P-N JUNCTION MICROWAVE PHASE MODULATORS
by

Manuel S. Navarro Cacver oo

Ingeniero de Ejecucion en Electronica
Universidad Catolica de Valparaiso-Chile
(1967)

SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1972

Signature of Auﬁ3y1_ _ L _
Department of Flegtyical/Egginef}ifig,August 18,1972

Certified by

Thesis Supervisor

— —  — — - — mmm e e— — — — e— e




P-N JUNCTION MICROWAVE PHASE MODULATORS

by

Manuel S. Navarro Stevensan

Submitted to the Department of Electrical Engineering
on August 18, 1972 in partial fulfiliment of the requirements
for the degree of Master of Science.

ABSTRACT

Modulator imbedding networks for semiconductor diodes
are discussed. It is shown that the two-state reflection-
type phase modulator, two-port imbedded is the basic circuit
unit for n-state reflection or transmission-type phase modula-
tor synthesis.

A general solution is given for reflection-type and
transmission-type modutators for angles of modulation between
0 and 180°. It is shown that the minimum-phase modulation
angle for a given diode at a fixed frequency is determined by
the implementation employed. A quantity relating Kurokawa and
Schlosser's figure of merit [Proc. IEEE 58, 180-181 (1970)]
and the phase difference between ON and OFF is introduced, which
permits an easy calculation of losses and also the solution of
the imbedding network. Broadbanding techniques are discussed
and it is shown that a frequency range exists in which the
"equivalent matching impedance" of the diode is resistive, which
leads to a straightforward design of the matching network. It
is also shown, that this particular frequency range can be deter-
mined from the theoretical model of the diode.
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I. INTRODUCTION

Variable-parameter devices have been used in two-
state modulators for many years and the theory and limita-
tions of RF switching and phase shifting are well known.l_4
Considerable effort has been devoted to searching for a
figure of merit for a variable-parameter one-port for RF
switching or modulation,5_7 but a general solution has not
been found for lossless-reciprocal imbedding networks for
phase modulators. To analyze impedance transformations
through lossless reciprocal networks we shall choose an

8,9 where in a

approach through non-Fuclidean geometry,
transformation through a lossless reciprocal network
constitutes a riqgid displacement. We shall use the
Poncaire model, in which the abhsolute curve (infinite) is
the unit circle, and straight lines are arc of circles
cutting the absolute curve orthogonally. As usual, in
standard works on non-Euclidean geometry,lo quantities

in this system will be termed "hyperbolic."

The Smith Chart I'-plane is also the hyperbolic plane
in hyperbolic geometry. No attempt will be made to obtain
graphical solutions for which Deschamps'8 Projective Chart
might be used. Emphasis will be placed, however, on

graphical interpretations as in any discussion concerned

with geometrical models.



In this report Kurokawa and Schlosser's5 figure of

merit will be adopted, because of its analytical simplicity

and peculiar characteristics.



II. REFLECTION-TYPE PHASE MODULATOR

DEFINITION. A reflection-type phase modulator is a

network characterized by
a=rb, (1)

where a and b are the incoming and outgoing signals, and

rn is a complex number that has n "quantized states." A
physical realization of (1) has not yet been determined,
and our purpose is to show that a two-state reflector-

type modulator, two-port imbedded, is the basic "circuit
unit" for building up an n-state reflection or transmission
phase modulator.

DEFINITION. The network that performs (1) is desig-
nated NS-RM-MPI, which stands for n-state reflection
modulator m-ports imbedded. The relation between m and n
and the number of diodes is evident. A 2S-RM-2PI network
requires one diode and a 4S-RM-3PI requires two; there-
fore, a general reflection-type modulator can also be
identified as 2k—RM-(k+l)PI, where k is the number of
diodes. It is important to emphasize that 2k states is the
fundamental limit than can be reached, and we shall direct

our discussion primarily to configurations that permit



achievement of this fundamental limit.

2.1 GENERAL CONSTRAINT IN A REFLECTION-TYPE PHASE MODULATOR
In phase modulation, amplitude modulation must be

avoided. This introduces the general constraint

. (2)

R N L L
Equations 2 and 1 indicate that for a constant input
amplitude, the output (reflected wave) will be of the
same amplitude regardless of the state. A great deal of

this report is a study of the physical realizations of (2).

2.2 TWO-STATE, REFLECTION-TYPF MODULATOR, TWO-PORT IMBEDDED

The 2S-RM-2PI network, the simplest possible config-
uration, is shown in Fig. I. When the modulation signal is
applied to the microwave diode the impedance is switched
between ON and OFF, thereby causing a large mismatch and
reflecting most of the incident RF energy. The impedances
zy and z, (forward and reverse biased diode impedances) at
RP-1 do not produce equal-amplitude reflection coefficients;
therefore, a lossless-reciprocal two-port imbedding net-

' '

work is needed to transform these impedances to z, and z,

at RP-2 (Figs. 1 and 2).
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1 ]
According to (2), ]"'1 and 7"2 will give

z. -1 z, -1

1 _ 2

=2, (3)
zl + 1 22 + 1

where zi and z; are the normalized ON-OFF impedances at
RP-2.

The lossless-reciprocal network must perform a simul-
taneous mapping of the diode impedances at RP-1 to a new

position on the r-plane, characterized by (3) and (4)

.— Zl_l '-22_1 j¢
Iy = |7+—|; Ty = |————e" ", (4)
zl + 1 z, + 1

where ¢ is a specified angle of modulation.
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ITII. GEOMETRICAL INTERPRETATION OF SIMULTANEOUS MAPPING

OF TWO ARBITRARY IMPEDANCES

Following the analysis of the 0-180° phase modulator
repcrted elsewhere,11 we shall try to convert the double-
valued impedance mapping to a single-valuad impedance
mapping on the hyperbolic plane, by means of a geometrical
interpretation of the problem. Having (3) as a constraint,
the single-valued equivalent matching impedance z¢ = r¢ +
jx¢, which after matching to a 50 Q@ line produces (3), will
be located on the perpendicular bisector to the hyperbolic
straight line through z, and Zos the ON-OFF diode impedances
at RP-1 (Fig. 3). [Note that z¢, the impedance that we
call the "equivalent matching impedance," does not in
general belong to the impedance locus of the diode as a
function of bias, and is a mathematical artifice.]

Since in non-Euclidean geometry a transformation
through a lossless reciprocal network constitutes a rigid
displacement, the operation of matching the equivalent
matching impedance to a 50 © line is equivalent to moving
impedances zy and z, to z; and z;, respectively (Fig. 2).
Undér a lossless transformation, angles are preserved;
hence, we can work in the geometrical model of Fig. 3 to

calculate the coordinates of 2¢ for a given angle ¢ and

13



Fig. 3.

Matching impedance Z¢ and diode
impedances on the!T-plane. _

4



impedances 24 and zZ,. It is seen from Fig. 3 that for angles

other than 180°, two solutions for z¢ can be found. For

¢ = 180°, there is a unique solution, z located in the non-
Euclidean middle point of the hyperbolic straight line
through Zy, 2,-
3.1 HYPERBOLIC DISTANCES IN TERMS OF THE QUALITY FACTOR é
By definition, the triangles inside the regqular poly-
gon are congruent. This means that it is enough to solve
one triangle to obtain results for the others.

Let us take the triangle z z 0 2 and call its sides

¢I

A, B, C representing the hyperbolic distances between z¢-zm,

Zn"21 and Z1=Z,, respectively.

¢

To solve a triangle in non-Euclidean hyperbolic geo-
metry as in Euclidean geometry at least 3 quantities are
needed. Since we know only two, the hyperbolic distance
between zy and Z and the angle ¢/2 which is one-half the
modulation angle, we can express the side, C, in terms of
these two quantities. The hyperbolic distance between zy
and z, in terms of é is given (see Appendix A) by

§ = lo (62 + 4)1/3 + 6 (5)
9 |72 172 _ ;"
(0" + 4) -0

Side B is one-half of this distance; hence,

15



1 0% + 9y1/2 4 §
(0™ + 4) -0
Equation 6 can be exp-essed as
é = 2 sinh B. (7)

If we define 6¢ as the é between z, and z¢, we can express
the hyperbolic distance C as
@+ /2 4+ 5

8
C = log — — R (8)
Q% + nt’z _ o,

or equivalently

é¢ = 2 sinh %. (9)

Equation 9 can also be expressed as

22 2 1/2
-1 . (10)

Q
sinh C = {;i +1

For the triangle, z¢, Znr 2y in non-Euclidean hyperbolic

trigonometry the following expression10 holds:

:» ¢ _ sinh B
sSln 3 s—i—m. (ll)

16



Introducing (7) and (10) in (l1), we get

Qz
sin ¥ = - I (12)
2 62 2 1/2°
] -
Seva] -a
Equation 12 can be written more conveniently
1/2
A / 52
Q, = |2 Q - .

~

Q¢ can be regarded as a measure of the separation of
the equivalent matching impedance from the ON-OFF impedances
of the diode for a given modulation angle. Hence, for a
given diode and phase angle between the reflection coef-
ficients at RP-2 (Fig. 2), é¢ is known and unique.

Equation 13 is plotted in Fig. 4, for ¢ = 45°, 90°,

135°, 180°. It is important to note that é for ¢ = 135°

¢
and 180° is almost the same, which indicates that the
implementation must be accurate to achieve a given angle

greater than 135°.

3.2 COORDINATES OF THE EQUIVALENT MATCHING IMPEDANCE
Since the hyperbolic distance between z¢ and z, is

also equal to C (Fig. 3), 6 is also given by (13). This
¢

17
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fact permits us to write two simultaneous equations in r¢

and x

Zy Zys and Q

2
|(r1-r¢) + (xl-x¢)

(real and imaginary parts of z¢) as a function of

2‘1/2

(r1r¢)

2
|(r2—r¢) + (xz-x

1/2 ¢

(14)
211/2
)7

(r2r¢)

1/2 BN

Solving (14), we get

where

(15)

(16)
2 2 k ~2 k .2
ry + X] T ko ry (Q° + 2) + (EI)



3.3 PHYSICAL REALIZATION OF THE MATCHING NETWORK

Having determined z, = r, + jx,, we need to match

¢ ¢ ¢
this impedance to a 50 Q@ line. This operation will move
z¢ to the center of the chart and transform zy and z,
into zi and z;, two symmetric impedances with respect to
the center of the r-plane (Fig. 2). A fixed-length
matching network12 or a single line of variable length
have been previously described11 and the selection of the
network will depend on the value of z¢.and the kind of
implementation. For high angles of modulation in general

there is no difficulty in matching z, to a 50 @ line,

¢
since z¢ is located near the center of the chart. For low
angles of modulation, z¢ moves the limb of the chart for-

ward and so serious problems can arise in implemen-

tation.

20



IV. LIMITATIONS OF PRACTICAL MODELS

4.1 MAXIMUM AND MINIMUM ANGLES OF MODULATION

From (13) we see that the maximum modulation angle
¢ = 180° can easily be achieved because there are no sin-
gularities for that particular value of ¢. In fact, this
value of modulation angle, in the majority of the cases,

yields values of z, that can easily be matched to a 50 Q

¢
line. A typical switching diode measured between 2 GHz
and 3 GHz gave the values of z¢ plotted in Fig. 5. For
very low values of ¢, (13) goes to infinity, and in the
limit when ¢ approaches zero (13) is approximated by

Al 2 ~

gt/ 2012

Qy * sin ¢/2 O (17)

Actually this theoretical lower limit of ¢ is seldom
reached because for even greater values of ¢, when (17)

does not hold, Q. is so high that the resultant equivalent

¢

matching impedance z, lies outside of the range of imped-

¢
ance that can be matched to a 50 9 line. On the other
hand, if the value of normalization impedance can be

changed freely, the lower limit ¢ = 0° is achieved only

for é = 0.

21



4.2 LOSSES IN A TWO-STATE REFLECTION-TYPE MODULATOR TWO-
PORT IMBEDDED
Since (2) is a constraint, the losses are the same

in both states given by
' 2 ' 2
1 - |r1| =1 - |r2| . (18)

The reflection coefficient in terms of é¢ (see Appendix A)

is

~

] ] Q¢
Tyl = Iryl = ——, (19)

which expresses the magnitude of the reflection coefficients

at RP-2 (Fig. 2), in terms of O,, defined in (13).

¢I
Hence the losses are
——, (20)
+ 4
Q%
or more explicitly, by introducing (13) in (20)
2
= . (21)
2 2
0 +1 4 +1
2(1 - cosg¢)

Expression (21) is equivalent to Kurokawa and Schlosser's,
but slightly more compact and written in terms of the full

angle of modulation.

22



4.3 FREQUENCY SENSITIVITY OF THE EQUIVALENT MATCHING
IMPEDANCE |
When the frequency changes, the ON-OFF diode impedances
at RP-1 (Fig. 1), move on the r-plane, since the real and
imaginary parts of the forward and reverse bias diode

13 Strictly speaking,

impedances are frequency-dependent.
if an optimum match is needed, we should find a model of
the locus of z¢ vs. frequency on the r-plane, and then
design the broadband matching network by means of Fano's14
equations.

The ON-OFF impedances of several diodes were measured
as a function of frequency, and we found that both imped-
ances moved clockwise with positive increments of fre-
quency. The degree of frequency sensitivity of z¢ is
inversely proportional to the value of phase modulation,
as we might expect from a graphical analysis (Fig. 3). A

plot of z, vs. frequency for several modulation angles is

¢
shown in Fig. 5. It is evident that the real part of =z

¢
was practically constant in the whole frequency range in
which the diodes were measured. This behavior is predic-
table if the diode has ON-OFF impedances located nearly
in quadrature with respect to the real axis of the Smith
Chart.

From Fig. 3 it can be seen that if the hyperbolic

straight line through zy and z, rotates on the r-plane

23
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with a frequency change, the vertex, z¢, of the triangle

z¢, Z10 2, will describe an arc inversely proportional to

the angle 4.

25



V. BROADBANDING TECHNIQUES

When the frequency band is moderated (less than 10%
of midband frequency) the following procedure can be used
as a first approximation of broadband operation. From
Fig. 5, for a certain frequency z¢ is resistive. This
leads to a straightforward design of the matching network.
Since we are interested in broadband operation, a broad-
band matching network can be used to match the real part
of z¢ to a 50 2 line. The perfect match that produces the
desired angle of modulation occurs only at the frequency
at which z¢ is resistive. At greater or lower frequencies,
z¢ is complex, and the match is not perfect,l4 which leads
to a different angle of modulation. The bandwidth in this

case is not defined, and depends on the permissible percent

of error in the phase-modulation angle.

5.1 OPTIMUM DIODE CHARACTERISTICS FOR BROADBAND OPERATION
Referring to (15), we shall investigate the condition (s)
needed to get x¢ equal to zero.
To simplify the analysis, we shall calculate the con-
dition(s) for ¢ = 180°, where b2 - 4dac in (15) is zero,
since for this value of ¢ there is only one solution for

z¢. From (15) the only possibility for x¢ =0 is b = 0.

26



After some manipulation we find (Appendix B) that the

condition is

”

ﬂI
H ’—J
»

h?ho

. (22)

This indicates that the phase of the diode impedance in one
state must be equal to the negative value of the phase
impedance in the other state. This curious relation can

be clarified by a graphical analysis on the hyperbolic

plane.

5.2 GRAPHICAL ANALYSIS OF THE CONDITION FOR BROADBAND
OPERATION
The loci of constant phase on the Smith Chart are arcs
of circles through -1 and +1. This is evident if we con-
sider that a locus of constant phase on the z-plane is a
straight line from zero to infinity, since a bilinear
transformation relates the z-plane to the r-plane,; where

straight lines map into circles the circles must pass

)
through -1 and +1 on the r'-plane (Fig. 6).

Let us call hl and h2 the hyperbolic distances from
z, and z, (measured through perpendiculars) to the real

axis of the Smith Chart. 1If zl and z, lie on constant-

phase circles of the same absolute value, we claim that

27



Fig. 6.

6=tan'x/n,

Geometrical interpretation of condition
for broadband operation.
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h,=h,

bolic straight line through zy and z, will be located on

and t the non-Euclidean middle point of the hyper-

the real axis of the Smith Chart.
To prove the last statement, we need only show that
h

= h., and also are equal to any other hyperbolic dis-

1 2
tance measured through a perpendicular to the real axis
of the Smith Chart, from any of the two circles of the
same absolute phase value.

To do this, we draw two more hyperbolic straight

lines, perpendicular to the real axis of the Smith Chart

(Fig. 6). We call

P)T = Por = hy
and (23)

P3S = P4S = h,

where h3 and h4 are the hyperbolic distances.

We need to prove that h3 = h4. Let

P = I, + jxa Py = C(ra + jxa)
(24)
pz =r _jx

Py = C(ra - jxa),

where C is a real constant.

29



Since Q is an invariant function of the hyperbolic

distance (see Appendix A), it is enough to prove

Q =0 . (25)
PPy P3Py
Substituting (24) in (25) gives
X x
a _ a
2 7 =2 T (26)
a a
or conversely
h3 = h4, (27)
and consequently
h1 = h2. (28)

To prove that t lies on the real axis of the r-plane,
the arguments of Euclidean geometry also apply. The trian-
gles 2y, P, t and 2,5+ 9, t are congruent, since they have
two angles and one side of the same value. Hence, the
hypotenuse and the sides of both on the real axis have the
same values, and consequently t is the non-Euclidean middle
point of the hyperbolic straight lines through Zq Z, and

P, q, respectively.

30



For ¢ # 180° condition (22) is no longer valid, but
from (15) and (16) a similar analysis can be made to get
an analytical expression for the condition(s) needed for
x¢ = 0.

This involved operation can be avoided, if the diode
not only has the ON-OFF impedances related by (22) but
also the reactive part of the ON-OFF impedances approaching
the same absolute value. If this situation occurs at a
given frequency, the perpendicular bisector to the hyper-
bolic straight line through Zyr Z, will approach a straight

line in the Euclidean sense, overlapping the real axis of

the Smith Chart leading to a z¢ resistive for all values of

$.

5.3 THEORETICAL DETERMINATION OF THE OPTIMUM FREQUENCY OF
OPERATION FOR ¢ = 180°

The following expressions are valid for reverse and

forward bias conditions in a switching diode.13
1 f 2
& F ) c.
Y = — 4+ ju|—I— + C
r c
£ 212 f .2
1- () 1- ()
R wkL
f . S
Y. = + Jw|C_, -
f 2 2 o 2 2("
Ry + (st) Ry + (mLs)

31



where Yr is the reverse-bias admittance,

bias admittance,

f
co

f

the reverse-bias series resonant frequency.

From (29)

Y. the forward

the diode cutoff frequency, and fr

The condition for zero reactance (x¢ = 0) is
r p'e
2=-2 (30)
1 1
R
2 2
) [RE + (uL )]
R% ~ + |wC [R2 + (wL )2] - wL 2
[Rg + (st)2]2 c' ' f s s
2
1/Rs(f/fco)
- (g4°
r
1 f .2 f .2
R (f—) Cc. + Cc[l - (f—) ]
S co + 2
f 2,2
(L - ()71 _ £ .2
fr 1 ('f—-)
r
wC [R2 + (wlL )2] - wL
c £ s )
> 5 (31)
Rf + (mLs)
Rg 2 2 2
+ ch[Rf + (st) ] - st

x1=

(R + (ur) %1

£ .2
le + Cc[l - (f_) ]

-

'1 £ .2
L

s co
n- &2




Substituting (31) in (30), we get

f .2
RR_[1 - (=/=)7] 2 2
s f fr } CC[Rf + (st) ] - Ls (32)

(£ c; +c 1 - (9
co J r
. . . 2 2.2 .
With the approximation f Ls >> Cchf » and by replacing
1
f =
co 4n2R§c?
and J (33)
1
L C. =
s j 2.2
4 fr
in (32), we get
A(%—)4 + B(%—)2 +C=0, (34)
r r

where

_ 2
A= RstCc RSCc

2
B = RSRf(ZCc - Cj) - RSCj

C = RSRf(Cj + Cc)

The mounting technique will determine the value of
the parallel capacitance Cc' and consequently will be an
important factor in the determination of the frequency in

which the equivalent matching impedance Z¢ is resistive.
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Vi. FOUR-STATE REFLECTION-TYPE MODULATOR,THREE-PORT IMBEDDED
A three-port lossless-reciprocal network is charac-

terized by the determinant

= 0, (35)

where n = 1,2 indicates the state of the load impedances at
ports 2 and 3 (Fig. 7).
From (35)

Zin = f(z3n, z2n)' (36)

Since we are interested in the phase of the reflection

coefficient, we get

Zin ~ %o
Wz vz (37)
in o
Normalizing all impedance values to z_ = 1 @ and assuming

o
z._ imaginary, we get

in
{ I. =8 = -2 tan  z (38)
1 in®

34
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3
—0
Fig. 7. A general 3-part lossless-reciprocal network.
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Now two questions arise: What characteristics
should have Z:n to get four point equal spaced?, and

under what conditions can Zin be imaginary?

6.1 SYNTHESIS OF zin

A plot of (38) is shown in Fig. 8. It can be seen
that the only possibility of getting four points equally
spaced is to have Zn formed by two terms, each one qguan-
tized in two states. Each state should be symmetrical
with respect to the origin. Since we assumed a Zin imag-
inary, each term of Zin will have a value and its complex
conjugate. The assumption of Zin imaginary is now more
evident.

A switching diode has its ON-OFF characteristics
almost on the limb of the Smith Chart, therefore in this
case, the assumption of an imaginary impedance is justified.

If we make

z; = ] diode impedances, (39)

in (38), then (38) will be justified.
There are many circuits that can satisfy (39); the
circuits presented here represent only one way of realizing

a 4S-RM-3PI network and not necessarily the best.

36
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(Fig.

6.2

For simplicity, we choose a TEM model of the Y-junction

9)0

VALUES OF PORT IMPEDANCES IN A 4S-RM-3PI NETWORK

Let z, and z, represent the 2-state impedances that

we will get from a 2S-FM-2PI (Fig. 9). We want at ter-—
1
minals 2-2 a reflection coefficient quantized in four
states, and equal spaced on the r-plane.
]

The expression for the angle of r at port 2-2 is

]
easily calculated in terms of the impedance at 1-1 ,

kzo
Z , =
1-1 Za t 2y
(40)
] _ za + zb
(] - .
2-2 k
Therefore
Za + zb _,
K o
r , = (41)
2-2 za + zb . s
k o

Normalizing all the impedance values with respect to Zg

we get:

(42)
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We assume that z, and z) are imaginary, which is a
reasonable assumption for switching diodes. A plot of (39)
is shown in Fig. 8. 1Inspection of (39) shows that the
only possibility of getting 4 states equally spaced is to

choose z, and zy in such a way that a c:angezof state in
z, :nd+zg produces equal increments in _E_E__E' The values

a m b in Fig. 8 are the unique values that permit 4
states equally spaced.

of

These four states are

z + 2
a; by
= §2.4142
k
Za2 + zbl
= -j0.4142
k
(43)
zal + zb2
= j0.4142
k
za2+zb2
= -j2.4142.
k
The values of z_ and z, are
a b
2 z
1 _ 141425 b = 3
-4z e =
z z (44)
22 _ 51.4142; P2 |,
x - 31.41425 === -3
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6.3 ANGLES OF REFLECTION COEFFICIENTS AT PORTS a-a & b-b

Since we obtain z, and zy from a 2S-RM-2PI network, it
is more convenient to express (41) in terms of the mcdulation
angles at ports a—a' and b—b'.

To illustrate the procedure, take a value of k = 2.

Then
z = j2.8284; z = j2
3 Py
(45)
z = -32.8284; 2 = -j2.
ay by
Hence
r _ j2.8284 -1
a; j2.8284 + 1
_ _ -1
r,. = 6, = -2 tan 2.8284
1 1
6, = -141.0576°,
1
and consequently 6, = +141.0576°.
2
Following the same procedure, at the other port we get
6 = -126.8699 and © = +126.8699.
by b,

Since our equations for the design of 25-RM-2PI net-

work are in terms of the full angle of modulation, from the
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last values we get

77.8848°

©
I

@
!

@
n

and (46)

106.2602°.

I
@
o
I
@
jon
n

¢b_

If we choose k = 1 in (44), we get a complete sym-
metrical junction. Following the preceding analysis, we

get the following results:

= - o
0, 109.471
6 = +109.471°
a
2
(A7)
5. = —-90°
by
6. = +90°,
b,

and consequently the modulation angles of the 2S-RM-2PI net-

] ]
work at ports a-a and b-b are

a 141.058°
(48)
o
®y 180°.

¢

6.4 ASYMMETRICAL JUNCTION

A study of (39) and (40) indicates that for a sym-
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metrical junction, regardless of the value of k, we shall
] )
never get the same conditions at ports a-a and b-b
(Fig. 9).
Let us repeat the analysis for the asymmetrical junc-
tion of Fig. 10.
]
The angle of the reflection coefficient at 2-2 is
-1 Za
§ = -2 tan (5 + 2)- (49)
We get 4 equations for the four states equally spaced, as

in Eq. 43:

zal
+ + z, = j2.4142
1
z
a2 .
-t 2z, = -j0.4142
1
(50)
z
2 .
- + z, = j0.4142
2
4
as .

After some manipulation we find that for k =

R} [+

43



9z

bz

‘uoL3ounp dLJajauuAsy

"0l

‘614

e — —— ——

°Z

\

\

~

o~

/
e e = Qe o~ —— — —-

44



(51)

From (51), ¢_ = = 180°, which tells us that 2 identical

a ¢b
2S-RM-2PI networks are needed to achieve 4 states equally

spaced.

6.5 UNBALANCE OF THE REFLECTION COEFFICIENTS AT FOUR STATES

It has been shown15

that with a lossless-reciprocal
imbedding network, the losses at the four state cannot be
equal, and a lossy element must be included to balance the
amplitude of the reflection coefficients. For a series

connection of two diodes, the equation which relates the

resistor in parallel to the diode parameters is

R = . (52)

where r, and ry are the resistances of the diodes. It is

assumed that

ra(l)
and (53)

ra(2)

rb(l) = rb(2)

where (1) and (2) indicate the state of the diodes.
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Since the networks that we have described have an
input impedance equal to a series combination of the
diode impedances, (52) can also be extended for all the
networks with this characteristic. For the asymmetrical
junction, we have

R= —1 (54)

2+ r

k b

For the symmetrical junction, we have

R = —m— (55)

]
where R is the resistor in parallel with port 2-2 (Figs.

9 and 10).

We emphasize that condition (53), assumed by Schlosser15

is one of the principal difficulties in the design of phase
modulators, and to the best of our knowledge, no one has
explained the method of achieving it. As we understand the
problem, one possibility to get (53) is following the
matching procedure discussed in the first section of this
paper, and selecting properly the reference planes in order
to get the ON-OFF impedances of the diode, the complex
conjugates of each other. That means that the impedances

of the diode must be located at symmetric positions with
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respect to the real axis of the Smith Chart. This condition
is also assumed in our synthesis procedure.

On the other hand, the circuits presented here have
a gread advantage: they permit the selection of the modul-
ation angles at ports a—a' and b-b' (Figs. 9 and 10) by a

proper choice of the characteristic impedances of the lines.

6.6 BALANCED STATES WITH LOSSY ELEMENT
When a resistor is connected in parallel to a series
connection of two diodes, the equivalent impedance can be

approximated by15

2
2z =r+ 3.4 4x (56)

eq R
where r = ra + rb and x = xa + xb are the series resistances
and reactances of the diodes.
Condition (53) is also assumed. Before the resistor R
is placed in parallel, the impedance of the series con-

nection is
Z =r + jx (57)

and since r is constant, the locus of this impedance is a

circle of conetant resistance on the Smith Chart. Obviously
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from Fig. 11, any four points on this circle will have a
different magnitude of reflection coefficient. For points
symmetric to the real'axis of the Smith Chart, we will
have two magnitudes of reflection coefficients, but never
will it be possible to get four points completely sym-
metric with respect to the center of the Chart.

When a resistor in paréllel is added, the real part
of the equivalent impedance increases and, consequently,
the four points move inward to the center of the Chart,
to a new position. The new position can be determined
approximately by this simple reasoning. The value of R
depends on the diode resistances, since (52) is valid for
any distribution of the states on the Srith Chart (see
Appendix E). Suppose that two points are very close to
the 180° position on the Chart where x -+ 0. According to
(56) , the equivalent impedance will be practically the
same as without the resistor R. In the limit where x = 0,
R doesn't affect the equivalent impedance, and we conclude
that the locus of the equivalent impedance will be a
symmetric curve with center at the origin and tangential to
the constant resistance circle at x = 0.

As we see from Fig. 11, the assumption of a circle
like the locus of z is appropriate, and is exact for

eq
: [} ]
angles of modulation close to 180° at ports a-a and b-b
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Fig. 11,

Lossy transformation of unbalanced states.
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of Figs. 9 and 10 (see Appendix E). bn a scaled plot,
the difference between points 3,4 and 3',4' is negligible
and the circle assumed will be the actual locus of the
four impedances. Therefore, the absolute value of the

reflection coefficient will be

|F|=I——§ (58)

and the losses

1 - |2 (59)

6.7 LOSSES IN A FOUR-STATE, REFLECTION-TYPE MODULATOR,

THREE-PORT IMBEDDED

Aécording to (58) and (59), the losses are directly
related to the resistance of the diodes, which determines
the final locus of the four states on the Smith Chart.
Therefore, we need an expression relating the resistance
of the diodes to é and ¢, which are the design parameters
of the 2S-RM-2PI at ports a—a' and b-bl (Figs. 9 and 10).

A locus of constant resistance on the Smith Chart is
given by

1 - u?2 - y2

r= (1 - u)s + v? (60)
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where
u=|r| cos s
and

v = |r| sin o

(61)

are the real and imaginary parts of the reflection coef-

ficient, and 68 is one-half of the modulation angle, since

it is assumed that the ON-OFF impedances are the complex

conjugates of each other.

Substituting (61) in (60), we get

2
r = 1 - |r] 5 (62)
1 -2 |rfcos 6 + |T|
|T| can be expressed as (see Appendix A)
0
Ir| = —& . (63)
/6: + 4
Substituting (63) in (62), we found
"
2
r = = — . (64)
Qi + 2 - Q¢(Qi + 4)1/2 cos ¢/2

Equation 64 is an exact expression for the resistance of

the diodes when the ON-OFF impedances are the complex

conjugates of each other, and can be used to evaluate the
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the losses for a specific value of 4. However, a much
simpler expression, and also exact, is the following,
from (26)

r = EJ.)LI_ (65)

-~

Q

Equation 65 is a helpful relation which avoids a tedious
evaluation of (64). On the other hand, it states that
changes in 2|x| (or modulation angle at ports a—a' or
b—b', Figs. 9 and 10) will produce changes in r of the
same magnitude since é is constant. Therefore, there is
‘a maximum insertion loss limit that can be reached with a
reciprocal network, since the characteristic impedances
of the lines (Figs. 9 and 10) will not change the resis-

]
tive part of the impedance at port 2-2 .

6.8 MAXIMUM LIMIT OF INSERTION LOSS IN A FOUR-STATE
REFLECTION-TYPE MODULATOR
According to {(44), the condition for equally spaced

states in a four-state modulator is

N
]
I+

j1.4142

and
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Therefore, from (65), we get \

_ 2.8284
g = S
Q
and a (66)
r, = <%
b g
b

]
Hence, the total input resistance at port 2-2 Fig . 9

before R is connected in parallel is

_ 2.8284 _ 2 (67)

0, 9

Substituting (67) in (58), we get the absolute value of
the reflection coefficient, after R is connected in paral-

1
lel to port 2-2 .

1 - 22, 2
Q. 0
Ir| = /i b (68)
1+ 222, 2
0, 0,

Equation 68 is a general equation for all 3-port networks
discussed in this paper, independent of the characteristic
impedances of the lines.

An evaluation of the losses in this reciprocal network
shows that they are much similar to those predicted by

Schlosser.15 We must point out that the losses plotted in
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Fig. 12 are the minimum losses that we can expect from a
4S-RM-3PI. A decrease in the angle of modulation at port
a—a. and b-b' (Figs 9 and 10) actually reduce the -
losses (see Appendix E). /
6.9 EIGHT-STATE REFLECTION-TYPE MODULATOR
A logical choice is a parallel combination of two
4S-RM-3PI networks which will give an 8S-RM-5PI network.
Let us analyze the circuit of Fig. 13. In terms of
the 2S-RM-2PI impedances, the angle of the reflection
coefficient at port 2—2' is
1l Za 2y z fg

[(2+ ) + (— +
2-2 1 Ko ky  ky

)] (69)

A plot of (69) is shown in Fig. 14. Following the same
reasoning as for the 4S-RM-3PI network, each factor in

(69) must take on the following values

z 2 z z

a b c d
— + + 0
ky "k k3 " Ky
m, + m, my - My o

2 2 4

M, + m, my - m, 6
-2 - 2 3
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Fig. 12. Minimum loss of a four state reflection-type modulator.
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2 2 2

my + m., m, - m, i
2 2 1

_(m3 + m4) m4 - m3 .
2 2 4
2 2 3

_(ml + m2) m, - my .
2 2 2

_(my 4 my) m o= om, .
2 2 1

The first and second columns have four different values,
which can be plotted as is shown in Fig. 15. If we want
identical modulators at each port of the modulator in

Fig. 15, we can choose the values of k's to achieve this.

For example, make Z, = 2, = Z, = zq = tj. Then
1 my + m, + m +m,
kl - 4
1 my +m, - m - m,
k2 4
(70)
1 m, +m, - m; - my
k3 4
1 my = my - m, + my
k 4
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Since the states are equally spaced on the r-plane, for

8 states we find

B _r_%
2 2 2
(71)
?A=1_e_l
2 2 2

The values of (71) permit us to simplify (70). The final

values are

in 6 in 6
sin 8, sin

1 sin 6_.+sin 61)

tan 6., tan 9
tan el+tan 02

W
i

2(

{(72)
tan 6, tan 6
tan 6_.-tan 61

~
]

2 (

sln el sin 6

4 sin 62-51n 01

Since e1 = 22.5% and 62 = 67.5°, we get

0.541197

0.707109
(73)
=1

A A MR
N
n

1.30657

60



6.10 LOSSES IN THE EIGHT-STATE REFLECTION-TYPE MODULATOR

As for the four-state modulator, the impedances at
the ports a—a., b—b', c—c', and d-d' (Fig. 13) are the
complex cohjugates of themselves at the other state.
Consequently, the resistive part of the input impedance
will be constant, and the locus of Zin will be a constant
resistive circle on the Smith Chart.

A parallel resistor

=1 _
R=2= (74)

H
N o
H
’

s
wwl Q
~

will move the 8 points to symmetric positions with respect
to the center of the Smith Chart; and the losses (Funda-

mental Limit) will be given by

2 _ _ 41 -r?2
Since Xy = Xp T X, = Xg = tj, the resistive part of

the input impedance, according to (44) and (65), will be

r= s 2 2, 2 (76)
Ok3 04k,

k1 9k,

Any change in kl' k2' k3, k4 will not affect this value

since, according to (65), the reactance will change by the
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same factor [This holds under the approximations made in

~ ~

Appendix C]. If we assume Qa = Qb = éc = Qd and sub-

stituting (73) in (76), we have

2 1 1 1 1
ez (6541197 * 0707109 T T * 1T.30657) (77)
Solving (77), we get
r = £2:052 (78)
0

Equation (78) in (75) permits us to calculate the losses.
A comparison between the losses in a two, four, and 8
state reflection-type modulator is seen in Fig. 16. The
preceding analysis can be extended to 16 or more states.
The plot of Fig. 16 shows the minimum loss in each type of
modulator. However , the anale of modulation of the
2S-RM-2PI has been chosen equal to 180° in order to get
the losses for equally spaced states; Therefore, in this

case, the losses are the maximum.
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@
Fig. 16. Losses in an eight, four and two state reflection-

type modulator for equally spaced states.
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VII. TRANSMISSION-TYPE PHASE MODULATORS
DEFINITION. A transmission-type phase modulator is

characterized by the scattering matrix
S = ' (79)

where s in general is a complex number quantized in n
states.

DEFINITION. A network that performs (79) is identified
by NS-TM-MPI, which stands for an n-state transmission-
type modulator m-port imbedded.

To study transmission-type modulators and possible
realizations, we shall follow a similar procedure to that
for the reflection-type modulators. In this type of
modulator the 2S-RM-2PI is the basic circuit unit to build

up an n-state modulator.

7.1 2S-TM-3PI NETWORK

From (79), we know that input and output ports must
remain perfectly matched at all times.

A well-known theorem15 of 3-port lossless-reciprocal
networks states that if two ports are simultaneously
matched, the third must be decoupled. This is cenerally

done by means of a metal post conveniently located in the
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third arm of a Y- or a T-junction in waveguide inple-
mentation. A metal post can be represented by a suscep-
tance or a stub if we think in terms of a TEM realization.
We know that a diode can be represented by a single-
valued susceptance only for a modulation angle of 0°. This
means that, according to our definition of a transmission-
type modulator, the 2S-TM-3PI network is a nonrealizable
configuration because the two ports are simultaneously
matched only for 0° of modulation on the 25-RM-2PI network
located in the third arm. If this is done, the whole sys-
tem has invariant parameters with time, and no possible

quantized states can exist.

7.2 2S-TM-4PI NETWORK

To get a two-state transmission modulator, we are
forced to increase the number of diodes by one, and
consequently the number of ports by the same amount. The
most popular four-port lossless-reciprocal networks are
the quadrature hybrid and the ring hybrid.

For the first one, the condition of simultaneous

matchingls at ports three and four (Fig. 17) is
(80)

where Pl and P2 are the reflection coefficients at ports
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1 and 2, respectively. It is possible to get (80) by
employing two 2S-RM-2PI networks with diodes perfectly
matched. If the diodes are not perfectly matched, but
both have the same 6, then (80) is achieved by a proper
extension of the length of one arm (Fig. 17). 8% coef-
ficients at RP-2.

| The ring hybrid is designed in a similar way, but

a, A\/4 piece of line should be added to one arm, in order

to get
(81)

which is a necessary condition16 for simultaneous match
at ports 3 and 4.

To emphasize the importance of a perfect match between
diodes, we write the expression of the absorbed power at
the input of a 25-TM-4PI network. In the case of a quad-

rature hybrid we have16

Fl + F2

2
2
P, = % [|a3| - ] , (82)

where a, is the input signal, and Ty and I, are the
reflaction coefficients at ports 1 and 2, respectively.
If a phase shift exists between ry and F2, these

reflection coefficients can bhe expressed (see Appendix a) as
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¢
r, = 1
/62 4 4
%
(83)
Q
¢
ry = 2 elf,
/22
0 + 4
4 2
Substituting (83) in (82) gives
02 02
1 % ¢y
Py=3 1 |73 o -
4 (0 + 4) 4(0 + 4)
2 ¢5
. (84)
Q. Q, 2 cos 6
4179 2
/73 ¥ 251"
2/ (Q¢l + 4)(Q¢2 + 4)

7.3 LOSSES IN A 2S-TM-4PI NETWORK
When the modulator is properly designed the losses are

given by

n| = 62 1/2 (85)
+ 1

2(1 - cos ¢)

7.4 4S5-TM-4PI NETWORK
Since the constraint of simultaneous matching and the
input and output ports of a quadrature hybrid determine

that symmetric configurations at the other ports must be
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used, a 4-state transmission-type modulator is designed
by employing a 4S-RM-3PI network at ports 1 and 2 of a
quadrature hybrid (Fig. 18).

Condition (81) is satisfied only if the 4S-RM-3PI
networks are identical. The asymmetric junction permits a
straightforward design of the 2S-RM-2PI network. The
45-TM-4PI network has two remarkable advantages compared
with the standard 4-state modulator shown in Fig. 19.

l. It reduces the number of hybrids by a factor of
two. This fact not only has economic advantages
and simplifies the circuit, but what is more
important, it reduces the losses considerably
if the implementation is made in microstrip.

2. It has two diodes connected at ports 1 and 2
(Fig. 17) instead of one diode, hence the power-
handling capacility is increased by a factor of
two. This makes it possible to increase the output
power by using the same diodes as in the circuit

of Fig. 19.

7.5 CASCADING FOUR-STATE TRANSMISSION-TYPE MODULATORS
It is possible to get 2n/2 states, where n is the
number of diodes, by cascading 4S-TM-4PI networks.

To illustrate the design procedure, we shall design
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a 165-TM-6PI network. Suppose that in the circuit of Fig.
20 we have a 4S-TM-4PI network at the hybrid of the left
hand. Also suppose that the four states are equally
spaced, with the angles indicated at RP-2. If we draw
these points on the Smith Chart, we see that the second
4S-TM-4PI network should be designed for the angles indi-~
cated at RP-4. A combination of angles at RP-2 and RP-4
will give 16 equally spaced states. If we want 64 states,
another 4S5-TM-4PI network is needed with angles equal to
the preceding section divided by 4. o

Now a question arises: How should a 4S5-TM-4PI network
be designed with states equally spaced but shrunk toward
the 0° phase value? To answer this question, remember
that first we need a 4S-RM-3PI network of the same charac-
teristics as the transmission modulgtor. When we discussed
the 4S-RM-3PI network, we found it useful to employ asym-
metrical junctions, to get identical conditions at ports
a-a' and b-b' (Fig. 10).

~We shall repeat the analysis and solve (49) for the
values of indicated at RP-4 (Fig. 20).

The four combinations are

Zal

—= + z, = j0.30335

k 1

2

)

—= 4z, = -30.0985 (86)
k 1



a4
—= + z, = +j0.0985
k 2
z
22
— +tz = -30.3035.
k 2
From (86), we find
z
!
—= = j0.200925
k
za2
- = -40.200925 (87)
2z, = j0.102425
1
z, = -30.102425.
2
If we make k = 0.506 in (86), we shall get identical
conditions for the design of the 2S-RM-2PI modulators.
In this case
Zy = 2 = +30.102425, (88)

.The modulation angles of the 2S-RM-3PI modulator

“will be

1

N o
|

= 2 tan - 0.102425

NI m—e
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and the full angle of modulation will be

= = ° '
¢a ¢b 23°50"'. (89)
Four 2S-RM-2PI networks for angles of modulation given by
(89) with dissimilar or identical diodes can perform the
45-RM-3PI network to get a 4S-TM-4PI network with modulation

angles of + 11.25° and + 33.75°, as is indicated at RP-4

(Fig. 20).
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VIII. CONCLUSION--MEASUREMENTS AND RESULTS

Several modulator have been built, and the results
are in agreement with theory.

Reflection-type phase modulators for modulation angles
of 45°, 90°, and 180° were designed. We found that the
180° phase modulator ic the most difficult to implement.

According to Fig. 4, the O, is almost the same for angles

¢
greater than 135°, which makes the matching condition very
sensitive to tolerances in the network.

For lower values (90°-45°) great accuracy can be ob-
tained with tolerances of + 1. This must be considered in
the design of reflection or transmission-type modulators
of more than two states.

We have shown that with proper choice of the charac-
teristic impedances of the transmission line, the ON-OFF
characteristic of the diodes can be adjusted to some
specified value. Since accuracy is needed, the author
recommends the use of a 25-RM-2PI network for lower angles
of modulation such as the circuit unit to build up an n-
state modulator.

The broadbanding technique has been tried with results
predicted by theory. A frequency band equivalent to 10%

of midband frequency is obtained with satisfactory results.

A 2S-RM-2PI network for 90°, with a Tchebycheff matching
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network17 of 3 sections is shown in Fig. 21-A. The angle
of modulation vs frequency is plotted in Fig. 22. The
circuit of Fig. 21-B is a 180° 2S-RM-2PI network and the

circuit of Fig. 21-C is a 180° 2S-TM-4PI network.

8.1 DESIGN EXAMPLES
(a) 2S-RM-2PI network
Diode impedances z, = 0.05 + j0.9

Normalized to 50 @ Z, .055 - §0.65

Modulation angle ¢ = 180°.

From Egs. 13, 15, 16, and A9b, we get

29.5525

o
!

5.25596

o
]

z¢ = 0.7078 + j0.0959.
A fixed-length matching network12 to match this
impedance to the 50 @ line is a line of A/8 characteristic
impedance z, = 50|z¢| = 39.1665 o, and a A/4 line of

characteristic impedance equal to

r
= 50 // ¢ = 49.1482 q.
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Modulation angle vs .frequency of a 90° reflection- type
modulator with broadband matching network.
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When x¢ + 0, the diode is suitable for broadband operation,
and the design is carried out by matching two resistive
impedances.
(b) Two-state transmission-type modulator - 4PI
(i) Design of 2S-RM-3PI network
Diode 1 = = 0.05 + j0.9

z., = .055 - j0.65

Diode 2 = 0.05 + j0.84

]
.
(o)
i3
(8]

i

30.575

¢ = 180°.
Therefore

29.5575

O
[
i

= 29.831

0
N
I

5.25595
5.28189

N
i

0.776396 + j0.161929

N
]

0.707869 + j0.0952759.

Using the same matching network, we have

39.1665 Q

V4 2
a ®11/8

2z = z 49.1482 Q
by %12/4

and
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—~ — -

z = = 35.669 @

V4
2 %21/8

= z 45.163 Q.
2 *2x/4
(ii) Length correction in one arm
To get Pl = F2 (Fig. 17), we need to
include a piece of line to correct the
phase of the reflection coefficient in one
arm. The reflection coefficient at RP-2,

upper branch, is

Zq’(zjt -502) +J (2 267 » 2, 50)

z, (26: +502,) +J (2, 24, - Ze) $2)

Since zy =r) + jxl, the device impedance in one

state, the angle of the reflection coefficient is given by

t 3 [ A t 3
9: = /‘o"”" 7 Z‘I 4 Zal S0 '5-0241 X, _ .{o”" r1251 -5o0 Za,szo b[ K
Zo,24,"- 50 20,7, - %, 24,° Zo, 26, 5020, 5/ - %, 24 °

For the lower branch, a similar expression is obtained
with the parameters of the second matching network. There-

fore

81



8.2 COMPARISON OF MATCHING NETWORKS FOR SEVERAL ANGLES OF
MODULATION
In Table I is a comparison begween matching networks
for several angles of modulation. As we have shown, for
¢ = 180° there is only one equivalent matching impedance,
and consequently only one solution for the matching net-
work. PFinally, for the sake of completeness, the case of
asymmetric simultaneous mappings of two points on the
Smith Chart has been included. We hope that in some
application (certainly not for phase modulation), it may

be useful. (See Appendix D).
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APPENDIX A

We shall discuss the hyperbolic distance and some

-7 The hyperbolic distance between two

quality factors.
points on the I-plane can be obtained by applying a rigid
displacement that moves one of the points to the center

of the chart, and by taking the logarithm of the voltage

standing wave ratio of the second point.e'9 Let

zy = 1) + Jx;

(al)

z, r, + ix,

be two arbitrary impedances normalized to 50 . A rigid
displacement in this geometry is equivalent to a lossless
transformation that can be carried out as follows: (a)

Add a reactance —jxl. Then

S |
(A2)
z, = Iy + j(x2 - xl).
(b) Normalize to r. Then
z1 =1
(A3)



r b
2 ., 02
z, = — + j(——).
2 ry T
With one point at the origin of the chart we calculate

the hyperbolic distance according to the definition.

The reflection coefficient at z, is

no g ()
[T]-| 2| | k (A4)
£+ i X,
* ',T:' +J /.‘ x)‘ﬁ/
g
2 2
»* le - T, + -KX,
AR R A AR .2
2 2
(’zrr:)-‘ (7(2-)(,) (AS)
where the star indicates complex conjugate.
The voltage standing-wave ratio at zz_is
n
VSWR . s IR n6)
1-1 4] |
and the hyperbolic distance is given by
8§ = log VSWR. (A7)
From (A6) and (A7) we also have
F = /&hég
/ z / 3 (A8)
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The hyperbolic distance is an invariant under lossless

transformations and also all functions of § that we may

define.

Equation A5 has been proposed as a quality factor,7

although its invariance has not been shown in a geometrical

context.

Kurokawa's Q is given by

b-

2

/

J;

-1
)t
Substituting (A5) in (A9a) gives

é _ \/(r-r.)ﬂ (%-%a2 )"

Also from (ASa)

Introducing (Al10) in (A6), we get

Vs e

VSWR =

«h

15 4
Vdre -4

Substituting (All) in (A7) gives

< log

LY
+Q
A
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or equivalently
A

Q = 25/'7/) _é_ (A]_3)

Equations Al2 and Al3 express the relation between
hyperbolic distance and é. A function of § similar to
(A1l3) has been proposed as a figure of merit for variable

. 6
and nonreciprocal networks.
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APPENDIX B

For ¢ = 180°, 62 - 4qe E/ﬁfﬂlHence the condition for
x, =0 1is
¢

b =0. (B1)

From (16)

&(Yl-x.)rl(éP..fZ)‘lﬂ,‘ 451(%1‘x;) = O

k, K, (B2)

To simplify the analysis, it is convenient to make
some approximations, based on standard characteristics of

switching diodes

A’ = X,’-X: S/-ncg /I‘,t f;z/zé /,XIZ_X:/

t S

A ~r~X . 2
Q: ‘/;'_;- Stnce (X:-Xa) >> (r,-/;_)
778

Al 4 . A2 (B3)
0¢ = 0"2. Since Q s> /
¢
Substituting (B3) in (B2) gives
2(texdr L #exa)inss (B4)
(I',-/;_) (I’,_/“)z
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From (B4) we find

X X
2 1
= (BS)
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APPENDIX C

For four points equally spaced on the T-plane,
it is found that the relation between reactances at

asymmetric states is the following

1

Assuming that the transformed impedances due to the paral-

lel resistor i515

z=1r 4+ 0— + jx. (Cc2)

]

We can equate the amplitude of the reflection coefficients
at two asymmetric points, and calculate the optimum value
of R, to balance the four points. Therefore, (C2) and (Cl)

in the expression of the reflection coefficient gives

1 a . : 2 2
r+ —5_ =1 A Xz _
(rewe)ege (7 B)ex
r: Y 41)1._— (r'. =2 4 + X
( Xzf x: 8*-} :

Solving (C3), we obtain

2 2
I"ﬁ#-(l‘i/)’{-#l‘[x‘::*x‘ﬂ*/:o (ca)
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or equivalently

fﬁjf- (r‘.;)/f + /‘(X/la.){:)/e.f-/ = O

(C5)
Since R is of high value, (C5), it is approximated by
2 a
f’e-e+l"(x,z,¢,xz):0 (C6)
Solving (C6), we get
- /X \["4"1/70’47(;)
B 2r (c7)
under the following condition
ari(xtexst) 41
/E0E (c8)
Substituting (65) in (C8)
r A
3-2[7&”15) (Ya?l-x-[';) se |
A2
Q
and assuming 01 =02,
A ’/Z
&> 4VR (%o X8)(%e" xé*) (9)
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Equation (C7) can be written as: R = %. Now going

back to (C3), and replacing K- .’!'. we get the ampiitude of

the final reflection coefficient at four states

//—r/ ; ["(/fx:)-/] +X¢l 10
[ r(/47,')+J £ X,

Rearranging terms, we get

ri(7+x )-2F+ 1
/7= ’) (C11)
rt (/,LY“) ¢ 21+ |/
The term r2(1 + xf) can be neglected if
f'//J-x:) ZL 27r (C12)
From (65)
FrLotX
Ql
(C13)

Substituting (Cl3) in (Cl2), we get the condition under

which (Cl2) is valid

Q 55 (7Harxs) [' +(a ‘X‘)j (C14)

Equation Cl4 is valid for é > 20, if x is approximately
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less than {:. Assuming that condition (Cll) will be
2

/7 /- /=27 (C15)

/s 27

Equation Cl5 in a first order approximation is

N P — (C16)
l+ r

Equation Cl6 is a circle with its center at the origin of
the Smith Chart. If we consider approximation (C9) and
(C12) , we conclude that the locus of zeq is an elipse. We
have assumed this approximation which gives the minimum
losses that we can expect in a 4S-RM-3PI network;from (C8)
and (C9), We see that the best way of achieving the mini-
mum losses is designing a 2S-RM-2PI network of low angle
of modulation, and selecting the reference planes at ports
a-a' and b-b' of Figs. 9 and 10 in such a way as to get the

ON-OFF impedances in the second and third quadrant of the

Smith Chart.
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APPENDIX D

Determination of z¢, in the asymmetric case will be

discussed.

T ' (p1)

] ]
where ry and r, are the reflection coefficients corresponding
]

to the transformed impedances z, and z;. Also as in the
symmetric case we want a fixed angle ¢ between r; and r;.
To simplify the analysis, we define the problem in
the following way: Having two impedances z, and z,, a loss-
less reciprocal imbedding network is needed to transform
the impedances to zi and z;, respectively, in such a way
' '

that the reflection coefficient rl corresponding to z,

satisfies
\77'\= 7, (p2)

where y is a real constant, previously specified.

The maximum value of y according to (A8) will be

Zlﬂl;z = /E)nég (D3)
2
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where C is the hyperbolic distance between zy and Z

(Fig. D1l). 1In terms of é, C is expressed as

C-log | V& 2+ @
=Y = A (D4)
Q +4 -q
The minimum value of y is zero. Therefore,
02 &8 ¢ lanh C (D5)
2

Since y is given, the hypetbolic distance B (Fig. D1)

according to (A8) is given by

B - -?/:7"4 -’(f'. (D6)

With values of two sides of the triangle z¢, Zor 2,
and one angle (¢), we proceed to solve a general triangle
in non-Euclidean hyperbolic geometry. The following

relation is useful.

cosh( = Ca‘/ACaSéB"5"”4’45""4'Bc°5%' (D7)

From (D5), solving for sin hA, after some manipulation,

we find
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Fig. D-1. Asymmetric mapping of two impedances.
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SI.IIAA = -S’;’/’B QSAC m" z \/:054"( mélﬁ - Cos‘l?il;ﬂf ‘ﬁc'o.f/-cosﬁ “5
5"'14‘5 Cps;{ - 6054‘5 (D8)

Hence, A is known, and the value of K 1is

¥

K=z =—— -
fank A (D9)

with the values of A and B, we calculate from (2l3)

A

0,: -ZS’OﬁA
2

dl = 251.'1/' g (DIO)
2

Equations D10 permit us to write two simultaneous
equations as in (14), to get (15) and (16) with
A2 Az
kK, = 6(244’.)-’5(2“9&) (D11)

In the asymmetrical case, we get four solutions, since
(D8) has two solutions. This fact can be understood by

means of a graphical analysis.
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