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Abstract 

Transportation Demand Management (TDM), long used to reduce car traffic, is receiving attention among 

public transport operators as a means to reduce congestion in crowded public transportation systems. 

Though far less studied, a more structured approach to Public Transport Demand Management (PTDM) 

can help agencies make informed decisions on the combination of PTDM and infrastructure investments 

that best manage crowding. Automated fare collection (AFC) data, readily available in many public 

transport agencies, provide a unique platform to advance systematic approaches for the design and 

evaluation of PTDM strategies. The paper discusses the main steps for developing PTDM programs: a) 

problem identification and formulation of program goals; b) program design; c) evaluation; and d) 

monitoring. The problem identification phase examines bottlenecks in the system based on a 

spatiotemporal passenger flow analysis. The design phase identifies the main design parameters based on 

a categorization of potential interventions along spatial, temporal, modal, and targeted user group 

parameters. Evaluation takes place at the system, group, and individual levels, taking advantage of the 

detailed information obtained from smart card transaction data. The monitoring phase addresses the long-

term sustainability of the intervention and informs potential changes to improve its effectiveness. A case 

study of a pre-peak fare discount policy in Hong Kong’s MTR network is used to illustrate the application 

of the various steps with focus on evaluation and analysis of the impacts from a behavioral point of view. 

Smart card data from before and after the implementation of the scheme from a panel of users was used 

to study policy-induced behavior shifts. A cluster analysis inferred customer groups relevant to the 

analysis based on their usage patterns. Users who shifted their behavior were identified based on a change 

point analysis and a logit model was estimated to identify the main factors that contribute to this change: 

the amount of time a user needed to shift his/her departure time, departure time variability, fare savings, 

and price sensitivity. User heterogeneity suggests that future incentives may be improved if they target 

specific groups. 

Keywords: Public Transport, Demand Management, Smart Card Data, User Segmentation, Fare Discount 
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1. INTRODUCTION 

Public transport systems are playing an increasingly important role in today’s cities. Environmental, 

technological, and economic trends are leading to a rise in public transport use in mature cities (Hurdle, 

2014), while population growth and urban expansion have spurred developing cities to extend their public 

transport networks. With increases in ridership often come increased levels of crowding and congestion, 

which can worsen system performance and reduce customer satisfaction (Z. Li & Hensher, 2011). Though 

an instinctive response to rising public transport demand is to increase capacity, such improvements 

require long time frames and significant resources. Instead, demand management is another way to better 

serve customers. Traditionally, travel demand management (TDM) has focused on road congestion; 

however, with more public transport agencies facing crowding problems, there is an increasing need to 

develop more structured conceptual and methodological approaches for public transport TDM. 

The impacts of TDM on car use are well researched. For example, an examination of three municipality- 

wide TDM programs - the LA Olympics, an Orange County toll road, and a flexible-hour policy in 

Honolulu- concluded that programs with meaningful incentives can have large impacts on individuals, but 

their effects on traffic are generally small (Giuliano, 1992). Ferguson (1990) discusses the roles of 

different stakeholders and evaluation methods for TDM and finds that programs targeting Transportation 

Management Agencies (TMAs), Trip Reduction Ordinances (TROs), and negotiated agreements can be 

successful in shaping travel patterns. Several studies also reported the importance of the identification and 

measurement of relevant TDM performance metrics with (often) limited, readily available data, and tools 

(Dale, Frost, Ison, & Warren, 2015; Rose, 2007; Smith & Moniruzzaman, 2014; Taylor, Nozick, & 

Meyburg, 1997). 

Another body of TDM research focuses on the relationship between policy attributes and the behavioral 

underpinnings of travel decisions. Tommy Gärling et al. (2002) draw on a number of behavior theories to 

posit a framework in which TDM interventions influence trip chain attributes both, directly and through 

interactions with users’ personal characteristics, goals, and public information. Though they can be 

generalized, the context and examples are for car traffic. Loukopoulos (2007) presents a TDM structure 

that relates eight design characteristics of TDM measures to three outcome variables: effectiveness, 

political feasibility, and public acceptance.  

The causes, characteristics, and solutions for road congestion cannot be directly translated to public 

transport systems. Public transport users tend to have less varied trip purposes than drivers, are constrained 

by service schedules, and benefit less from avoiding peak use (Maunsell, 2007). Public Transport Demand 

Management (PTDM) is also more constrained. Public transport agencies generally do not want to lose 

customers to other modes; they prefer to redistribute demand, either temporally or among different routes 

(Maunsell, 2007). In addition, public transport is a public service so preventing or discouraging access to 

it is politically unappealing (Henn, Douglas, & Sloan, 2011). Traditional TDM and PTDM are not 

necessarily complementary; shifting people from cars to public transport in congested periods may be at 

odds with PTDM policies that encourage off-peak travel. 

Effective and efficient policies for public transportation have not yet been nearly as well studied or widely 

deployed. Price discrimination is well-established for dealing with peak period congestion (Cervero, 1990; 

Mark & Phil; Wang, Li, & Chen, 2015; J. Zhang, Yan, An, & Sun, 2017; Z. Zhang, Fujii, & Managi, 

2014) and research has shown that people are willing to pay to avoid crowding (Prud'homme, Koning, 

Lenormand, & Fehr, 2012). A review of crowding valuation research by Z. Li and Hensher (2011) found 

that while most studies considered only in-vehicle crowding, passengers exhibit willingness to pay for 

reduced crowding in access-way, entrance, platform/station, and in-vehicle crowding. A number of studies 
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estimate the value of crowding in public transport using smart card or survey data (Batarce, Muñoz, & 

Ortúzar, 2016; Hörcher, Graham, & Anderson, 2017; Kroes, Kouwenhoven, Debrincat, & Pauget, 2014; 

Tirachini, Hurtubia, Dekker, & Daziano, 2017; Yap, Cats, & van Arem, 2018). For example, Hörcher et 

al. (2017) conclude that the disutility caused by one additional passenger per square meter onboard a train, 

on average, is equivalent to 11.92% of their travel time. This is consistent with the disutility reported in 

Kroes et al. (2014) based on a survey of transit users in Paris. 

Public transport specific TDM strategies include free pre-peak fare programs in Singapore and Melbourne 

(Currie, 2009; Pluntke & Prabhakar, 2013), as well as route-based incentives for Hong Kong’s MTR 

system (S.-M. Li & Wong, 1994). Similar discounts or peak surcharges have also been implemented in 

cities such as Washington, D.C., London, Tokyo, and Sydney. Other PTDM options include working with 

employers to encourage company-specific programs (LTA, 2014), lottery/rebate rewards schemes 

(Pluntke & Prabhakar, 2013), or providing public crowding information (BART and JR East ). Most 

recently, BART tested the Perks rewards program that encourages riders to travel outside the morning 

peak period. BART riders who opt into the program automatically earn 1 point for every mile traveled on 

BART. They can earn up to six times as many points by starting their trip during the pre-peak and after 

peak periods (6:30 A.M. to 7:30 A.M., and 8:30 A.M. to 9:30 A.M.). Points can be exchanged for small 

cash rewards and lottery games (Greene-Roesel, Castiglione, Guiriba, & Bradley, 2018).  

Empirical studies on the effectiveness of such PTDM strategies report that 2-5% of the users shift out of 

peak hours in response to off peak discounts (Currie, 2009; Halvorsen, Koutsopoulos, Lau, Au, & Zhao, 

2016). A recent evaluation of the BART PERKS reward experiment shows a 10% shift of travelling from 

peak hours (Greene-Roesel et al., 2018). Empirical studies also conclude that the behavior of passengers 

with respect to time-shifting in response to a PTDM strategy (e.g. discount, free trip, etc.) is governed by 

many factors, including flexibility, displacement time, trip length, fare and discount level, 

sociodemographic attributes, etc. (Anupriya, Graham, Hörcher, & Anderson, 2018; Halvorsen et al., 

2016). Survey studies concluded the passengers’ willingness to change their time of travel during the 

morning peak period in response to fare discounts and/or faster trips (Henn et al., 2011; Kroes et al., 2014; 

Z. Li & Hensher, 2011; J. Zhang et al., 2017). 

The wide availability of automatic data collection systems (ADCS) in public transport, such as smart card 

data has become the enabler for analyses not possible in the past (Koutsopoulos, Ma, Noursalehi, & Zhu, 

2018; Pelletier, Trépanier, & Morency, 2011), including analyses to support the design and evaluation of 

PTDM. In addition to aggregate trends of when and where users and vehicles travel, this data provides 

detailed information on the travel patterns of specific groups and even individuals to inform program 

design. Of particular interest to this research are methods to segment users into more homogeneous groups. 

By differentiating between types of users and their response to PTDM strategies, policymakers can better 

understand the factors leading to a policy’s success (or failure) and how to target particular customers. 

Such analyses were far more difficult with only aggregate or limited survey data. ADCS also streamlines 

the monitoring phase of policy evaluation; since data is collected continuously, behavioral changes can be 

compared to any prior period and evaluated retroactively. 

The paper discusses the main steps for developing PTDM programs, building on a synthesis of previous 

TDM literature and real-world PTDM experience. Developing detailed protocols/methodologies in each 

step is out of scope of the paper, as not all of these may be relevant for a particular system and specific 

concerns would need to be addressed. The main steps are demonstrated in a case study of a discount 

strategy implemented by MTR in Hong Kong. A new, multi-level, multi-scale approach is proposed to 

evaluate PTDM effectiveness using AFC data, with special focus on users’ behavior, an important but less 

understood area in PTDM. 
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The main contributions of the paper are:  

• Framing and discussion of the steps required for PTDM development using the information 

provided by AFC data to drive problem identification, efficient design, and effective evaluation 

and monitoring.  

• Application of the main steps using an off-peak discount strategy implemented in Hong Kong’s 

MTR network with focus on evaluation and behavioral response.  

• A novel approach for evaluation of PTDM strategies at three levels of aggregation: system, group, 

and individual levels, taking advantage of detailed disaggregate AFC data. 

• A change point method to identify passengers who changed their behavior in response to the 

PTDM strategy and a discrete choice model to identify the most important factors that contribute 

to behavioral change using AFC data. 

The remainder of the paper is organized as follows: Section 2 discusses main steps for developing PTDM 

programs. Section 3 applies the framework to MTR’s Early Bird Discount Promotion, introducing the 

MTR context and design, and evaluating the policy. Section 4 discusses the main findings and suggests 

three areas of improvement to the PTDM program. Section 5 concludes the paper. 

2. PUBLIC TRANSPORT DEMAND MANAGEMENT CONCEPTUAL FRAMEWORK 

Development of TDM programs consists of the following main phases (adopted from (Loukopoulos, 

2007) to give a stronger sense of process to policy design and public transport centric attributes): 

• Problem identification and program goals 

• Design 

• Evaluation 

• Monitoring 

A key enabler for the adoption of the framework presented below is automatically collected data. AFC 

systems are particularly advantageous for demand management applications because they facilitate 

detailed understanding of the spatiotemporal characteristics of individual travel patterns. More detailed 

data allow for deeper analyses of existing conditions, models to forecast the impacts of a design and 

estimate its costs, and evaluations of congestion relief. Furthermore, AFC data can facilitate panel analysis 

of users to provide insights into their behavior before and after the introduction of a PTDM strategy. 

However, this anonymized data may not be sufficient for analyzing certain factors, such as demographic 

characteristics and user perceptions of the policy, so surveys may still be needed to complement such data.  

2.1 Problem Identification and Program Goals 

Generally, the overarching motivation for a PTDM program is to reduce congestion in the network, but 

robust policy designs must account for the local context and the particular nature of its demand problems. 

In order to set specific goals and targets for the program, important considerations are the congestion 

patterns, the involved stakeholders, and the time horizon. 

Congestion Patterns: At its core, congestion is a result of an imbalance between the supply of service and 

user demand for it both, in space and time. In the context of PTDM, the level of supply is fixed, as are 

user characteristics like the population’s socio-demographic profile and lifestyle preferences. However, 

other user characteristics may be malleable if targeted by a PTDM policy, which could induce behavior 

change.  
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AFC data provide useful information related to the spatiotemporal characteristics of the usage of the 

system relevant to the PTDM program. The extent of the congestion problem, including its distribution 

across modes, times, and individual facilities, as well as specific resource constraints that affect the 

system’s ability to meet demand can be derived from AFC data. They are important aspects as they guide 

the nature and type of PTDM strategies appropriate for the problem. AFC data, especially combined with 

sociodemographic attributes, provide insight into user’s constraints, attitudes, and other factors that may 

affect their responsiveness to PTDM and hence, the likelihood of its success.  

Stakeholders: in addition to public transport agencies, potential stakeholders include current (and 

potential) riders, planning agencies and other government bodies, employers and businesses, and other 

local transportation operators. Though public transport agencies may develop PTDM programs on their 

own, working with other groups can present additional opportunities. An integrated approach, where the 

government works together with all local public transport agencies and gets input from community groups 

and businesses will likely have different goals and methods than one led primarily by a single agency with 

more limited oversight. 

Time Horizon: Demand management policies can be developed for the short term to cope with anticipated 

surges in demand, like Transport for London’s Olympics initiatives, or in the medium term to redistribute 

demand, and use available capacity more effectively, until capacity expansions are possible. In the long 

term, PTDM may be used in conjunction with additional capacity or to influence demand through broader 

growth patterns. Factors that can inform the appropriate scale for a given program include forecasts of 

future demand, capacity, and budget constraints that limit feasible congestion management programs. 

The above aspects inform the specific goals of the PTDM program. Though different stakeholders may 

have different priorities for the program, agency goals will likely include decreased passenger flows at 

certain times or locations (within a particular budget constraint). Understanding the spatiotemporal 

characteristics of the congestion problem as well as user attributes, guides policy makers decisions, e.g. 

shifting users to different times of day, different routes, or different (public transport) modes. Goals may 

also include more qualitative guidelines, such as policies that are well-received by users or simple to 

understand. The time horizon may influence the rate at which these goals are to be met, when to place 

various milestones, and, along with the stakeholders, what designs and outcomes are even feasible. 

2.2 Design 

Based on the understanding of the problem both, from the demand and supply sides, Figure 1 describes a 

PTDM design process and key aspects to consider. While the importance of each of these factors will vary 

depending on the context and goals of the agency, acknowledging each encompasses the full scope of the 

design being considered and increases the likelihood of positive impacts.    

The first step of PTDM design is determining the dimensions of intervention, and then various parameters 

should be set. If any data is already available, it can be used in forecasting to ensure the effects approach 

those desired. After checking the design is feasible, a final step is to determine how to promote the program 

through public information and marketing materials. The design process may be an iterative one, as 

stakeholders’ feedback impacts the final design. 

Different approaches have been proposed in the literature to characterize the various interventions. One 

commonly cited scheme distinguishes between the precursors of travel demand, grouping policies into 

physical changes, legal policies, economic policies, and education and information campaigns (Steg, 

2003). Furthermore, measures may be "hard," changing the attributes of different alternatives (e.g. fares 

differentials or shaping land use), or "soft," changing users’ perceptions of their travel options through, 

for example, marketing or trip planning tools (Bamberg, Fujii, Friman, & Gärling, 2011). Hard measures 
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are further divided into market-based policies, which influence users through prices, and, though less 

common in public transport, regulatory policies, which set laws to require or promote certain actions. 

Depending on their level of coercion, a measure can be classified as "push" or "pull" (Tommy Gärling et 

al., 2002). Push measures make one option less appealing to force users away from it (e.g. peak surcharge), 

while pull measures make another more appealing to attract users (e.g. off-peak discount). Typically, push 

measures are more effective (Eriksson, Nordlund, & Garvill, 2010), though less acceptable to users (Steg 

& Vlek, 1997). T Gärling and Fujii (2006) argue that combining measures helps activate more of the 

psychological variables (cognitive skills, moral obligation, etc.) associated with behavior change. 

 

Fig 1. PTDM design considerations 

In addition, agencies can manage user demand through several pathways: 

Customers: Measures that directly influence the customer can apply to any user of the system, only users 

who meet certain criteria, or only those who choose to register in the program. They might fall under 

pricing mechanisms (peak/off-peak differentials, route-based fares), other benefits (lotteries, coupons), or 

information provision (journey planners, crowding data). 

Employers: Because employers and other large institutions fix the timing of many users’ travel activities, 

agencies can help them implement internal PTDM programs such as flexible-hour policies. For major 

employers, tailored demand-management incentives may yield system-wide benefits. 

Broader Channels: Some policies, like those to shape land-use patterns or directly regulate use of the 

transportation network, may affect regional travel patterns more broadly rather than directly on public 

transport use. These measures typically involve additional stakeholders and take more time to have evident 

impacts. 

The design parameters define how the policy will be implemented. One crucial parameter is the targeted 

user population: PTDM interventions that target specific users can be more effective or efficient than 

generic strategies (Bamford, Carrick, Hay, & MacDonald, 1987), especially if they are in the form of 

incentives. Theoretically, each user has his/ her own threshold for a behavior change: a "willingness to 

shift." Identifying this characteristic and giving someone only the minimum necessary incentive allows 

the agency to either increase its efficiency (by spending less money for the same results) or effectiveness 
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(by having higher response rates with the same resources), such a scheme may be practically infeasible 

and politically difficult. Instead, the problem can be approached through the use of more homogeneous 

groups. Policies can be designed to induce a behavior change by recognizing the needs of a specific group, 

or by relying on self-selection, requiring users who are likely to respond to opt into getting an incentive. 

There are a number of ways to classify users, e.g. based on socio-economic characteristics, system usage 

by route or time, etc. Identifying appropriate classification factors is an important element of the design 

process. 

The magnitude of the program (e.g. the level of fare differentiation or number of participants) is a critical 

parameter, particularly for hard policies (Eriksson et al., 2010). The congestion and crowding analysis 

carried out in the problem identification stage can be used to establish a policy’s temporal, modal, and 

spatial coverage, ensuring that the most overcrowded periods and parts of the system are covered. Another 

temporal aspect is the program duration.  

While the optimal design of car traffic TDM strategies, dealing with the optimization of toll locations and 

pricing levels, has received some attention in the literature (Ekström, Sumalee, & Lo, 2012; Hamdouch, 

Florian, Hearn, & Lawphongpanich, 2007; Kachroo, Gupta, Agarwal, & Ozbay, 2017; Wie, 2007; Wie & 

Tobin, 1998), PTDM strategies are often developed on a trial-and-error basis. Recently, Ma and 

Koutsopoulos (2018) proposed a methodology for the ‘optimal’ design of promotion based PTDM 

strategies, systematically evaluating the effectiveness of various promotion design structures, and 

demonstrating its applicability using empirical data. Yang and Tang (2018) describe a fare-reward scheme 

(FRS), assuming a simple network, that rewards a commuter with one free trip during shoulder periods 

after a certain number of paid trips during the peak hours.  

The practicality and feasibility of the design, in terms of appropriate technological enablers and 

implementation costs, is an important consideration. The emergence of mobile sensors and the widespread 

use of smart cards in recent years have increased the technological options to support innovative strategies. 

Implementing such options, however, can incur costs including lost fare revenue, increased staff hours, 

technology procurement, and marketing. However, some policies may also increase revenue by attracting 

new customers or reduce cost by allowing the agency to purchase new infrastructure (Currie, 2009). 

The policy should have the necessary support of the public and decision makers. Acceptance levels are 

shaped by a number of factors, including problem awareness, perceptions of effectiveness and fairness, 

perceived responsibility for the problem, and social norms and values (Schade & Schlag, 2003; Schlag & 

Teubel, 1997). Political acceptance often depends on public opinions (Tommy Gärling & Schuitema, 

2007), though Schlag and Teubel (1997) point out that politicians may not always perceive public views 

accurately. 

The design must also acknowledge how people will use the system with the policy in place: will users be 

able to take advantage of loopholes? How will the policy function under service disruptions? Is it so 

complicated that its effectiveness may be degraded? Maruyama and Sumalee (2007) argue that a complex 

design may be theoretically optimal, but a more understandable design is likely to have higher 

participation and approval. Once the design is finalized, a plan for marketing and publicizing the campaign 

may be instrumental in encouraging fast adoption and wide participation among users. 

2.3 Evaluation 

Evaluation of a PTDM program includes a number of dimensions as summarized in Figure 2. 

• Effectiveness of the program in achieving its desired impact 

• Efficiency in achieving benefits that outweigh costs either from the agency’s perspective or from 
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a broader societal view  

• Acceptability by the public and local decision-makers 

While each is important in its own right, these factors are also interrelated. For example, users who see 

that a program is effective may be more accepting of it and, with the same resources, a more effective 

program will also be more efficient. System impacts relate most directly to effectiveness but can be 

combined with agency impacts and/or societal impacts to study efficiency. Customer impacts can also be 

used to study effectiveness, as well as allow the agency to understand people’s perceptions of the program.  

A number of metrics can be used to measure each of these. The metrics are organized into system impacts, 

directly related to congestion reduction goals; customer impacts reflecting other changes users might see 

in service as a result of system impacts and how they perceive these effects; agency impacts, reflecting 

resource usage; and social impacts that capture broader effects. Depending on the objectives of the TDM 

program, different measurements, supported by AFC data, could be developed and prioritized. For 

example, for congestion reduction objectives, useful metrics include: 

• System impact: Passenger accumulation in system (total number of passengers in the system – 

stations and trains – at any given point in time; calculated from AFC data as the cumulative entries 

into the system minus the cumulative exits), key station entry/exit flow, link flows or average 

vehicle loads by time, direction. 

• Customer impact: Number of passengers/standees per area, denied boarding/waiting on platform 

(Ma, Koutsopoulos, Chen, & Wilson, 2019; Zhu, Koutsopoulos, & Wilson, 2017a, 2017b), journey 

time reliability (Koutsopoulos et al., 2018; Ma, Ferreira, & Mesbah, 2014) 

• Agency impact: Program cost, changes in patronage/revenue and resource allocation 

• Societal impact: Distribution of effects (equality and fairness) on different types of riders  

 

Fig 2. PTDM evaluation 

The availability of AFC data facilitates novel evaluation approaches at three levels of aggregation: 

• System wide (all passengers): Fully aggregated passenger data at the system level, i.e. link or 

station flows, is useful from an operational perspective. It gives a basic understanding of how 

aggregate demand has changed, potentially reflecting service quality and the typical user 
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experience. For agencies with less detailed passenger data, this might also be the only type of 

analysis that is possible. 

• User Groups: Detailed analysis of user behavior can provide insight into a policy’s particular 

impacts. Monitoring the behavior of specific user groups can help understand which characteristics 

made people more likely to respond to the intervention and how strategies can be adapted to account 

for differing behaviors. The effectiveness of a group-based analysis depends on the identification 

of appropriate groups. Using AFC data over a period of time, clustering methods based on a feature 

vector relevant to the design of the PTDM intervention can be used to identify groups of interest. 

• Individual Passengers: Panels of individual users, observed anonymously over time using AFC 

data, provide a unique tool to monitor passenger behavior before and after the implementation of a 

PTDM strategy. It is a powerful means to understand how travel patterns of individuals change in 

the face of new policies, gain useful insights, and inform the development of improved designs that 

better account for user heterogeneity and the degree to which individual behavior changes sustain 

themselves over time. Change point analysis methods can be used to identify systematically users 

who change their behavior in response to the PTDM strategy. Based on the inference of users who 

changed their behavior, discrete choice models are used to identify the main factors that contribute 

to passengers’ decision to change behavior and hence, inform more efficient future designs. 

2.4 Monitoring 

The effectiveness of PTDM programs may change over time. Monitoring of how impacts change should 

continue beyond the initial evaluation to capture the medium and long-term changes that the strategy 

induces (Currie, 2011; Maunsell, 2007). There may be seasonal changes to its impacts, depending on 

events like holidays and weather. More importantly, long-term user acceptance may change as a result of 

the "hedonic treadmill", which argues that an intervention alters people’s satisfaction with their travel, but 

over time they adjust and return to their previous satisfaction levels (Brickman & Campbell, 1971). 

Monitoring targeted users in that regard is particularly insightful.  Similarly, public or political acceptance 

may evolve such that the behavioral levers of PTDM policies become weakened over time. 

3. APPLICATION 

To demonstrate the proposed framework, Hong Kong’s MTR system is used as a case study. Although 

operational improvements have been made when possible and network expansions are planned, MTR has 

also experimented and introduced PTDM strategies to deal with increased demand. The most recent 

example is a 25% discount to users who travel during the morning pre-peak period introduced on 

September 1, 2014. This strategy is the subject of the analysis. 

Anonymized smartcard records were the primary data source for the analyses described in this section. 

MTR is a closed system, requiring users to tap their cards on entry and exit, so complete trip records were 

available. The anonymized data includes entry and exit station, entry and exit time, and fare type. Data 

from July-October 2013 and July-October 2014 were used for the analysis. The methods described in this 

section are also applicable to open systems. For such systems, OD matrix estimation methods have been 

developed that infer individual passenger’s destination (e.g. Gordon, Koutsopoulos, Wilson, and 

Attanucci (2013)) 

3.1 Problem Identification  

This phase identifies the spatiotemporal characteristics of the system congestion and provides a better 

understanding of usage patterns. The demand patterns at stations and on links that prompted interest in 

demand management are illustrated in Figure 3. In the AM peak period, system-wide entrances peak at 
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8:15, exits at 8:45, and train loads at 8:30 though there is some variation among stations and links. In 

particular, Figure 3a shows that there is a major split in peak exits: a sizable group of stations peak at 7:45, 

while most peak at 8:45 (possibly these two groups of stations serve activities that follow different 

schedules).  

These patterns suggest that PTDM attempting to incentivize passengers to change their exit times would 

be a strong candidate for reducing congestion particularly in the 8:15-9:15 period. The spatio-temporal 

concentration of the entries and exits also suggests that, if station crowding is the motivation for PTDM, 

exit-based PTDM strategies could be more effective in the morning. 

 

 
Fig 3. Demand patters: a) at each station; and b) on each link.  (The size of circle and width of link 

represent the demand and flow, respectively. The color indicates the peak 15-minute period) 

3.2 Design 

The details of the PTDM strategy implemented are outlined in Table 1, organized in a way consistent with 

the design framework proposed in the previous section.  

Table 1: Dimensions of Early Bird promotion design 
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Type of Intervention Fare Differential: Pre-Peak Discount, Hard, Economic, Pull, Directly for 

Customers. 

It reduces the price of traveling before the peak, making it a pull measure to 

attract people to travel earlier. It is customer-based since it does not directly 

involve employers and is not dependent on broader government policies. 

Users Targeted Only adult card users are eligible (users with other concessions are not).  

No other groups were specifically targeted. 

Magnitude 25% fare discount (HK$1-12, or US$0.13-1.5, depending on trip distance). 

Temporal Coverage Trips that exit between 7:15 and 8:15 in the morning. 

As discussed in Section 3.1 train loads peak in the morning around 8:00 to 9:00, with 

the peak of the peak from about 8:30-8:45. The discount period 7:15-8:15, was 

chosen so that the peak itself did not just shift earlier (but not too early that no peak 

hour travelers were willing to shift their departure time). Though Section 3.1 shows 

that different links and stations reach their peaks at different times, the same discount 

period was used for all stations. This highlights the trade-off between simplicity and 

effectiveness. Setting different time periods for different stations might better 

manage demand in different parts of the network, but if it is confusing for the 

passengers, it may not achieve its potential effectiveness. Implementing a discount 

after the peak was not considered due to the fact that flexible work hours are not 

practiced in Hong Kong and, therefore, there may not be enough flexibility for 

commuters to switch to a later time period. 

Spatial Coverage Trips that end at 29 heavy rail stations in Hong Kong’s urban core (of 87 total 

stations, Figure 4).  

The analysis found that 80% of trips exiting these 29 stations travel through a 

congested link. While other strategies may have been more effective, for simplicity, 

the discount was based on passengers exiting certain stations. OD level discounts 

for example, may lead to more efficient designs as they target passengers more 

effectively, but were not considered for practical considerations. Having one 

contiguous zone recognizes the need for simplicity; selecting all stations within a 

boundary is easier for users to understand. 

Modal Coverage Heavy rail only. 

Other modes operated by MTR (e.g. light rail, Airport Express) were not 

targeted. Although, there is anecdotal evidence of overcrowding on the light rail 

system, it lacks the same AFC technology as heavy rail, and hence the feasibility 

of a unified strategy was not as easy from an implementation point of view. 

Future incentive designs may also consider the interplay between these systems 

and how additional incentives on one mode could enhance the impacts on others. 

Implementation Policy could be easily implemented by changes through the AFC system.   

Buffer time was added on either side of the pre-peak hour to account for minor 

delays and user/system clock discrepancies. Cost of implementation was 

manageable. 

Marketing Publicity campaign included press releases, notices on MTR website, in-station 

advertisement, and social media outreach. 

In summary, the program targeted the AM peak because of the higher strain on capacity, sharper rise in 

demand, and the possibility to influence later trips without having to actively incentivize them. The 

discount level was chosen based on experiences in other cities, and the temporal and spatial coverage of 

congestion. The pre-peak hour aligns with the hour prior to peak loads at critical links in the system, while 
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the 29 stations were selected such that 80% of travelers who use at least one critical link (operating at or 

close to capacity) in the AM peak hour exit a station with a discount. The stations are contiguous, hence 

simplifying the design and facilitating user understanding and acceptance (see Figure 4).  

 
Fig 4. Stations eligible for the fare discount (network has been expanded since the study) 

Ma and Koutsopoulos (2019) recently proposed a systematic approach to optimally design the operational 

characteristics of promotion based PTDM. The approach aims at helping decision makers make informed 

decisions about the spatio-temporal, and discount characteristics of the PTDM design (station vs. OD 

based, participating stations or ODs, station specific discount time period, etc.) given network, demand, 

budget, and implementation feasibility constraints.  

3.3 Evaluation 

Of the three evaluation dimensions, the paper focuses on program effectiveness using detailed AFC 

transaction data to infer aggregate and individual user behavior before and after the promotion. AFC data, 

as is demonstrated through this application, can provide critical insight into user behavior over time in 

response to the implemented strategy. Such insight is valuable for guiding future policy formulation.  

System-wide Impacts 

The exit time distribution of eligible trips (adult trips to one of the 29 stations) showed that September 

2014 had distinct patterns compared to months before the promotion. The most obvious changes were 

small peaks at either end of the pre-peak hour because of users waiting to exit until the promotion began 

or shifting only to the minutes just before it ended. Of all trips between 7:00 and 9:30am, about 2.5% 

shifted out of the peak. With the additional early morning trips that shifted to the pre-peak period, about 

3% of all trips between 7:00 and 9:30am moved into the pre-peak hour. This represents a 10% increase in 

pre-peak trips. Corresponding changes were not observed among trips made by non-eligible users or to 

non-eligible stations. Figure 5 shows the change in link loads, with changes particularly evident around 

areas covered by the promotion. More detailed results can be found in Halvorsen et al. (2016). 
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Fig 5. Change to passenger flows from Sept. 2012 to 2014, down direction (Halvorsen et. al., 2016) 

User Groups 

An aggregate analysis is useful to determine the effects of a promotion, but it does not provide insight into 

why or how these impacts came about. Understanding how different user groups responded to the 

promotion and what travel behaviors are more responsive to peak-spreading strategies can help an agency 

to refine and focus its future strategies. In particular, the ability to segment users has implications for 

increasing the efficiency of the program. While over 27% of adults traveling in the 7:00–9:30 AM period 

to eligible stations receive a discount by virtue of exiting in the pre-peak hour, the analysis above found 

that only about 2.5% of AM trips actually shifted from the peak. Most users who receive the discount did 

not make changes to their behavior. Market segmentation has the potential to identify user groups that are 

more responsive to the promotion and hence inform a more targeted design, either in terms of time or 

locations, increasing program efficiency. For example, segmentation may identify a smaller group with a 

high response to be as valuable as a larger group but indifferent to the promotion. 

In order to understand the general behavior patterns exhibited by passengers, a clustering analysis was 

performed using AFC data. This allowed for the measurement of the impact each group has on network 

traffic, as well as further analysis of how different groups responded to the demand management strategy. 

Because the goal of this analysis was system-wide usage, AFC transactions were sufficient, particularly 

given the high quality of the data. The variables used for clustering were selected for their potential to 

identify broad usage patterns system-wide, especially with respect to PTDM response. 

Three two-month samples of AFC transactions were used in this study. Approximately 400,000 users were 

selected from each September-October 2013, July-August 2014, and September-October 2014 period 

(about 4% of all IDs in any period), representing 11 million trips per period. The variables used to cluster 

users are listed below, grouped under primary characteristics of how often someone travels, when their 

trips take place, and where in the network they visit. These variables were chosen to capture the 

spatiotemporal characteristic of the trips: how frequently and regularly someone uses the system, how 

widely they travel over the network, whether they use stations of particular interest, and when they 

typically travel (peak or off-peak). 

1. Frequency Characteristics 

• Range of Travel (number of days between first and last trip; variable index = 1) 

• Number of Weekdays/Weekends Traveled (6, 10) 

• Number of Weekday/Weekend Trips (7, 11) 

• Number of Gaps in Travel (number of times a users goes at least one day without traveling on 
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MTR; 15) 

• Average/Minimum/Maximum Gap Length (16, 17, 18) 

2. Temporal Characteristics 

• Median Start Time for First Trip of Day, Weekday/Weekend (8, 12) 

• Median Start Time for Last Trip of Day, Weekday/Weekend (9, 13) 

• Number of Days Started within 30 min of Median Start Time (14) 

3. Spatial Characteristics 

• Number of Distinct First and Last Origin Stations (2, 3) 

• Number of Distinct ODs Traveled (4) 

• Number of Days with First Trip at Border Crossing with Mainland China (19) 

Principal component analysis (PCA) was used to reduce the dataset’s dimensionality (Jolliffe, 2011). PCA 

provides a set of uncorrelated vectors for the clustering analysis, preventing variables whose values stem 

from similar underlying behavior from dominating the results, and allowing a smaller number of inputs 

that still capture most of the variation in the data. PCA serves as a useful tool to reduce the dimensionality 

of the feature space for cluster analysis, and has been applied for transit passenger flow analysis in 

different contexts, (Goulet-Langlois, Koutsopoulos, & Zhao, 2016; Luo, Cats, & Lint, 2017).  

In this application, the first six principal components were used for clustering. They explain about 85% 

of the data’s variability (Figure 6a). The inclusion of additional components had little impact on the results. 

Figure 6b illustrates how the principal components are correlated with the original data (with the indices 

listed above). The first principal component is mostly correlated with the "amount" someone travels 

(number of trips, days, distinct ODs, etc.), the second with gap length, the next three with time, and the 

sixth with trips into China. The principal components beyond the sixth are less correlated with any 

particular characteristic. 

 

Fig 6. Principle component analysis. (a) Variation explained; (b) PC correlation with original data 

Groups were identified using k-means++ clustering (Arthur & Vassilvitskii, 2007). For this analysis, the 

Euclidean distance was found to work best as a distance measure. Analysis based on the silhouette 
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criterion (Rousseeuw, 1987; Tibshirani, Walther, & Hastie, 2001) suggested six clusters. Groupings in 

each of the three periods showed similar attributes, so clustering was consistent over time. 

The characteristics of the groups and their relevance to the PTDM strategy are summarized below. 

1. Hong Kong Commuters: With an average range of almost the whole period and the most frequent 

travel, these are the heaviest users of the MTR system. They also take most of their trips in the 

AM and PM peaks, so this group can be assumed to include those commuting within Hong Kong. 

2. Casual Hong Kong Users: These users have a long range but less frequent travel than Group 1, 

particularly in the AM peak. They may use MTR in conjunction with other modes or only for non- 

commute trips, e.g. going out after work. 

3. Intermittent Hong Kong Users: This group has a moderate range and travel on MTR about twice 

per week, using stations throughout the system. They could be Hong Kong users who primarily 

rely on other modes, but also users that switch between several smart cards. 

4. Short Term Users: Largely characterized by a short range, these users tend to travel from the late 

morning into the night and to areas with more commercial activities. This group most likely 

includes tourists who are in Hong Kong for only a short time on vacation; however, it could also 

include Hong Kong residents who use their Octopus for only a few days of MTR trips. 

5. Occasional Cross-Border Travelers: Somewhat similar to Group 3, these users have a moderate 

range, but relatively infrequent use. Their proportion of days beginning at a border crossing station 

is notably higher. They typically travel to stations near touristic or shopping centers and start their 

trips later in the day. This group could include visitors who come to Hong Kong once or twice a 

month. 

6. Cross-Border Commuters: This group has a long range and relatively high number of days 

traveled. Their first trip is typically early in the morning and last trip in the late afternoon, like a 

commuter, but they start most of their days at a border crossing station. This group could include 

the "parallel traders" who travel regularly between Hong Kong and China to buy and sell goods. 

Actual spatial-temporal travel patterns are shown in Figure 7, which illustrates the relative number of trips 

started by each group at each station in each hour of the day (i.e. the percent of trips started by that group 

at a station in a hour). Yellow corresponds to more common entry points. Stations are in order of their 

numerical code; the 29 stations eligible for the Early Bird Discount are indicated with gray boxes or black 

lines. 

Groups 4 and 5 traveled more in the middle of the day, and their trips were fairly concentrated in tourist 

or shopping destinations. The more common morning entries at border crossing stations for Group 5 

suggests they were more likely to come from the mainland while the single visit users are of more variable 

backgrounds. Group 6, the most frequent cross-border users, indeed traveled almost exclusively from the 

border in the morning. Their PM entry stations show that they typically confined themselves to the end of 

the East Rail Line and took only a small number of trips elsewhere in the system. In fact, in the morning, 

only about 25% of their trips were to stations eligible for the promotion, compared to 40-50% for all other 

groups. These three groups represent only about 3% of AM trips to eligible stations. For Groups 4 and 5, 

this is likely due the fact that few members traveled at all at these times. For Group 6, it is because of the 

small size of the group, as well as its members’ tendency to travel on the north end of the East Rail Line, 

away from the central areas of Kowloon and Hong Kong Island. 



16 
 

 

Fig 7. Relative number of entries at each station in each hour of the day by group 

Group 1 exhibited peaking patterns similar to those that characterize system usage as a whole: many 

entries between 8:00–9:00 or 18:00–19:00 and fewer trips in the middle of the day, when people are 

presumably at work or school. They also have fewer dominant stations; this group’s travel was more 

dispersed across the system. It took the majority (80%) of the trips to stations eligible for the discount. 

Group 3, the intermittent Hong Kong users, had a peak only in the evening and, while its travel was more 

spread out in the network than groups 4–6, it was still mostly from commercial centers and border crossing 

stations in the evening (i.e. day visits to the city of Shenzhen, China). Group 2 falls between 1 and 3. 

Travel from commercial centers was common in the evening, but they had less cross-border travel and a 

higher proportion of trips in the morning peak. These groups (2 and 3) took a non-negligible 18% of AM 

trips to early bird stations. 

These patterns also provide additional insight to the aggregate congestion patterns. The sharper morning 

peak is largely due to commuters, while the more gradual evening peak is a result of all groups traveling. 

While PTDM policies may be useful in the AM and PM peaks, these different types of travelers, along 

with the longer duration of high demand in the afternoon, means that different policies may be needed in 

each period. In deciding whether to take advantage of promotions, users face a trade-off between 

flexibility and incentives. As frequent travelers, the total discount commuters receive will be large, but 

the greater time constraints on commute trips make earlier travel more burdensome, especially since 

flexible start hours are not common. Other groups, like the intermittent and casual users, may have fewer 

constraints on their travel times, but if they do not often use MTR in the morning, a 25% discount may 

not be enough to entice them to travel even earlier. Tourist groups are not negligible, especially in the PM 

peak, but effective marketing campaigns and information will be important to ensure they are aware of 
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these discounts.  

Table 3 summarizes the change in peak and pre-peak hour travel for each group, comparing September 

2014 to August 2014 and September 2013, using the ratio: 

 
𝑟 =

%𝑇𝑟𝑖𝑝𝑠𝑆𝑒𝑝14,𝑖

%𝑇𝑟𝑖𝑝𝑠𝑚,𝑖
 

(1) 

where %Trips is the percentage of all trips between 7:00 and 9:30am that took place in hour i, either pre-

peak (7:15-8:15) or peak (8:15-9:15) in September 2014 or base month m.  

Table 3: Ratio of September 2014 travel to prior months, for pre-peak and peak hours 

 Pre-Peak (7:15-8:15am) Peak (8:15-9:15am) 

 Sept14/Sept13 Sept14/Aug14 Sept14/Sep13 Sept14/Aug14 

Group 1  1.11 1.13 0.96 0.96 

Group 2  0.99 1.01 1.00 1.00 

Group 3  1.07 1.11 0.96 0.94 

Group 4  1.07 1.10 0.98 1.00 

Group 5  1.18 1.02 0.90 0.92 

Group 6  0.94 1.04 1.05 1.05 

The total percentage of AM trips taking place in these two hours (7:15-9:15am) versus the remaining 

shoulder periods (7:00-7:15am, 9:15-9:30am) was relatively consistent from month to month. However, 

commuter groups 1 and 6 did have users shifting from the early morning to the pre-peak hour and Groups 

3 and 5 had increased post-peak travel, likely due to summer coming to an end, not because of the 

promotion. The groups with the largest decreases in peak hour travel compared to the previous September 

were Groups 1 and 3, which had larger increases in pre-peak travel as well. While Group 5 appears to 

have a large response, the group took very few trips in these periods, making its values less reliable. Group 

6 did exhibit changes, but not in the expected direction; peak travel increased and pre-peak travel 

decreased from the previous September. These changes are likely due to unrelated changes to cross-border 

travel patterns. Group 2 showed no change in September but did reduce its peak travel in October. This 

suggests another characteristic of this group: they may be dependent on both bus and rail. When its 

members could no longer take the bus during a period in September, (when demonstrations in Hong Kong 

disrupted bus services, they switched to rail. Whether because of their typical bus schedules or peak 

crowding, they were more likely to travel in the pre-peak hour. 

The group based analysis of the impact of the Early Bird promotion strategy, provides useful insight into 

potential improvements targeting specific groups. Commuters are obviously an important target for 

demand management: they take a large number of trips and seem to have responded to the promotion. 

Programs that work with major employers could be considered in the future (similar to the Travel Smart 

program in Singapore). However, Group 3 could also be prioritized since it exhibited relatively large 

changes and may have more flexibility than the commuters. Emphasizing the reduced crowding and lower 

likelihood of denied boarding in the pre-peak may be more effective for these users. Though there does 

seem to be some evidence of Group 5 changing behavior, it may not be worthwhile to target these users. 

They, as well as Group 4, made few trips and are less likely to live in Hong Kong, making them harder to 

reach. Considering the casual users of Group 2, a series of inter-modal incentives may be more effective. 

Finally, Group 6 travelers might be best targeted through promotions specific to the East Rail Line, which 

serves Shenzhen-bound commuters. 
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Individual Analysis 

The individual analysis uses a panel of passengers who travel through the system before and after the 

promotion in the periods of interest. It identifies passengers who shift the exit time from the target stations 

in response to the promotion, and uses them to provide an understanding of the factors that influence their 

behavior.  

A. Customer Panel 

By tracking the same individuals before and after the start of the promotion, it is possible to study how 

the changes seen at the aggregate and group levels relate to the behavior of each customer. Assuming a 

customer uses the same smart card, his or her system usage can easily be observed over time. This allows 

the persistence of travel behavior change to be studied over extended periods of time. Furthermore, it also 

helps control for changes in ridership due to seasonality and exogenous changes in the Hong Kong 

population. 

An initial sample of 20,000 frequent peak hour users was selected from August 2014. These are users who 

traveled at least 15 times in the peak hour (8:15-9:15) to one of the 29 eligible stations. After excluding 

those who never traveled in the pre-peak hour (7:15-8:15) during September 2014 and those with travel 

passes (not charged a fare on trips covered by a pass), a total of 4,591 panel members remained. Hence, 

the panel focused on frequent, peak hour users who traveled to stations eligible for the discount, ensuring 

that panel members took enough trips to provide context to trends in their usage. Since the user group 

analysis showed frequent users to be so dominant and the peak-hour users are the ones targeted by the 

promotion, better understanding of the factors that influence their response to the promotion can provide 

useful insight for updating the promotion design. Users who shifted from the early morning to the pre-

peak hour or did not previously use MTR were outside the scope of the analysis. 

B. Identifying Shifters 

To understand the extent of behavior change and the particular factors associated with responding to the 

promotion, breakpoint detection analysis was used to identify "shifters": users who exhibited a behavior 

change that could be linked to the promotion (Bai, 1994). Breakpoint detection is a special case of change 

point analysis, which is used to identify changes in time series. In this case, the focus was changes in mean 

exit time - did someone’s typical exit time change in a way that could be associated with the promotion? 

This shifter identification analysis has two parts: individual breakpoint analysis to determine a set of 

change points for each user; and inference of behavior shift to identify those whose changes corresponded 

to the promotion. 

A time-series dataset was generated for the 4,591 panel members, where each day in the period of analysis 

was associated with an AM exit time. The setup is as follows: 

• Dates: Weekday data for four months (July-October 2014) were used. Weekends and other 

unusual days (holidays or days with extreme weather) were excluded. 

• Independent Variable: Of all the panel member’s trips, the ones that could reasonably be shifted 

to the pre-peak hour were of most interest. "AM Trips" were defined as those that finished before 

10:30am (the number of exits was small and relatively constant after 10:30 and shifting departure 

time by more than two hours for a 25% discount would be unlikely). To deal with users who 

traveled multiple times each morning, a user’s first exit after 7:15 to an eligible station was selected 

as the data point for each day. 

The individual breakpoint analysis was carried out using the breakpoints function in R’s strucchange 
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package (Zeileis, Kleiber, Krämer, & Hornik, 2003). The breakpoint analysis segments the time series and 

fits each segment using ordinary least square regression. Given parameters for minimum segment size (h) 

and maximum number of breakpoints (m), the method identifies breakpoints in a set of linear regressions. 

For the change of exit time considered here, a one-dimensional model was used to find the best intercept, 

or mean of each segment (constant exit time across a series of days): 

 𝑦𝑖𝑛 = 𝛽0,𝑛
𝑗

+ 𝜀𝑖𝑛  (𝑖 = 𝑖𝑗−1 + 1, … , 𝑖𝑗 , 𝑗 = 1,2, … , 𝑚 + 1) (2) 

where 𝑦𝑖𝑛 is the exit time of user 𝑛 on day  𝑖, 𝛽0,𝑛
𝑗

 the mean exit time of user 𝑛 in segment 𝑗, and 𝜀𝑖𝑛 the 

error term. 𝑗 denotes the segment index and 𝑖𝑗 the breakpoint (date) between segments 𝑗 and 𝑗 + 1. 

After experimentation, the minimum segment length ℎ was set at 10 days and the maximum number of 

breakpoints m at 2 (3 segments). Figure 8 shows an example of results for two individuals, the first of 

which has a change that may be associated to the promotion (a significant drop of exit time at around the 

time the promotion begins) and the second of which does not (a slight change of exit time across 

segments). 

  
 

                                             (a)                                                                              (b) 

Fig 8. Breakpoint analysis results for two users: (a) Change likely due to promotion and (b) Change may 

not be associated with promotion 

In order to identify the users who may have a change actually associated with the promotion, their 

breakpoints were compared with the promotion start date and the results of the regression (the mean exit 

time in each segment) were compared to each other and to the hour of the promotion. Four criteria were 

used: 

• Date: The user had a change point between the end of August and middle of September. This 

wider range captures users who may have not responded to the promotion right at the beginning 

and accounts for noise in the data. 

• Direction: The mean exit time at a breakpoint in the specified date range decreased—the user 

should begin exiting stations earlier in the morning rather than later. 

• Magnitude: The mean exit time after a change that meets both of the above criteria was before 

8:25 (even users who had a fairly strong response to the promotion would not be expected to travel 

in the pre-peak hour every day). 
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• Number of Trips: After a breakpoint that met all of the above criteria, the user continued to travel 

and took at least four trips between the breakpoint and the end of October. This better controls for 

breakpoints that are more due to frequency changes than exit time changes. 

Based on these criteria, 794 of the 20,000 panel members were identified as shifters. This corresponds to 

3.94% of the panel, which is in line with the aggregate and commuter group findings. The 794 shifters 

represent 17.3% of the panel of the 4,591 users who had traveled in the pre-peak. The actual reason behind 

a user’s actions cannot be identified from AFC data alone. Some of these users may have lifestyle changes 

that influenced their travel patterns. The promotion might have also influenced how much they changed 

their exit times; perhaps without it, users who shifted from 8:30 to 8:10 would have shifted only to 8:20. 

On the other hand, regardless of the factors that led to this behavior change, these are the users who 

benefited from the promotion and contributed to system-wide benefits. Future research might consider a 

panel analysis in conjunction with a survey to have more certainty in user responses and better understand 

the impacts of external lifestyle characteristics and socio-demographics. 

C. Modeling the Panel’s Response 

A binary logit model was used to estimate the probability of shifting exit time as a function of various 

explanatory factors. Its coefficients can be used to quantify the panel’s demand elasticity with respect to 

fare savings as well as other marginal effects. The following model specification best explains the shifting 

behavior. 

 𝑈𝑠ℎ𝑖𝑓𝑡,𝑛 = 𝛽0 + 𝛽1SAVE+𝛽2DT + 𝛽3SAVE ∗ DTHigh + 𝛽4SAVE ∗ DURHigh + 𝛽5VAR

+ 𝛽6DISC + 𝜀𝑠ℎ𝑖𝑓𝑡,𝑛   

(3) 

 𝑈𝑛𝑜𝑛𝑠ℎ𝑖𝑓𝑡,𝑛 =   0 (4) 

where 𝛽0 is the alternative specific constant, and 𝛽1, … , 𝛽6 is a vector of coefficients of the explanatory 

variables. 𝜀 captures the impact of all unobserved factors that affect the person’s choice. The explanatory 

variables are defined as follows: 

• SAVE: the fare savings associated with pre-peak travel, given the typical fare in August 2014 (fares 

are distance-based) 

• DT: displacement time, the amount of time someone would have to shift their departure time 

earlier, given their median AM exit time in August (the difference between a user’s median exit 

time in August and 8:15, the end of the pre-peak hour) 

• DTHigh: a dummy variable with value 1 if a user’s displacement time is larger than 15 minutes 

• DURHigh: a dummy variable with value 1 if a user’s trip duration is larger than 25 minutes 

• VAR: standard deviation of someone’s departure times of August AM trips. It is used as a proxy 

for flexibility in departure time 

• DISC: number of trips by the passengers that received another MTR discount (qualifying bus-to-

rail transfers and tapping one’s card at one of the "Fare Saver" terminals located in various 

shopping centers). This variable serves as a proxy for an individual’s price sensitivity. 

As only AFC data was available for estimating the variables related to the model, socio-demographic 

characteristics or employment could not be included, though they are likely salient for the shift decision. 

The estimation results are summarized in Table 4. The results make sense from a behavioral point of view. 

As expected, the increase of fare savings increases the probability of users shifting their departure times 

to take advantage of the discount.  The impact of fare savings is not the same for all users.  The magnitude 

of the savings is less important for users who need to shift by more than 15 minutes to receive a discount. 
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People are less likely to respond to the promotion as trips get longer. This may be because users making 

long trips do not want to leave even earlier. Longer trips are also less reliable Wood (2015). Furthermore, 

the socio-economic and employment characteristics of users who live farther away from the city center 

(trips ending at discounted stations with duration larger than 25 minutes, typically lower-income with less 

flexible jobs), may also impact their behavior. 

Table 4: Model estimation results 

Shift Utility Estimate  t-stat 

Intercept  -2.197 -13.780 *** 

SAVE   0.138    1.997 * 

DT -1.865  -9.157 *** 

SAVE*DTHigh  -0.058  -1.890 * 

SAVE*DURHigh  -0.076  -2.195 * 

DISC  0.034   4.681 *** 

VAR  1.366   4.593 *** 

Log-Likelihood: -2990.6  

Adjusted McFadden R2:  0.123  

Likelihood ratio test:  χ2 = 686.6 (p <2.22e-16)  

No. of observations:      4591  

Note: ***: p(t)<0.001; **: p(t)<0.01; *: p(t)<0.05 

The variables have the expected sign, and all are significant at the α = 0.05 level. The constant is negative, 

reflecting a disinclination to change behavior. As expected, displacement time variable is very important 

and has a negative coefficient. Users who have more variability in their travel times were more likely to 

shift. This could mean that different incentives are needed to influence users with strict routines, and could 

also imply the importance of flexible work hours policies to complement such PTDM strategies. Users 

who target and receive other discounts are also more likely to shift. Most users who received these 

discounts were using the MTR "Fare Saver" terminals (a HK$2 discount for tapping the card at specified 

locations throughout the city) rather than a qualifying bus-to-rail transfer, which implies that users who 

are more price sensitive and discount seeking are more likely to also take advantage of this incentive. The 

interaction terms indicate that people were much more elastic to fare savings when they traveled close to 

the end of the eligible period (low displacement time) and with low trip durations. And people tend to be 

not elastic with respect to fare savings when they have long trips and high displacement times. 

3.4 Monitoring 

AFC data facilitate the monitoring of a PTDM strategy and the assessment of its effectiveness over time. 

As mentioned in the introduction, the concern is that the promotion incentivizes passengers only 

temporarily and after some time they return to their previous behavior. The number of shifters who 

identified in the previous sections and who continued using the system consistently (regardless of the time 

period they travel) in the following 24 months were used as the panel for the longitudinal analysis to 

monitor their behavior over time.  

Sustained shifters are those early shifters who maintain their behavioral change and keep traveling in the 

promotion time period. Figure 9 shows the sustainable shifters as a percentage of the initial shifters who 

continue to use the system the period October 2014 to October 2016. There is a decreasing trend with 

about 65% early shifters sustaining their travel behavior after two years. Most early shifters sustain their 

behavior for the first two months after the promotion (October and November) but there is a sharp decrease 
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at the third month. After that, the decreasing trend becomes more stable. The large drop in July and August 

in 2015 and 2016 is probably related to the summer vacation period. 

 

Fig 9. Percentage of sustained shifters by month 

The results highlight the need for continues motoring of a strategy and occasional refinements to maintain 

the public’s interest in the program and avoid the "hedonic treadmill” effects (Brickman & Campbell, 

1971). 

4. DISCUSSION 

The results from the case study inform several ways that an agency can improve upon simple fare discount 

schemes. The suggestions listed below can account for different user characteristics by targeting certain 

groups or by easing constraints that users may have in time-shifting. An agency may choose to target a 

group or not, but could also target different groups with different degrees of intervention. The feasibility 

of these interventions depends on the customers’ attitudes towards complexity, partnership opportunities, 

as well as fiscal implications. 

• Pricing Structure: The discount could be structured more like a rebate, providing a single, large 

payout over a period of time (e.g. weekly). This may attract users who overlook small, regular 

discounts by accentuating aggregate savings. Another option is to introduce a lottery policy instead 

of a guaranteed pay-out. By making users register to have a chance at winning, only those who are 

more price-sensitive or interested in participating will enter, meaning fewer people who do not 

change their behavior are rewarded. Requiring enrollment allows the agency to give users higher 

rewards or a higher likelihood of winning, particularly if it is willing to pay out the same amount 

as in a user-wide fare differential scheme. 

• Pricing Basis: Rather than providing a discount based only on the exit station, a promotion could 

target OD pairs, particular links, or alternative routes. These options better manage uncertainty 

with travel time, in-vehicle congestion, or the need to change one’s departure time, respectively. 

Discounting travel on less-crowded routes can balance demand across the network and improve 

capacity utilization. The integration of smartphone and location services with public transport 

payment enables the deployment of such route-based strategies. 

• Targeted Customer Information: Providing more individualized information will help users 

make better travel decisions, conveying the benefits of off-peak travel that best match their needs. 
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Possible strategies include station- or user-specific marketing, or enabling online journey planners, 

to display time-specific fares and crowding data. Users could also be given specific travel tips 

through a personalized page on the agency’s website (possibly using insights from the group the 

user belongs to or how the user’s characteristics relate to the factors analyzed in a panel analysis). 

Demand interventions are quicker and more cost efficient than adding capacity with new infrastructure, 

but in the context of public transport, are often seen as transient solutions to use until those additions are 

made. However, when service is added, it may be complemented by PTDM policies, giving agencies a 

larger set of tools to find solutions that best meet their congestion and business needs. 

5. CONCLUSION 

The paper presents a framework for the design and evaluation of demand management strategies for public 

transport systems. Recognizing the demand patterns associated with crowding and the context in which 

policies are implemented can help design more relevant policy interventions, especially when decision-

makers link this insight to the various design parameters. Evaluation and monitoring that do not just 

consider aggregate changes in demand, but also analyze passenger response in more detail, are beneficial 

and guide future refinements of the program. AFC data is a valuable source for this evaluation. It allows 

demand patterns to be studied at a much finer level than past data sources. Compared to aggregate data 

analysis, clustering and panel analyses provide better insight into user responses to a policy, and unlike 

survey data, they can be performed on a large scale. 

The evaluation component was verified in a case study using data from a congested system. The results 

show that the pricing incentive was effective in shifting users out of the peak period, causing a temporal 

redistribution of demand. Analyzing the changes in demand patterns over all users showed that the Early 

Bird Promotion did make a difference, though perhaps not enough to reverse the effects of exogenous 

ridership growth. More disaggregate analysis suggests that attention should be given to the commuter and 

intermittent users. These groups take a sizable number of the trips targeted by the promotion and seemed 

amenable to fare differentials. Other groups take too few trips to be a priority or seem to require other 

types of incentives to travel outside the peak. The panel analysis further suggests that the design may need 

adjustments to account for users’ strong opposition to changing their departure time. Increasing users’ 

flexibility in when they travel, improving inter-modal transfers, and better targeting users who are price-

sensitive are interesting ways to improve effectiveness. In addition, monitoring through the longitudinal 

analysis can inform the potential for long term interventions.  

The shifter identification analysis relies on smart card data to associate the behavior change to the 

promotion design. Future research considering a panel analysis in conjunction with a survey will have 

more certainty in user response and better control other factors, such as lifestyle characteristics and socio-

demographics. The extend of the change can also be modeled in more detail. A sequential choice model 

for example, can be used to model at the first level the decision to shift or not and at the second level the 

% of trips that shifted (Ben-Akiva, Lerman, & Lerman, 1985).    

ACKNOWLEDGMENTS 

The authors thank Hong Kong MTR for their support for this research. Discussions with staff about their 

experiences in developing and evaluating PTDM policies also provided valuable insight. The authors also 

thank Nick Allen and Adam Rosenfield for their review and proofreading.  

AUTHORS’ CONTRIBUTION 



24 
 

A Halvorsen: Literature search and review, Experiment design, Analysis, Modeling, Manuscript writing; 

HN Koutsopoulos: Content planning, Analysis, Modeling, Manuscript writing; Z Ma: Analysis, Modeling, 

Manuscript writing and editing; J Zhao: Content planning, Analysis, Manuscript writing. 

CONFLICT OF INTEREST 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 

REFERENCES 

Anupriya, A., Graham, D., Hörcher, D., & Anderson, R. J. (2018). The Impact of Early Bird Scheme on 

Commuter Trip Scheduling in Hong Kong: A Causal Analysis Using Travel Card Data. Paper presented 

at the Transportation Research Board 97th Annual Meeting, Washington DC, United States. 

Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Paper presented at 

the Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, New Orleans, 

Louisiana. 

Bai, J. (1994). Least squares estimation of a shift in linear processes. Journal of Time Series Analysis, 

15(5), 453-472. doi:10.1111/j.1467-9892.1994.tb00204.x 

Bamberg, S., Fujii, S., Friman, M., & Gärling, T. (2011). Behaviour theory and soft transport policy 

measures. Transport Policy, 18(1), 228-235. doi:https://doi.org/10.1016/j.tranpol.2010.08.006 

Bamford, C. G., Carrick, R. J., Hay, A. M., & MacDonald, R. (1987). The use of association analysis in 

market segmentation for public transport: a case study of bus passengers in West Yorkshire, UK. 

Transportation, 14(1), 21-32. doi:10.1007/BF00172464 

Batarce, M., Muñoz, J. C., & Ortúzar, J. d. D. (2016). Valuing crowding in public transport: 

Implications for cost-benefit analysis. Transportation Research Part A: Policy and Practice, 91, 358-

378. doi:https://doi.org/10.1016/j.tra.2016.06.025 

Ben-Akiva, M. E., Lerman, S. R., & Lerman, S. R. (1985). Discrete choice analysis: theory and 

application to travel demand (Vol. 9): MIT press. 

Brickman, P., & Campbell, D. (1971). Hedonic relativism and planning the good society: New York: 

Academic Press. 

Cervero, R. (1990). Transit pricing research. Transportation, 17(2), 117-139. doi:10.1007/BF02125332 

Currie, G. (2009). Exploring the impact of the "Free before 7" campaign on reducing overcrowding on 

Melbourne's trains. Paper presented at the 32nd Australasian transport research forum, Auckland, New 

Zealand. 

Currie, G. (2011). Design and impact of a scheme to spread peak rail demand using pre-peak free fares. 

Paper presented at the European Transport Conference Glasgow, Scotland. 

https://doi.org/10.1016/j.tranpol.2010.08.006
https://doi.org/10.1016/j.tra.2016.06.025


25 
 

Dale, S., Frost, M. W., Ison, S. G., & Warren, P. (2015). Evaluating transport demand management 

interventions. Paper presented at the Transportation Research Board 94th Annual Meeting, Washington 

DC, United States. 

Ekström, J., Sumalee, A., & Lo, H. K. (2012). Optimizing toll locations and levels using a mixed integer 

linear approximation approach. Transportation Research Part B: Methodological, 46(7), 834-854. 

doi:https://doi.org/10.1016/j.trb.2012.02.006 

Eriksson, L., Nordlund, A. M., & Garvill, J. (2010). Expected car use reduction in response to structural 

travel demand management measures. Transportation Research Part F: Traffic Psychology and 

Behaviour, 13(5), 329-342. doi:https://doi.org/10.1016/j.trf.2010.06.001 

Ferguson, E. (1990). Transportation Demand Management Planning, Development, and Implementation. 

Journal of the American Planning Association, 56(4), 442-456. doi:10.1080/01944369008975448 

Gärling, T., Eek, D., Loukopoulos, P., Fujii, S., Johansson-Stenman, O., Kitamura, R., . . . Vilhelmson, 

B. (2002). A conceptual analysis of the impact of travel demand management on private car use. 

Transport Policy, 9(1), 59-70. doi:https://doi.org/10.1016/S0967-070X(01)00035-X 

Gärling, T., & Fujii, S. (2006). Travel behavior modification: Theories, methods, and programs. Paper 

presented at the 11th international conference on travel behavior research, Kyoto, Japan. 

Gärling, T., & Schuitema, G. (2007). Travel Demand Management Targeting Reduced Private Car Use: 

Effectiveness, Public Acceptability and Political Feasibility. Journal of Social Issues, 63(1), 139-153. 

doi:10.1111/j.1540-4560.2007.00500.x 

Giuliano, G. (1992). Transportation Demand Management: Promise or Panacea? Journal of the 

American Planning Association, 58(3), 327-335. doi:10.1080/01944369208975811 

Gordon, J., Koutsopoulos, H., Wilson, N., & Attanucci, J. (2013). Automated Inference of Linked 

Transit Journeys in London Using Fare-Transaction and Vehicle Location Data. Transportation 

Research Record: Journal of the Transportation Research Board, 2343, 17-24. doi:10.3141/2343-03 

Goulet-Langlois, G., Koutsopoulos, H. N., & Zhao, J. (2016). Inferring patterns in the multi-week 

activity sequences of public transport users. Transportation Research Part C: Emerging Technologies, 

64, 1-16. doi:https://doi.org/10.1016/j.trc.2015.12.012 

Greene-Roesel, R., Castiglione, J., Guiriba, C., & Bradley, M. (2018). BART Perks: Using Incentives to 

Manage Transit Demand. Transportation Research Record: Journal of the Transportation Research 

Board. doi:10.1177/0361198118792765 

Halvorsen, A., Koutsopoulos, H. N., Lau, S., Au, T., & Zhao, J. (2016). Reducing Subway Crowding: 

Analysis of an Off-Peak Discount Experiment in Hong Kong. Transportation Research Record: Journal 

of the Transportation Research Board, 2544, 38-46. doi:10.3141/2544-05 

Hamdouch, Y., Florian, M., Hearn, D. W., & Lawphongpanich, S. (2007). Congestion pricing for multi-

modal transportation systems. Transportation Research Part B: Methodological, 41(3), 275-291. 

doi:http://dx.doi.org/10.1016/j.trb.2006.04.003 

https://doi.org/10.1016/j.trb.2012.02.006
https://doi.org/10.1016/j.trf.2010.06.001
https://doi.org/10.1016/S0967-070X(01)00035-X
https://doi.org/10.1016/j.trc.2015.12.012
http://dx.doi.org/10.1016/j.trb.2006.04.003


26 
 

Henn, L., Douglas, N., & Sloan, K. (2011). Surveying Sydney rail commuters’ willingness to change 

travel time. Paper presented at the 34th Australasian Transport Research Forum Adelaide, Australia. 

Hörcher, D., Graham, D. J., & Anderson, R. J. (2017). Crowding cost estimation with large scale smart 

card and vehicle location data. Transportation Research Part B: Methodological, 95, 105-125. 

doi:http://dx.doi.org/10.1016/j.trb.2016.10.015 

Hurdle, J. (2014). Use of public transit in US reaches highest level since 1956, advocates report. 

Retrieved from https://www.nytimes.com/2014/03/10/us/use-of-public-transit-in-us-reaches-highest-

level-since-1956-advocates-report.html 

Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical science (pp. 

1094-1096): Springer. 

Kachroo, P., Gupta, S., Agarwal, S., & Ozbay, K. (2017). Optimal Control for Congestion Pricing: 

Theory, Simulation, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 18(5), 

1234-1240. doi:10.1109/TITS.2016.2601245 

Koutsopoulos, H. N., Ma, Z., Noursalehi, P., & Zhu, Y. (2018). Transit Data Analytics for Planning, 

Monitoring, Control and Information. In C. Antoniou, L. Dimitriou, & F. Pereira (Eds.), Mobility 

Patterns, Big Data and Transport Analytics (1 ed., pp. 448): Elsevier. 

Kroes, E., Kouwenhoven, M., Debrincat, L., & Pauget, N. (2014). Value of Crowding on Public 

Transport in Île-de-France, France. Transportation Research Record: Journal of the Transportation 

Research Board, 2417, 37-45. doi:10.3141/2417-05 

Li, S.-M., & Wong, F. C. L. (1994). The effectiveness of differential pricing on route choice. 

Transportation, 21(3), 307-324. doi:10.1007/BF01099216 

Li, Z., & Hensher, D. A. (2011). Crowding and public transport: A review of willingness to pay 

evidence and its relevance in project appraisal. Transport Policy, 18(6), 880-887. 

doi:https://doi.org/10.1016/j.tranpol.2011.06.003 

Loukopoulos, P. (2007). A classification of travel demand management measures. In Threats from Car 

Traffic to the Quality of Urban Life: Problems, Causes and Solutions (pp. 273-292): Emerald Group 

Publishing Limited. 

LTA, S. (2014). Travel smart. Retrieved from http://www.lta.gov.sg/content/ltaweb/en/public-

transport/mrt-and-lrt-trains/travel-smart.html 

Luo, D., Cats, O., & Lint, H. v. (2017, 26-28 June 2017). Analysis of network-wide transit passenger 

flows based on principal component analysis. Paper presented at the 2017 5th IEEE International 

Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). 

Ma, Z., Ferreira, L., & Mesbah, M. (2014). Measuring service reliability using automatic vehicle 

location data. Mathematical Problems in Engineering, 2014.  

http://dx.doi.org/10.1016/j.trb.2016.10.015
https://www.nytimes.com/2014/03/10/us/use-of-public-transit-in-us-reaches-highest-level-since-1956-advocates-report.html
https://www.nytimes.com/2014/03/10/us/use-of-public-transit-in-us-reaches-highest-level-since-1956-advocates-report.html
https://doi.org/10.1016/j.tranpol.2011.06.003
http://www.lta.gov.sg/content/ltaweb/en/public-transport/mrt-and-lrt-trains/travel-smart.html
http://www.lta.gov.sg/content/ltaweb/en/public-transport/mrt-and-lrt-trains/travel-smart.html


27 
 

Ma, Z., & Koutsopoulos, H. N. (2018). Optimal Design of Promotion Based Transit Demand 

Management Strategies. Working paper.  

Ma, Z., Koutsopoulos, H. N., Chen, Y., & Wilson, N. H. M. (2019). estimation of denied boarding in 

urban rail systems: alternative formulations and comparative analysis. Transportation Research Record.  

Mark, S., & Phil, C. (2006). Developments in Transit Fare Policy Reform. Paper presented at the 29th 

Australasian Transport Research Forum Queensland, Australia. 

Maruyama, T., & Sumalee, A. (2007). Efficiency and equity comparison of cordon- and area-based road 

pricing schemes using a trip-chain equilibrium model. Transportation Research Part A: Policy and 

Practice, 41(7), 655-671. doi:https://doi.org/10.1016/j.tra.2006.06.002 

Maunsell, F. (2007). Demand management techniques–peak spreading. Retrieved from Department for 

Transport, Transport for London and Network Rail, London, United Kingdom:  

Pelletier, M.-P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature 

review. Transportation Research Part C: Emerging Technologies, 19(4), 557-568. 

doi:https://doi.org/10.1016/j.trc.2010.12.003 

Pluntke, C., & Prabhakar, B. (2013). INSINC: A platform for managing peak demand in public transit. 

JOURNEYS, Land Transport Authority Academy of Singapore, 31-39.  

Prud'homme, R., Koning, M., Lenormand, L., & Fehr, A. (2012). Public transport congestion costs: The 

case of the Paris subway. Transport Policy, 21, 101-109. 

doi:http://doi.org/10.1016/j.tranpol.2011.11.002 

Rose, G. (2007). Appraisal and Evaluation of Travel Demand Management Measures. Paper presented 

at the 30th Australasian Transport Research Forum, Melbourne, Victoria, Australia. 

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster 

analysis. Journal of computational and applied mathematics, 20, 53-65.  

Schade, J., & Schlag, B. (2003). Acceptability of urban transport pricing strategies. Transportation 

Research Part F: Traffic Psychology and Behaviour, 6(1), 45-61. doi:https://doi.org/10.1016/S1369-

8478(02)00046-3 

Schlag, B., & Teubel, U. (1997). Public acceptability of transport pricing. IATSS research, 21, 134-142.  

Smith, B., & Moniruzzaman, M. (2014). Review of TDM appraisal and evaluation tools. Retrieved from 

Perth, Australia:  

Steg, L. (2003). Factors influencing the acceptability and effectiveness of transport pricing. In 

Acceptability of transport pricing strategies (pp. 187-202): Pergamon Press. 

Steg, L., & Vlek, C. (1997). The role of problem awareness in willingness-to-change car use and in 

evaluating relevant policy measures. Paper presented at the Traffic and Transport Psychology: Theory 

and Application, Amsterdam, Netherlands. 

https://doi.org/10.1016/j.tra.2006.06.002
https://doi.org/10.1016/j.trc.2010.12.003
http://doi.org/10.1016/j.tranpol.2011.11.002
https://doi.org/10.1016/S1369-8478(02)00046-3
https://doi.org/10.1016/S1369-8478(02)00046-3


28 
 

Taylor, C., Nozick, L., & Meyburg, A. (1997). Selection and evaluation of travel demand management 

measures. Transportation Research Record: Journal of the Transportation Research Board(1598), 49-

60.  

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the 

gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423.  

Tirachini, A., Hurtubia, R., Dekker, T., & Daziano, R. A. (2017). Estimation of crowding discomfort in 

public transport: Results from Santiago de Chile. Transportation Research Part A: Policy and Practice, 

103, 311-326. doi:https://doi.org/10.1016/j.tra.2017.06.008 

Wang, Z.-j., Li, X.-h., & Chen, F. (2015). Impact evaluation of a mass transit fare change on demand 

and revenue utilizing smart card data. Transportation Research Part A: Policy and Practice, 77, 213-

224. doi:https://doi.org/10.1016/j.tra.2015.04.018 

Wie, B.-W. (2007). Dynamic Stackelberg equilibrium congestion pricing. Transportation Research Part 

C: Emerging Technologies, 15(3), 154-174. doi:http://dx.doi.org/10.1016/j.trc.2007.03.002 

Wie, B.-W., & Tobin, R. L. (1998). Dynamic congestion pricing models for general traffic networks. 

Transportation Research Part B: Methodological, 32(5), 313-327. doi:http://dx.doi.org/10.1016/S0191-

2615(97)00043-X 

Yang, H., & Tang, Y. (2018). Managing rail transit peak-hour congestion with a fare-reward scheme. 

Transportation Research Part B: Methodological, 110, 122-136. 

doi:https://doi.org/10.1016/j.trb.2018.02.005 

Yap, M., Cats, O., & van Arem, B. (2018). Crowding valuation in urban tram and bus transportation 

based on smart card data. Transportmetrica A: Transport Science, 1-20. 

doi:10.1080/23249935.2018.1537319 

Zeileis, A., Kleiber, C., Krämer, W., & Hornik, K. (2003). Testing and dating of structural changes in 

practice. Computational Statistics & Data Analysis, 44(1), 109-123. doi:https://doi.org/10.1016/S0167-

9473(03)00030-6 

Zhang, J., Yan, X., An, M., & Sun, L. (2017). The impact of beijing subway’s new fare policy on riders’ 

attitude, travel pattern and demand. Sustainability, 9(5), 689.  

Zhang, Z., Fujii, H., & Managi, S. (2014). How does commuting behavior change due to incentives? An 

empirical study of the Beijing Subway System. Transportation Research Part F: Traffic Psychology and 

Behaviour, 24, 17-26. doi:https://doi.org/10.1016/j.trf.2014.02.009 

Zhu, Y., Koutsopoulos, H. N., & Wilson, N. H. M. (2017a). Inferring left behind passengers in 

congested metro systems from automated data. Transportation Research Part C: Emerging 

Technologies. doi:https://doi.org/10.1016/j.trc.2017.10.002 

Zhu, Y., Koutsopoulos, H. N., & Wilson, N. H. M. (2017b). A probabilistic Passenger-to-Train 

Assignment Model based on automated data. Transportation Research Part B: Methodological. 

doi:https://doi.org/10.1016/j.trb.2017.04.012 

https://doi.org/10.1016/j.tra.2017.06.008
https://doi.org/10.1016/j.tra.2015.04.018
http://dx.doi.org/10.1016/j.trc.2007.03.002
http://dx.doi.org/10.1016/S0191-2615(97)00043-X
http://dx.doi.org/10.1016/S0191-2615(97)00043-X
https://doi.org/10.1016/j.trb.2018.02.005
https://doi.org/10.1016/S0167-9473(03)00030-6
https://doi.org/10.1016/S0167-9473(03)00030-6
https://doi.org/10.1016/j.trf.2014.02.009
https://doi.org/10.1016/j.trc.2017.10.002
https://doi.org/10.1016/j.trb.2017.04.012


29 
 

AUTHOR BIOS 

Anne Halvorsen is a Principal Transportation Planner at New York City Transit. She received her 

Bachelor’s degree from the University of California, Berkeley in 2013 and Master of Science in 

Transportation from the Massachusetts Institute of Technology in 2015, where she studied issues of 

demand management in Hong Kong's MTR system. She is a member of the Data, Research, and 

Development group at New York City Transit 

Haris N. Koutsopoulos is a Professor with the Department of Civil and Environmental Engineering, 

Northeastern University, Boston. His current research interests include the use of data from 

opportunistic and dedicated sensors to improve planning, operations, monitoring, and control of urban 

transportation systems, including public transportation. He is the founder of the iMobility lab at KTH in 

Stockholm which focuses on urban mobility problems. The Laboratory received the IBM Smarter Planet 

Award in 2012. 

Zhenliang (Mike) Ma is an Assistant Professor with Institute of Transport Studies and Public Transport 

Research Group in the Department of Civil Engineering, Monash University, Clayton, Australia.  

Mike’s general area of research is at the intersection of optimization, machine learning, and computer 

simulation. His research focuses on the inference, prediction and optimization of network control, 

through the integration of novel data sources, mostly from automated data collection systems, into 

mathematical learning models. The application areas cover public transport and shared mobility.  

Jinhua Zhao is the Edward H. and Joyce Linde Associate Professor of City and Transportation Planning, 

in the Department of Urban Studies and Planning at MIT. He brings behavioral science and 

transportation technology together to shape travel behavior, design mobility systems, and reform urban 

policies. He directs the MIT Urban Mobility Lab (mobility.mit.edu) and MIT Transit Lab. 

 


