
MIT Open Access Articles

L-Sweeps: A scalable, parallel preconditioner
for the high-frequency Helmholtz equation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1016/J.JCP.2020.109706

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/136075

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/136075
http://creativecommons.org/licenses/by-nc-nd/4.0/

L-Sweeps: A scalable, parallel preconditioner for the
high-frequency Helmholtz equation

Matthias Taus1,2, Leonardo Zepeda-Núñez3,4,5, Russell J. Hewett6,7, and Laurent Demanet2

1Institute of Analysis and Scientific Computing, Vienna University of Technology
2Department of Mathematics, Massachusetts Institute of Technology

3Computational Research Division, Lawrence Berkeley National Laboratory
4Department of Mathematics, University of California Berkeley
5Department of Mathematics, University of Wisconsin-Madison

6Total E&P Research and Technology, USA
7Department of Mathematics, Virginia Tech

September 3, 2019

Abstract

We present the first fast solver for the high-frequency Helmholtz equation that scales optimally in parallel, for
a single right-hand side. The L-sweeps approach achieves this scalability by departing from the usual propagation
pattern, in which information flows in a 180◦ degree cone from interfaces in a layered decomposition. Instead, with
L-sweeps, information propagates in 90◦ cones induced by a checkerboard domain decomposition (CDD). We extend
the notion of accurate transmission conditions to CDDs and introduce a new sweeping strategy to efficiently track the
wave fronts as they propagate through the CDD. The new approach decouples the subdomains at each wave front,
so that they can be processed in parallel, resulting in better parallel scalability than previously demonstrated in the
literature. The method has an overall O

(
(N/p) logω

)
empirical run-time for N = nd total degrees-of-freedom in a

d-dimensional problem, frequency ω, and p = O(n) processors. We introduce the algorithm and provide a complexity
analysis for our parallel implementation of the solver. We corroborate all claims in several two- and three-dimensional
numerical examples involving constant, smooth, and discontinuous wave speeds.

1 Introduction
The Helmholtz equation, a time-harmonic form of the wave equation, arises in modeling many physical phenomena,
including electromagnetic and subsurface wave propagation. Such applications are of interest when solving related
inverse problems that require solutions at high frequency to recover fine-grained details, e.g., ultrasound and subsur-
face recovery. In subsurface recovery, the propagation medium tends to be extremely complex and the asymptotic
approximations ubiquitous in other modalities are not sufficiently accurate, thus the numerical solution of the wave
equation is required. Such computations are the backbone of the full-waveform inversion (FWI) method for subsurface
recovery [81, 63]. In the context of time-harmonic wave equations, such as the Helmholtz equation, accurate recon-
structions of the subsurface via FWI require solutions at a wide range of frequencies. The finest recoverable detail is
determined by the highest frequency for which the wave equation can be solved. Consequently, the efficient solution of
time-harmonic wave equations at high-frequency is extremely important in scientific and industrial applications.

We consider the Helmholtz equation with variable wave speed and constant density on an open domain Ωbulk with
absorbing boundary conditions,

−∆u − ω2mu = f in Ωbulk,
+ A.B.C on ∂Ωbulk,

(1)

where for x ∈ Ωbulk, m(x) = 1/ c2(x) is the squared slowness for the p-wave speed c, u is the solution wavefield, ω is
the characteristic frequency, and f is the source density. We consider Ωbulk to be a square or a cube, but this is not

1

ar
X

iv
:1

90
9.

01
46

7v
2

 [
m

at
h.

N
A

]
 1

5
O

ct
 2

01
9

a limiting assumption. While we consider only problems of this form in the ensuing developments, the method we
propose is a framework that can be applied to other time-harmonic formulations that model more complex physics.

In particular, we consider discretizations of (1) in the high-frequency regime. This means that the coarsest structure
in the spatial discretization (mesh) has to scale as 1/ω. In this regime the solution of the discrete system is notoriously
difficult [29]. It is well-established that, independent of the discretization, the spectrum of the resulting system
matrix deteriorates as the frequency ω increases [57, 69]. Therefore, it is not feasible to solve systems arising from
high-frequency problems without the use of specialized solution strategies which directly address this issue.

A number of solvers for solving the resulting linear systems are available, including direct methods (e.g., [82]),
domain decomposition methods [78], and preconditioned iterative methods (including, e.g., multigrid and shifted-
Laplacian methods) [67, 39]. We consider a solver or a preconditioner to be sequentially scalable if, up to logarithmic
factors, it can compute a solution in O(N) run-time in a sequential computational environment where N is the total
number of degrees-of-freedom in the discrete problem. We consider a solver or a preconditioner to be parallel scalable
if, up to logarithmic factors, it can compute a solution in O(N/p) run-time in a parallel computational environment
with p = O(n) processors, for a single right-hand side. Here, n is the number of degrees of freedom in one spatial
direction, i.e., n = O(N 1

d) where d is the problem dimension. In this paper, we present what we believe to be the first
parallel scalable preconditioner for the high-frequency Helmholtz equation.

Currently, no scalable direct method, sequential or parallel, is available for the high-frequency regime. Standard
domain decomposition methods (DDMs) localize the problem to subdomains and transfer information between sub-
domains. Domain decomposition methods can be applied as a direct solver (e.g., in the context of optimal Schwarz
methods [35, 33]), but the resulting solver is not scalable. Domain decomposition methods can yield scalable precondi-
tioners, both in parallel and sequentially. However, the resulting preconditioned iterative solver is not scalable because
it requires O(ω) iterations. This shows an important aspect for the construction of solvers based on preconditioning: a
quality preconditioner has to be scalable but also the resulting iterative method has to converge with limited growth in
iterations as ω increases. In this regard, we call a preconditioner effective if the resulting preconditioned system can be
solved in O(logω) iterations. Classical DDMs exhibit sub-optimal behavior for two reasons. First, artificial and spuri-
ous reflections are induced by imprecise information transfer between subdomains. Second, long-range wave-material
interactions are not tracked consistently.

Sweeping preconditioners have been introduced [26, 80, 16, 85, 32] to alleviate these drawbacks, while preserving
the advantages of classical DDMs. Sweeping preconditioners make use of layered domain decompositions, accurate
transmission conditions, and a layer-by-layer sweeping strategy. In particular, the layered domain decomposition
provides scalability by controlling growth in computational cost and memory footprint. The accurate transmission
conditions allow information to flow between the subdomains without numerical artifacts, e.g., artificial reflections.
Finally, the sweeping strategy consistently tracks and propagates long-range wave-material interactions. The resulting
approach can be interpreted as an approximate block-LU factorization, where the blocks correspond to the local problem
in each subdomain. In particular, using sparse direct solvers on blocks that arise from sufficiently thin layers yields
a method with quasi-linear (i.e., linear with poly-logarithmic factors) sequential complexity for a single right-hand
side [26, 25, 86, 53, 72, 16, 80, 56]. In the presence of many right-hand sides, the layered domain decomposition allows
for optimal parallelization [89].

Efforts to improve the performance of sweeping preconditioners have focused on obtaining better and more accurate
factorizations [80], reducing the over-all cost by restricting the unknowns to the interfaces [85, 86], and accelerating the
computation on local subproblems (blocks in the approximate factorization) with compression or parallelization [62].
Several approaches aim specifically to sparsify those blocks, thus decreasing the sequential costs [53, 86]. However,
while leveraging parallelism to accelerate the solve for local blocks decreases the run-times, it does not result in a
parallel scalable solver for a single right-hand side.

The main bottleneck of current sweeping preconditioners is a lack of parallel scalability for a single right-hand side.
The difficulty arises because the Helmholtz problem is inherently sequential, independent of domain decomposition
strategy. This sequential nature is dictated by the hyperbolic nature of wave equations and is manifested in the need
to accurately resolve the long-range interactions. The key to accurately resolving these interactions is a consistent
information transfer between subdomains, which has precluded more general domain decompositions (i.e., beyond
layered subdomains) and consequently inhibited parallelization.

In this work, we address these issues by departing from standard layered domain decompositions and introducing
a checkerboard domain decomposition (CDD) along with a new sweeping strategy that is only viable on such domain
decompositions. Our novel sweeping preconditioner consistently and efficiently tracks the wavefield across subdomains.
The preconditioner can be interpreted as an approximate LU factorization, where parallelism arises because the diagonal
blocks themselves have a block-diagonal structure. For a single right-hand side, the resulting algorithm has a O(N/p)
run-time, up to logarithmic factors, where, independent of geometric dimension, p = O(n) is the number of processors.

2

The new algorithm therefore provides the first parallel scalable solver for the Helmholtz equation at high-frequency for
a single right-hand side.

Our approach can be applied to two- and three-dimensional problems. In two dimensions, the algorithm exhibits
good weak parallel scalability. That is, as the frequency increases, and consequently the problem is refined, we refine the
CDD so that the local problems in each subdomain have constant size. In three dimensions, we apply the same strategy
as for the two-dimensional case in two of the spatial dimensions and extend the subdomains along the third spatial
dimension resulting in beam-shaped quasi-one-dimensional local problems. In either case, we employ off-the-shelf
direct solvers to solve the local problems and obtain parallel complexities of O(n logω) and O(n2 logω) in two and
three dimensions, respectively. The 3D complexity can be reduced to O(n logω) by employing existing parallel direct
solvers [64, 50] for the quasi-one-dimensional problems in each subdomain, but we do not exploit these tools here.

The new algorithm therefore results in an O(n logω) complexity for a single right-hand side, regardless of the
geometric dimension. This new algorithm requires sweeps across the CDD in both cardinal and diagonal directions,
and we can exploit parallelism in all directions orthogonal to the current sweep direction. While this new strategy
increases parallelization, the sweeps are still inherently sequential and cannot be parallelized. Thus, we do not anticipate
further reduction in complexity, for a single right-hand, due exclusively to modification of the domain decomposition.
In the presence of O(n logω) right-hand-sides, it has been shown, however, that the sequential nature of the sweeps can
be mitigated by pipelining multiple right-hand sides [89]. Using pipelining, solutions for all O(n) right-hand-sides can
be computed with O(n logω) parallel complexity, i.e., the average parallel complexity per right-hand-side is O(logω).

1.1 Related Work
Our method is inspired by the method of polarized traces, which is well-established in the literature and, in contrast to
other proposed preconditioners, has been proven applicable for problems with high-order discretizations [87, 73] and
highly heterogeneous (and even discontinuous) wave speed distributions [86].

Standard linear algebra techniques such as nested dissection [40] and multi-frontal solvers [24, 83], coupled with
H -matrices [9], have been applied to the Helmholtz problem [42, 19, 82, 1]. While these methods take advantage of
compressed linear algebra to gain more efficiency (e.g., [6]), in the high-frequency regime they still suffer from the
same sub-optimal asymptotic complexity as standard multi-frontal methods (e.g., [22, 2, 18]).

Multigrid methods (e.g., [48, 13, 28, 67, 58, 28, 3]), once thought to be inefficient for the Helmholtz problem,
have been successfully applied [14, 45, 71]. Approaches stemming from the complex-shifted Laplacian [28] can be
advantageous if properly tuned. However, in general, they either require an expensive solver for the shifted problem
or require a large number of iterations to reach convergence, depending on the scaling between the complex shift and
the frequency [39]. Although these algorithms do not result in a lower computational complexity, they are highly
parallelizable, resulting in low run-times.

Within the geophysical community, the analytic incomplete LU (AILU) method was explored in [60, 59]. A variant
of Kaczmarz preconditioners [43] has been studied and applied to time-harmonic wave equations by [51]. Another
class of methods, called hybrid direct-iterative methods, have been explored by [68]. Although these solvers have, in
general, relatively low memory consumption they tend to require many iterations to converge, thus hindering practical
run-times.

Domain decomposition methods for solving partial differential equations (PDEs) have a long history [66, 52].
The first application of domain decomposition to the Helmholtz problem was proposed by [23], which inspired the
development of various domain decomposition algorithms, which are now classified as Schwarz algorithms1. However,
the convergence rate of such algorithms is strongly dependent on the boundary conditions prescribed at the interfaces
between subdomains [35]. The subsequent introduction of the optimized Schwarz framework in [33], which uses
optimized boundary conditions to obtain good convergence, has inspired several competing approaches, including, but
not limited to [34, 11, 37, 38, 36].

Absorbing boundary conditions for domain decomposition schemes for elliptic problems are introduced by [27]
and the first application of such techniques to the Helmholtz problem traces back to the AILU factorization [31]. The
sweeping preconditioner, introduced in [25, 26], was the first algorithm to show that those ideas could yield algorithms
with quasi-linear complexity, leading to several related algorithms with similar claims such as the source transfer
preconditioner [16], the rapidly converging domain decomposition [70] and its extensions [72], the double sweep
preconditioner [80], and the method of polarized traces [85]. For an extensive review on sweeping-type methods we
direct the reader to [32].

1For a review on classical Schwarz methods see [15, 78]; and for other applications of domain decomposition methods for the Helmholtz
equations, see [20, 41, 55, 17, 54, 10, 4].

3

To our knowledge, all domain decomposition methods and sweeping preconditioners have been based on layered
domain decompositions, with one exception. In [49], a q × q CDD is considered in the context of the source
transfer method. Their proposed strategy requires p = q2 processors to obtain the sub-optimal parallel complexity of
O

(
(N/√p) log N

)
, in both 2D and 3D. The primary difference between this method and our method is the sweeping

strategy. The strategy employed in [49] is inspired by classical domain decomposition methods, while our method is
inspired by sweeping preconditioners. Consequently, our method inherits a superior sweeping strategy.

1.2 Model Problem and Discretization
We consider problems formulated within the framework of (1), where we choose to model absorbing boundary
conditions using perfectly matched layers (PMLs) [7, 46]. To preserve the solution in all of Ωbulk, using a PML
requires the domain to be extended, which in turn also implies that the solution, material property, and source spaces
must also be extended. The extended domain, Ωextended, contains all of Ωbulk, as illustrated in Figure 1a and a new
boundary value problem is formulated on Ωextended,

− div (Λ∇u) − ω2mu = f in Ωextended,
u = 0 on ∂Ωextended,

(2)

where, for brevity, we re-use the symbols u, m, and f to represent the extended solution wavefield, slowness, and
source distribution. As is customary for PMLs in domains with varying wave speed, we assume that the source
density, f , is extended by zero into Ωextended and the squared slowness, m, is extended into Ωextended along the normal
direction of ∂Ωbulk in a constant fashion, as illustrated in Figure 1b. The PML-extended Helmholtz equation (2)

(a) (b)

Figure 1: (a)Ωbulk (white) andΩextended (white and gray) and (b) part of the BP 2004 [8] wave speed (Ωbulk) extended
to Ωextended via the normal extension.

is reduced to (1) in Ωbulk by imposing that Λ is the identity matrix in Ωbulk. In the PML region, Ωextended\Ωbulk,
Λ is a complex valued diagonal matrix which depends on the PML formulation, and m and f are complex-valued
functions, obtained from imposing the PML. Details of the precise formulation used in our developments are provided
in Appendix A. Equation (2) is effectively a complex-valued boundary-value problem in Ωextended with homogeneous
Dirichlet boundary conditions. In the remainder of the discussion, we consider (2) to be the canonical problem and
therefore, for simplicity of notation, denote Ωextended as Ω.

When (2) is discretized, we obtain the linear algebraic system

Au = f (3)

where A is the model-dependent system matrix, u is the solution vector, and f is the vector of the source density f . In
this paper we restrict our discussion of absorbing boundary conditions to PMLs and discretization to finite-difference
methods. These restrictions are merely to simplify the exposition: other transparent boundary conditions, such as
absorbing layers or sponge layers, and other discretizations, such as higher-order finite differences and those derived
from finite element methods, may be used in this framework. For 2D problems we use standard 5-point finite difference

4

(a) (b)

Figure 2: A schematic representation of the truncated (a) half- and (b) quarter-space problem.

stencils and in 3D, we use 9-point stencils. As a result, the discretization has N global degrees-of-freedom and n = N
1
2

and n = N
1
3 degrees-of-freedom in each spatial dimension for two- and three-dimensional problems respectively.

For the PMLs we use a cubic PML profile function. As we increase the frequency of the problem, we do not
increase the width of the PML. Instead, we choose the PML width so that the number of wavelengths is constant in the
PML region, and increase the absorption constant logarithmically with the frequency. This is motivated by an analysis
of the PML [12], where this choice is rigorously justified for a more complex PML-profile. In our work, we employ
the same strategy for the cubic PML-profile and obtain satisfactory results. Details on the construction of the linear
system and the PMLs are given in Appendix A.

1.3 Continuous Polarization
Themethod of polarized traces was introduced as a solver [85] and then as a preconditioner [88] for the linear system (3).
At its core, the method of polarized traces spatially subdivides the discrete degrees-of-freedom in Ω into layers and
computes an approximate solution to the global wavefield by sweeping over the layers and solving a local discrete half-
space problem in each layer. Following [85], the solutions of the half-space problems are called polarized wavefields.
In this work, we make extensive use of this concept and therefore provide a brief review, in the continuous setting, in
this section. In Section 1.4, we present a similar treatment in the discrete context.

Consider the boundary-value problem (2) with a source density function f supported only in Ωbulk. Let Γ be an
interface dividing Ω into two regions, Ω1 and Ω2, such that the support of f lies entirely within Ω1. For example, Γ
could be a straight line (Figure 2a) or an L-shaped line (Figure 2b).

The wavefield in Ω2 can be computed from the representation formula

u(x) =
∫
Γ

µ(y)G(x, y)dsy −
∫
Γ

λ(y)
[
n(y) ·

(
Λ(y)∇yG(x, y)

)]
dsy x ∈ Ω2, (4)

where

λ = u|Γ, and µ = [n · (Λ∇u)]|Γ
are the Dirichlet and Neumann traces on Γ, and G(x, y) is the Green’s function corresponding to the problem (2), i.e.,
for x ∈ Ω

− divy
(
Λ(y)∇yG(y, x)

)
− ω2m(y)G(y, x) = δ(x − y) y ∈ Ω,

G(y, x) = 0 y ∈ ∂Ω.

This formula directly follows from the divergence theorem and properties of the Green’s function, assuming that Λ is a
diagonal matrix.

Equation (4) requires knowledge of the Dirichlet and Neumann traces of the solution almost everywhere on Γ.
Thus, corners in Γ are admissible, as in the quarter-space problem, even though the normal is not uniquely defined.
Using (4), the solution u can then be computed on Ω2. Extending equation (4) to all of Ω,

U(x) =
∫
Γ

µ(y)G(x, y)dsy −
∫
Γ

λ(y)
[
n(y) ·

(
Λ(y)∇yG(x, y)

)]
dsy x ∈ Ω, (5)

5

it can be shown that U vanishes on Ω1,

U(x) = 0 for x ∈ Ω1. (6)

Following the terminology of [85], we call (6) the annihilation condition, Γ the polarization interface, andU a polarized
wavefield. A proof of the annihilation condition (6) is provided in Appendix B.

1.4 Discrete Polarization
A discrete counterpart of the polarized wavefield U can be derived by constructing a discrete solution that satisfies the
discrete analogue to the annihilation condition in (6). Consider the discretization points corresponding to degrees-of-
freedom in (3), as well as an interface Γ which does not intersect with any discretization point, as illustrated in Figure 3
for both the half-space and quarter-space subdomains. Given a discretization-dependent distance δ (e.g., δ = 1 for
a classical 5-point finite difference stencil in 2D), such an interface divides the degrees-of-freedom into four sets, as
labeled in Figure 3:

1. Γ1, the set of all degrees-of-freedom physically contained in Ω1 and δ-adjacent to Γ;

2. Ω1, the set of all degrees-of-freedom physically contained in Ω1, excluding Γ1;

3. Γ2, the set of all degrees-of-freedom physically contained in Ω2 and δ-adjacent to Γ;

4. Ω2, the set of all degrees-of-freedom physically contained in Ω2, excluding Γ2.

Figure 3: A schematic representation of four sets of degrees-of-freedom Ω1, Ω2, Γ1 and Γ2.

Upon reordering the degrees-of-freedom with respect to these four sets, the discrete system (3) can be rewritten as

©­­­«
AΩ1Ω1 AΩ1Γ1 0 0
AΓ1Ω1 AΓ1Γ1 AΓ1Γ2 0

0 AΓ2Γ1 AΓ2Γ2 AΓ2Ω2

0 0 AΩ2Γ2 AΩ2Ω2

ª®®®¬
©­­­«
uΩ1

uΓ1

uΓ2

uΩ2

ª®®®¬ =
©­­­«
fΩ1

fΓ1

fΓ2

fΩ2

ª®®®¬ , (7)

where AΓ1Ω1 denotes the slice of the matrix A generated from the rows corresponding to Γ1 and the columns corre-
sponding to Ω1. The remaining submatrices are similarly generated. In the same way, the vector uΩ2 (and similarly
all other vectors) denotes the slice of the vector u with respect to Ω2. As in the continuous case, we consider the case
without sources in Ω2, i.e., fΩ2 = 0 and fΓ2 = 0. Then, due to the invertibility of A, it is easy to see that the solution U
of the linear system

©­­­«
AΩ1Ω1 AΩ1Γ1 0 0
AΓ1Ω1 AΓ1Γ1 AΓ1Γ2 0

0 AΓ2Γ1 AΓ2Γ2 AΓ2Ω2

0 0 AΩ2Γ2 AΩ2Ω2

ª®®®¬ U =
©­­­«

0
AΓ1Γ2 uΓ2

−AΓ2Γ1 uΓ1

0

ª®®®¬ (8)

satisfies

U =
©­­­«

0
0

uΓ2

uΩ2

ª®®®¬ .
6

Consequently, the discrete counterpart of the polarized wavefield U is

U =
©­­­«
AΩ1Ω1 AΩ1Γ1 0 0
AΓ1Ω1 AΓ1Γ1 AΓ1Γ2 0

0 AΓ2Γ1 AΓ2Γ2 AΓ2Ω2

0 0 AΩ2Γ2 AΩ2Ω2

ª®®®¬
−1 ©­­­«

0
AΓ1Γ2 uΓ2

−AΓ2Γ1 uΓ1

0

ª®®®¬ . (9)

From the right-hand side of (8), one can easily see that knowledge of both uΓ1 and uΓ2 is required in order to
compute U. By construction, these sets contain information about the discrete wavefield and its normal derivative in
the vicinity of Γ. Thus, as with the continuous case, the discrete case also requires information about the Dirichlet and
Neumann traces to compute the polarized wavefield U in Ω2. In fact, [85] demonstrates, using similar techniques, that
a discrete counterpart of the representation formula (4) can be derived.

Finally, our technique is easily extended to more general discretization techniques, as long as they allow for a
reordering of the degrees-of-freedom to the block-tridiagonal system (7). Depending on the discretization, change in
the selection of the sets Γ1 and Γ2 may be required. Similar schemes have been applied for many different discretizations
such as high-order finite difference methods [89], finite element methods [84], enriched finite element methods [30],
discontinuous Galerkin methods [74], and integral representations [87]. For example, for higher-order finite difference
methods the stencils centered at the points in Ω2 (respecting Γ2, Γ1, or Ω1) cannot involve discretization points in Γ1
(respecting Ω1, Ω2, Γ2). This is easily enforced by defining an appropriate δ, e.g., δ = 2 for a 9-point, 5x5, stencil in
2D. Similarly, in finite element or discontinuous Galerkin methods, the sparsity of the system matrices can be exploited
in order to obtain suitable sets of degrees-of-freedom.

1.5 Organization
In Section 2, we introduce the algorithm to compute an approximate global solution u of the boundary value problem (2)
with constant squared slowness m. We introduce the algorithm first on the continuous level in Section 2.1 and then
extend it to the discrete level in Section 2.2. In Section 3, we show how the algorithm can be used to precondition the
linear system (3). This opens the possibility of using the algorithm as part of an optimally parallel scaling solver based
on a preconditioned GMRES method. We conclude Section 3 with a complexity analysis of this solver with regards
to computational and communication effort. In Section 4, we analyze the effects of heterogeneous wave speeds on the
effectiveness of the preconditioner. In Section 5, we provide several numerical examples in two- and three-dimensions
for constant and non-constant wave speeds to corroborate all claims. The paper is concluded by a discussion where
we briefly summarize our results and discuss possible extensions. Additional details and pseudo-code for the proposed
algorithms are provided in the Appendices.

2 L-sweeps: Reconstruction of wavefields
In this section, we introduce the algorithm to compute the global solution u of the boundary value problem (2). This
solution is obtained from local solutions of local problems defined over a CDD. The concept of polarization introduced
in Section 1 plays a crucial role in this procedure. We introduce the algorithm for constant wave speeds at the continuous
and the discrete level in Sections 2.1 and 2.2. The procedure can be applied to problems with non-constant wave speeds
in an analogous fashion. The effects of these heterogeneous wave speeds, in particular discontinuous ones, are addressed
in Section 4.

2.1 Continuous formulation
Consider a decomposition of Ω into a CDD2, with q rows and r columns, of non-overlapping open subdomains. For
example, see Figure 4, where q = r = 5. We first define the local problems associated with each subdomain, Ωi j . To
this end, we define extended domains Ωε

i j,bulk and Ω
ε
i j,extended. The domain Ωε

i j,bulk is obtained from extending Ωi j by
a ε-layer along interior edges of the CDD, and Ωεi j,extended is an extension of Ωε

i j,bulk to impose absorbing boundary
conditions via PMLs. In Ωεi j,extended we define the local squared slowness mi j := m|Ωε

i j,extended
. For a given source

density fi j in Ωεi j,extended, we define the local problem

− div
(
Λi j∇ui j

)
− ω2mi jui j = fi j in Ωεi j,extended,

ui j = 0 on ∂Ωεi j,extended,

2Note that the CDD is chosen so that neglecting the PML regions (shown in gray in Figure 4) each subdomain has the same size.

7

where ui j denotes the local solution. Due to the local PML, Λi j is a complex-valued diagonal matrix, and mi j and
fi j are complex-valued functions in the PML region Ωεi j,extended\Ωεi j,bulk. Further details of the PML formulation are
provided in Appendix A. For the sake of brevity we denote the PML-adjusted squared slowness and source density still
as mi j and fi j , respectively. Note that in contrast to (2), we do not set the squared slowness to be constant using a normal
extension on ∂Ωε

i j,bulk in the PML region, rather we use the squared slowness inherited from the global problem in
these regions. This definition makes our approach more accurate, since we use the local problem to compute sections
of the global problem.

Note that the construction of the local problems consists of two subsequent extensions of Ωi j : we first add an
additional ε-layer around Ωi j , and then further extend the subdomain by a PML region. While the latter is clearly
needed to avoid artificial reflections in the local solutions, the former appears to be ad-hoc at this stage, but for reasons
that will be explained in the sequel, the first extension by an ε-layer is crucial for a consistent exchange of information
between subdomains. The resulting local problems are Dirichlet boundary-value problems defined on the extension
Ωεi j,extended of Ωi j . As before, we denote the domain Ωεi j,extended as Ωεi j . Examples of these local problems are
illustrated in Figure 5.

In what follows, we introduce our method for computing global solutions to (2) by considering four scenarios,
illustrated in Figure 4, each increasingly more general:

1. the source density is supported in the interior of a corner subdomain of the CDD,

2. the source density is supported in the interior of an arbitrary subdomain,

3. the source density is supported in the interior of an arbitrary number of subdomains such that its support does
not intersect the skeleton of the CDD, and

4. the source density has arbitrary support in Ωbulk.

In the subsequent developments, we consider these scenarios using source distributions constructed from unions of
point sources. However, the developments do not depend on an assumption that the source distributions are point-
sources – any source density is admitted as long as it satisfies the conditions on its support. In particular, scenario
4 allows for arbitrary source distributions, including those which intersect the CDD skeleton, making our approach
widely applicable.

Figure 4: The domain decomposition, where the colored regions show examples of source distributions for each of the
four scenarios.

8

2.1.1 Scenario 1: A source density supported in a corner subdomain

Without loss of generality, we introduce the algorithm for a source density supported inΩ11. Source densities supported
in any other corner subdomain can be constructed in an analogous way. The computation of the global solution is
performed in three stages:

1. compute an approximation of the global solution in Ω11 using the local problem associated with Ω11,

2. compute the approximate global solution in the first row and column of the CDD, and,

3. compute the global solution in the rest of the subdomains.

Ultimately, using these three stages, we are able to compute the global solution, up to PML induced errors, using three
sweeps: one vertical, one horizontal, and one diagonal.

Stage 1: Local solution
The local solution u11 defined over Ωε11 can be computed by solving the local problem associated with Ω11 with the
source density f11 := f |Ωε

11
. Since f is supported in Ω11 and the wave speed is constant, the global solution u restricted

to Ω11 coincides with u11 up to errors induced by the PMLs. We therefore simply set the global solution u to u11 in
Ω11: u|Ω11 := u11 |Ω11 .

We define the straight lines containing the top and right boundary ofΩ11 to be ΓT11 and Γ
R
11, as depicted in Figure 5a.

On ΓT11 and Γ
R
11, we extract the Dirichlet and Neumann traces of u11:

λT11 := u11 |ΓT11
, µT11 := [n · (Λ11∇u11)] |ΓT11

,

λR11 := u11 |ΓR11
, µR11 := [n · (Λ11∇u11)] |ΓR11

.
(10)

These traces provide the necessary information to compute good approximations of the global solution in the neighboring
subdomains Ω21 and Ω12 in stage 2. The solution computed after stage 1 is shown in Figure 5b, where the trace
information that is used in stage 2 is shown in green.

Stage 2: Global solution in the same row/column
By construction, ΓT11 lies entirely inside Ωε21 and the source density f is zero on ΓT11. Thus, the traces λ

T
11 and µT11 can

be used to compute a polarized wavefield in Ωε21 using Γ
B
21 := ΓT11 as the polarization interface, and

u21(x) =
∫
ΓB21

µT11(y)G21(x, y)dsy −
∫
ΓB21

λT11(y)
[
n(y) ·

(
Λ21∇yG21(x, y)

)]
dsy . (11)

Here, G21(x, y) is the Green’s function corresponding to the local problem defined on Ωε21.
Following the same reasoning used for u11 in stage 1, the global solution restricted to Ω21 coincides with u21, up

to errors induced by the PMLs, and we set u|Ω21 := u21 |Ω21 . We also extract the Dirichlet and Neumann traces λT21 and
µT21 of u21 on ΓT21 in the same way as in (10) and repeat the process to compute an approximation of the global solution
in the entire first column of the CDD. In addition, for each of these polarized wavefields, we extract the Dirichlet and
Neumann traces λR

i1 and µ
R
i1 on Γ

R
i1. These traces are needed in stage 3 to compute approximations of the global solution

in the rest of the subdomains. Similarly, we compute the global solution in the first row of the CDD and extract the
traces λT1j and µ

T
1j on Γ

T
1j for further use in stage 3. The solution after stage 2 and the trace information extracted for

stage 3 are shown in Figure 5d.
For the extension of the solution into the neighboring subdomains to be accurate, the local problems associated

with Ωi1 and Ω(i+1)1 need to coincide in an ε-tube around ΓT
i1 = Γ

B
(i+1)1. This is ensured by the extension of the local

problem by the additional ε-layer.

Stage 3: Global solution in the remaining subdomains
Consider Ω22, where, by construction, ΓB22 := ΓT12 and ΓL22 := ΓR21 lie entirely inside Ωε22. We combine these lines to
form an L-shaped line, ΓBL

22 , so that Ω22 is entirely contained in the quadrant defined by ΓBL
22 as shown in Figure 5e. In

addition, we combine the trace information on ΓR21 and Γ
T
12 to define Dirichlet and Neumann traces on ΓBL

22 as

λBL
22 (x) :=

{
λR21(x) x ∈ ΓBL

22 ∩ Γ
L
22,

λT12(x) x ∈ ΓBL
22 ∩ Γ

B
22,

, (12)

µBL
22 (x) :=

{
µR21(x) x ∈ ΓBL

22 ∩ Γ
L
22,

µT12(x) x ∈ ΓBL
22 ∩ Γ

B
22.

(13)

9

(a) Example of a local problem in stage 1. (b) Solution after stage 1.

(c) Example of a local problem in stage 2. (d) Solution after stage 2.

(e) Example of a local problem in stage 3. (f) Solution after stage 3.

Figure 5: Illustration of local problems and the computed solution after each stage of a sweep. The green lines in the
wavefields depict extracted trace information used in the next stage.

10

The traces can be used to compute a polarized wavefield given by

u22(x) =
∫
ΓBL

22

µBL
22 (y)G22(x, y)dsy −

∫
ΓBL

22

λBL
22 (y)

[
n ·

(
Λ∇yG22(x, y)

)]
dsy, (14)

where G22(x, y) is the Green’s function corresponding to the local problem defined on Ωε22. In particular, (14) holds
due to the fact that the local problems defined on Ωε12 and Ω

ε
21 coincide with the local problem in Ωε22 in the vicinity of

ΓB22 and Γ
L
22, respectively.

It is clear that the polarized wavefield u22 coincides with the global wavefield u in Ω22 up to errors induced by the
PMLs, and we simply set u|Ω22 := u22 |Ω22 . Similarly to (10), we extract the Dirichlet and Neumann traces of u22 on ΓT22
and ΓR22 and we use them to compute the approximations of the global wavefield in the other subdomains. Following this
pattern, the wavefield is computed in the remaining subdomains by sweeping diagonally from the bottom-left corner to
the top-right corner. At each step of the sweep, a diagonal perpendicular to the direction of the sweep is updated. This
diagonal consists of subdomains only touching each other at a corner. For one diagonal, this procedure is summarized
in Figure 6.

Figure 6: Summary of the computed solution in one diagonal sweeping step. Updated subdomains are diagonally
adjacent in a direction perpendicular to the bottom-left to top-right sweep direction.

2.1.2 Scenario 2: A source density supported in an arbitrary subdomain

In this scenario, we consider a point source supported in an arbitrary subdomain. Without loss of generality, for
illustrative purposes we select the subdomain Ω24. Source densities supported in any other subdomain can be treated
analogously. First we restrict the problem to the quadrant in the top right corner of the domain, inclusive of Ω24, which
we denoteΩTR and illustrate in Figure 7, by truncating the global problem with PMLs. The interior boundary ofΩTR is
extended by a layer of thickness ε so that the local problems inΩTR are precisely the same as in Section 2.1.1. Similarly,
we define domains ΩTL , ΩBL , and ΩBR in the top-left, bottom-left, and bottom-right corner. These definitions reduce
the problem posed on Ω to four sub-problems, each of which have a point source supported in a corner subdomain.
Thus, we can readily apply the procedure introduced in Section 2.1.1 to each of them. The computed solutions are
shown in Figure 8.

The global solution may be obtained from summing these four solutions, taking care to avoid counting the
contributions from the overlapped regionmultiple times. Executing this procedure as described requiresmany redundant
computations. We achieve an equivalent method by generalizing the algorithm presented in Section 2.1.1, which we
describe in three stages:

11

Figure 7: The definition of the subproblem by truncation with absorbing boundary conditions for scenario 2.

Figure 8: The solutions in each quadrant in scenario 2.

12

1. compute the local solution in the subdomain where the source density is supported and extract the traces on all
interior boundaries of the domain,

2. extend the solution into the subdomains in the same row/column following stage 2 of Section 2.1.1, and extract
the traces required for stage 3, and,

3. extend the solution into the rest of the subdomains by computing the local solutions in diagonal rows, perpendicular
to the direction of the sweep, similarly to stage 3 of Section 2.1.1.

Stage 3 is illustrated in Figure 9. In this scenario, the full algorithm requires a total of eight sweeps. Stage 2 requires
four sweeps over the domain: up, down, left, right. Stage 3 also requires four sweeps: bottom-left to top-right, top-right
to bottom-left, bottom-right to top-left, top-left to bottom-right.

2.1.3 Scenario 3: Arbitrary source distributions not intersecting the CDD skeleton

Global solutions for arbitrary source distributions that do not intersect the skeleton of the CDD can be computed from a
union of distinct source densities, each supported in a single subdomain. Therefore, the global solution can be naïvely
computed by applying the procedure from scenario 2 to each of the localized source densities and summing the results.
This approach is not computationally efficient because much of the work is redundant.

In this section, we show how to compute the global solution without redundancy, by applying each of the eight
sweeps of scenario 2 only once. This allows for an efficient computation of the global wavefield, regardless of the
number of subdomains containing components of the source. The algorithm can still be performed in three stages,
which are detailed below. For a succinct summary in pseudo-code we direct the reader to Appendix C.

In the first stage, we restrict the source density to each subdomain. Within each subdomain, we use this restricted
source density to compute the corresponding local solution, from which we extract the traces on all interior interfaces
Γli j , l = B, R,T, L. This stage is illustrated in Figure 10.

In the second stage, we use the traces extracted in stage 1 to extend the local solutions into the same column and
row as subdomains containing sources. This can be done using four sweeps: up, down, left, and right. We consider
the upwards sweep in the first column in detail, all other sweeps are performed analogously. In the upward sweep, we
use traces on the bottom of each element to compute polarized wavefields and update local solutions. For example, in
Figure 10, the subdomain Ω11 has no incoming bottom trace. The outgoing top trace is therefore simply taken from
stage one and transferred to Ω21. In Ω21, this trace is the incoming bottom trace and used to compute a polarized
wavefield. We then update the local wavefield in Ω21 by adding the computed polarized wavefield. The outgoing trace
on the top is then extracted from the updated local wavefield and used as the incoming trace in Ω31. Continuing this
procedure, we update the local wavefields in the entire first column which concludes the upwards sweep. The procedure
is illustrated in Figure 11. Then, we perform the remaining three cardinal sweeps.

Applying these four sweeps computes an intermediate wavefield. This wavefield is updated in stage 3. As part of
the vertical and horizontal sweeps we also extract the vertical and horizontal traces of the subdomains needed in stage 3.
The individual contributions from each of the four sweeps are shown in Figure 12. The intermediate solution obtained
from the sum of the contributions from stages 1 and 2 is illustrated in Figure 13. In both figures the traces extracted in
preparation for stage 3 are shown by the colored lines.

We generalize the third stage of the algorithm in a similar way by computing polarized wavefields from the trace
information coming into a subdomain, and updating the local solutions by adding these polarized wavefields. We then
extract trace information from the updated local wavefields and use them in the neighboring subdomains as incoming
traces.

As in Section 2.1.2, stage 3 is realized by sweeping over the CDD from corner to corner, updating subdomains
that are diagonally adjacent, perpendicular to the sweep direction. Computed wavefields in three example diagonals
for the sweep from the bottom-left to the top-right corner are illustrated in Figure 14. The same technique can also be
employed for the other three diagonal sweeps: top-right corner to bottom-left corner, bottom-right to top-left corner,
and top-left to bottom-right corner. These sweeps are illustrated in Figures 15 and 16.

Using these three stages, we compute the global solution in a total of eight sweeps, independently of the source
distribution. In the next section, we show that applying this procedure to source densities appropriately windowed on
four slightly different domain decompositions, the algorithm can be extended to entirely arbitrary source densities in a
straightforward way.

13

(a) Before stage 3.

(b) After bottom-left to top-right sweep. (c) After bottom-right to top-left sweep.

(d) After top-right to bottom-left sweep. (e) After top-left to bottom-right sweep.

Figure 9: Summary of stage 3 for scenario 2. The plots show the computed wave field after stage 2, and the computed
wave field after each sweep from corner to corner.

14

Figure 10: Left: The setup of the problem in scenario 3, with multiple point sources shown in red, yellow and blue.
Right: The corresponding local solutions in each subdomain. The extracted trace information is shown using the same
colors as their corresponding point sources.

Figure 11: Summary of the upwards sweep, for scenario 3, in one column in the presence of several point sources.

Figure 12: The contributions to the intermediate wavefield from the sweeps along each row and column in scenario 3.
The generated trace information that still needs to be propagated is shown by the colored lines.

15

Figure 13: The reconstructed wavefield composed of the contributions from stage 1 and 2 of scenario 3, for the problem
in Figure 10.

2.1.4 Scenario 4: Arbitrary source distributions

The only remaining restriction on source distribution is that it must not cross the CDD skeleton. This restriction can
be overcome by considering three more CDDs obtained from horizontal and vertical shifts in the CDD, as illustrated
in Figure 17. Using the original CDD and these new shifted CDDs, we define a partition of unity of four window
functions ϕi , i = 1, 2, 3, 4, each of which vanish on the skeleton of one of the four CDD (Figure 18) and we define the
corresponding windowed source densities f ϕi := ϕi f . Clearly, f ϕi vanishes on the skeleton of one CDD. Using this
CDD, we can therefore apply the procedure of Section 2.1.3 to obtain the global solution uϕi corresponding to f ϕi .
The global solution for a general f is them simply the sum of those solutions:

u =
4∑
i=1

uϕi .

2.2 Discrete formulation
In this section, we show that the procedure introduced in Section 2.1 can be applied on the discrete level to approximately
solve (3). We start by defining the CDD and local problems. We define the CDD so that the skeleton does not intersect
with any discretization point. Then, the skeleton clearly divides the global degrees-of-freedom into sets Ωij. We then
define a local problem associated with each Ωij. This problem is defined on a superset of Ωij, which we denote Ωδ

ij ,
and is the discretization of the local problem defined on Ωεi j . The interior boundaries are first extended by a (2δ)-layer
of degrees-of-freedom and then further extended by a PML region. In the same manner as for the continuous problem,
the wave speed for this problem is inherited from the global wave speed. We denote the local system matrices Aij.

Furthermore, we define interfaces on these local problems to compute discrete polarized wavefields. For the
continuous problem, these interfaces are defined as straight lines along the boundaries of the subdomains Ωi j . For
the discrete problem, the necessary interfaces for computing discrete polarized wavefields consist of all degrees-of-
freedom δ-adjacent to the polarization interface. Therefore, we define the discrete counterparts of the interfaces Γ`i j ,
` = L, R,T, B, to be the δ-adjacent degrees-of-freedom to Γ`i j . We call those sets Γ`ij, ` = B, R,T, L. Figure 19 illustrates
these definitions. By construction, Γ`ij defines the trace information that needs to be transferred between subdomains. In
the continuous problem, two neighboring local problems have to coincide in an ε-tube around the polarization interface
to accurately extend the wavefield from one subdomain into the other. In the same way, the discrete problem requires
two neighboring local problems to coincide in all δ-adjacent degrees-of-freedom to the polarization interface. This
justifies the (2δ)-layer between Ωij and the PML region. One δ-layer is used for Γ`ij, and one δ-layer is used to ensure
that two neighboring local problems coincide in an appropriately sized neighborhood of Γ`ij.

In what follows we will show how the procedures introduced in Section 2.1 can be treated on the discrete level.
Since the procedure introduced in Section 2.1.3 (scenario 3) is a generalization of all previous algorithms, we start
with this procedure. In the first stage, we restrict the global source vector f to the discretization points in Ωij for each
subdomain and define a local source vector fij on Ωδ

ij such that fij |Ωij = f |Ωij and fij is zero everywhere else. In the same
way as in the continuous case, this local source vector can then be used to compute discrete local solutions uij in each
subdomain:

uij = Aij
−1fij.

16

Figure 14: Illustration of the sweep from the bottom-left to the top-right corner in scenario 3.

17

(a) The sweep from the bottom-left to the top-right corner.

(b) The sweep from the top-right to the bottom-left corner.

Figure 15: The contribution of the sweep from the sweeps over the sweeps diagonal by diagonal in scenario 3. The
extracted trace information that still needs to be propagated is shown by the colored lines.

18

(a) The sweep from the bottom-right to the top-left corner.

(b) The sweep from the top-left to the bottom-right corner.

Figure 16: The contribution of the sweep from the sweeps over the sweeps diagonal by diagonal in scenario 3. The
extracted trace information that still needs to be propagated is shown by the colored lines.

Figure 17: The original CDD (black) and the three new, shifted CDDs in red, green, and blue.

Figure 18: The window functions ϕi and the CDDs on which they vanish on the skeleton.

19

Figure 19: The definition of the discrete local problems and the discrete interfaces.

Using these local solutions, we define a global wavefield ũ such that ũ|Ωij = uij |Ωij . As with the continuous case, we
extract the values of these local solutions on Γ`ij and use them in stage 2 to update ũ.

The second and third stage of the algorithm are realized by applying sweeps over the domain in the same way as in
Section 2.1.3. The only difference is that the trace information on Γ`i j is replaced by its discrete counterparts Γ`ij, and
the computation of continuous polarized wavefields is replaced by the computation of discrete polarized wavefields (9)
using the local system matrices Aij and the appropriate interfaces Γ`ij.

Until now, we have elided discussion of a subtle point in the discrete algorithm: construction of the L-shaped trace
information. As an example, we consider the discrete counterpart of the trace ΓBL

ij , but any other trace information
can be handled analogously. Following the notation introduced in Section 2.1, let us denote the trace information on
ΓB

ij by λB
ij and the trace information on ΓL

ij by λL
ij . Similarly to ΓBL

ij in Section 2.1, ΓBL
ij is defined as the L-shaped

set of degrees-of-freedom surrounding the upper right quadrant of the set Ωij, as illustrated in Figure 20. The trace
information λBL

ij is then defined such that λBL
ij |ΓB

ij
= λB

ij and λBL
ij |ΓL

ij\Γ
B
ij
= λL

ij |ΓL
ij\Γ

B
ij
. Note that by convention we have

defined the trace information of λBL
ij to coincide with λB

ij in ΓB
ij ∩ΓL

ij . This is an arbitrary choice, as the trace information
on ΓB

ij ∩ ΓL
ij can be obtained from any of the two traces λB

ij or λ
L
ij .

Following this procedure, we can compute approximations ũ of the global solution that only differ from u by errors
induced by the discretization or PMLs, as long as the global source vector f is zero on the degrees-of-freedom on the
skeleton of the CDD, i.e., the union of all Γ`ij. This procedure can be extended to entirely arbitrary source vectors using
window functions, as introduced in Section 2.1.4.

3 Implementation and Complexity
The procedure introduced in Section 2 produces an approximation of a global solution to (3). This approach therefore
defines the approximate solution operator Ã−1, such that Ã−1(f) ≈ A−1 f . Thus, we use Ã−1 to precondition (3),

Ã−1 (Au) = Ã−1 (f) , (15)

and use a Krylov subspace method, such as GMRES [65] or BiCG-stab [79], to solve (15).
The resulting preconditioned iterative solver has the following properties:

• the preconditioner Ã−1 can be applied with optimal parallel complexity, O(N/p), and

• Krylov methods applied to (15) converge (empirically) in O(logω) iterations;

20

Figure 20: The definition of the discrete L-shaped trace.

thus making it parallel scalable. In this Section we focus on the first property. In particular, we show the implementation
of the preconditioner, while analyzing its complexity with respect to the computational and communication cost. For
the second property, we will present extensive numerical evidence in Section 5.

We consider a standard communication model [5, 21, 61, 77]. The model assumes that each process is only able
to send or receive a single message at a time, though different messages can be sent and received asynchronously. A
message of size M can be communicated with α + βM complexity. The latency α represents the minimum complexity
with which an arbitrary message from one process to another can be communicated, and is a constant overhead for any
communication. The inverse bandwidth β is the complexity with which one unit of data can be communicated.

We implement the algorithm within a distributed memory framework using MPI. For simplicity, we assign each
row of subdomains to one MPI rank3. By assigning multiple subdomains to one rank, the preconditioner can be applied
optimally in parallel, as described below. Consider a diagonal sweep, for example from the bottom-left corner to the
top-right corner, for a q × q CDD. To maximize parallelism, each subdomain in a diagonal, perpendicular to the sweep
direction, has to be processed in parallel. This can be realized by assigning subdomains to MPI ranks in a row-based
fashion such that the i-th row of the CDD is processed by rank i mod p. Thus, each rank is assigned one or several rows
of subdomains and does all of their associated computation. An illustration of the assignment of subdomains to rank
is provided in Figure 21. In what follows, we assume this configuration, which allows us to also exploit the maximum
parallelism in the application of the preconditioner and obtain a parallel scalable solver. The only restriction in this
setup is that the number of ranks p used in this setup is bounded by the number of subdomains in one column, i.e.,
p ≤ q = O(n).

For analysis purposes, we divide the solver for (3) in three phases:

1. Setup the local problems, system matrices, right-hand sides, and the corresponding window functions ϕi;

2. Factorize the local system matrices; and

3. Solve the linear system using a Krylov method.

Phase 1: Setup
For two-dimensional problems, the size of the local problems associated with the subdomain Ωi j is O(1). A crucial
requirement to ensure that these local problems are indeed of O(1) size is that the thickness of the PML region,
in wavelengths normal to Ωi j , is held constant with mesh-refinement, i.e., the number of degrees-of-freedom in the
PML does not change and the spatial PML-width scales as O(1/ω). Consequently, the local system matrices Aij,

3 This restriction can be relaxed to exploit asynchronous parallelism models and subdomain pipelining, for extremely large problems.

21

Figure 21: The assignment of subdomains to processor in a row-based fashion.

right-hand sides, and the window functions ϕi j can be assembled with O(1) computational complexity. In a parallel
computational environment, each of the O(q2) subdomains can be processed independently and no communication is
required between subdomains. Thus all rows are processed with a O(n) parallel computational complexity, because
q = O(n) and p = O(q). For two-dimensional problems, the computation in the setup phase is therefore realized with
optimal O(N/p) parallel computational complexity. For three-dimensional problems, the size of the local problems
associated with each subdomain is O(n), and the same arguments also yield optimal O(N/p) parallel complexity. In
either case, there is no communication cost during the setup phase.

Phase 2: Factorize
For two-dimensional problems, the systemmatrices of the local problems have size O(1) and therefore can be factorized
with O(1) computational complexity. As in stage 1, each subdomain can be processed independently with zero
communication, thus we can follow the same argument as in the setup phase to justify that all of the q2 subdomains can
be factorized with O(N/p) parallel computational complexity. For three-dimensional problems, the system matrices of
the local problems have size O(n) and are quasi-one-dimensional. Thus, standard sparse direct solvers can be used to
factorize the matrices with optimal computational complexity [40, 24, 44], i.e., O(n). The same arguments as for the
two-dimensional case can be employed to show that, in three dimensions, the q2 subdomains can be factorized with
O(N/p) parallel computational complexity. In either case, there is no communication cost during the factorization
phase.

Phase 3: Solve
We use the GMRES method to solve the linear system (3). Each iteration of this method consists of three main
operations: the application of A, the computation between the Ritz vectors, and the application of the preconditioner
Ã
−1. For each of the three operations, we assume that the global vectors are provided in a distributed fashion such that

each subdomain Ωi j holds the values of the global vector corresponding to Ωij.
The application of A can be realized by simply applying the local system matrices to a local vector, as long as each

subdomain holds all degrees-of-freedom associated with Ωij and Γ`ij for ` = B, R,T, L. This requires some communi-
cation because the subdomains only store the degrees-of-freedom in Ωij. Considering the row-based assignments of
subdomains to MPI ranks, the sets ΓB

ij have to be communicated to the subdomain Ω(i−1)j , and the sets ΓT
ij have to be

communicated to the subdomain Ω(i+1)j . In practice, for two-dimensional problems, each row has to communicate
O(n) values to a neighboring MPI rank. Using the above communication model, this communication has complexity

O(α + βn) = O(n).

Due to the row-based rank assignment, up to p of the q rows can simultaneously exchange information, resulting
in an overall O(qn/p) = O(N/p) parallel communication complexity. The same arguments can be applied for the

22

communication of the sets ΓT
ij . Thus, for two dimensional problems, all necessary information can be communicated

with optimal O(N/p) parallel complexity. In three dimensions, each row has to communicate O(n2) values to a
neighboring MPI rank. Following the same arguments as before all necessary information can be communicated with
optimal O(N/p) parallel complexity. Once all information is communicated, the local system matrices Aij are applied
to obtain the action of the global system matrix A on the degrees-of-freedom in Ωij. This application can be realized
with O(1) and O(n) computational complexity per subdomain in two and three dimensions, respectively. Again, each
of the O(q2) subdomains can be processed independently resulting in the total O(N/p) parallel computational and
communication complexity to apply the matrix A for two- and three-dimensional problems.

At iteration k, k inner products between the Ritz vectors need to be computed. Each inner product can be computed
efficiently in parallel, given that each subdomain contains the local components of the Ritz vectors. Thus, each inner
product are computed with O(N/p) parallel computational complexity and O(p) parallel communication complexity.
The application of Ã−1 is analyzed in detail in Section 3.1, where we show that it can be applied with O(N/p) parallel
computational and communication complexity. The k-th GMRES iteration can therefore be realized with O(kN/p)
parallel computational complexity and O(N/p) parallel communication complexity4. Due to the effectiveness of the
preconditioner, the number of iterations only grows as O(logω). This claim is corroborated by the numerical examples
in Section 5. Using restarts, the GMRES method can therefore be applied with a total parallel computational and
communication complexity of O

(
(N/p) logω

)
. The computation and communication complexities are summarized in

Tables 1 and 2, for two- and three-dimensional problems.

Computation
Step per subdomain per rank Communication Total time
Set up O(1) O(n) = O(N/p) O(1) O(N/p)

Factorization O(1) O(n) = O(N/p) O(1) O(N/p)
Solve O(logω) O(n logω) = O

(
(N/p) logω

)
O

(
(N/p) logω

)
O

(
(N/p) logω

)
Table 1: Parallel complexity of the different stages for two-dimensional problems, where N is the total number of
discretization points, n is the number of discretization points per dimension, ω is the frequency following ω ∼ n, and p
is the number of processors following p = O(n).

Computation
Step per subdomain per rank Communication Total time
Set up O(n) O(n2) = O(N/p) O(1) O(N/p)

Factorization O(n) O(n2) = O(N/p) O(1) O(N/p)
Solve O(n logω) O(n2 logω) = O

(
(N/p) logω

)
O

(
(N/p) logω

)
O

(
(N/p) logω

)
Table 2: Parallel complexity of the different stages for three-dimensional problems, where N = n3 are the total number
of discretization points, and the number of discretization points per dimension, ω is the frequency following ω ∼ n,
and p is the number of processors following p = O(n).

3.1 Application of Ã−1

The application of Ã−1 can be divided in four steps:

(a) Computation of the local solutions,

(b) Extension of the local solutions into the same row,

(c) Extension of the local solutions into the same column, and

(d) Extension of the local solutions into the rest of the subdomains.

As before, we assume that at the beginning and at the end of each step, each rank holds all the values corresponding to
the degrees-of-freedom in Ωij for all of its associated subdomains.

4To achieve the parallel communication complexity, we implicitly assume that O(kp) = O(N/p).

23

The computation of the local solutions requires to solve a local problem in each subdomain. Each of the local prob-
lems can be solved in O(1) and O(n) computational complexity for two- and three-dimensional problems, respectively5.
All local solutions are computed independently and p local solutions can be computed simultaneously. Therefore, for
both two- and three-dimensional problems, step 1 is realized with O(N/p) parallel computational complexity and there
is no communication cost.

The extension of the local solutions into the subdomains contained in the same row requires one left- and one
right-sweep in each row. Due to the row-based rank assignment, each of those sweeps must be realized sequentially.
However, each row can be processed independently, with no inter-row communication. For example, consider the
right-sweep in one row. In each subdomain, a (discrete) polarized wavefield has to be computed (i.e., the local problem
has to be solved), the local solution has to be updated, and the traces to be transferred to the right have to be extracted.
For two-dimensional problems, each of those stages can be realized with O(1) computational complexity per subdomain
because the size of the subdomains is O(1). Since each subdomain in the row has to be processed sequentially and
there are q = O(n) subdomains in one row, this procedure can be realized with O(n) computational complexity per
row. Employing this procedure concurrently in each row yields O(N/p) parallel computational complexity and no
communication cost. For three-dimensional problems, each stage can be realized with O(n) computational complexity
per subdomain6. Because each of the q = O(n) subdomains in one row is processed sequentially, this results in a
O(n2) computational complexity in every row. Thus, processing each row concurrently results in the O(N/p) parallel
computational complexity and no communication cost. Analysis of the leftward sweep follows the same logic and
reaches the same conclusions.

Extending the local solutions from one subdomain into the other subdomains within the same column requires one
upward- and one downward-sweep. Given that the processor assignment does not allow for each column to be processed
independently, the organization of the computation is non-trivial in order to reveal parallelism. As an example, we
explain the implementation of an upward sweep. We begin by considering the subdomain in the bottom-left corner,Ω11.
Once Ω11 is processed and its information sent to Ω21, rank 0 can process the subdomain Ω12 and rank 1 can process
subdomain Ω21. Following this procedure, the upward sweep is applied by sweeping over the domain, essentially
pipelining the rows. Parallelism is achieved by processing diagonally-adjacent sets of subdomains simultaneously. By
construction, each diagonal set has at most q subdomains. For two-dimensional problems, each subdomain can be
processed with O(1) computational complexity, independent from all other subdomains. Thus, an entire diagonal set
can be processed with O(q/p) parallel computational complexity. For three-dimensional problems, each subdomain can
be processed with O(n) computational complexity, resulting in a O(nq/p) parallel computational complexity to process
each diagonal. Since there are O(q) diagonals, and q = O(n), this results in the total O(N/p) parallel computational
complexity to apply the upward sweep for both two- and three-dimensional problems.

In contrast with previous phases and steps, the upward and downward sweeps also require communication. For each
subdomain Ωi j , the traces ΓB

ij have to be communicated from the subdomain Ω(i−1)j . For two-dimensional problems,
the information transfers are performed in parallel, and all O(n) values, from all ΓB

ijs, are communicated with O(n/p)
parallel communication complexity. For three-dimensional problems, the communication volume is O(n2) and, using
the same arguments, the parallel communication complexity, per diagonal set, is O(n2/p). For both two- and three-
dimensional problems, considering all O(q) = O(n) diagonals, we find the optimal parallel O(N/p) communication
complexity. The analysis of the downward sweep follows the same argument and achieves the same conclusion.

The extension of the local solutions into the remaining subdomains, those not in the same row or column, requires
sweeps over the CDD from corner to corner, along both diagonals. In these diagonal sweeps, each step requires
processing of sets of subdomains that are diagonally-adjacent along the direction perpendicular to the sweep direction
as illustrated in Fig. 22. This process has the same computation and communication patterns as the upward and
downward sweeps and thus, following the same analysis, have the same complexities: they are applied with O(N/p)
parallel computational complexity and O(N/p) parallel communcation complexity.

In summary, each step has O(N/p) parallel computational complexity and at most O(N/p) parallel communication
complexity, thus the preconditioner can be applied with O(N/p) parallel computational and communication complexity.
The computational complexity and communication complexities, for applying the preconditioner, are summarized in
Tables 3 and 4.

5Similar to the factorization, standard sparse direct solvers are used to solve the quasi-one-dimensional problems arising from three-dimensional
problems with optimal computational complexity, i.e., O(n).

6Again, standard sparse direct solvers are used to solve the quasi-one-dimensional problems arising from three-dimensional problems with optimal
complexity, i.e., O(n).

24

Figure 22: Illustration of parallelism in diagonal sweeps. Subdomains processed in parallel have same label. Subdo-
mains with like color are assigned to same processor.

Computation
Step per subdomain per rank Communication Total time
Part 1 O(1) O(n) = O(N/p) O(1) O(N/p)
Part 2 O(1) O(n) = O(N/p) O(1) O(N/p)
Part 3 O(1) O(n) = O(N/p) O(N/p) O(N/p)
Part 4 O(1) O(n) = O(N/p) O(N/p) O(N/p)

Table 3: Parallel complexity of the different stages for two-dimensional problems for p = O(n).

Computation
Step per subdomain per rank Communication Total time
Part 1 O(n) O(n2) = O(N/p) O(1) O(N/p)
Part 2 O(n) O(n2) = O(N/p) O(1) O(N/p)
Part 3 O(n) O(n2) = O(N/p) O(N/p) O(N/p)
Part 4 O(n) O(n2) = O(N/p) O(N/p) O(N/p)

Table 4: Parallel complexity of the different stages for three-dimensional problems when p = O(n).

4 Heterogeneities
As developed in Section 2, the wavefield computed by the proposed algorithm can be interpreted as a sum of global
solutions, each of which is induced by a global source density supported in a single subdomain only. We denote a
source density supported in the subdomain Ωi j by fij and the global wavefield induced by this source density as ufij .

25

Accordingly, the global wavefield u can be written as

u =
q∑
i=1

r∑
j=1

ufij .

To understand the effect of heterogeneities on the effectiveness of the preconditioner, it is sufficient to consider a
wavefield ufij due to a single point source in detail. We consider two examples. The first example reveals the effect of
reflections on the wavefield constructed by the preconditioner. The second example shows the effects of reflections in
more pathological media.

For the first example, we consider a simple domain decomposition with two subdomains, Ω11 and Ω21, divided by
a horizontal line. We consider a layered wave speed distribution with two layers where the line of discontinuity is a
horizontal line in Ω21. The setup is illustrated in Figure 23.

(a) The CDD. (b) The wave speed.

Figure 23: Illustration of a 2 × 1 CDD with associated wavespeed and a point source (red star).

In this example, excluding local partial wavefield computation, only the upward sweep computes a non-zero partial
wavefield. The solution obtained from this sweep is shown in Figure 24. The wavefield in the bottom subdomain is a
solution to a problem with constant wave speed, and the reflection due to the discontinuity in the wave speed is clearly
visible in the field in the top subdomain. The solutions in each subdomain can be explained in the following way: the
local wavefield for Ω11 from stage 1 is computed by solving the local problem in Ω11 for the point source. Therefore
the discontinuity in Ω21 is not visible and the wavefield for the constant wave speed is computed. This results in a poor
approximation of the global solution inΩ11. Nevertheless, the top traces λT11 are extracted. In the upward sweep (as part
of stage 2), these traces are used inΩ21 to compute a polarized wavefield. This local wavefield is a good approximation
of the global solution in Ω21 for two reasons:

• The discontinuity in the wave speed is visible to the local problem in Ω21, and

• The trace λT11 contains all required information from Ω11 so that the polarized wavefield computed in Ω21 is a
good approximation of the global wavefield.

The resulting wavefield is therefore a good approximation of the global wavefield only in Ω21. As shown in Figure 24a,
there is a mismatch between the two local solutions, which produces a large residual concentrated at the interface.

Following the reasoning in [71, 16], this residual contain the information necessary to propagate the wavefield
locally between subdomains. The solutions obtained from applying the preconditioner to the right-hand side, and the
solution after the first GMRES iteration are shown in Figure 24. It is clear that after the second iteration, the GMRES
method has converged to a good approximation of the wavefield.

This example shows that the preconditioner does not construct a good approximation of the global solution in rough
media. This is because the preconditioner tracks the physical behavior of some waves propagating through the domain,
including waves propagating in a straight line, intra-subdomain reflections, and some refracted waves, but does not
account for any inter-subdomain reflections. Nevertheless, since the preconditioner is used as part of an iterative solver
for the linear system, the inter-subdomain reflections and unresolved refractions will be treated in subsequent iterations.

To further illustrate this point, let us consider an example for a discontinuous wave speed distribution in a checker-
board pattern shown in Figure 25. Figure 26 shows the reconstructed wavefields after several GMRES iteration and the

26

(a) Before the first GMRES iteration. (b) After the first GMRES iteration).

Figure 24: Illustration of the computed wave fields.

(a) The CDD. (b) The wave speed.

Figure 25: Illustration of the setup for the example involving a 9 × 9 CDD. The point source is shown by the red star,
the PML region is shown in gray.

27

corresponding residual. Note that after 2 iterations, the procedure has already computed a reasonable wavefield. After
that, almost no change is visible in the plot of the wavefield, but only in the residual. It takes 27 GMRES iterations to
solve this problem to an accuracy of 10−6.

(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Figure 26: The computed wave fields after applying the preconditioner (Iteration 0) and after the first three GMRES
iterations.

The second experiment shows that a single application of the preconditioner is insufficient to propagate all reflected
waves. Thus multiple iterations are required to compute accurate global wavefields and consequently, the overall solver
is sensitive to the number of reflections induced by the medium. In fact, once the dominant reflections are resolved
by the preconditioner, the number of iterations only grows as O(logω) as the frequency (and the degrees-of-freedom)
grows. This is corroborated by the numerical example for a wave-guide considered in Section 5.

The proposed solver is therefore scalable, however, the proportionality constant is strongly dependent on the number
of reflections induced by the heterogeneous wavespeed. In fact, the numerical examples in Section 5 show that even
in the case of wave-guides where reflections play a crucial role, the solution strategy surprisingly still only results in
iteration counts lower than 40. Of course, the same arguments can be applied to refracted waves in the same way and
similar effects can be seen.

28

wavelengths
N in PML region

(without PML) ω/2π q = r 1 2 3 4 5 6 7
202 × 202 20.1 2 3 2 1 1 1 1 1
404 × 404 40.3 4 4 3 1 1 1 1 1
808 × 808 80.7 8 5 3 2 1 1 1 1

1616 × 1616 161.5 16 6 2 2 1 1 1 1
3232 × 3232 323.1 32 7 3 2 2 1 1 1
6464 × 6464 646.3 64 8 4 3 3 2 1 1

12928 × 12928 1292.7 128 10 5 3 3 3 2 1

Table 5: Number of iterations necessary to solve a homogeneous problem using increasingly thick PMLs and different
frequencies.

5 Numerical Examples
In this section, we consider several numerical examples to corroborate the claims of this paper. All numerical examples
are constructed using variations of a standard setup. The problems are posed on the unit square (d = 2) or the unit cube
(d = 3) and the the wavespeed is scaled such that the the squared slowness, m(x) ∈ [m0, 1] ∀x ∈ Ω for some m0 > 0.
For the characteristic frequency ω, the minimum wavelength is 2π/ω and the maximum wavelength is 2π/(√m0ω).
All problems are discretized using a uniform second-order finite difference approximation with N total discretization
points, i.e., there are n = N

1
d points in one direction. The characteristic frequency, ω, is chosen such that there are at

least 10 points-per-wavelength, i.e., ω = 2πn/10.
In each case, we decompose Ω using a CDD with q = r rows and columns. Each subdomain Ωi j in the CDD is

chosen so that, ignoring the discretization points in the PML region, the set Ωij has 101 discretization points in each
direction. The skeleton of the CDD does not intersect with any discretization point, so n = 101q and N = (101q)d .
Accordingly, the maximum frequency isω = 2π(101q−1)/10, which is chosen so that there are 10 discretization points
per wavelength. The PML region is chosen so that d20/√m0e discretization points are in this region. This ensures that
the PML region is at least 2 wavelengths thick. The source distribution of the standard setup consists of four point
sources at

x1 = (0.125, 0.125), x2 = (0.125, 0.875),
x3 = (0.875, 0.125), x4 = (0.875, 0.875).

These point sources are modelled by an approximation with an exponential function:

f (x) :=
n2

π

4∑
i=1

e−n
2 |xi−x |2 .

In all examples, the global system is solved using a preconditioned GMRES method [65] with a tolerance of 10−6,
using the zero-vector as an initial guess. All local problems are solved using Pardiso 6.0 [47]. Source code, models,
and experiment configurations for these examples are available online [75, 76].

5.1 Effect of PML-induced and discretization errrors
In this section we provide numerical evidence of the claim in Section 2 that, in a homogeneous medium, the accuracy
of the preconditioner depends only on the accuracy of the discretization and the quality of the absorbing boundary
conditions. We consider the standard setup for a constant squared slowness m = 1 and we control the accuracy of the
absorbing boundary condition by increasing (or reducing) the PML thickness. Table 5 depicts the dependence of the
preconditioner, measured in iterations, on the quality of the absorbing boundary condition, which is tuned by varying
the number of wavelengths inside the PML region between 1 and 7. If the accuracy of the absorbing boundary condition
is reduced (fewer wavelengths), the preconditioner is less effective. If the accuracy of the absorbing boundary condition
is increased (more wavelengths), the preconditioner is more effective. In fact, if the accuracy of the boundary condition
is sufficiently high, the preconditioner is perfectly effective resulting in iteration counts independent of ω. It can also
be seen that the PML thickness has to be increased with ω in order to achieve this perfect effectiveness.

29

N ω/2π p Tfact Nit Tit Ttotal
202 × 202 20.1 2 1.09 2 0.66 2.63
404 × 404 40.3 4 1.00 3 0.58 2.56
808 × 808 80.7 8 1.41 3 1.26 6.02

1616 × 1616 161.5 16 2.80 2 3.39 14.05
3232 × 3232 323.1 32 4.41 3 5.47 27.47
6464 × 6464 646.3 64 8.34 4 11.09 67.74

12928 × 12928 1292.7 128 15.66 5 22.39 160.88

Table 6: Timings for the solver on a homogeneous wave speed. N is the number of degrees-of-freedom, ω is the
frequency, Tfact is the time spent to factorize the local problems, Nit is the number of GMRES iterations needed to
solve the problem, Tit is the average time spent per GMRES iteration, and Ttotal is the total time spent to solve the
linear system. All timings are measured in seconds.

Nevertheless, if the thickness of the PML region is kept constant with the problem size, the number of required
GMRES iterations to solve the global system only grows logarithmically with the wave number ω. It is surprising that
this qualitative property holds independently of the thickness of the PML, even for very thin PML regions, for example
one wavelength.

This shows that the thickness of the PML has a significant influence on the effectiveness of the preconditioner. On
the other hand, the thickness of the PML region is also crucial for the scalability of the preconditioner. For example, if
the PML region is chosen to contain npml discretization points with npml � n, the sizes of the local problems associated
with each subdomain grows as O(n2

pml) in 2D and as O((n+npml)n2
pml) in 3D. Consequently, the parallel factorization of

all subdomains scales as O(n2n3
pml/p) in 2D and O(n3n6

pml/p) in 3D and the application of the L-sweep preconditioner
scales in parallel as O(n2n2

pml log npml/p) in 2D and O(n3n4
pml/p) in 3D. Therefore, it is crucial to keep the thickness of

the PML region as thin as possible to preserve efficiency. This makes the trade-off between efficiency and effectiveness
of the preconditioner apparent. For all subsequent numerical examples considered in this paper, we choose a PML
thickness of 2 wavelengths, which is empirically sufficient to achieve satisfactory results. In particular, the logarithmic
growth of the number of iterations with respect to ω with this choice of PML-thickness allows one to achieve the
advocated parallel scaling of the solver.

We also performed the same experiment for finite difference discretizations with fewer than 10 discretization points
per wavelength. For very low accuracy discretizations (e.g., four points per wavelengths and more than 300 wavelengths
inside the domain), the preconditioner can fail, i.e., the number of iterations to solver the preconditioned linear system
grows faster than O(logω). This is because the preconditioner relies on physical properties of wave propagation which
are not captured by such inaccurate discretizations.

Considering these experiments, we conjecture that if the thickness of the PML region is kept constant with the
frequency ω and the discretization is sufficiently accurate, the number of iterations required to solve the problem using
a GMRES method grows as O(logω). In addition, if the transparent boundary conditions can be modelled perfectly,
the iteration count can be reduced to O(1) for reasonably smooth media.

5.2 Complexity of the solver
In this section we provide empirical run-times using the proposed methods to support our scalibility claims.

In this experiment, we consider the standard setup with constant wave speed, for q = 2, 4, 8, . . . , 128 and we measure
the factorization time, the time spent in one GMRES iteration, and the total time of the solver, which are summarized in
Table 6. All timings are recorded on the NERSC machine ’Cori’. Cori is composed of 2388 Haswell compute nodes,
each node containing two 16-core Intel Xeon Processor E5-2698 v3 running at 2.3 GHz and 128 GB of memory. The
nodes communicate via a Cray Aries interconnect with Dragonfly topology. The number of MPI ranks are chosen so
that each compute node is assigned one MPI rank and each MPI rank is assigned one row of subdomains in the CDD.
The number of MPI ranks is therefore p = q.

Table 6 contains the results of this experiment, from which we observe the scalability of the preconditioner. The
timings clearly reflect the O(N/p) scaling as claimed in the prequel. Furthermore, the number of iterations Nit grows
as O(logω)which further proves the effectiveness of the preconditioner. Combining both leads to the total time, Ttotal,
for the solver which reflects the claimed O

(
(N/p) logω

)
scaling, as illustrated in Figure 27.

30

Figure 27: Timings for 2D experiment with constant wavespeed. Solid lines are empirical complexities for one
application of the preconditioner (blue) and for the over-all solve (orange). Dashed lines are with measured results for
one application of the preconditioner (blue) and for the over-all solve (orange).

5.3 Smooth wave speeds
In this section, we demonstrate the impact of refracted waves, induced by smooth media, on the performance of the
preconditioner and iterative solver. As established in Section 4, the effectivness of the L-sweeps preconditioner strongly
depends on the presence of reflections and refractions in the solution. To evaluate the impact of refracted waves, we
consider the standard setup for two different smooth wave speeds, which are shown in Figure 28. One is a random
smooth wavefield, the other is a typical background wave speed used in seismic imaging. The latter is obtained by
smoothing the background of the BP model [8].

Figure 28: The smooth wave speed distributions. Left: Random smooth wave speed; Right: Smooth BP model
background

Table 7 shows the iteration counts obtained for both wave speeds. Table 7 shows the effectiveness of the precondi-
tioner when solving problems involving a smooth wave speed. In particular, we observe that the number of iterations
scales as O(logω), albeit with higher constants compared to the constant case.

31

N Random smooth Smooth BP model
(without PML) ω/2π q = r wave speed background

202 × 202 20.1 2 3 1
404 × 404 40.3 4 3 2
808 × 808 80.7 8 5 4

1616 × 1616 161.5 16 7 5
3232 × 3232 323.1 32 9 6
6464 × 6464 646.3 64 10 7

12928 × 12928 1292.7 128 12 8

Table 7: Iteration counts for smooth wave speeds for different frequencies.

N BG1 BG2 BP
(without PML) ω/2π q = r BG1 BG2 with salt with salt model

202 × 202 20.1 2 1 4 7 6 7
404 × 404 40.3 4 2 4 9 9 9
808 × 808 80.7 8 4 6 12 12 12

1616 × 1616 161.4 16 5 6 15 15 15
3232 × 3232 323.1 32 6 7 17 17 16
6464 × 6464 646.3 64 7 7 19 19 19

12928 × 12928 1292.7 128 8 8 21 21 20

Table 8: Iteration counts for the BP model.

5.4 BP model
In this section, we consider the wave speed of a standard geophysical benchmark problem, a subset of the BP model [8].
It is well-known that this problem involves many reflections in the resulting wavefields. We therefore use it to study the
effect of reflections on the L-sweeps preconditioner.

First, we establish that reflected waves arise primarily due to the salt body, the dark red region in Figures 29b,
29d, and 29e. To this end, we first consider two smooth background wave speeds, the one from Section 5.3, which we
will call BG1 and illustrate in Figure 29a and the true background velocity provided in [8], which we call BG2 and
illustrate in Figure 29c. Then, we superimpose the salt body on BG1 and BG2, building to examine the effect of the
high contrasts due to the salt body on the performance of the solver. Finally, for completeness, we also run the test on
the true BP model, as obtained from [8], illustrated in Figure 29e.

Table 8 shows the iteration counts observed for each of the 5 experiments. For both BG1 and BG2, with no salt,
we observe similar iteration counts and conclude that reflections do not play a big role in the resulting wavefields.
However, after superimposing salt body on top of of BG1 and BG2, we clearly see that the number of iterations increase
significantly. This is explained because reflections are introduced in the wavefield due to the high contrast between the
salt and the background. We also observe that the exact BP model can be solved in almost the same iteration counts as
BG1 and BG2 with the salt body superimposed. Thus, even for the exact BP model, the reflections induced by the salt
body dominate the performance of the preconditioner. Finally, let us note that even though reflections in the wavefield
result in higher iteration counts, with increasing frequency ω, the number of iterations always grows only as O(logω)
and they are never higher than 21 iterations, even for problems involving 1000 wavelengths inside the domain. This
shows the effectiveness of the preconditioner, even in the presence of reflections as they appear in practically relevant
problems. The wave field computed for the BP model and ω/2π = 323.1 is shown in Figure 30.

5.5 Wave-guide
To conclude the studies of two-dimensional problems, we consider a wave-guide with a point source at the entrance, a
problem that is designed to stress the capabilities of the preconditioner because solutions contain many reflections. The
wave-guide is illustrated in Figure 31. Other than the change in the source and velocity configuration, the experimental
setup follows the standard setup.

To stress the preconditioner, we vary the contrast ratio between the background and wave-guide. Table 9 shows

32

(a) The smooth background model (BG1). (b) BG1, with salt body.

(c) The ‘true’ BP model background velocity (BG2). (d) BG2 with salt body.

(e) The ‘true’ BP model.

Figure 29: Wave speed distributions for the study of the BP model.

33

Figure 30: The computed wave field for the BP model and ω/2π = 323.1. Zoom regions (a), (b), and (c) highlight
solution quality in areas of high-contrast in the wavespeed (at the salt boundary).

Figure 31: The wave speed distribution of the wave-guide. The point source at the entrance is shown by the green star.

34

N Contrast ratio
(without PML) ω/2π m = n 2 3 4 5 6

202 × 202 20.1 2 18 24 24 25 26
404 × 404 40.3 4 28 29 29 28 30
808 × 808 80.7 8 30 32 34 33 33

1616 × 1616 161.5 16 31 33 33 34 35
3232 × 3232 323.1 32 32 34 36 36 37
6464 × 6464 646.3 64 32 34 35 36 36

Table 9: Iteration counts for wave-guide problem for different contrast ratios of the wave speed between the wave-guide
and the background.

the results of the experiment. Once all reflections are resolved for each problem, the number of iterations grows
logarithmically with the frequency ω. In fact, the growth is so slow that it is comparable to the problem involving
constant wave speeds. In addition, while the number of iterations is clearly higher for this problem, it is interesting to
observe that all problems can still be solved in under 40 iterations. It is noteworthy that the number of iterations is
apparently independent the contrast ratio. The wave field computed for a contrast ratio of 6 and ω/2π = 323.1 is shown
in Figure 32.

5.6 3D Example
As a final example, we consider a three-dimensional problem. The effectiveness of the preconditioner has been
thoroughly established in the previous two-dimensional numerical examples. These results directly translate over to
three-dimensional problems. Therefore, we only consider the scalability of the solver for a three-dimensional problem
for a constant wave speed.

To this end, we consider the standard setup in a 3D setting. This means that instead of constantly sized two-
dimensional problems, the local problems in each subdomain are beam-shaped three-dimensional problems. These
beam shaped local problems are obtained from the local 2D problems by extending them in the third dimension such
that the global problem has n degrees of freedom in each direction where, as before, q = r is the number of subdomains
in one direction of the CDD. The only other differences in problem setup are that we consider a discretization of 6
points per wavelength, assume that each subdomain contain 2 wavelengths, and choose a PML thickness of only one
wavelength. Not counting the PML region, this results in problems with n = 13q degrees of freedom in one direction.
All of these changes are for computational expedience.

The timings are measured in the same computational environment as in Section 5.2. As before, one row of
subdomains is assigned to one node, i.e., p = q. Table 10 shows the resulting time Tfact needed for the factorization of
all the local problems, the number of iterations Nit required in the GMRES method, the average time Tit required in
each iteration, and the total time Ttotal required for the solver.

It can be clearly seen from Table 2 that Tfact and Tit both show the claimed O(N/p) scaling. In addition, as in the
two-dimensional cases, the number of iterations Nit grows as O(logω) resulting in the almost optimal O

(
(N/p) logω

)
scaling for the total time Ttotal needed for the solver as shown in Figure 33. This corroborates the claimed complexity
for three-dimensional problems.

6 Discussion
We have introduced the first solver for the high-frequency Helmholtz equation that scales as O

(
(N/p) logω

)
a

distributed-memory parallel computational environment, for a single right-hand side. The new solver constructs a
preconditioner based on a CDD. This approach reveals parallelism which is exploited to obtain the optimal parallel
complexity. The performance of the preconditioner is similar to the well-established method of polarized traces, i.e.,
the number of iterations grows as O(logω).

We have shown that the preconditioner is effective once all reflections and refractions in the wavefield are resolved.
While this is feasible for many practical applications, the performance of the proposed solver deteriorates in the presence
of excessive reflected or refracted waves. This limitation arises, for example, on problems containing resonant cavities.
We do not think that sweeping strategies are the correct approach to solve these problems, and due to the relevance of
these problems, we view this case as a topic for further research.

35

Figure 32: The computed wave field for a contrast ratio of 6 andω/2π = 323.1. Zoom regions (a), (b), and (c) highlight
solution quality in areas of high-contrast in the wavespeed.

N
(without PML) ω/2π p Tfact Nit Tit Ttotal
26 × 26 × 26 4.17 2 .04 4 1.34 6.52
52 × 52 × 52 8.50 4 5.54 6 5.30 37.17
78 × 78 × 78 12.83 6 12.42 6 12.80 89.76

104 × 104 × 104 17.17 8 22.91 6 23.27 163.62
13 − ×130 × 130 21.50 10 37.53 7 36.47 292.33
156 × 156 × 156 25.83 12 52.47 7 51.62 417.08
182 × 182 × 182 30.17 14 71.71 8 68.92 627.23
208 × 208 × 208 34.50 16 96.14 7 91.65 743.37
234 × 234 × 234 38.83 18 124.64 8 116.08 1050.31
260 × 260 × 260 43.17 20 211.87 7 177.21 1438.12
312 × 312 × 312 51.83 24 314.93 8 263.16 2457.40
416 × 416 × 416 69.17 32 418.36 9 377.60 3992.63

Table 10: Timings for the solver on a 3D homogeneous wave speed. N is the number of degrees-of-freedom, ω is the
frequency, Tfact is the time spent to factorize the local problems, Nit is the number of GMRES iterations needed to
achieve a relative residual of 10−7, Tit is the average time spent per GMRES iteration, and Ttotal is the total time spent
to solve the linear system. All timings are measured in seconds.

36

Figure 33: Timings for the 3D experiment with constant wavespeed. Solid lines are empirical complexities for one
application of the preconditioner (blue) and for the over-all solve (orange). Dashed lines are with measured results for
one application of the preconditioner (blue) and for the over-all solve (orange).

Future work of the current method includes improvements for three-dimensional problems. As it is presented in
this paper, the method results in a O(n2) = O(N 2

3) parallel complexity for three-dimensional problems. However, all
beam-shaped local problems are treated by one MPI rank only. It is well established that these quasi-one-dimensional
problems can be treated in a distributedmemory parallel computational environment by the use of multi-frontal methods
[64, 2, 50]. In this case, further parallelism can be exploited and an almost O(n) = O(N 1

3) parallel complexity can be
achieved for three-dimensional problems.

Using this extension, it can be shown that the high-frequency Helmholtz equation can be optimally parallelized
in all spatial directions but one. The remaining direction is due to the inherently serial nature of the sweeps. In this
regard, we conjecture that this work achieves the boundary of the scalability of sweeping preconditioners for a single
right-hand side and that further improvements require new ideas. Nevertheless, in the presence of O(n) right-hand
sides, sweeping preconditioners can be further parallelized by pipelining over the right-hand sides. In that regard,
the parallel complexity can be further improved to an average O(1), up to logarithmic factors, parallel complexity per
right-hand side. All of these extensions are currently under investigation.

Finally, while we only consider a row-based processor assignment in this work, in highly heterogeneous parallel
computational environments other processor assignments, in particular processor assignments tailored to the hetero-
geneous computational environment, can be applied straightforwardly with our approach. This may lead to further
improvements of the efficiency of the algorithm. An investigation of these aspects would also be very interesting.

7 Acknowledgement
The authors thank Total SA for support and for permission to release the example code. LD is also supported by
AFOSR grant FA9550-17-1-0316. The BP model is provided courtesy of BP and Fréderic Billette. We thank NERSC
for computation resources. MT thanks the Institute of Applied Mathematics at Graz University of Technology for
hosting him for part of this research.

A Perfectly Matched Layers (PMLs) and Finite Difference Discretizations
For a given squared slowness m and source density f defined on Ωextended, following the technique of PMLs, a new
complex-valued squared slowness and source density can be derived so that the PMLs act as absorbing boundary

37

conditions. The coefficients in Ωextended can be derived from the variable transformation [46, 7]

∂

∂xk
→ αk(x)

∂

∂xk

for k = 1, .., d where αk is the complex-valued function

αk(x) =
1

1 + iσk (x)
ω

,

where i =
√
−1 is the imaginary unit and σk is the PML profile function.

To describe the PML profile, assume that Ωbulk is the unit square or the unit cube. Then the extended domain
Ωextended is the square (d = 2) or cube (d = 3), [−δpml, 1 + δpml]d , with the PML-width δpml > 0. The PML profile σk

is then chosen to be the cubic function

σk(x) :=


C
δpml

(
−xk
δpml

)3
for xk < 0

0 for 0 ≤ xk ≤ 1
C
δpml

(
xk−1
δpml

)3
for xk > 1

where C > 0 is the absorption constant chosen to be C = lnω. Employing this variable transformation in equation (2)
gives rise to the diagonal matrixΛwith diagonal entries α2

k
/β, and the the complex-valued squared slowness and source

density can be written as

m∏d
k=1 αk

, and
f∏d

k=1 αk
,

respectively.
The resulting system is usually called the symmetric formulation of the Helmholtz equation, which in 2D takes the

form:

−
(
∇ · Λ∇ + ω2m(x)

α1(x)α2(x)

)
u(x) = f (x)

α1(x)α2(x)
, (16)

and
Λ(x) =

[
s1(x) 0

0 s2(x)

]
, (17)

s1 = α1/α2, s2 = α2/α1, with homogeneous Dirichlet boundary conditions.
We discretizeΩbulk as an equispaced regular grid of stepsize h, and of dimensions nx×ny . For the extended domain

Ωextended, we extend this grid by npml = δpml/h points in each direction, obtaining a grid of size (2npml+nx)×(2npml+nz).
Define xp,q = (xp, yq) = (ph, qh). We use the 5-point stencil Laplacian to discretize (16). For the interior points
xi, j ∈ Ω, we have

(Au)p,q = −
1
h2

(
up−1,q − 2up,q + up+1,q

)
− 1

h2

(
up,q−1 − 2up,q + up,q+1

)
− ω2 m(xp,q)

s1(xp,q)s2(xp,q)
. (18)

In the PML, we discretize ∂x(s1∂xu) as

s1(xp+1/2,q)(up+1,q − up,q) − s1(xp−1/2,q)(up,q − up−1,q)
h2 , (19)

and analogously for ∂y(s2∂yu).

B Proof of the annihilation condition
Let x ∈ Ω1, then using the definition of U and the fact that u and G(x, .) vanish on ∂Ω, it holds

U(x) =
∫
Γ

Λ(y)∇u(y)G(x, y)dsy −
∫
Γ

u(y)
[
n(y) ·

(
Λ(y)∇yG(x, y)

)]
dsy

=

∫
∂Ω2

Λ(y)∇u(y)G(x, y)dsy −
∫
∂Ω2

u(y)
[
n(y) ·

(
Λ(y)∇yG(x, y)

)]
dsy .

38

Then, employing the Divergence Theorem yields

U(x) =
∫
Ω2

u(y)
[
− divy

(
Λ(y)∇yG(x, y)

)]
dy −

∫
Ω2

[− div (Λ(y)∇u(y))]G(x, y)dy

=

∫
Ω2

u(y)
[
− divy

(
Λ(y)∇yG(x, y)

)
− m(y)G(x, y)

]︸ ︷︷ ︸
=0

dy −
∫
Ω2

[− div (Λ(y)∇u(y)) − m(y)u(y)]︸ ︷︷ ︸
=0

G(x, y)dy

proving the Annihilation condition (6).

C Pseudocode

C.1 Core algorithms

Algorithm 1 Extraction of traces
1: function extractTraces(u, i, j)
2: Define the Dirichlet traces λB, λR, λT , λL and set them to zero
3: Define the Neumann traces µB, µR, µT , µL and set them to zero
4: if i > 1 then
5: Extract the traces λB and µB from u according to (10)
6: if i < m then
7: Extract the traces λT and µT from u according to (10)
8: if j > 1 then
9: Extract the traces λL and µL from u according to (10)
10: if j < n then
11: Extract the traces λR and µR from u according to (10)

return λB, λR, λT , λL , µB, µR, µT , µL

Algorithm 2 Computation of a local solution
1: function computeLocSol(f , i, j)
2: Define fi j for any x ∈ Ωεi j such that

fi j(x) :=
{

f (x) x ∈ Ωi j

0 otherwise

3: Solve the local problem on Ωεi j for fi j and obtain the solution ui j
return ui j

Algorithm 3 Computation of a local polarized wavefield
1: function computePolSol(λ, µ, Γ, i, j)
2: With λ, µ and Γ, compute ui j in Ωεi j using (4)

return ui j

39

C.2 Algorithm for the local solutions (stage 1)

Algorithm 4 Compute all local solutions
1: function addLocSols(u, f)
2: Define an m × n matrix λL of left Dirichlet traces and set them to zero
3: Define an m × n matrix µL of left Neumann traces and set them to zero
4: Define an m × n matrix λR of right Dirichlet traces and set them to zero
5: Define an m × n matrix µR of right Neumann traces and set them to zero
6: Define an m × n matrix λB of bottom Dirichlet traces and set them to zero
7: Define an m × n matrix µB of bottom Neumann traces and set them to zero
8: Define an m × n matrix λT of top Dirichlet traces and set them to zero
9: Define an m × n matrix µT of top Neumann traces and set them to zero
10: for i = 1, . . . ,m do
11: for j = 1, . . . , n do
12: u[i, j] = computeLocSol(f , i, j)
13: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(u[i, j], i, j)
14: Set the bottom Dirichlet trace λB[i, j] = λB,loc
15: Set the right Dirichlet trace λR[i, j] = λR,loc
16: Set the top Dirichlet trace λT [i, j] = λT,loc
17: Set the left Dirichlet trace λL[i, j] = λL,loc
18: Set the bottom Neumann trace µB[i, j] = µB,loc
19: Set the right Neumann trace µR[i, j] = µR,loc
20: Set the top Neumann trace µT [i, j] = µT,loc
21: Set the left Neumann trace µL[i, j] = µL,loc

return u, λB, λR, λT , λL , µB, µR, µT , µL

C.3 Algorithms for the horizontal and vertical sweeps (stage 2)

Algorithm 5 Global wavefield from the up sweeps

1: function addUpSweeps(u, λT , µT)
2: Define an m × n matrix λL of left Dirichlet traces and set them to zero
3: Define an m × n matrix µL of left Neumann traces and set them to zero
4: Define an m × n matrix λR of right Dirichlet traces and set them to zero
5: Define an m × n matrix µR of right Neumann traces and set them to zero
6: for d = 1 · · · + n do
7: for i = 1 · · · do
8: j = d − i + 1
9: if i > 1 then
10: uloc = computePolSol(λT [i − 1, j], µT [i − 1, j], ΓBij , i, j)
11: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
12: Update wave field u[i, j] += uloc

13: Update top Dirichlet trace λT [i, j] += λT,loc
14: Update top Neumann trace µT [i, j] += µT,loc
15: Set right Dirichlet trace λR[i, j] = λR,loc
16: Set right Neumann trace µR[i, j] = µR,loc
17: Set left Dirichlet trace λL[i, j] = λL,loc
18: Set left Neumann trace µL[i, j] = µL,loc

return u, λR, λL , µR, µL

40

Algorithm 6 Global wavefield from the down sweeps

1: function addDownSweeps(u, λB, µB)
2: Define an m × n matrix λL of left Dirichlet traces and set them to zero
3: Define an m × n matrix µL of left Neumann traces and set them to zero
4: Define an m × n matrix λR of right Dirichlet traces and set them to zero
5: Define an m × n matrix µR of right Neumann traces and set them to zero
6: for d = 1, . . . ,m + n do
7: for i = 1, . . . ,m do
8: j = d − i + 1
9: i = m − i + 1
10: j = n − j + 1
11: if i < n then
12: uloc = computePolSol(λB[i + 1, j], µB[i + 1, j], ΓTij , i, j)
13: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
14: Update wave field u[i, j] += uloc

15: Update bottom Dirichlet trace λB[i, j] += λB,loc
16: Update bottom Neumann trace µB[i, j] += µB,loc
17: Set right Dirichlet trace λR[i, j] = λR,loc
18: Set right Neumann trace µR[i, j] = µR,loc
19: Set left Dirichlet trace λL[i, j] = λL,loc
20: Set left Neumann trace µL[i, j] = µL,loc

return u, λR, λL , µR, µL

Algorithm 7 Global wavefield from the right sweeps

1: function addRightSweeps(u, λR, µR)
2: Define an m × n matrix λB of bottom Dirichlet traces and set them to zero
3: Define an m × n matrix µB of bottom Neumann traces and set them to zero
4: Define an m × n matrix λT of top Dirichlet traces and set them to zero
5: Define an m × n matrix µT of top Neumann traces and set them to zero
6: for i = 1, . . . ,m do
7: for j = 2, . . . , n do
8: uloc = computePolSol(λR[i, j − 1], µR[i, j − 1], ΓLij , i, j)
9: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
10: Update wave field u[i, j] += uloc

11: Update right Dirichlet trace λR[i, j] += λR,loc
12: Update right Neumann trace µR[i, j] += µR,loc
13: Set bottom Dirichlet trace λB[i, j] = λB,loc
14: Set bottom Neumann trace µB[i, j] = µB,loc
15: Set top Dirichlet trace λT [i, j] = λT,loc
16: Set top Neumann trace µT [i, j] = µT,loc

return u, λB, λT , µB, µT

41

Algorithm 8 Global wavefield from an left sweep in row i

1: function addLeftSweeps(u, λL , µL)
2: Define an m × n matrix λB of bottom Dirichlet traces and set them to zero
3: Define an m × n matrix µB of bottom Neumann traces and set them to zero
4: Define an m × n matrix λT of top Dirichlet traces and set them to zero
5: Define an m × n matrix µT of top Neumann traces and set them to zero
6: for i = 1, . . . ,m do
7: for j = n − 1, . . . , 1 do
8: uloc = computePolSol(λL[i, j + 1], µL[i, j + 1], ΓRij , i, j)
9: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
10: Update wave field u[i, j] += uloc

11: Update left Dirichlet trace λL[i, j] += λL,loc
12: Update left Neumann trace µL[i, j] += µL,loc
13: Set bottom Dirichlet trace λB[i, j] = λB,loc
14: Set bottom Neumann trace µB[i, j] = µB,loc
15: Set top Dirichlet trace λT [i, j] = λT,loc
16: Set top Neumann trace µT [i, j] = µT,loc

return u, λB, λT , µB, µT

C.4 Algorithms for diagonal sweeps (stage 3)

Algorithm 9 Global wavefield from a diagonal sweep from the bottom-left to the top-right corner

1: function addBL2TRSweep(u, λL , λB, µL , µB)
2: for d = 1, . . . ,m + n do
3: for i = 1, . . . ,m do
4: if i > 1 and j > 1 then
5: Define the L-shaped line ΓBLby combining ΓBij and Γ

L
ij

6: Define λB := λT [i − 1, j] and µB := µT [i − 1, j]
7: Define λL := λR[i, j − 1] and µL := µR[i, j − 1]
8: Define λBL and µBL similar to (12) and (13).
9: uloc = computePolSol(λBL , µBL , ΓBL , i, j)
10: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
11: Update wave field u[i, j] += uloc

12: Update right Dirichlet trace λR[i, j] += λR,loc
13: Update right Neumann trace µR[i, j] += µR,loc
14: Update top Dirichlet trace λT [i, j] += λT,loc
15: Update top Neumann trace µT [i, j] += µT,loc

return u

42

Algorithm 10 Global wavefield from a diagonal sweep from the top-right to the bottom-left corner

1: function addTR2BLSweep(u, λR, λT , µR, µT)
2: for d = 1, . . . ,m + n do
3: for i = m, . . . , 1 do
4: j = n + m − 1 − (d + i)
5: if i < n and j < n then
6: Define the L-shaped line ΓTRby combining ΓTij and Γ

R
ij

7: Define λT := λB[i + 1, j] and µT := µB[i + 1, j]
8: Define λR := λL[i, j + 1] and µR := µL[i, j + 1]
9: Define λTR and µTR similar to (12) and (13).
10: uloc = computePolSol(λTR, µTR, ΓTR, i, j)
11: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
12: Update wave field u[i, j] += uloc

13: Update left Dirichlet trace λL[i, j] += λL,loc
14: Update left Neumann trace µL[i, j] += µL,loc
15: Update bottom Dirichlet trace λB[i, j] += λB,loc
16: Update bottom Neumann trace µB[i, j] += µB,loc

return u

Algorithm 11 Global wavefield from a diagonal sweep from the bottom-right to the top-left corner

1: function addBR2TLSweep(u, λL , λT , µL , µT)
2: for d = 1, . . . ,m + n do
3: for i = 1, . . . ,m do
4: j = n − (d + i)
5: if i > 1 and j < n then
6: Define the L-shaped line ΓBRby combining ΓBij and Γ

R
ij

7: Define λB := λT [i − 1, j] and µB := µT [i − 1, j]
8: Define λR := λL[i, j + 1] and µR := µL[i, j + 1]
9: Define λBR and µBR similar to (12) and (13).
10: uloc = computePolSol(λBR, µBR, ΓBR, i, j)
11: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
12: Update wave field u[i, j] += uloc

13: Update left Dirichlet trace λL[i, j] += λL,loc
14: Update left Neumann trace µL[i, j] += µL,loc
15: Update top Dirichlet trace λT [i, j] += λT,loc
16: Update top Neumann trace µT [i, j] += µT,loc

return u

43

Algorithm 12 Global wavefield from a diagonal sweep from the top-left to the bottom-right corner

1: function addTL2BRSweep(u, λR, λB, µR, µB)
2: for d = 1, . . . ,m + n do
3: for i = m, . . . , 1 do
4: j = (d + i) − m
5: if i < m and j > 1 then
6: Define the L-shaped line ΓTLby combining ΓTij and Γ

L
ij

7: Define λT := λB[i + 1, j] and µT := µB[i + 1, j]
8: Define λL := λR[i, j − 1] and µL := µR[i, j − 1]
9: Define λTL and µTL similar to (12) and (13).
10: uloc = computePolSol(λTL , µTL , ΓTL , i, j)
11: (λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = extractTraces(uloc, i, j)
12: Update wave field u[i, j] += uloc

13: Update right Dirichlet trace λR[i, j] += λR,loc
14: Update right Neumann trace µR[i, j] += µR,loc
15: Update bottom Dirichlet trace λB[i, j] += λB,loc
16: Update bottom Neumann trace µB[i, j] += µB,loc

return u

C.5 The algorithm of scenario 3

Algorithm 13 Computation of the wavefield for an arbitrary source density that does not intersect the skeleton of the
CDD
1: function computeScenario3(f)
2: Define an m × n matrix u of local wave fields
3: (u, λB,loc, λR,loc, λT,loc, λL,loc, µB,loc, µR,loc, µT,loc, µL,loc) = addLocSols(u, f)
4: (u, λR,up, λL,up, µR,up, µL,up) = addUpSweeps(u, λT,loc, µT,loc)
5: (u, λR,down, λL,down, µR,down, µL,down) = addDownSweeps(u, λB,loc, µB,loc)
6: (u, λB,left, λT,left, µB,left, µT,left) = addLeftSweeps(u, λL,loc, µL,loc)
7: (u, λB,right, λT,right, µB,right, µT,right) = addRightSweeps(u, λR,loc, µR,loc)
8: u = addBL2TRSweep(u, λR,up, λT,right, µR,up, µT,right)
9: u = addTR2BLSweep(u, λL,down, λB,left, µL,down, µB,left)

10: u = addBR2TLSweep(u, λL,up, λT,left, µL,up, µT,left)
11: u = addTL2BRSweep(u, λR,down, λB,right, µR,down, µB,right)
12: Define u = 0 in Ω
13: for i = 1, . . . ,m do
14: for j = 1, . . . , n do
15: u|Ωi j=u[i, j]|Ωi j

return u

References
[1] P. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D

frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application
to OBC data from the North Sea. Geophysics, 81:R363–R383, 2016.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronousmultifrontal solver using distributed
dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[3] D. Aruliah and U. Ascher. Multigrid preconditioning for Krylov methods for time-harmonic Maxwell’s equations
in three dimensions. SIAM Journal on Scientific Computing, 24(2):702–718, 2002.

[4] A. V. Astaneh and M. N. Guddati. A two-level domain decomposition method with accurate interface conditions
for the Helmholtz problem. International Journal for Numerical Methods in Engineering, 107(1):74–90, 2016.
nme.5164.

44

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical linear algebra. SIAM
Journal on Matrix Analysis and Applications, 32(3):866–901, 2011.

[6] M. Bebendorf. Hierarchical Matrices: AMeans to Efficiently Solve Elliptic Boundary Value Problems, volume 63
of Lecture Notes in Computational Science and Engineering (LNCSE). Springer-Verlag, 2008. ISBN 978-3-540-
77146-3.

[7] J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational
Physics, 114(2):185–200, 1994.

[8] F. Billette and S. Brandsberg-Dahl. The 2004 BP velocity benchmark. EAGE, 2005.

[9] S. Boerm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Max-Planck- Institute Lecture Notes, 2006.

[10] Y. Boubendir. An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering
problem. Journal of Computational and Applied Mathematics, 204(2):282 – 291, 2007. Special Issue: The
Seventh International Conference on Mathematical and Numerical Aspects of Waves (WAVES’05).

[11] Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping domain decomposition algorithm
for the Helmholtz equation. Journal of Computational Physics, 231(2):262 – 280, 2012.

[12] J. Bramble and J. Pasciak. Analysis of a finite PML approximation for the three dimensional time-harmonic
Maxwell and acoustic scattering problems. Mathematics of Computation, 76(258):597–614, 2007.

[13] A. Brandt and I. Livshits. Wave-ray multigrid method for standing wave equations. Electronic Transactions on
Numerical Analysis, 6:162–181, 1997.

[14] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur. An improved two-grid preconditioner for the solution of
three-dimensional Helmholtz problems in heterogeneous media. Numerical Linear Algebra with Applications,
20(4):663–688, 2013.

[15] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica, 3:61–143, 1 1994.

[16] Z. Chen and X. Xiang. A source transfer domain decomposition method for Helmholtz equations in unbounded
domain. SIAM Journal on Numerical Analysis, 51(4):2331–2356, 2013.

[17] F. Collino, S. Ghanemi, and P. Joly. Domain decomposition method for harmonic wave propagation: a general
presentation. Computer Methods in Applied Mechanics and Engineering, 184(2–4):171 – 211, 2000.

[18] T. A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method. ACM Transactions
on Mathematical Software, 30(2):196–199, June 2004.

[19] M. V. de Hoop, S. Wang, and J. Xia. On 3D modeling of seismic wave propagation via a structured parallel
multifrontal direct Helmholtz solver. Geophysical Prospecting, 59(5):857–873, 2011.

[20] A. de La Bourdonnaye, C. Farhat, A. Macedo, F. Magoules, and F.-X. Roux. A non-overlapping domain
decomposition method for the exterior Helmholtz problem. Contemporary Mathematics, 218:42–66, 1998.

[21] J. Demmel, L. Grigori, M. Gu, and H. Xiang. Communication avoiding rank revealing qr factorization with
column pivoting. Technical Report UCB/EECS-2013-46, EECS Department, University of California, Berkeley,
May 2013.

[22] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal approach to sparse partial
pivoting. SIAM Journal Matrix Analysis and Applications, 20(3):720–755, 1999.

[23] B. Després. Décomposition de domaine et problème de Helmholtz. Comptes rendus de l’Académie des sciences.
Série 1, Mathématique, 311:313–316, 1990.

[24] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear. ACM Transactions on
Mathematical Software, 9(3):302–325, September 1983.

[25] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation.
Communications on Pure and Applied Mathematics, 64(5):697–735, 2011.

45

[26] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers.
Multiscale Modeling & Simulation, 9(2):686–710, 2011.

[27] B. Engquist and H.-K. Zhao. Absorbing boundary conditions for domain decomposition. Applied Numerical
Mathematics, 27(4):341 – 365, 1998. Special Issue on Absorbing Boundary Conditions.

[28] Y. A. Erlangga, C.W.Oosterlee, and C. Vuik. A novel multigrid based preconditioner for heterogeneousHelmholtz
problems. SIAM Journal on Scientific Computing, 27(4):1471–1492, 2006.

[29] O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems with classical iterative methods. In
Ivan G. Graham, Thomas Y. Hou, Omar Lakkis, and Robert Scheichl, editors, Numerical Analysis of Multiscale
Problems, volume 83 of Lecture Notes in Computational Science and Engineering, pages 325–363. Springer
Berlin Heidelberg, 2012.

[30] J. Fang, J. Qian, L. Zepeda-Núñez, and H. Zhao. Learning dominant wave directions for plane wave methods for
high-frequency Helmholtz equations. Research in the Mathematical Sciences, 4(1):9, May 2017.

[31] M. Gander and F. Nataf. AILU for Helmholtz problems: a new preconditioner based on an analytic factorization.
Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 331(3):261–266, 2000.

[32] M. Gander and H. Zhang. A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping
preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM
Review, 61(1):3–76, 2019.

[33] M. J. Gander. Optimized Schwarz methods. SIAM Journal on Numerical Analysis, 44(2):699–731, 2006.

[34] M. J. Gander and F. Kwok. Optimal interface conditions for an arbitrary decomposition into subdomains. In
Yunqing Huang, Ralf Kornhuber, Olof Widlund, and Jinchao Xu, editors, Domain Decomposition Methods in
Science and Engineering XIX, volume 78 of Lecture Notes in Computational Science and Engineering, pages
101–108. Springer Berlin Heidelberg, 2011.

[35] M. J. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz equation.
SIAM Journal on Scientific Computing, 24(1):38–60, 2002.

[36] M. J. Gander and Y. Xu. Domain Decomposition Methods in Science and Engineering XXII, chapter Optimized
Schwarz Method with Two-Sided Transmission Conditions in an Unsymmetric Domain Decomposition, pages
631–639. Springer International Publishing, Cham, 2016.

[37] M. J. Gander and H. Zhang. Domain decomposition methods for the Helmholtz equation: A numerical investiga-
tion. In Randolph Bank, Michael Holst, Olof Widlund, and Jinchao Xu, editors, Domain Decomposition Methods
in Science and Engineering XX, volume 91 of Lecture Notes in Computational Science and Engineering, pages
215–222. Springer Berlin Heidelberg, 2013.

[38] M. J. Gander and H. Zhang. Domain Decomposition Methods in Science and Engineering XXI, chapter Optimized
Schwarz Methods with Overlap for the Helmholtz Equation, pages 207–215. Springer International Publishing,
Cham, 2014.

[39] M.J. Gander, I.G. Graham, and E.A. Spence. Applying GMRES to the Helmholtz equation with shifted Lapla-
cian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?
Numerische Mathematik, pages 1–48, 2015.

[40] A. George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical Analysis, 10:345–363,
1973.

[41] S. Ghanemi. A domain decomposition method for Helmholtz scattering problems. In Ninth International
Conference on Domain Decomposition Methods, pages 105–112, 1998.

[42] A. Gillman, A. H. Barnett, and P.-G. Martinsson. A spectrally accurate direct solution technique for frequency-
domain scattering problems with variable media. BIT Numerical Mathematics, 55(1):141–170, Mar 2015.

[43] Dan Gordon and Rachel Gordon. Carp-cg: A robust and efficient parallel solver for linear systems, applied to
strongly convection dominated {PDEs}. Parallel Computing, 36(9):495 – 515, 2010.

46

[44] R. W. Hockney. A fast direct solution of poisson’s equation using fourier analysis. J. ACM, 12(1):95–113, January
1965.

[45] Q. Hu and H. Zhang. Substructuring preconditioners for the systems arising from plane wave discretization of
Helmholtz equations. SIAM Journal on Scientific Computing, 38(4):A2232–A2261, 2016.

[46] S. Johnson. Notes on perfectly matched layers (PMLs), March 2010.

[47] D. Kourounis, A. Fuchs, and O. Schenk. Toward the next generation of multiperiod optimal power flow solvers.
IEEE Transactions on Power Systems, 33(4):4005–4014, July 2018.

[48] A. Laird and M. Giles. Preconditioned iterative solution of the 2D Helmholtz equation. Technical Report NA
02-12, Computing Lab, Oxford University, May 2002.

[49] W. Leng and L. Ju. An additive overlapping domain decomposition method for the Helmholtz equation. SIAM
Journal on Scientific Computing, 41(2):A1252–A1277, 2019.

[50] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric
linear systems. ACM Trans. Mathematical Software, 29(2):110–140, June 2003.

[51] Y. Li, L. Métivier, R. Brossier, B. Han, and J. Virieux. 2D and 3D frequency-domain elastic wave modeling in
complex media with a parallel iterative solver. Geophysics, 80:T101–T118, 2015.

[52] P.-L. Lions. On the Schwarz alternating method II. In Tony Chan, Roland Glowinski, Jacques Periaux, and Olof
Widlund, editors, Domain Decomposition Methods, Lecture Notes in Computational Science and Engineering,
pages 47–70. SIAM, 1989.

[53] F. Liu and L. Ying. Recursive sweeping preconditioner for the 3D Helmholtz equation. ArXiv e-prints, 2015.

[54] F. Magoules, K. Meerbergen, and J.-P. Coyette. Application of a domain decomposition with Lagrange multipliers
to acoustic problems arising from the automotive industry. Journal of Computational Acoustics, 08(03):503–521,
2000.

[55] L. C. McInnes, R. F. Susan-Resiga, D. E. Keyes, and H. M. Atassi. Additive Schwarz methods with nonreflecting
boundary conditions for the parallel computation of Helmholtz problems. Contemporary Mathematics, 218:325–
333, 1998.

[56] A. Modave, X. Antoine, and C. Geuzaine. An efficient domain decomposition method with cross-point treatment
for Helmholtz problems. 2018.

[57] A. Moiola and E. Spence. Is the Helmholtz equation really sign-indefinite? SIAM Review, 56(2):274–312, 2014.

[58] W.A. Mulder. A multigrid solver for 3D electromagnetic diffusion. Geophysical Prospecting, 54(5):633–649,
2006.

[59] R.-E. Plessix. A Helmholtz iterative solver for 3D seismic-imaging problems. Geophysics, 72:SM185–SM194,
2007.

[60] R.-E. Plessix and W. A. Mulder. Separation-of-variables as a preconditioner for an iterative Helmholtz solver.
Applied Numerical Mathematics, 44(3):385–400, 2003.

[61] J. Poulson, L. Demanet, N. Maxwell, and L. Ying. A parallel butterfly algorithm. SIAM Journal on Scientific
Computing, 36(1):C49–C65, 2014.

[62] J. Poulson, B. Engquist, S. Li, and L. Ying. A parallel sweeping preconditioner for heterogeneous 3D Helmholtz
equations. SIAM Journal on Scientific Computing, 35(3):C194–C212, 2013.

[63] R. G. Pratt. Seismic waveform inversion in the frequency domain; part 1: Theory and verification in a physical
scale model. Geophysics, 64(3):888–901, 1999.

[64] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov. A distributed-memory package for dense hierarchically semi-
separable matrix computations using randomization. ACM Transactions on Mathematical Software, 42(4):27:1–
27:35, June 2016.

47

[65] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, July 1986.

[66] H. A. Schwarz. Uber einen grenzubergang durch alternierendes verfahren. Vierteljahrsschrift der Naturforschen-
den Gesellschaft in Zurich, 15:272–286, 1870.

[67] A. H. Sheikh, D. Lahaye, and C. Vuik. On the convergence of shifted Laplace preconditioner combined with
multilevel deflation. Numerical Linear Algebra with Applications, 20(4):645–662, 2013.

[68] F. Sourbier, A. Haiddar, L. Giraud, H. Ben-Hadj-Ali, S. Operto, and J. Virieux. Three-dimensional parallel
frequency-domain visco-acoustic wave modelling based on a hybrid direct/iterative solver. Geophysical Prospect-
ing, 59(5):834–856, 2011.

[69] E. A. Spence. Wavenumber-explicit bounds in time-harmonic acoustic scattering. SIAM Journal on Mathematical
Analysis, 46(4):2987–3024, 2014.

[70] C. C. Stolk. A rapidly converging domain decomposition method for the Helmholtz equation. Journal of
Computational Physics, 241(0):240–252, 2013.

[71] C. C. Stolk. A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory. Journal of
Computational Physics, 314:618 – 646, 2016.

[72] C. C. Stolk. An improved sweeping domain decomposition preconditioner for the Helmholtz equation. Advances
in Computational Mathematics, 43(1):45–76, Feb 2017.

[73] M. Taus, L. Demanet, and L. Zepeda-Núñez. A short note on a fast and high-order hybridizable discontinuous
Galerkin solver for the 2D high-frequency Helmholtz equation. In SEG Technical Program Expanded Abstracts
2016, pages 3835–3840, 2016.

[74] M. Taus, L. Demanet, and L. Zepeda-Núñez. A short note on a fast and high-order hybridizable discontinuous
Galerkin solver for the 2D high-frequency Helmholtz equation. In SEG Technical Program Expanded Abstracts
2016, pages 3835–3840. Society of Exploration Geophysicists, 2016.

[75] M. Taus, L. Zepeda-Núñez, R. J. Hewett, and L. Demanet. L-Sweeps/L-Sweeps-2D. Sep 2019. Available at
https://github.com/L-Sweeps/L-Sweeps-2D, version 1.0.0, DOI:10.5281/zenodo.3383883.

[76] M. Taus, L. Zepeda-Núñez, R. J. Hewett, and L.Demanet. L-Sweeps/L-Sweeps-2D-examples. Sep 2019. Available
at https://github.com/L-Sweeps/L-Sweeps-2D-examples, version 1.0.0, DOI:10.5281/zenodo.3383923.

[77] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication operations in mpich.
International Journal of High Performance Computing Applications, 19(1):49–66, 2005.

[78] A. Toselli and O. B. Widlund. Domain Decomposition Methods — Algorithms and Theory, volume 34 of Springer
Series in Computational Mathematics. Springer Berlin Heidelberg, 2005.

[79] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsym-
metric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.

[80] A. Vion and C. Geuzaine. Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz
problem. Journal of Computational Physics, 266(0):171–190, 2014.

[81] J. Virieux and S. Operto. An overview of full-waveform inversion in exploration geophysics. Geophysics,
74(6):WCC1–WCC26, 2009.

[82] S. Wang, M. V. de Hoop, J. Xia, and X. S. Li. Massively parallel structured multifrontal solver for time-harmonic
elastic waves in 3-D anisotropic media. Geophysical Journal International, 191(1):346–366, 2012.

[83] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Superfast multifrontal method for large structured linear systems
of equations. SIAM Journal on Matrix Analysis and Applications, 31(3):1382–1411, 2010.

[84] L. Zepeda-Núñez and L. Demanet. A short note on the nested-sweep polarized traces method for the 2DHelmholtz
equation. In SEG Technical Program Expanded Abstracts 2015, pages 3682–3687, 2015.

48

https://github.com/L-Sweeps/L-Sweeps-2D
https://github.com/L-Sweeps/L-Sweeps-2D-examples

[85] L. Zepeda-Núñez and L. Demanet. The method of polarized traces for the 2D Helmholtz equation. Journal of
Computational Physics, 308:347 – 388, 2016.

[86] L. Zepeda-Núñez and L. Demanet. Nested domain decomposition with polarized traces for the 2D Helmholtz
equation. SIAM Journal on Scientific Computing, 40(3):B942–B981, 2018.

[87] L. Zepeda-Núñez and H. Zhao. Fast alternating bidirectional preconditioner for the 2D high-frequency Lippmann–
Schwinger equation. SIAM Journal on Scientific Computing, 38(5):B866–B888, 2016.

[88] L. Zepeda-Núñez, R. J. Hewett, and L. Demanet. Preconditioning the 2D Helmholtz equation with polarized
traces. In SEG Technical Program Expanded Abstracts 2014, pages 3465–3470, 2014.

[89] L. Zepeda-Núñez, A. Scheuer, R. J. Hewett, and L. Demanet. The method of polarized traces for the 3DHelmholtz
equation. Geophysics, 84(4):1–86, 2019.

49

	1 Introduction
	1.1 Related Work
	1.2 Model Problem and Discretization
	1.3 Continuous Polarization
	1.4 Discrete Polarization
	1.5 Organization

	2 L-sweeps: Reconstruction of wavefields
	2.1 Continuous formulation
	2.1.1 Scenario 1: A source density supported in a corner subdomain
	2.1.2 Scenario 2: A source density supported in an arbitrary subdomain
	2.1.3 Scenario 3: Arbitrary source distributions not intersecting the CDD skeleton
	2.1.4 Scenario 4: Arbitrary source distributions

	2.2 Discrete formulation

	3 Implementation and Complexity
	3.1

	4 Heterogeneities
	5 Numerical Examples
	5.1 Effect of PML-induced and discretization errrors
	5.2 Complexity of the solver
	5.3 Smooth wave speeds
	5.4 BP model
	5.5 Wave-guide
	5.6 3D Example

	6 Discussion
	7 Acknowledgement
	A Perfectly Matched Layers (PMLs) and Finite Difference Discretizations
	B Proof of the annihilation condition
	C Pseudocode
	C.1 Core algorithms
	C.2 Algorithm for the local solutions (stage 1)
	C.3 Algorithms for the horizontal and vertical sweeps (stage 2)
	C.4 Algorithms for diagonal sweeps (stage 3)
	C.5 The algorithm of scenario 3

