increasingly smaller, as the
viscosity ratio between the two fluids increases. Here we show that
a morphology transition from dense-branching to dendritic growth
can occur over a large range of viscosity ratios. We engrave
channels creating a six-fold symmetric lattice on one of the plates

and show that the critical degree of anisotropy, h/b, required for the
transition to dendritic growth depends on the viscosity ratio
between the two liquids. Remarkably, the dendrites can adopt a
rich variety of emergent structures: they exhibit six-fold symmetric
growth far from the morphology boundary and systematically
transition towards twelve-fold symmetric structures as the bound-
ary is approached. Our study reveals novel ways to tune both the
morphology transition and the symmetry of dendritic patterns by
either controlling the viscosity ratio between the two fluids or the
geometric features of the growth environment.

Methods

Our experiments are performed in a radial Hele-Shaw cell
consisting of two 19 mm thick circular glass plates of diameter
280 mm. Six-fold symmetric lattices of diameter 145 mm are
engraved on acrylic plates with a laser cutter (Universal Laser
Systems) and placed on the bottom glass plate of the Hele-Shaw
cell. The width of the lattice channels w and the distance
between the edges of two channels d are fixed to w = 800 mm
and d = 850 mm (Fig. 1a). Four channel depths h of 10 mm,
28 mm, 50 mm, and 250 mm are used. The plate spacing between
the engraved acrylic plate and the top glass plate, b, is main-
tained by six spacers around the perimeter and varies from 125
mm to 1350 mm. The ratio between the height of the channel
and the plate spacing, h/b, defines the degree of anisotropy.

The miscible fluids used in our study are glycerol (PTI
Process Chemicals) and water (VWR). We tune the viscosity of
the inner fluid by mixing glycerol and water in different
proportions and we use pure glycerol as the outer fluid. Details
on the composition of the water–glycerol mixtures and their
viscosities are reported in Table S1 of the ESI.† The fluids are

Fig. 1 (a) Schematic of the modified Hele-Shaw cell. Top image: Top view of the bottom plate of the Hele-Shaw cell with an engraved six-fold
symmetric lattice, with width of the lattice channels w and distance between the edges of two channels d. Bottom image: Side view of the modified Hele-
Shaw cell, denoting the plate spacing b and the channel height h. (b) Examples of dendritic growth (top, for h/b = 0.5, h = 50 mm, b = 100 mm) and dense-
branching growth (bottom, for h/b = 0.04, h = 10 mm, b = 254 mm) at low viscosity ratio Zin/Zout = 0.0013. The scale bar is 1 cm. (c) Morphology diagram
controlled by the viscosity ratio Zin/Zout and the degree of anisotropy h/b. Blue symbols denote dense-branching growth, black symbols denote dendritic
growth. Experiments are performed with engraved plates with different channel heights h and plate spacings b and at different volumetric flow rates q.
(,) h = 10 mm, q = 1 ml min�1; (�) h = 28 mm, q = 1 ml min�1; (&) h = 28 mm, q = 10 ml min�1; (}) h = 50 mm, q = 1 ml min�1; (n) h = 50 mm, q = 10 ml min�1;
(J) h = 250 mm, q = 1 ml min�1; (+) h = 250 mm, q = 10 ml min�1. The value of b for each experiment is listed in Table S2 of the ESI.† The solid line denotes a
fit to (h/b � (h/b)*)/(Zin/Zout) = A (A = 3 and (h/b)* = 0.04 are best-fit parameters).
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injected through a 2 mm diameter hole in the center of one of
the plates at a precise volumetric flow rate set by a syringe
pump (Harvard PHD 2000). We use flow rates of 1 ml min�1

and 10 ml min�1, which allows us to probe an order of
magnitude difference in flow rate while staying in the high
Péclet number regime (Pe = Ub/D12, where U is the fingertip
velocity and D12 is the inter-diffusion coefficient20), here ranging
between 2100–45 240. Within this regime, the inter-diffusion of
the fluids is negligible so that the fluids remain separated by a
well-defined interface.20 The patterns are recorded with either a
Point Grey camera (Grasshopper 3 GS3-U3-91S6M) at frame rates
up to 9 fps or a LUMIX GH5 camera at frame rates up to 60 fps.

We complement the experiments with two-dimensional (2D)
high-resolution numerical simulations using the finite element
software COMSOL Multiphysics (v5.4), which allows us to access
the pressure distribution in the fluids. Our model replicates the
geometry of the Hele-Shaw cell in terms of the cell diameter and the
six-fold symmetric lattice dimensions. The lowest viscosity ratio we
can access in our simulations (Zin/Zout = 0.006) is slightly higher
than that probed in experiments (Zin/Zout = 0.0011), as for very low
Zin/Zout the fingertip velocity becomes too fast compared to the
mean flow velocity, which results in numerically unstable solutions.
This is a known issue for a number of numerical approaches,54 but
one that could be overcome by designing numerical schemes suited
for low viscosity ratios.55 It, however, does not prevent us from
accessing the full range of patterns observed in the experiments.

We employ the finite element method to solve the partial
differential equations. We couple the convection–diffusion
mass-transport equation from the Transport of Diluted Species
Module with the continuity equation for the single-phase,
incompressible flow velocity from the Darcy’s Law Module.
The governing equations are:

@c

@t
þr � ð�Drcþ cuÞ ¼ 0 (1)

u ¼ �k
Z
rp (2)

r�u = 0 (3)

where c is the concentration of the inner fluid and D the
molecular diffusion coefficient. The latter is chosen as D =
10�14 m2 s�1 given the high Péclet numbers of the experiments.
We note that the pattern morphology remains independent of D
for D o 10�8 m2 s�1, confirming that our simulations are in the
high Péclet number regime (see ESI† for further details). r is
the in-plane gradient operator, u is the Darcy velocity set by the
pressure gradient rp, and k and Z are the permeability and
viscosity of the fluids, respectively.

The flow in a Hele-Shaw cell can be approximated as quasi-
2D as the plate spacing, b, is much smaller than the radial
dimension. The gap-averaged velocity of the fluids is then

u ¼ � bi
2

12Z
rp with k = bi

2/12, where bi describes the gap

thickness at any point of the textured surface. The spatial
variability in the plate spacing is incorporated in the numerical

model by defining a binary spatial distribution of permeability
[L2], consisting of a permeability value for the obstacles (assigned
to the triangles forming the lattice cells), denoted as k1, and a
permeability value for the channels (assigned to the background
domain), denoted as k2. The ratio between the two permeabil-
ities, k2/k1, is (1 + h/b)2. We use an exponential mixing rule for the
mixture viscosity Z and Z = Zoute

�Mc, where Zout is the viscosity of
the outer fluid and Zin/Zout = e�M. For miscible fluids, both the
pressure and the normal velocity are continuous at the interface.
We define a small circular inlet region around the cell center
which provides a smooth boundary, to avoid a point-source
injection that could lead to a singularity in the domain. A normal
inflow velocity for flow and a Dirichlet boundary condition (c = 1)
for transport are applied at the perimeter of the circular inlet
region, and atmospheric pressure (open-flow) condition for flow
and an outflow condition (n�Drc = 0) for transport are imposed
on the outer cell boundary. The initial conditions in the entire
domain are c = 0 and p = 0. The absolute values of the injection
velocity and the permeability within the computational domain
differ from those in experiments. This does not affect the resulting
patterns, as only the ratio of the permeabilities governs the pattern
morphology.

We solve for pressure and concentration fields in a fully coupled
approach using the Parallel Direct Sparse Solver Interface (PARDISO)
and Newton’s method with dynamic damping for highly nonlinear
systems. The implicit Generalized-a Method is used for the time
stepping scheme.56,57 We use the default discretization settings that
govern the order of discretization in the shape functions for the
dependent variables of each module: first-order discretization for the
convection–diffusion equation and second-order discretization for
Darcy’s law, as these settings work efficiently and robustly. The
optimal mesh resolution is found with these discretization
orders. The annular mesh area used is 0.00606 m2 discretized
by 222 162 triangular elements. We have confirmed the numerical
validity and convergence of our simulations (see ESI†). The
discretization by a triangular mesh provides a source of
perturbation sufficient for the instability to occur; the apparent
slight asymmetry of the computed patterns is mesh driven due
to the spatial non-uniformity of the perturbation and the
triangularization of the domain.

Results
Morphology transitions of miscible viscous fingering in an
anisotropic Hele-Shaw cell

We investigate the growth of patterns in anisotropic environ-
ments by engraving channels creating a six-fold symmetric
lattice on one of the Hele-Shaw plates, as shown in Fig. 1a.
We use pairs of miscible fluids with different ratios of viscosities
between the less-viscous inner fluid and the more-viscous outer
fluid, Zin/Zout. The use of miscible fluids allows us to investigate
the role of viscosity ratio without concurrently varying the
capillary number.

In agreement with previous studies at very low viscosity
ratios and high capillary numbers, we find that the morphology
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transition from dense-branching growth to dendritic growth
occurs above a value of h/b E 0.0530,45 for our lowest Zin/Zout.
Below this value, fingers grow by repeated tip-splitting which
results in dense-branching growth, above this value, the
fingertip is stabilized which results in dendritic growth, as
shown in Fig. 1b. Remarkably though, this critical h/b depends
strongly on the viscosity ratio: as Zin/Zout increases, a larger h/b
is needed to transition from dense-branching growth to dendritic
growth, as shown in Fig. 1c. We find that neither the absolute
values of the channel height h and the plate spacing b, nor the
volumetric flow rate are control parameters for the morphology
transition, as shown by the different symbols in Fig. 1c, which
denote experiments performed with plates of various channel
heights h ranging from 10 mm to 250 mm, various plate spacings
b ranging from 125 mm to 1350 mm, and at two volumetric flow
rates of 1 ml min�1 and 10 ml min�1. For a given viscosity ratio,
any combination of h and b yielding a certain value of h/b leads to
the same growth morphology.

Dendritic growth adopts different symmetries

The viscosity ratio Zin/Zout and the degree of anisotropy h/b not
only determine the morphology boundary, but have a more
dramatic effect on the pattern growth in the dendritic regime.
For a fixed h/b, an increase in the viscosity ratio Zin/Zout leads to
a systematic change in the pattern symmetry. Remarkably, the
imposed six-fold symmetry of the engraved plate leads to six-
fold symmetric growth only at the lowest viscosity ratio.
At higher viscosity ratios, the pattern instead transitions
towards a twelve-fold symmetry; in addition to the six main
dendrites evolving along the straight channels, additional six
sub dendrites emerge at a 301 angle to the preferred growth
direction, as shown in Fig. 2a. The length of the sub dendrites
becomes larger with increasing viscosity ratio and eventually
comparable to that of the main dendrites. A similar trend is

recovered in the simulations, as shown in Fig. 2b. A transition
from six- towards twelve-fold symmetry also occurs for a fixed
Zin/Zout with decreasing h/b (see Fig. S3 of the ESI†). Previous
studies in the limit of low viscosity ratios have seen hints
towards the onset of these additional sub dendrites.58–60 Here
we show their systematic growth and that they can become
comparable in size to the main dendrites within a certain range
of viscosity ratio and h/b.

To quantify the change from six- towards twelve-fold symmetry,
we define the length of the main dendrites, Rm, corresponding to
the structures growing in the direction of the six straight channels,
and the length of the sub dendrites, Rs, corresponding to the
structures growing at an angle of 301 with respect to the six
straight channels, as shown in the inset of Fig. 3b. The ratio Rs/Rm

exhibits a transient regime at early times and then remains almost
constant in time for fully developed patterns. Moreover, Rs/Rm is
independent of the interfacial velocity for the range of flow rates
investigated, as shown in Fig. 3a, where we normalize the time by
t40 mm denoting the time when Rm = 40 mm. To compare the
patterns formed at different viscosity ratios, we measure Rs/Rm

when Rm = 40 mm, which is well within the fully developed
regime. For a fixed h/b, the ratio Rs/Rm monotonically increases
with viscosity ratio. In addition, a decrease in h/b leads to an
increase in Rs/Rm, as shown in Fig. 3b. We can rescale all data by
normalizing the viscosity ratio with (h/b � (h/b)*), as shown in
Fig. 3c. The factor (h/b)* will become evident in the discussion of
the morphology boundary. The numerical results are in good
qualitative agreement with the experiments and exhibit the same
scaling with h/b, but yield slightly lower values of Rs/Rm compared
to the experimental results. This is likely due to the 2D nature of
the simulations (where we average the flow in the third dimension
across the gap and assume a parabolic velocity profile in the gap
direction61–63), which do not capture effects related to the partial
displacement of the outer fluid or to the three-dimensional
tongue-like structures that form between miscible fluids in a
Hele-Shaw cell.49,64,65 Exploring further improvements to the
model, e.g., solving Stokes flow in the full 3D domain, and a
deeper investigation into quantitative comparisons with experi-
ments are interesting topics for future work.

Discussion

The observation that both Zin/Zout and h/b allow one to system-
atically tune the symmetry of the patterns reveals a novel aspect
of dendritic growth. Remarkably, the change in symmetry is
also directly linked to the morphology transition to dense-
branching growth: When Rs/Rm reaches B0.85, corresponding
to patterns with twelve dendrites of almost equal size, a further
decrease in h/b or a further increase in Zin/Zout induces the
transition to dense-branching growth. The morphology transi-
tion can therefore be described by the same functional form
used to normalize the data in Fig. 3c; the morphology boundary
denoted by a solid line in Fig. 1c corresponds to

h

b
¼ A

Zin
Zout
þ h

b

� ��
(4)

Fig. 2 Systematic change from six- towards twelve-fold symmetric den-
drites. (a) Dendritic patterns for different viscosity ratios obtained at h/b =
0.49. As Zin/Zout increases, the additional generation of sub dendrites
grows progressively larger. The scale bar is 1 cm. (b) Snapshots of the
simulations at h/b = 0.49.
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where A = 3 and (h/b)* = 0.04 are best-fit parameters determined
by logistic regression. (h/b)* denotes the critical h/b for the
morphology transition in the limit of low viscosity ratio.

Why do six-fold dendritic patterns only form far from the
morphology boundary, and what leads to the growth of an
additional generation of dendrites as we approach the boundary?
The importance of the viscosity ratio and the degree of anisotropy
for determining Rs/Rm can be seen in a simplified analysis taking
into account the effective permeability at different locations
corresponding to the growth of sub dendrites or main dendrites,
as detailed in the ESI.† Note that the effective permeability in our
system is isotropic and lacks a macroscopic preferred direction for
single-phase flow. In general, the permeability tensor must be
symmetric (by Onsager reciprocity for Stokes flow) and positive
definite (by the Second Law of Thermodynamics) and thus
represented by an orthogonal matrix,66 so its eigenvectors, corres-
ponding to the fastest and slowest directions, must be mutually
perpendicular.67 This orthogonality is incompatible with triangular
symmetry, thus the permeability eigenvalues in our textured Hele-
Shaw cell must be degenerate, implying isotropic single-phase flow.

For two-phase flow, however, the gradient of viscosity at the
interface between the two fluids can locally break the symmetry and
induce an anisotropic effective permeability near the interface. Using
concepts derived for the hydrodynamics of slippage on textured
surfaces for two-phase flows over hydrophobic surfaces,68,69 we
consider that the more-viscous outer fluid is partially trapped in
the texture as the tip of the less-viscous fluid passes over the texture
in the middle of the channel along the ‘‘path of least resistance’’. For
small textures, the trapped fluid leads to a local effective slip length
tensor,70,71 bslip, which causes the effective permeability tensor to
become anisotropic and orthogonal in the vicinity of the interface,67

leading to the appearance of sub dendrites that impart this square
symmetry to the pattern. In the limit of ‘‘weak anisotropy’’ in the slip
tensor, Tr(bslip) { b, as is the case for our experiments, we find that
the interface velocities of the sub dendrites and the main dendrites,
and therefore Rs/Rm, are indeed governed by Zin/Zout and h/b.

To get further insight into the growth of the dendrites, we
consider their macroscopic path selection. The main dendrites

Rm grow along the six straight channels. The sub dendrites Rs

select a path at a 301 angle from these straight channels. At
early stage, two fingers form between each pair of neighboring
main dendrites on each side of the 301 direction, due to the
anisotropy of the lattice. This is observed at any viscosity ratio,
as shown in Fig. 4a. Whether these fingers will merge towards
each other and grow into a sub dendrite or merge with the main
dendrites resulting in a six-fold symmetric pattern depends on
the pressure distribution imposed both globally by the main
dendrites and locally at the tip of the sub dendrites. At low
Zin/Zout and high h/b, the rapid growth of the main dendrites sets
up a large pressure gradient at their tip which in turn induces a
small pressure gradient in the 301 direction, as shown in Fig. 4a,
which prevents the sub dendrites from growing. With increasing
Zin/Zout and decreasing h/b, however, the sub dendrites them-
selves build locally a high pressure gradient at their tips which
amplifies their growth. We provide further details on the growth
of the sub dendrites in Fig. S5 and S6 of the ESI.†

Once the sub dendrites have emerged, they continue to grow
along the 301 direction following a zig-zag path, as illustrated in
Fig. 4b. As the tip of the sub dendrite reaches a lattice junction,
indicated by a red dot, the path towards the 301 direction (red
arrow) is selected, rather than the straight path (blue arrow).
This selection results from the pressure profile induced in the
outer fluid by the main dendrites, which effectively shields the
sub dendrites from growing towards the main dendrites and
pushes them towards the 301 direction. Indeed, when the tip of
a sub dendrite reaches the entrance of a lattice junction, as
schematically shown in the zoomed-in region in Fig. 4c, it does
not grow straight towards channel 2, but is deviated towards
the 301 direction as a result of the global pressure distribution
built up by the neighboring main dendrites. The local pressure
distribution at the tip of the sub dendrite then induces a
maximum pressure gradient towards channel 1, and most of
the flow goes into channel 1. It is this combination of the global
pressure distribution from the main dendrites and the local
pressure distribution from the tip of the sub dendrites that
leads to the rich pattern selection in dendritic growth.

Fig. 3 (a) Temporal evolution of Rs/Rm for Zin/Zout = 0.0013, h/b = 0.49 and q = 1 ml min�1 (n), Zin/Zout = 0.0125, h/b = 0.49 and q = 1 ml min�1 (J),
Zin/Zout = 0.0125, h/b = 0.49 and q = 10 ml min�1 (K), Zin/Zout = 0.05, h/b = 0.49 and q = 1 ml min�1 (&) in experiments, and for Zin/Zout = 0.05, h/b = 0.49
( ) in simulations. t40 mm is the time when Rm = 40 mm. (b) Rs/Rm versus Zin/Zout for different h/b and q. Rs/Rm is measured when Rm = 40 mm. The
symbols are defined in the table. Open symbols denote q = 1 ml min�1, closed symbols denote q = 10 ml min�1. (c) Scaled master curve of Rs/Rm versus
(Zin/Zout)/(h/b � (h/b)*). The monotonic increase in Rs/Rm denotes the change from six-fold towards twelve-fold symmetric dendritic patterns. The
symbols are the same as in (b).
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These different paths selected by the main dendrites and sub
dendrites also reveal the origin of the maximum value of Rs/Rm E
0.85. It reflects the condition where the velocity of the main and
sub dendrites becomes approximately equal. As the path selected
by the sub dendrites deviates from the radial direction at each

junction, the total path is 2=
ffiffiffi
3
p

times longer than that of the main
dendrites in the straight radial channels. The length of the main

dendrite, Rm, is therefore ð2=
ffiffiffi
3
p
ÞRs, i.e., Rs=Rm �

ffiffiffi
3
p

=2 ¼ 0:866.
Interestingly, our experiments show that once this condition is
reached, a further increase in Zin/Zout or decrease in h/b induces
the morphology transition to dense-branching growth. This sug-
gests that the morphology transition occurs when the difference
between the pressure gradient in the straight channels and the 301
direction becomes negligible, and therefore the role of anisotropy
becomes negligible, such that the parabolic tips can no longer be
stabilized allowing for tip-splitting to occur. Reaching a full
understanding of this morphology transition can be topic of
further research.

Conclusions

Our results reveal a rich morphology of patterns created by pairs
of miscible fluids in anisotropic systems. They demonstrate the
important role of the viscosity ratio between the two fluids,
which, together with the degree of anisotropy, governs both
the morphology transition from dense-branching to dendritic
growth and the selected symmetry of the dendrites. Upon
approaching the morphology boundary, the dendritic patterns
systematically transition from six-fold towards twelve-fold symmetry
in the parameter regime where interfacial flow is governed by an

effective slip tensor, whose orthogonality imparts square symmetry
to the original pattern.

This diversity of different dendritic patterns provides novel
opportunities for tuning the growth of complex structures, not
only in viscous fingering, but perhaps also in other cases of
interfacial motion limited by gradient-driven transport pro-
cesses, which lie in the same universality class.72 In general,
we expect that dendritic growth following the preferred direc-
tions of an anisotropic environment will tend to acquire
orthogonal symmetry for ‘‘weak anisotropy’’, whenever trans-
port near the interface is governed by a local effective conduc-
tance tensor, which must be orthogonal like the effective slip
tensor in a weakly textured Hele-Shaw cell.67 For example,
in template-assisted directional solidification,73,74 a similar
morphological transition may arise, controlled by the ratio
of thermal diffusivities (analogous to the ratio of inverse
viscosities here), whenever the pattern is controlled by the
conduction of latent heat away from the interface in the liquid
phase. Similarly, in template-assisted electrodeposition,75–78 it
may be possible to tune the symmetry of dendritic patterns by
varying the strength of diffusion anisotropy in the electrolyte
domain. Active control of anisotropic dendritic growth may also
be achieved, for example, by applying electric fields to control
viscous fingering18,19 over patterned, charged surfaces79 having
anisotropic electro-osmotic slip tensors.80
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Fig. 4 Formation and growth of sub dendrites. (a) Pressure field for patterns with Zin/Zout = 0.006 (top) and Zin/Zout = 0.05 (bottom) at two different
times. The lines indicate pressure contours. The pressure field ranges from atmospheric pressure (denoted by red contours) to a maximum pressure
around the inlet (denoted by blue contours), which is different for each panel as it varies with time and viscosity ratio; the colors are guides to the eye.
(b) Schematic representation of the path followed by the main dendrites Rm and the sub dendrites Rs. At a lattice junction (indicated by the red dot in the
dotted circle), the flow predominantly selects the direction along the red arrow, which leads to the growth of the sub dendrites along the 301 direction, as
observed in both experiment (top image) and simulation (bottom image). (c) Zoomed schematics of the lattice junction. The combination of the global
pressure distribution from the main dendrites and the local pressure distribution from the tip of the sub dendrites leads to flow into channel 1 along the
direction of the red arrow.
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