
MIT Open Access Articles

Machine Learning Enabled Computational Screening 
of Inorganic Solid Electrolytes for Suppression 
of Dendrite Formation in Lithium Metal Anodes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1021/ACSCENTSCI.8B00229

Publisher: American Chemical Society (ACS)

Persistent URL: https://hdl.handle.net/1721.1/136042

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/136042


Machine Learning Enabled Computational Screening of Inorganic
Solid Electrolytes for Suppression of Dendrite Formation in Lithium
Metal Anodes
Zeeshan Ahmad,† Tian Xie,‡ Chinmay Maheshwari,† Jeffrey C. Grossman,‡

and Venkatasubramanian Viswanathan*,‡,§

†Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
‡Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
§Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States

*S Supporting Information

ABSTRACT: Next generation batteries based on lithium
(Li) metal anodes have been plagued by the dendritic
electrodeposition of Li metal on the anode during cycling,
resulting in short circuit and capacity loss. Suppression of
dendritic growth through the use of solid electrolytes has
emerged as one of the most promising strategies for enabling
the use of Li metal anodes. We perform a computational
screening of over 12 000 inorganic solids based on their ability
to suppress dendrite initiation in contact with Li metal anode.
Properties for mechanically isotropic and anisotropic inter-
faces that can be used in stability criteria for determining the
propensity of dendrite initiation are usually obtained from computationally expensive first-principles methods. In order to
obtain a large data set for screening, we use machine-learning models to predict the mechanical properties of several new solid
electrolytes. The machine-learning models are trained on purely structural features of the material, which do not require any
first-principles calculations. We train a graph convolutional neural network on the shear and bulk moduli because of the
availability of a large training data set with low noise due to low uncertainty in their first-principles-calculated values. We use
gradient boosting regressor and kernel ridge regression to train the elastic constants, where the choice of the model depends on
the size of the training data and the noise that it can handle. The material stiffness is found to increase with an increase in mass
density and ratio of Li and sublattice bond ionicity, and decrease with increase in volume per atom and sublattice
electronegativity. Cross-validation/test performance suggests our models generalize well. We predict over 20 mechanically
anisotropic interfaces between Li metal and four solid electrolytes which can be used to suppress dendrite growth. Our screened
candidates are generally soft and highly anisotropic, and present opportunities for simultaneously obtaining dendrite
suppression and high ionic conductivity in solid electrolytes.

■ INTRODUCTION

Increased energy densities of Li-ion batteries are crucial for
progress toward complete electrification of transportation.1−3

Among the many possible routes, Li metal anodes have
emerged as one of the most likely near-term commercialization
options.4 Coupled with a conventional intercalation cathode,
batteries utilizing Li metal anodes could achieve specific energy
of >400 W h/kg, much higher than the current state of the art
∼250 W h/kg.5,6 Unstable and dendritic electrodeposition on
Li metal anode coupled with capacity fade due to consumption
of electrolyte has been one of the major hurdles in its
commercialization.5,7−12 For large-scale adoption, a stable,
smooth and dendrite-free electrodeposition on Li metal is
crucial.
Numerous approaches are being actively pursued for

suppressing dendrite growth through the design of novel

additives in liquid electrolytes,13−19 surface nanostructur-
ing,20,21 modified charging protocols,22,23 artificial solid
electrolyte interphase or protective coatings,24−26 poly-
mers,27−29 or inorganic solid electrolytes.30−33 Among these,
dramatic improvements in the ionic conductivity of solid
electrolytes34,35 have made them extremely attractive candi-
dates for enabling Li metal anodes.
A comprehensive and precise criterion for dendrite

suppression is still elusive. Interfacial effects36,37 and spatial
inhomogeneities within the solid electrolyte like voids, grain
boundaries, and impurities38 make the problem challenging.
Monroe and Newman performed a dendrite initiation analysis
and showed that solid polymer electrolytes with shear modulus
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roughly twice that of Li could achieve stable electro-
deposition.39 In an earlier work, we extended this idea and
showed that the criteria for the suppression of dendrite growth
gets reversed for inorganic crystalline materials due to the
difference in molar volume of Li+. A softer solid electrolyte is
required for stability in this case.40 It is worth highlighting that
this requirement applies only for dendrite initiation regime,
and other suppression approaches may be possible for the
propagation regime. However, once initiated, dendrite growth
is extremely hard to mitigate as pointed out by several
studies.41−43 Therefore, it is best to prevent dendrites from
initiating to ensure smooth electrodeposition throughout
cycling of the battery.
In recent years, high-throughput computational materials

design has emerged as a major driver of discovery of novel
materials for various applications.44,45 It typically involves a
combination of first-principles quantum-mechanical ap-
proaches and database construction and mining techniques.
Combined with machine-learning methods that bypass the use
of expensive quantum-mechanical calculations through the use
of structural descriptors,46−50 one can accelerate the high-
throughput screening by several orders of magnitude.51−53

Previous high-throughput screening studies of solid electro-
lytes have used ionic conductivity, stability, and electronic
conductivity as screening criteria.51,52 However, dendrite
suppression capability of solid electrolytes is an additional
requirement that needs to be assessed.
Here, we carry out a large-scale data-driven search for solid

electrolytes that might be promising candidates for suppressing
dendrite growth during the initiation phase with a Li metal
anode. We use machine-learning techniques to train and
predict the mechanical properties of inorganic solids which
play a major role in stabilizing the interface. These properties
are fed into the theoretical framework which uses the stability
parameter40,54 to quantify the dendrite initiation with Li metal
anode. At a mechanically isotropic interface, the screening
results predict the crucial role of surface tension in stabilizing
the interface since most solid electrolytes are not intrinsically
stabilized by the stresses generated at the interface. Hence,
surface nanostructuring may be essential to prevent initiation
of dendrites for isotropic interfaces. We rank the materials
based on the amount of nanostructuring (surface roughness
wavenumber) required for achieving a stable electrodeposition.
We then performed a stability analysis of over 15 000
anisotropic interfaces between the Li metal and solid
electrolyte using the Stroh formalism. This is essential to
account for the highly anisotropic mechanical properties of
Li55 and texturing of electrodeposited Li at the interface.56 A
full anisotropic treatment of the interface reveals over 20
candidate interfaces that are predicted to suppress dendrite
initiation. The materials obtained through screening are
generally soft and with highly anisotropic mechanical proper-
ties. Since softer materials are generally faster ion conductors
than stiffer materials due to availability of more volume per
atom,57 the screened candidates present an opportunity to
obtain both desirable mechanical properties and fast ion
conduction.

■ RESULTS AND DISCUSSION
We describe the procedure for screening solid electrolytes and
discuss the material candidates obtained based on isotropic
and anisotropic criteria separately. First, we briefly review the
criteria for dendrite suppression at a metal−solid electrolyte

interface to determine the desirable properties of solid
electrolytes. We then discuss our machine-learning models
used for predicting these properties. Finally, we perform
material screening based on these properties and discuss the
implications.

Isotropic Material Screening. In solid electrolytes, the
mechanical properties at the interface provide an additional
degree of freedom for tuning the stability of electrodeposition.
Previously, we developed a generalized stability diagram for
assessing the stability of electrodeposition at a metal−solid
electrolyte interface for isotropic mechanical response.40 In
these studies, we used the stability parameter first proposed by
Monroe and Newman43 to characterize the growth/decay of
dendrites with time. The sign of the stability parameter,
denoted hereafter as χ, determines whether the electro-
deposition is stable or unstable. A positive χ implies higher
current density at the peaks and lower current density at the
valley leading to growth of dendrites while a negative χ leads to
stabilization or suppression of dendrites. The stability
parameter is related to the change in the electrochemical
potential of the electron Δμe− at a deformed interface z = f(x)
between the metal anode and the electrolyte (Figure S1). It is
convenient to compute properties of the interface in Fourier
space with f(x) = ∫ dk[f1(k) cos(kx) + f 2(k) sin(kx)] and then
integrate over the surface roughness wavenumber k to obtain
the overall behavior. The stability parameter can be calculated
in a closed form at a given k. The change in the
electrochemical potential at a given k is given by Δμe−(k) =
χ(k)[f1(k) cos(kx) + f 2(k) sin(kx)].

54 This serves to define the
stability parameter χ(k) as
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Δμe− can be obtained by including the effect of mechanical
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From eq 2, Δμe− depends on k through the surface tension γ,
curvature κ, the hydrostatic stress Δp, and deviatoric stress τ
generated at the interface. e and s in the subscripts refer to the
metal electrode (anode) and solid electrolyte, respectively; VM
is the molar volume of the metal atom in the anode, v the ratio
of molar volume of the metal ion in electrolyte VM

z+ to the
metal atom in the anode VM, z the valence of the metal, and en
the normal to the interface pointing toward the electrolyte.
The stability parameter consists of contributions from the
surface tension and the stresses developed at the metal−
electrolyte interface. For an isotropic metal anode with shear
modulus Ge and Poisson’s ratio νe in contact with an isotropic
electrolyte with shear modulus Gs and Poisson’s ratio νs, the
stability parameter χ(k) can be computed exactly as40
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Using the shear modulus, Poisson’s ratio, and molar volume
ratio of a solid electrolyte, it is possible to calculate the stability
parameter for its interface with Li metal anode and determine
stability of electrodeposition. For a complete understanding of
the interface growth and stability, it is necessary to determine
the sign of stability parameter at all the Fourier components k.
Fortunately, as we will see later, a negative stability parameter
at a given k guarantees stability at all higher values.
The molar volume ratio v = VM

z+/VM influences the range of
shear moduli over which the electrodeposition is stable. VM

z+

was calculated using the coordination number of Li in the
crystal structure and mapping them to ionic radius using the
values tabulated by Shannon.58 The coordination number was
calculated by generating polyhedra around a species through
Voronoi analysis59,60 as implemented in pymatgen.61 A
linear interpolation was used for computing ionic radius
corresponding to coordination numbers not in the Shannon’s
tabulated values. Predictions with VM

z+ > VM (true for just one
candidate in the screening) were ignored since those
correspond to very high Li coordination number where
Shannon’s tabulated values cannot be used. The partial
molar volume of the metal in the electrolyte VM

z+ can be
measured directly in an experiment on the difference of
potentials between a stressed and unstressed electrolyte as

done by Pannikkat and Raj62 and then using the relationship
VM

z+ = ∂μMz+/∂p where μMz+ is the electrochemical potential of
the metal ion.
Since bulk and shear moduli are related to second

derivatives of energy with respect to lattice constants at
equilibrium, their calculation by first-principles requires fitting
of the energy−strain relationship or the stress−strain relation-
ship. Calculations on several deformed structures are required
in order to get an accurate estimate of the fitting parameters.
At each deformed state of the structure, the internal
coordinates need to be relaxed to calculate the energy or the
stress. The materials project database employed 24
relax calculations for a single material to compute the moduli.
To perform a large-scale screening over all Li-containing
compounds (over 12 000) for use as solid electrolytes, it is
necessary to choose a technique that can predict the properties
reasonably accurately and without the high computational cost
of multiple first-principles simulations. Hence, we used the
crystal graph convolutional neural network (CGCNN) frame-
work63 to predict the shear and bulk moduli of the crystalline
solid electrolyte materials. At the core of the CGCNN is the
multigraph representation of the crystal structure which
encodes the atomic information and bonding interactions
between atoms. The CGCNN builds a graph convolutional

Figure 1. Parity plots comparing the elastic properties: (a) shear modulus G, and elastic constants (b) C11, (c) C12, and (d) C44 predicted by the
machine-learning models to the DFT-calculated values. The shear modulus is predicted using CGCNN, and the elastic constants C11 and C44 are
predicted using gradient boosting regression while C12 is predicted using kernel ridge regression. The parity plot for shear modulus is on 680 test
data points while that for the elastic constants contains all available data (170 points) where each prediction is a cross-validated value.
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neural network directly on top of a multigraph that represents
the crystal structure of the electrolytes, and predicts the elastic
properties by extracting local structural features from the
multigraph representation. Note that this method does not
depend on any handcrafted geometric or topological features,
and all the features are learned by the neural network
automatically. This results in a model that is more general
than the usual models relying on descriptors but also requires
more data to train.
The training data for the mechanical properties required to

compute χ through eq 3 was obtained from the materials
project database.64,65 The calculated values in the database
are typically within 15% of the experimental values which is
sometimes the uncertainty in experimental data.65 The moduli
have been calculated using density functional theory (DFT)
with the Perdew, Burke, and Ernzerhof (PBE) generalized
gradient approximation (GGA) for the exchange-correlation
functional.66 GGA-level predictions for 104 systems were
within 15% of the experimental value for all but 16 systems for
the bulk modulus and 15 systems for the shear modulus.65 Out
of the outliers, many had a discrepancy of less than 10 GPa.
Experimentally, the shear and bulk moduli can be calculated
using the elastic tensor obtained through inelastic neutron
scattering or pulse−echo measurements. The experimental
measurements typically have a high degree of variability
depending on the experimental technique and conditions. We
used 2041 crystal structures with shear and bulk moduli, 60%
of the entire data set with elastic properties, to train our
CGCNN model. We choose to minimize the mean squared
errors between the log values of predicted and calculated
elastic properties since we aim to minimize the relative
prediction errors instead of absolute errors and avoid
overweighing stiffer materials. This also enabled us to always
obtain positive values of the shear and bulk moduli. We then
performed a hyperparameter optimization on 20% validation
data via grid search to select the optimum learning rate, weight
decay, and number of convolution layers. The best performing
hyperparameters are selected, and the resulting model is
evaluated on the rest 20% test data. The CGCNN was
implemented in PyTorch,67 and the details of the
architecture and optimized hyperparameters can be found in
the Supporting Information and ref 63.
Considering the presence of uncertainty in training data set,

we developed a framework for obtaining uncertainty estimates
on the results. The uncertainty in the model predictions was
obtained by generating an ensemble of 100 CGCNNs using a
random 60% of the training data for each model. Using each
model, we obtained predictions of the shear and bulk modulus.
The ensemble of moduli was then used together with eq 3 to
obtain an ensemble of stability parameters for each material.
The spread in the distribution of the stability parameter was
used to quantify the uncertainty. Figures S4 and S5 show the
distribution of the shear modulus and stability parameter for
the material Li5Sn2 as an example. Using the ensemble of
stability parameters, we calculated the probability of stability Ps
as the ratio of number of models that predict a negative
stability parameter to the total number of models:

P
N
1

1 0
i

N

is
1

∑ χ= { < }
= (4)

Here, N is the total number of models (100 in our
calculations), and the indicator function 1{X} is equal to 1 if
the condition X is true and 0 if it is false.
The performance of the CGCNN model was evaluated on

680 test data points. In Figure 1a, we show the comparison
between the shear modulus predicted by our model and the
DFT-calculated value obtained from the materials
project database, and in Table 1, we show the root mean

squared error (RMSE) for the shear and bulk moduli predicted
by our model. The RMSE obtained using our model is
comparable to previous work by de Jong et al.49 However, it is
worth noting that we evaluated our model on test data while de
Jong et al. evaluated on the entire data set, indicating that our
model does not overfit and has better generalization capability.
The shear modulus, Poisson’s ratio, and molar volume ratio

v = VM
z+/VM are the parameters determining the stability of

electrodeposition at an interface where both materials are
isotropic through eq 3. The role of surface tension in
stabilizing electrodeposition is well established.20,43,68 Since
the contribution of the surface tension to the stability
parameter increases as k2 while that of stress increases linearly
with k, the surface tension starts dominating the stability
parameter as k is increased. This is elucidated in Figure 2

through the contributions of the different terms to the total
stability parameter for a material with G = 3.4 GPa and v = 0.1.
The red line shows the fraction of contribution of surface
tension to the overall stability parameter. All interfaces become
stabilized as the value of k is increased beyond the critical
surface roughness wavenumber. This motivates a distinction
between two types of solid electrolytesones that are

Table 1. Comparison of RMSE in log(GPa) for Shear and
Bulk Moduli

method log(G) RMSE log(K) RMSE

this work 0.1268 0.1013
de Jong et al.49 0.1378 0.0750

Figure 2. Contribution of hydrostatic stress, deviatoric stress, and
surface tension to the stability parameter as a function of surface
roughness wavenumber. The surface tension term starts dominating at
high k and ultimately stabilizes the interface after k = kcrit. The
contributions are plotted for a material with shear modulus ratio G/
GLi = 1 and Poisson’s ratio ν = 0.33 which is not stable (χ > 0) at k =
108 m−1. The red line shows the fraction of surface tension
contribution to the stability parameter obtained by dividing the
absolute value of its contribution by the sum of absolute values of all
components.
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stabilized by the stress term alone and those that are stabilized
by the surface tension beyond the critical value of k. For
materials that are stabilized by stresses, the stability parameter
remains negative for all values of surface roughness, and
therefore, stability is guaranteed. However, for materials that
have an overall destabilizing contribution due to stresses
(hydrostatic + deviatoric), the stability parameter changes sign
at an intermediate value of k since χ → −∞ as k → ∞. For
such materials, the electrodeposition becomes stable at the
critical surface wavenumber kcrit = 2π /λcrit (Figure 2). If the
surface roughness wavenumber so obtained is possible to
achieve by nanostructuring the interface,20 the electro-
deposition might be stabilized.
We calculated the stability parameter for 12 950 Li-

containing compounds out of which the properties of ∼3400
were in training data, and those of the remaining were
predicted using CGCNN. In Figure S3, we visualized the latent
space representations of randomly selected 500 training and
500 predicted crystals in a two-dimensional plot using t-
distributed stochastic neighbor embedding (t-SNE) algorithm.
It is clear that training crystals cover the search space of
predicted crystals, indicating the reliability of the prediction.
The lower part of Figure S3 includes compounds that do not
contain Li atoms, which helps improve the prediction even
though they are not directly representative of the search space.
The ensemble averaged stability parameter χ and the critical
surface roughness λcrit for all materials are shown as a
histogram in Figure 3. We found that none of the materials
have a probability of stability over 5% at surface roughness
wavenumber k = 108 m−1.39 The absence of any materials that
can suppress dendrites without assistance from surface tension
becomes clear from the isotropic stability diagram shown in
Figure 4. All materials have G/GLi ratio higher than the critical
value required to stabilize electrodeposition.40 The highest
number of materials are found in the region where G/GLi ∼ 15
and v ∼ 0.1. The critical wavelength of surface roughening was
used as the criteria for screening materials since a higher
surface roughness is easier to achieve by nanostructuring.
The candidate materials with highest critical wavelength of

roughening λcrit are shown in Table 2 along with their stability
parameter at different surface roughness wavenumbers and the
corresponding probability of stability. While performing
screening, we removed all materials which are electronically
conducting, i.e., those which have a zero band gap according to
the materials project database. However, we retained

materials which were thermodynamically metastable (with
energy above hull less than 0.1 eV) since many such solid
electrolytes like Li10GeP2S12

34 and Li7P3S11
69 have been

successfully synthesized. We find several candidate electrolytes
with probability of stability Ps over 5% at surface roughness
wavelength of 1 nm. It is worth noting that our screening
identifies sulfide-, borohydride-, and iodide-based solid
electrolytes, classes to which many of the current solid
electrolytes belong. The uncertainty in stability parameter is
much higher at high surface roughness wavenumber.

Anisotropic Material Screening. The isotropic assump-
tion provides a good starting point for determining the stability
of electrodeposition in terms of the mechanical and chemical
properties of the solid electrolyte. However, this assumption
does not take into account the huge anisotropy of Li metal
resulting in an anisotropy index of 8.52.55 This may also arise
when the surface of the solids in contact are single crystalline
or dominated by a particular crystallographic orientation as has
been seen for Li metal.56 Therefore, a full anisotropic
treatment of the mechanics taking into account the elastic
tensor and orientation of Li metal at the interface is essential.
Previously, we also observed a large variation in the stability
parameter, with the [010] orientation of Li and solid
electrolyte at the interface being the most compliant.54 Here,

Figure 3. Results of isotropic screening for 12 950 Li-containing compounds. Distribution of ensemble averaged (a) stability parameter for
isotropic Li−solid electrolyte interfaces at k = 108 m−1 and (b) critical wavelength of surface roughness required for stability. None of the materials
in the database can be stabilized without the aid of surface tension. The required critical surface roughness wavenumber depends on the
contribution of the stress term in the stability parameter.

Figure 4. Isotropic stability diagram showing the position of all solid
electrolytes involved in the screening. GLi is the shear modulus of Li =
3.4 GPa. The critical G/GLi line separating the stable and unstable
regions depends weakly on the Poisson’s ratio, so the lines
corresponding to νs = 0.33 and 0.5 are good indicators for assessment
of stability. The darker regions indicate more number of materials in
the region.
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we analyze the stability of electrodeposition at an anisotropic
interface involving crystalline solid electrolyte in contact with
crystalline Li metal.
For this analysis, we calculate the stability parameter using

the full elastic tensor of the electrode and the electrolyte. A
knowledge of surface orientations at the interface is necessary
to determine the elastic tensor. Specifically, we considered ⟨1 0
0⟩, ⟨1 1 0⟩, ⟨1 1 1⟩, and ⟨2 1 1⟩ crystallographic directions of
Li normal to the interface, in contact with seven low-index
facets of the solid electrolyte for the screening procedure. The
last three crystallographic directions have been observed
through cryo-electron microscopy as the dominant directions
for Li dendrite growth in carbonate-based electrolytes.70

Additionally, X-ray diffraction pole figure analysis has revealed
that Li gets electrodeposited along certain preferential
crystallographic orientations.56 The crystallographic orienta-
tion provides one more parameter for tuning the mechanical
properties at the interface. In an earlier work, we used the
Stroh formalism71,72 to calculate the stresses and deformations
at the interface which were used to obtain the stability
parameter χ.54

We developed a model different from CGCNN for
predicting the full elastic tensor of each material since the
size of training data is much smaller for the full elastic tensor.
Considering the success of atomistic descriptors such as Li
neighborhood, anionic framework,57 bond ionicity, etc. in
predicting Li-ion conduction,52 we developed a regression
model for predicting the elastic tensor of all Li-containing
compounds using several of these relevant descriptors. A
complete list of descriptors can be found in the Supporting
Information. All descriptors used in the model are geometric or
topological and can be obtained from the structure of the
material in CIF format.73 We further employed the crystal
symmetries to reduce the number of parameters in the elastic
tensor. This procedure reduces the number of constants in the
elastic tensor to train from 21 to 3 in the cubic crystal class, for
example, and, by construction, ensures the predicted elastic
tensor obeys its crystal symmetry.74 We trained separate
models for each elastic constant, which were used to build the
full elastic tensor of the material. We believe the differences in

the uncertainty of the different elastic constants75 result in
different amounts of noise in the training data, thereby,
justifying the need for separate models.
The training data for the elastic tensor was obtained from

the materials project database64,65 retrieved using
pymatgen,61 with the same level of theory as the isotropic
case. We performed a data cleaning step in which all materials
which were mechanically unstable (116 in number), i.e., with a
nonpositive definite elastic tensor, were removed from training
data. Since sufficient data was available only for the cubic
crystal class (see Table S2 of the Supporting Information), we
developed a regression model for predicting the elastic tensor
of only cubic Li-containing compounds. However, our
framework is very general and can accommodate more data
as it is generated in training set as well as add models for other
symmetries once the size of training data is sufficient in the
materials project database. For other crystal symme-
tries besides cubic, we screened over materials with elastic
tensor available from first-principles. Our screening process
consisting of DFT-calculated data for all symmetries and
predicted data for cubic symmetries that covers >15 000 Li
metal−solid electrolyte interfaces.
The regression model was chosen on the basis of cross-

validation performance (coefficient of determination) on the
values of the elastic constants (in GPa). The models tested for
performance were Lasso regression, elastic net, kernel ridge
regression, Gaussian process regression, gradient boosting
regression76,77 used in an earlier work on predicting
mechanical properties of zeolite frameworks,53 AdaBoost
regression,78,79 support vector regression,80 random forest
regression, Bayesian ridge regression,81 least angle regression,
and automatic relevance determination. All hyperparameters
were optimized using grid search with nested 3-fold cross-
validation. The optimized hyperparameter values can be found
in the Supporting Information. The scikit-learn
package,82 which has implementations of all models listed
above, was used for training, hyperparameter optimization, and
prediction.
Figure 1b−d shows the comparison of predicted and

calculated values of elastic constants C11, C12, and C44. We

Table 2. Solid Electrolyte Screening Resultsa for Stable Electrodeposition with Li Metal Anode Together with Their
materials project id (MP id) Ranked by Critical Wavelength of Surface Roughening λcrit Required to Stabilize
Electrodeposition

low k high k

formula space group MP id χ Ps χ Ps λcrit (nm)

Li2WS4 P4̅2m mp-867695 0.62 −109.26 3.64
Li2WS4 I4̅2m mp-753195 1.75 −38.54 1.34
LiBH4 P1̅ mp-675926 1.98 −40.13 1.32
LiAuI4 P21/c mp-29520 2.7 ± 0.9 0 16.1 ± 55.2 0.43 1.02 ± 0.40
LiGaI4 P21/c mp-567967 3.2 ± 1.1 0 48.6 ± 67.0 0.28 0.85 ± 0.29
LiWCl6 R3 mp-570512 3.2 ± 0.9 0 51.3 ± 56.6 0.17 0.82 ± 0.27
Cs3LiI4 P21/m mp-569238 3.1 ± 0.7 0 46.9 ± 43.4 0.15 0.80 ± 0.17
LiInI4 P21/c mp-541001 3.5 ± 1.0 0 68.5 ± 62.8 0.12 0.74 ± 0.20
Cs2Li3I5 C2 mp-608311 3.6 ± 0.9 0 77.2 ± 59.0 0.05 0.71 ± 0.17
Ba19Na29Li35 F4̅3m mp-569025 4.2 ± 1.3 0 101.9 ± 81.3 0.08 0.68 ± 0.19
Ba38Na58Li26N F4̅3m mp-570185 4.2 ± 1.3 0 104.5 ± 82.3 0.08 0.67 ± 0.20
Li2UI6 P3̅1c mp-570813 4.2 ± 1.4 0 111.5 ± 86.8 0.11 0.66 ± 0.29

aχ is the stability parameter in kJ/(mol nm) which needs to be negative for stability, and k = 2π/λ is the surface roughness wavenumber. Low k
corresponds to k = 108 m−1 while high k corresponds to a wavelength λ = 2π/k = 1 nm. Only materials with probability of stability Ps > 0.05 at high
k are shown. Uncertainties in χ and λcrit (standard deviation of their distributions) and Ps are only shown for materials whose properties were
predicted using CGCNN and not for those whose properties were available in training data.
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obtain an overall R2 of 0.93, 0.92, and 0.92 and a cross-
validation R2 of 0.60, 0.79, and 0.6 for the elastic constants C11,
C12, and C44, respectively. A general idea of the effect of
different atomistic features on the elastic constants can be
obtained through the coefficients of a linear model fitted to the
elastic constants. The dominant atomistic features affecting the
elastic tensor based on the coefficients were mass density,
volume per atom, sublattice electronegativity, and ratio of
bond ionicities. The material stiffness increases with mass
density and decreases with volume per atom. The stiffness also
increases with ratio of bond ionicity of Li and sublattice and
decreases with sublattice electronegativity.
While evaluating the models, the inherent uncertainty in

DFT-calculated values due to exchange-correlation functional
should be taken into account.75,83 The uncertainty in DFT-
calculated values generates noise in the training data. For
example, DFT-calculated C12 generally has high uncertainty75

which degrades the performance of boosting techniques. We
believe the lower uncertainty in the training data for C11 and
C44 makes boosting algorithms perform better. These
algorithms are sensitive to the presence of outliers since a
higher weight will be assigned to them. Further investigation is
needed to quantify the effect of DFT uncertainty in training
data on the machine-learning model to be used. Overall, our
models have satisfactory performance to be used for the next
step of prediction and screening. A two-dimensional t-SNE
plot of all training and predicted feature data (Figure S6) also
shows that out training data covers the feature space of the
predicted crystals.
Our anisotropic screening procedure involves the determi-

nation of electrodeposition stability for 482 electrolyte
materials with DFT-computed elastic tensor from the
materials project database and 548 materials with
cubic crystal structure whose elastic tensor was predicted using
the regression model developed earlier. The total number of
Li−solid electrolyte interfaces involved in the screening is over

15 000 (see also Table S2 in the Supporting Information). The
best candidate interfaces obtained from the screening
procedure are shown in Table 3. It is worth pointing out
that all the screened candidates are stabilized by the stress term
in the stability parameter and do not depend on surface
tension for stability. We observe two major features in the
materials obtained through screening: either the material is
mechanically soft, i.e., with small eigenvalues of the elastic
tensor, or the material has highly anisotropic mechanical
properties. The mechanical softness of these materials is
particularly attractive since it means the mechanical properties
for dendrite suppression and ionic conductivity can be
optimized simultaneously through methods like increasing
volume per atom.57 The high anisotropy results in certain weak
directions along which the electrolyte may comply with the Li
metal anode. This degree of freedom in crystallographic
orientation is probably the reason why there are several
screened candidates in the anisotropic case compared to the
isotropic case. All screened candidates in Table 3 have a
universal anisotropy index greater than 10, which is zero for an
isotropic material.84 The highest anisotropy index of 113.29
and 31.30 is found for LiOH and Li2WS4. The mechanically
soft nature of these materials is reminiscent of density-driven
stability40 in the isotropic case for materials with v < 1.

■ OTHER CONSIDERATIONS FOR SCREENED
ELECTROLYTES

Although the literature on the candidates we obtained through
screening is rather limited, we do find some similarities with
solid electrolyte materials currently being explored. For
example, Li borohydrides have been recently explored as fast
ion conductors for solid state batteries.85,86 Their anion
substituted analogues also exhibit high conductivities and
provide opportunities for tuning other desirable properties
such as electrochemical and thermodynamic stability.86−88

Li2WS4 phases are sulfides with structures similar to the

Table 3. Screening Results for Anisotropic Interfaces (Top 20) for Stable Electrodeposition with Li Metal Anode with Their
materials project id, Interface Normal, and Stability Parameter (Last Column Shows the Universal Anisotropy Index
AU Which Is Zero for a Completely Isotropic Material)84

interface normal

formula space group MP id Li electrolyte χ at k = 108 m−1 (kJ/(mol nm)) AU

Li2WS4 P4̅2m mp-867695 [1 1 1] [0 0 1] −1.92 31.30
Li2WS4 P4̅2m mp-867695 [2 1 1] [0 0 1] −1.87 31.30
Li2WS4 P4̅2m mp-867695 [0 1 0] [0 0 1] −1.68 31.30
Li2WS4 I4̅2m mp-753195 [0 1 0] [0 0 1] −1.23 12.84
LiBH4 P1̅ mp-675926 [0 1 0] [0 1 0] −1.12 13.65
Li2WS4 I4̅2m mp-753195 [1 1 1] [1 0 1] −1.00 12.84
LiOH P4/nmm mp-23856 [0 1 0] [0 0 1] −1.00 113.29
Li2WS4 I4̅2m mp-753195 [1 1 1] [0 0 1] −1.00 12.84
LiOH P4/nmm mp-23856 [2 1 1] [0 0 1] −0.99 113.29
LiOH P4/nmm mp-23856 [1 1 1] [0 0 1] −0.98 113.29
Li2WS4 I4̅2m mp-753195 [2 1 1] [0 0 1] −0.89 12.84
Li2WS4 I4̅2m mp-753195 [0 1 0] [1 0 1] −0.79 12.84
LiBH4 P1̅ mp-675926 [1 1 1] [1 1 0] −0.77 13.65
LiBH4 P1̅ mp-675926 [1 1 1] [0 1 0] −0.75 13.65
Li2WS4 I4̅2m mp-753195 [0 1 0] [0 1 1] −0.49 13.84
LiBH4 P1̅ mp-675926 [0 1 0] [1 1 0] −0.47 13.65
Li2WS4 P4̅2m mp-867695 [1 1 0] [0 0 1] −0.40 31.30
Li2WS4 P4̅2m mp-867695 [1 1 1] [1 0 1] −0.28 31.30
Li2WS4 P4̅2m mp-867695 [0 1 0] [1 0 1] −0.17 31.30
Li2WS4 I4̅2m mp-753195 [2 1 1] [1 0 1] −0.07 13.84
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tetragonal phase of LiFePO4. One of the candidates, LiOH, is
often found as an electrochemically stable product in the solid
electrolyte interphase formed at the anode.89,90 The candidates
we obtained through screening will only be useful if they satisfy
several other requirements imposed by solid electrolytes. Here,
we focus on the most important ones: ionic conductivity,
electronic conductivity, and thermodynamic stability. We
develop quantitative metrics for each of them and show
them for the screened candidates in Table 4.

Ionic Conductivity. We obtained the probability of
superionic conduction by using the logistic regression
framework proposed by Sendek et al.52 which relates the
atomistic features to conductivity. The probability can be
obtained using the features 6, 7, 9, 12, and 14 from the feature
list in the Supporting Information. These probabilities are
based on atomic structure of the bulk. Of the screened
candidates, LiAuI4 and Ba38Na58Li26N are predicted to be
superionic conductors. Further enhancement in conductivities
may be achieved through doping, defects, and disorder. The
high-temperature hexagonal phase of LiBH4 has a Li-ion
conductivity as high as 10 mS/cm.91 The screened triclinic P1̅
phase of LiBH4 is disordered and is expected to have higher Li
ionic conductivity than that obtained for bulk atomic structure.
It will be worth investigating the possibility of tuning its ionic
conduction and mechanical properties through anion sub-
stitution similar to its hexagonal analogue which undergoes
order of magnitude improvements in ionic conductivity.87,88

LiOH is known to undergo a solid state transition at ∼415 °C
accompanied by a large increase in ionic conductivity.92 We
also expect the high anisotropy in mechanical properties of
some electrolytes to affect the activation energy landscape for
Li-ion conduction as well, possibly leading to anisotropic
conductivities.
Thermodynamic Stability. While screening, we only

removed solids with energy greater than 0.1 eV/atom above
hull. Besides LiBH4 and Li2WS4, all screened candidates are
thermodynamically stable; i.e., energy above the convex hull is

0 eV, or the energy above hull per atom is within thermal
fluctuations at room temperature. The two phases of Li2WS4
have energies 31 and 36 meV per atom above hull. The
hexagonal phase of LiBH4 has been explored previously as a
solid electrolyte with promising performance.91,93,94 This phase
is thermodynamically unstable at room temperature. However,
doping with Li halides improved the stability of the hexagonal
phase even below room temperature.93 It is possible that a
similar technique might help stabilize the screened triclinic P1̅
phase obtained through our screening as well.

Electronic Conductivity. All the screened solid electro-
lytes in the list are electronic insulators since we removed those
with a zero GGA band gap. Since GGA DFT generally
underestimates band gaps, we used an empirical scheme to
correct for the band gap95 (see the Supporting Information).
All candidates apart from Ba19Na29Li35 and Ba38Na58Li26N have
corrected band gaps greater than 1 eV.
We found several candidates that could enable dendrite

suppression through the anisotropic criteria. It is worth
highlighting that grain misorientation needs to be avoided
for these materials. Textured growth of Li film on Li metal
anode has been observed for liquid electrolytes.56 A similar
opportunity for textured growth of Li metal is present with
solid electrolytes; however, it would require precise engineer-
ing of film growth at the interphase which requires further
investigation.
While the candidate list identified is small, we strongly

believe that there is a lot of room for further search for
candidates. In particular, we find that anisotropy plays a crucial
role in determining the stability, and thus, there may be
additional noncubic Li-containing compounds that could
suppress dendrites at certain crystallographic orientations.
Further, the degree of disorder is another important factor, and
many glassy or amorphous materials are known to be good
solid electrolytes. These avenues will be the subject of our
future investigations.

■ CONCLUSIONS
We applied criteria for stable electrodeposition together with
machine-learning techniques to computationally screen solid
electrolytes for suppressing Li dendrite growth. The machine-
learning techniques accelerate the process of screening by
predicting the properties of solid electrolytes through the
identification of structure−property relationships. We train a
graph convolutional neural network on shear and bulk moduli.
We employ gradient boosting regression and kernel ridge
regression for training the elastic constants of cubic materials.
The choice of machine-learning models used was rationalized
by the model’s ability to handle noise in the training data. Our
approach is readily applicable for screening materials for other
properties of interest and can easily accommodate more data as
it is generated.
Our predictive models enabled us to screen 12 950 solids

using isotropic stability criteria and over 15 000 interfaces
using anisotropic stability criteria of electrodeposition on the
Li metal anode. In the isotropic case, we found no materials
that could be stabilized solely by the stresses generated at the
interface; however, a surface tension-mediated stabilization was
found to be possible at high surface roughness wavenumbers.
In the anisotropic case, the additional degree of freedom
related to crystallographic orientation of the solid electrolyte at
the interface enabled us to find over 20 interfaces with six solid
electrolytes that are predicted to be stable to dendrite

Table 4. Quantitative Metricsa for Other Important
Requirements of Screened Solid Electrolytes for Their Use
in Li-Ion Batteries: Ionic Conductivity, Electronic
Conductivity, and Thermodynamic Stability

formula
space
group MP id Pion

band
gap
(eV)

energy
above hull
per atom
(eV)

LiOH P4/nmm mp-23856 0.05 6.34 0.000
LiAuI4 P21/c mp-29520 0.94 1.92 0.000
LiGaI4 P21/c mp-567967 0.18 4.33 0.000
LiBH4 P1̅ mp-675926 0.27 8.57 0.071
Li2WS4 I4̅2m mp-753195 0.15 3.61 0.032
Li2WS4 P4̅2m mp-867695 0.23 3.52 0.037
Cs3LiI4 P21/m mp-569238 0.01 6.07 0.018
LiInI4 P21/c mp-541001 0.13 3.96 0.000
Cs2Li3I5 C2 mp-608311 0.33 6.58 0.000
Ba19Na29Li35 F4̅3m mp-569025 0.00 0.94 0.000
Ba38Na58Li26N F4̅3m mp-570185 1.00 0.96 0.009
Li2UI6 P3̅1c mp-570813 0.26 1.17 0.000

aIonic conductivity is quantified through Pion, the probability of
superionic conduction; electronic conductivity through the band gap;
and thermodynamic stability through energy per atom above the
convex hull.
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initiation. We identify some common features like anisotropy
and mechanical softness present in the screened candidates
based on which one can simultaneously optimize properties
required for dendrite suppression as well as fast ion
conduction. We believe that the use of techniques like doping
and defect generation will be crucial to ensure simultaneous
satisfaction of other solid electrolyte requirements for screened
candidates.
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Lobato, J. M.; Sańchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268−276.
(49) de Jong, M.; Chen, W.; Notestine, R.; Persson, K.; Ceder, G.;
Jain, A.; Asta, M.; Gamst, A. A Statistical Learning Framework for
Materials Science: Application to Elastic Moduli of k-nary Inorganic
Polycrystalline Compounds. Sci. Rep. 2016, 6, 34256.
(50) Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.;
Tropsha, A. Universal fragment descriptors for predicting properties
of inorganic crystals. Nat. Commun. 2017, 8, 15679.
(51) Fujimura, K.; Seko, A.; Koyama, Y.; Kuwabara, A.; Kishida, I.;
Shitara, K.; Fisher, C. A. J.; Moriwake, H.; Tanaka, I. Accelerated
Materials Design of Lithium Superionic Conductors Based on First-
Principles Calculations and Machine Learning Algorithms. Adv.
Energy Mater. 2013, 3, 980−985.
(52) Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K.-A. N.; Cui,
Y.; Reed, E. J. Holistic computational structure screening of more
than 12000 candidates for solid lithium-ion conductor materials.
Energy Environ. Sci. 2017, 10, 306−320.
(53) Evans, J. D.; Coudert, F.-X. Predicting the Mechanical
Properties of Zeolite Frameworks by Machine Learning. Chem.
Mater. 2017, 29, 7833−7839.
(54) Ahmad, Z.; Viswanathan, V. Role of anisotropy in determining
stability of electrodeposition at solid-solid interfaces. Phys. Rev.
Materials 2017, 1, 055403.
(55) Xu, C.; Ahmad, Z.; Aryanfar, A.; Viswanathan, V.; Greer, J. R.
Enhanced strength and temperature dependence of mechanical
properties of Li at small scales and its implications for Li metal
anodes. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 57−61.
(56) Shi, F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B.; Zhao, J.; Gong, Y.;
Cui, Y. Strong texturing of lithium metal in batteries. Proc. Natl. Acad.
Sci. U. S. A. 2017, 114, 12138−12143.
(57) Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.;
Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic
conductors. Nat. Mater. 2015, 14, 1026−1031.
(58) Shannon, R. D. Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides. Acta
Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976,
32, 751−767.
(59) Gotoh, K.; Finney, J. L. Statistical geometrical approach to
random packing density of equal spheres. Nature 1974, 252, 202.
(60) Stepanyuk, V.; Szasz, A.; Katsnelson, A.; Trushin, O.; Müller,
H.; Kirchmayr, H. Microstructure and its relaxation in FeB
amorphous system simulated by moleculular dynamics. J. Non-Cryst.
Solids 1993, 159, 80−87.
(61) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.;
Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G.
Python Materials Genomics (pymatgen): A robust, open-source
python library for materials analysis. Comput. Mater. Sci. 2013, 68,
314−319.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00229
ACS Cent. Sci. 2018, 4, 996−1006

1005

http://dx.doi.org/10.1021/acscentsci.8b00229


(62) Pannikkat, A.; Raj, R. Measurement of an electrical potential
induced by normal stress applied to the interface of an ionic material
at elevated temperatures. Acta Mater. 1999, 47, 3423−3431.
(63) Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural
Networks for an Accurate and Interpretable Prediction of Material
Properties. Phys. Rev. Lett. 2018, 120, 145301.
(64) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K.
A. The Materials Project: A materials genome approach to
accelerating materials innovation. APL Mater. 2013, 1, 011002.
(65) de Jong, M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.;
Gamst, A.; Sluiter, M.; Krishna Ande, C.; van der Zwaag, S.; Plata, J.
J.; Toher, C.; Curtarolo, S.; Ceder, G.; Persson, K. A.; Asta, M.
Charting the complete elastic properties of inorganic crystalline
compounds. Sci. Data 2015, 2, 150009.
(66) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
(67) Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in PyTorch, NIPS-W, 2017.
(68) Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing
electrodeposition in elastic solid electrolytes containing immobilized
anions. Sci. Adv. 2016, 2, 1600320.
(69) Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A
sulphide lithium super ion conductor is superior to liquid ion
conductors for use in rechargeable batteries. Energy Environ. Sci. 2014,
7, 627−631.
(70) Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-
M.; Chin, R.; Koh, A. L.; Yu, Y.; Perrino, J.; Butz, B.; Chu, S.; Cui, Y.
Atomic structure of sensitive battery materials and interfaces revealed
by cryo−electron microscopy. Science 2017, 358, 506−510.
(71) Stroh, A. N. Dislocations and Cracks in Anisotropic Elasticity.
Philos. Mag. 1958, 3, 625−646.
(72) Stroh, A. N. Steady State Problems in Anisotropic Elasticity. J.
Math. Phys. 1962, 41, 77−103.
(73) Hall, S. R.; Allen, F. H.; Brown, I. D. The crystallographic
information file (CIF): a new standard archive file for crystallography.
Acta Crystallogr., Sect. A: Found. Crystallogr. 1991, 47, 655−685.
(74) Mouhat, F.; Coudert, F. m. c.-X. Necessary and sufficient elastic
stability conditions in various crystal systems. Phys. Rev. B: Condens.
Matter Mater. Phys. 2014, 90, 224104.
(75) Ahmad, Z.; Viswanathan, V. Quantification of uncertainty in
first-principles predicted mechanical properties of solids: Application
to solid ion conductors. Phys. Rev. B: Condens. Matter Mater. Phys.
2016, 94, 064105.
(76) Friedman, J. H. Greedy Function Approximation: A Gradient
Boosting Machine. Ann. Stat. 2001, 29, 1189−1232.
(77) Friedman, J. H.; Hastie, T.; Tibshirani, R. The elements of
statistical learning; Springer series in statistics: New York, 2001; Vol. 1.
(78) Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. Syst.
Sci. 1997, 55, 119−139.
(79) Drucker, H. Improving Regressors Using Boosting Techniques,
Proceedings of the Fourteenth International Conference on Machine
Learning, San Francisco, CA, United States, 1997; pp 107−115.
(80) Smola, A. J.; Schülkopf, B. A tutorial on support vector
regression. Statistics and Computing 2004, 14, 199−222.
(81) MacKay, D. J. C. Bayesian Interpolation. Neural Comput. 1992,
4, 415−447.
(82) Pedregosa, F.; et al. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res. 2011, 12, 2825−2830.
(83) Deng, Z.; Wang, Z.; Chu, I.-H.; Luo, J.; Ong, S. P. Elastic
Properties of Alkali Superionic Conductor Electrolytes from First
Principles Calculations. J. Electrochem. Soc. 2016, 163, A67−A74.
(84) Ranganathan, S. I.; Ostoja-Starzewski, M. Universal Elastic
Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504.
(85) Lu, Z.; Ciucci, F. Metal Borohydrides as Electrolytes for Solid-
State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chem.
Mater. 2017, 29, 9308−9319.

(86) Varley, J. B.; Kweon, K.; Mehta, P.; Shea, P.; Heo, T. W.;
Udovic, T. J.; Stavila, V.; Wood, B. C. Understanding Ionic
Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio
Molecular Dynamics. ACS Energy Lett. 2017, 2, 250−255.
(87) Tang, W. S.; Matsuo, M.; Wu, H.; Stavila, V.; Zhou, W.; Talin,
A. A.; Soloninin, A. V.; Skoryunov, R. V.; Babanova, O. A.; Skripov, A.
V.; Unemoto, A.; Orimo, S.; Udovic, T. J. Liquid-Like Ionic
Conduction in Solid Lithium and Sodium Monocarba-closo-
Decaborates Near or at Room Temperature. Adv. Energy Mater.
2016, 6, 1502237.
(88) Tang, W. S.; Unemoto, A.; Zhou, W.; Stavila, V.; Matsuo, M.;
Wu, H.; Orimo, S.-i.; Udovic, T. J. Unparalleled lithium and sodium
superionic conduction in solid electrolytes with large monovalent
cage-like anions. Energy Environ. Sci. 2015, 8, 3637−3645.
(89) Malmgren, S.; Ciosek, K.; Lindblad, R.; Plogmaker, S.; Kühn, J.;
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