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A study is presented of anomalous HVV interactions of the Higgs boson, including its CP properties.
The study uses Higgs boson candidates produced mainly in vector boson fusion and gluon fusion that
subsequently decay to a pair of τ leptons. The data were recorded by the CMS experiment at the LHC in
2016 at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 35.9 fb−1.
A matrix element technique is employed for the analysis of anomalous interactions. The results are
combined with those from the H → 4l decay channel presented earlier, yielding the most stringent
constraints on anomalous Higgs boson couplings to electroweak vector bosons expressed as effective
cross section fractions and phases: the CP-violating parameter fa3 cosðϕa3Þ ¼ ð0.00� 0.27Þ × 10−3 and
the CP-conserving parameters fa2 cosðϕa2Þ ¼ ð0.08þ1.04

−0.21 Þ × 10−3, fΛ1 cosðϕΛ1Þ ¼ ð0.00þ0.53
−0.09 Þ × 10−3,

and fZγΛ1 cosðϕZγ
Λ1Þ ¼ ð0.0þ1.1

−1.3 Þ × 10−3. The current dataset does not allow for precise constraints on CP
properties in the gluon fusion process. The results are consistent with standard model expectations.

DOI: 10.1103/PhysRevD.100.112002

I. INTRODUCTION

The Higgs boson (H) discovered in 2012 at the CERN
LHC [1–3] has thus far been found to have properties
consistent with expectations from the standard model
(SM) [4–10]. In particular, its spin-parity quantum num-
bers are consistent with JPC ¼ 0þþ according to mea-
surements performed by the CMS [11–17] and ATLAS
[18–23] experiments. It is still to be determined whether
small anomalous couplings contribute to the HVV or Hff
interactions, where V stands for vector bosons and f stands
for fermions. Because nonzero spin assignments of the H
boson have been excluded [13,19], we focus on the
analysis of couplings of a spin-0 H boson. Previous
studies of anomalous HVV couplings were performed
by both the CMS and ATLAS experiments using either
decay-only information [11–13,18,19,21], including
associated production information [15–17,20,22,23], or
including off-shell H boson production [14,17]. In this
paper, we report a study of HVV couplings using
information from production of the H boson decaying
to τ leptons. These results are combined with the previous
CMS measurements using both associated production
and decay information in the H → 4l channel [17],

resulting in stringent constraints on anomalous H boson
couplings. Here and in the following, l denotes an
electron or muon.
The H → ττ decay has been observed by the CMS

experiment, with over five standard deviation significance
[24]. TheH → ττ sample can be used to study the quantum
numbers of theH boson and its anomalous couplings to SM
particles, including its CP properties. The dominant pro-
duction mechanisms of the H boson considered in this
paper are shown at leading order in QCD in Fig. 1.
Anomalous HWW, HZZ, HZγ, Hγγ, and Hgg couplings
affect the correlations between the H boson, the beam line
direction, and the two jets in vector boson fusion (VBF), in
associated production with a vector boson decaying
hadronically (VH, where V ¼ W; Z), or gluon fusion
production with an additional two jets. The gluon fusion
production with two additional jets appears at higher order
in QCD with an example of gluons appearing in place of
the vector bosons shown in the VBF diagram in the middle
of Fig. 1. A study of anomalousHtt̄ couplings in associated
production with top quarks, tt̄H or tqH, and anomalous
Hττ couplings in the decay of theH boson are also possible
using ττ events [25]. However, more data are needed to
reach sensitivity to such anomalous effects, and it has been
confirmed that these anomalous couplings would not affect
the measurements presented in this paper.
To increase the sensitivity to anomalous couplings in

the H boson production, the matrix element likelihood
approach (MELA) [2,26–29] is utilized to form optimal
observables. The analysis is optimized for VBF production
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and is not additionally optimized for VH or gluon fusion
production. However, all three production mechanisms
are included in the analysis, using a general anomalous
coupling parametrization. The H → ττ channel has
advantages over other H boson decay channels because
of the relatively high significance of the signal events in
the VBF channel [24]. Three mutually exclusive catego-
ries of events are reconstructed in the analysis: the VBF
category targets events with two associated jets in the
VBF event topology, the boosted category contains
events with one jet or more jets if the event is not in
the VBF category, and the 0-jet category targets H boson
events produced via gluon fusion without associated jets.
The simultaneous analysis of all three categories of
events is necessary to boost the sensitivity to anomalous
HVV couplings from events with partial kinematic
information reconstructed in the non-VBF categories
and to normalize the relative contribution of different
production mechanisms.
The analysis utilizes the same data, event selection, and

categorization as Ref. [24] and is described in Sec. III.
The phenomenological model and Monte Carlo (MC)
simulation are described in Sec. IV. The matrix element
techniques used to extract the kinematic information
are discussed in Sec. V. The implementation of the
likelihood fit using kinematic information in the events
is presented in Sec. VI. The results are presented and
discussed in Secs. VII and VIII, before conclusions are
drawn in Sec. IX.

II. CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume, there
are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter, each composed of a barrel
and two end cap sections. Forward calorimeters extend the
pseudorapidity, η, coverage provided by the barrel and end
cap detectors. Muons are detected in gas-ionization cham-
bers embedded in the steel flux-return yoke outside the
solenoid.

Events of interest are selected using a two-tiered trigger
system [30]. The first level (L1), composed of custom
hardware processors, uses information from the calorim-
eters and muon detectors to select events at a rate of around
100 kHz within a time interval of less than 4 μs. The second
level, known as the high-level trigger, consists of a farm of
processors running a version of the full event reconstruction
software optimized for fast processing and reduces the
event rate to about 1 kHz before data storage.
A more detailed description of the CMS detector,

together with a definition of the coordinate system used
and the relevant kinematic variables, can be found
in Ref. [31].
The data samples used in this analysis correspond to an

integrated luminosity of 35.9 fb−1 collected in Run 2 of the
LHC during 2016 at a center-of-mass energy of 13 TeV.

III. EVENT RECONSTRUCTION AND SELECTION

The analysis uses the same dataset, event reconstruction,
and selection criteria as those used in the analysis leading
to the observation of the H boson decay to a pair of τ
leptons [24].

A. Event reconstruction

The reconstruction of observed and simulated events
relies on the particle-flow (PF) algorithm [32], which
combines the information from the CMS subdetectors to
identify and reconstruct particles emerging from pp colli-
sions. Combinations of these PF candidates are used to
reconstruct higher-level objects such as jets, τ candidates,
or missing transverse momentum, p⃗miss

T . The reconstructed
vertex with the largest value of summed physics object p2

t
is taken to be the primary pp interaction vertex, where pT
is the transverse momentum. The physics objects are the
objects constructed by a jet finding algorithm [33,34]
applied to all charged tracks associated with the vertex
and the corresponding associated missing transverse
momentum.
Electrons are identified with a multivariate discriminant

combining several quantities describing the track quality,
the shape of the energy deposits in the ECAL, and the

FIG. 1. Examples of leading-order Feynman diagrams for H boson production via the gluon fusion (left), vector boson fusion
(middle), and associated production with a vector boson (right). The HWW and HZZ couplings may appear at tree level, as the SM
predicts. Additionally,HWW,HZZ,HZγ,Hγγ, andHgg couplings may be generated by loops of SM or unknown particles, as indicated
in the left diagram but not shown explicitly in the middle and right diagrams.
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compatibility of the measurements from the tracker and the
ECAL [35]. Muons are identified with requirements on the
quality of the track reconstruction and on the number of
measurements in the tracker and the muon systems [36].
To reject nonprompt or misidentified leptons, an isolation
requirement Il is applied according to the criteria described
in Ref. [24].
Jets are reconstructed with an anti-kT clustering algo-

rithm [37], as implemented in the FASTJET package [34]. It
is based on the clustering of neutral and charged PF
candidates within a distance parameter of 0.4. Charged
PF candidates not associated with the primary vertex of the
interaction are not considered when building jets. An offset
correction is applied to jet energies to take into account the
contribution from additional pp interactions within the
same or nearby bunch crossings. In this analysis, jets are
required to have pT > 30 GeV and absolute pseudorapidity
jηj < 4.7 and to be separated from the selected leptons by a
distance parameter ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
of at least 0.5,

where ϕ is the azimuthal angle in radians. The combined
secondary vertex algorithm is used to identify jets that are
likely to originate from a bottom quark (“b jets”). The
algorithm exploits track-based lifetime information along
with the secondary vertex of the jet to provide a likelihood
ratio discriminator for b jet identification.
Hadronically decaying τ leptons, denoted as τh, are

reconstructed with the hadron-plus-strips algorithm
[38,39], which is seeded with anti-kT jets. This algorithm
reconstructs τh candidates based on the number of tracks
and the number of ECAL strips with energy deposits within
the associated η-ϕ plane and reconstructs one-prong,
one-prongþ π0 (s), and three-prong decay modes, identi-
fied as M ¼ 1, 2, and 3, respectively. A multivariate
discriminator, including isolation and lifetime information,
is used to reduce the rate for quark- and gluon-initiated jets
to be identified as τh candidates. The working point used in
this analysis has an efficiency of about 60% for genuine τh,
with about 1% misidentification rate for quark- and gluon-
initiated jets, for a pT range typical of τh originating from a
Z boson. Electrons and muons misidentified as τh candi-
dates are suppressed using dedicated criteria based on the
consistency between the measurements in the tracker, the
calorimeters, and the muon detectors [38,39]. The τh
energy scale as well as the rate and the energy scale of
electrons and muons misidentified as τh candidates are
corrected in simulation to match those measured in
data [24].
The missing transverse momentum is defined as the

negative vector sum of the transverse momenta of all PF
candidates [40]. The details of the corrections to p⃗miss

T for
the mismodeling in the simulation of Z þ jets, W þ jets,
and H boson processes are described in Ref. [24].
Both the visible mass of the ττ system mvis and the

invariant mass of the ττ systemmττ are used in the analysis.
The visible mass is defined as the invariant mass of the

visible decay products of the τ leptons. The observable
mττ is reconstructed using the SVFIT [41] algorithm,
which combines the p⃗miss

T and its uncertainty with the
4-vectors of both τ candidates to calculate a more
accurate estimate of the mass of the parent boson. The
estimate of the 4-momentum of the H boson provided by
SVFIT is used to calculate the kinematic observables
discussed in Sec. V.

B. Event selection and categorization

Selected events are classified according to four decay
channels, eμ, eτh, μτh, and τhτh. The resulting event
samples are made mutually exclusive by discarding events
that have additional loosely identified and isolated elec-
trons or muons.
The largest irreducible source of background is Drell-

Yan production of Z → ττ, while the dominant background
sources with jets misidentified as leptons are QCD multijet
and W þ jets. Other contributing background sources are
tt̄, single top, Z → ll, and diboson production.
The two leptons assigned to the H boson decay are

required to have opposite charges. The trigger require-
ments, geometrical acceptances, and transverse momentum
criteria are summarized in Table I. The pT thresholds in the
lepton selections are optimized to increase the sensitivity to
theH → ττ signal, while also satisfying the trigger require-
ments. The pseudorapidity requirements are driven by
reconstruction and trigger requirements.
In the lτh channels, the large W þ jets background is

reduced by requiring the transverse mass, mT, to be less
than 50 GeV. The transverse mass is defined as follows,

TABLE I. Kinematic selection criteria for the four decay
channels. For the trigger threshold requirements, the numbers
indicate the trigger thresholds in GeV. The lepton selection
criteria include the transverse momentum threshold, pseudora-
pidity range, as well as isolation criteria.

Trigger requirement Lepton selection

Channel pT (GeV) pT (GeV) η

eμ pe
T > 12 & pμ

T > 23 pe
T > 13 jηej < 2.5

pμ
T > 24 jημj < 2.4

pe
T > 23 & pμ

T > 8 pe
T > 24 jηej < 2.5

pμ
T > 15 jημj < 2.4

eτh pe
T > 25 pe

T > 26 jηej < 2.1
pτh
T > 30 jητh j < 2.3

μτh pμ
T > 22 pμ

T > 23 jημj < 2.1
pτh
T > 30 jητh j < 2.3

pμ
T > 19 & pτh

T > 21 20 < pμ
T < 23 jημj < 2.1

pτh
T > 30 jητh j < 2.3

τhτh pτh
T > 35 & 35 pτh

T > 50 & 40 jητh j < 2.1
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mT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl

Tp
miss
T ½1 − cosðΔϕÞ�

q
; ð1Þ

where pl
T is the transverse momentum of the electron or

muon and Δϕ is the azimuthal angle between the lepton
direction and the p⃗miss

T direction.
In the eμ channel, the tt̄ background is reduced by

requiring pζ − 0.85pvis
ζ > −35 GeV or −10 GeV depend-

ing on the category, where pζ is the component of p⃗miss
T

along the bisector of the transverse momenta of the two
leptons and pvis

ζ is the sum of the components of the lepton
transverse momenta along the same direction [42]. In
addition, events with a b-tagged jet are discarded to further
suppress the tt̄ background in this channel.
In the same way as in Ref. [24], the event samples are

split into three mutually exclusive production categories:
(i) 0-jet category: This category targets H boson events

produced via gluon fusion. Events containing no jets
with pT > 30 GeV are selected. Simulations indi-
cate that about 98% of signal events in the 0-jet
category arise from the gluon fusion production
mechanism.

(ii) VBF category: This category targets H boson
events produced via the VBF process. Events
are selected with exactly (at least) two jets with
pT > 30 GeV in the eμ (eτh, μτh, and τhτh) chan-
nels. In the μτh, eτh, and eμ channels, the two
leading jets are required to have an invariant mass,
mJJ, larger than 300 GeV. The vector sum of the
p⃗miss
T and the p⃗T of the visible decay products of the

tau leptons, defined as p⃗ττ
T , is required to have a

magnitude greater than 50 (100) GeV in the lτh
(τhτh) channels. In addition, the pT threshold on
the τh candidate is raised to 40 GeV in the μτh
channel, and the two leading jets in the τhτh
channel must be separated in pseudorapidity by
jΔηj > 2.5. Depending on the decay channel, up to
57% of the signal events in the VBF category is
produced via VBF. This fraction increases with
mJJ. Gluon fusion production makes 40%–50%
of the total signal, while the VH contribution is
less than 3%.

(iii) Boosted category: This category contains all the
events that do not enter one of the previous catego-
ries, namely events with one jet and events with
several jets that fail the requirements of the VBF
category. It targets events with a H boson produced
in gluon fusion and recoiling against an initial state
radiation jet. It contains gluon fusion events
produced in association with one or more jets
(78%–80% of the signal events), VBF events in
which one of the jets has escaped detection or events
with lowmJJ (11%–13%), as well asH boson events
produced in association with a W or a Z boson
decaying hadronically (4%–8%).

In addition to these three signal regions for each channel, a
series of control regions targeting different background
processes are included in the maximum likelihood fit used
to extract the results of the analysis. The normalization of the
W þ jets background in the eτh and μτh channels is
estimated from simulations and adjusted to data using
control regions obtained by applying all selection criteria,
with the exception that mT is required to be greater than
80 GeV instead of less than 50 GeV. An uncertainty on the
extrapolation from the control region to the signal region is
determined in the same way as described in Ref. [24]. The
normalization of the QCD multijet background in the eτh
and μτh channels is estimated from events where the electron
or the muon has the same charge as the τh candidate. The
contributions from Drell–Yan, tt̄, diboson, and W þ jets
processes are subtracted. The factor to extrapolate from the
same-sign to the opposite-sign region is determined by
comparing the yield of the QCD multijet background for
events with l candidates passing inverted isolation criteria,
in the same-sign and opposite-sign regions. It is constrained
by adding the opposite-sign region, where the l candidates
pass inverted isolation criteria, to the global fit.
In the τhτh channel, the QCD multijet background is

estimated from events where the τh candidates pass relaxed
isolation conditions, and the extrapolation factor is derived
from events where the τh candidates have charges of the
same sign. The events selected with opposite-sign τh
candidates passing relaxed isolation requirements form a
control region included in the global fit. Finally, the
normalization of the tt̄ background is adjusted using a
control region defined similarly to the eμ signal region,
except that the pζ requirement is inverted and the events are
required to contain at least one jet.

IV. PHENOMENOLOGY OF ANOMALOUS
COUPLINGS AND SIMULATION

We follow the formalism used in the study of anomalous
couplings in earlier analyses by CMS [11–17]. The
theoretical approach is described in Refs. [26–29,43–51].
Anomalous interactions of a spin-0 H boson with two
spin-1 gauge bosons VV, such as WW, ZZ, Zγ, γγ, and gg,
are parametrized by a scattering amplitude that includes
three tensor structures with expansion of coefficients up
to ðq2=Λ2Þ

AðHVVÞ ∼
�
aVV1 þ κVV1 q21 þ κVV2 q22

ðΛVV
1 Þ2

�
m2

V1ϵ
�
V1ϵ

�
V2

þ aVV2 f�ð1Þμν f�ð2Þμν þ aVV3 f�ð1Þμν f̃�ð2Þμν; ð2Þ

where qi, ϵVi, and mV1 are the 4-momentum, polarization
vector, and pole mass of the gauge boson, indexed by
i ¼ 1, 2. The gauge boson’s field strength tensor and
dual field strength tensor are fðiÞμν ¼ ϵμViq

ν
i − ϵνViq

μ
i and

f̃ðiÞμν ¼ 1
2
ϵμνρσfðiÞρσ . The coupling coefficients aVVi , which
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multiply the three tensor structures, and κVVi =ðΛVV
1 Þ2,

which multiply the next term in the q2 expansion for the
first tensor structure, are to be determined from data, where
Λ1 is the scale of beyond the SM (BSM) physics.
In Eq. (2), the only nonzero SM contributions at tree

level are aWW
1 and aZZ1 , which are assumed to be equal

under custodial symmetry. All other ZZ andWW couplings
are considered anomalous contributions, which are either
due to BSM physics or small contributions arising in the
SM due to loop effects and are not accessible with the
current precision. As the event kinematics of the H boson
production inWW fusion and in ZZ fusion are very similar,
they are analyzed together assuming aWW

i ¼ aZZi and
κZZi =ðΛZZ

1 Þ2 ¼ κWW
i =ðΛWW

1 Þ2. The results can be reinter-
preted for any other relationship between the aWW

i and
aZZi couplings [17]. For convenience, we refer to these
parameters as ai, κi, and Λ1, without the superscripts.
Among the anomalous contributions, considerations of
symmetry and gauge invariance require κZZ1 ¼ κZZ2 ¼
− expðiϕZZ

Λ1Þ, κγγ1 ¼ κγγ2 ¼0, κgg1 ¼ κgg2 ¼ 0, κZγ1 ¼ 0, and
κZγ2 ¼ − expðiϕZγ

Λ1Þ, where ϕVV
Λ1 is the phase of the corre-

sponding coupling. In the case of the γγ and gg couplings,

the only contributing terms are aγγ;gg2 and aγγ;gg3 . Our earlier
measurements in Ref. [13] indicated substantially tighter
limits on aγγ;Zγ2 and aγγ;Zγ3 couplings from H → Zγ and
H → γγ decays with on-shell photons than from measure-
ments with virtual photons, so we do not pursue measure-
ments of these parameters in this paper. The coupling agg2
refers to a SM-like contribution in the gluon fusion process,
and agg3 corresponds to a CP-odd anomalous contribution.
There are four other anomalous couplings targeted in this
analysis: two from the first term of Eq. (2), ΛZZ

1 ¼ ΛWW
1 ¼

Λ1 and ΛZγ
1 ; one coming from the second term, aZZ2 ¼

aWW
2 ¼ a2; and one coming from the third term, aZZ3 ¼

aWW
3 ¼ a3. The a3 coupling corresponds to the CP-odd

amplitude, and its interference with a CP-even amplitude
would result in CP violation.
It is convenient to measure the effective cross section

ratios fai rather than the anomalous couplings ai them-
selves, as most uncertainties cancel in the ratio. Moreover,
the effective fractions are conveniently bounded between
0 and 1, independent of the coupling convention. The
effective fractional cross sections fai and phases ϕai are
defined as follows,

fa3 ¼
ja3j2σ3

ja1j2σ1 þ ja2j2σ2 þ ja3j2σ3 þ σ̃Λ1=ðΛ1Þ4 þ � � � ; ϕa3 ¼ arg

�
a3
a1

�
;

fa2 ¼
ja2j2σ2

ja1j2σ1 þ ja2j2σ2 þ ja3j2σ3 þ σ̃Λ1=ðΛ1Þ4 þ � � � ; ϕa2 ¼ arg

�
a2
a1

�
;

fΛ1 ¼
σ̃Λ1=ðΛ1Þ4

ja1j2σ1 þ ja2j2σ2 þ ja3j2σ3 þ σ̃Λ1=ðΛ1Þ4 þ � � � ; ϕΛ1;

fZγΛ1 ¼
σ̃ZγΛ1=ðΛZγ

1 Þ4
ja1j2σ1 þ σ̃ZγΛ1=ðΛZγ

1 Þ4 þ � � � ; ϕZγ
Λ1; ð3Þ

where σi is the cross section for the process corresponding
to ai ¼ 1 and all other couplings are set to zero. Since
the production cross sections depend on the parton dis-
tribution functions (PDFs), the definition with respect to
the decay process is more convenient. The cross section
ratios defined in the H → 2e2μ decay analysis [12] are
adopted. Their values are σ1=σ3 ¼ 6.53, σ1=σ2 ¼ 2.77,
ðσ1=σ̃Λ1Þ × TeV4 ¼ 1.47 × 104, and ðσ1=σ̃ZγΛ1Þ × TeV4 ¼
5.80 × 103, as calculated using the JHUGEN7.0.2 event
generator [26–29]. The ellipsis (…) in Eq. (3) indicates
any other contribution not listed explicitly. Under the
assumption that the couplings in Eq. (2) are constant
and real, the above formulation is equivalent to an
effective Lagrangian notation. Therefore, in this
paper, the real coupling constants are tested, which
means only ϕai ¼ 0 or π are allowed. The constraints
are set on the product fai cosðϕaiÞ, which ranges from
−1 to þ1.

Anomalous effects in the H → ττ decay and tt̄H
production are described by the Hff couplings of the H
boson to fermions, with generally two couplings κf and κ̃f,
CP-even and CP-odd, respectively. Similarly, if the gluon
coupling Hgg is dominated by the top quark loop, it can be
described with the κt and κ̃t parameters. However, since
other heavy states may contribute to the loop, we consider
the effective Hgg coupling using the more general para-
metrization given in Eq. (2) instead of explicitly including
the quark loop. In particular, the effective cross section
fraction in gluon fusion becomes

fggHa3 ¼ jaggH3 j2
jaggH2 j2 þ jaggH3 j2 ; ð4Þ

where the cross sections σggH2 ¼ σggH3 drop out from the
equation following the coupling convention in Eq. (2).
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Experimentally observable effects resulting from the
above anomalous couplings are discussed in the next
section. In this paper, anomalous HWW, HZZ, and HZγ
couplings are considered in VBF and VH production, and
anomalous Hgg couplings are considered in gluon fusion.
Since CP-violating effects in electroweak (VBF and VH)
and gluon fusion production modify the same kinematic
distributions, both CP-sensitive parameters, fa3 and fggHa3 ,
are left unconstrained simultaneously. It has been checked
that CP violation in H → ττ decays would not affect these
measurements. Under the assumption that the couplings are
constant and real, the above formulation is equivalent to an
effective Lagrangian notation. Therefore, in this paper, the
real coupling constants are tested, and results are presented
for the product of fai and cosðϕaiÞ, the latter being the sign
of the real ratio of couplings ai=a1.
Following the formalism discussed in this section,

simulated samples of H boson events produced via anoma-
lous HVV couplings (VBF, VH, gluon fusion in associ-
ation with two jets) are generated using JHUGEN. The
associated production in gluon fusion with two jets is
affected by anomalous interactions, while the kinematics of
the production with zero or one jet are not affected. The
latter events are generated with POWHEG2.0 [52–55], which
is used for yield normalization of events selected with two
jets and for the description of event distributions in
categories of events where the correlation of the two jets
is not important. For the kinematics relevant to this analysis
in VBF and VH production, the effects that appear at next-
to-leading order (NLO) in QCD are well approximated by
the leading-order (LO) QCD matrix elements used in
JHUGEN, combined with parton showering. The JHUGEN

samples produced with the SM couplings are compared
with the equivalent samples generated by the POWHEG

event generator at NLO QCD, with parton showering
applied in both cases, and the kinematic distributions are
found to agree.
The PYTHIA8.212 [56] event generator is used to model

the H boson decay to τ leptons and the decays of the τ
leptons. Both scalar and pseudoscalar H → ττ decays and
their interference have been modeled to confirm that the
analysis does not depend on the decay model. The default
samples are generated with the scalar hypothesis in decay.
The PDFs used in the generators are NNPDF30 [57], with
their precision matching that of the matrix elements. All
MC samples are further processed through a dedicated
simulation of the CMS detector based on GEANT4 [58].
To simulate processes with anomalous H boson cou-

plings, for each type of anomalous coupling, we generate
events with both the pure anomalous term and its inter-
ference with the SM contribution in the production HVV
interaction. This allows extraction of the various coupling
components and their interference. The MELA package,
based on JHUGEN matrix elements, permits the application
of weights to events in any sample to model any otherHVV

or Hff couplings with the same production mechanism.
Reweighting enables one to increase the effective simulated
event count by using all samples at once to describe any
model, even if it has not been simulated. The MELA package
also allows calculation of optimal discriminants for further
analysis, as discussed in Sec. V.
Simulated samples for the modeling of background

processes and of the H boson signal processes with SM
couplings are the same as those used for the observation
of the H boson decay to a pair of τ leptons [24]. All the
corrections applied to samples are the same as in Ref. [24].
The MG5_aMC@NLO [59] generator is used for Z þ jets and
W þ jets processes. They are simulated at LO with the
MLM jet matching and merging [60]. The MG5_aMC@NLO

generator is also used for diboson production simulated at
NLO with the FxFx jet matching and merging [61],
whereas POWHEG versions 2.0 and 1.0 are used for tt̄ and
single top quark production, respectively. The generators
are interfaced with PYTHIA to model the parton showering
and fragmentation. The PYTHIA parameters affecting the
description of the underlying event are set to the CUETP8M1

tune [62].

V. DISCRIMINANT DISTRIBUTIONS

The full kinematic information for both production and
decay of the H boson can be extracted from each event.
This paper focuses on the production process, illustrated in
Fig. 2. The techniques discussed below are similar to those
used in earlier analyses by CMS, such as in Ref. [17].
Sensitivity to quantum numbers and anomalous cou-

plings of the H boson is provided by the angular corre-
lations between the two jets, the H boson, and the beam
line direction in VBF, VH, or gluon fusion production with
an additional two jets. A set of observables could be
defined in VBF or VH production, such as Ω⃗ ¼ fθ1; θ2;
Φ; θ�;Φ1; q21; q

2
2g for the VBF or VH process with the

angles illustrated in Fig. 2 and the q21 and q22 discussed in
reference to Eq. (2), as described in detail in Ref. [28]. It is,
however, a challenging task to perform an optimal analysis
in a multidimensional space of observables. The MELA is
designed to reduce the number of observables to the
minimum while retaining all essential information for
the purpose of a particular measurement. In this analysis,
the background suppression is still provided by the observ-
ables defined in Ref. [24].
When the H boson and two associated jets are recon-

structed, two types of discriminants can be used to
optimally search for anomalous couplings. These two
discriminants rely only on signal matrix elements and
are well defined. One can apply the Neyman-Pearson
lemma [63] to prove that the two discriminants constitute
a minimal and complete set of optimal observables [28,29]
for the measurement of the fai parameter. One type of
discriminant is designed to separate the process with
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anomalous couplings, denoted as BSM, from the SM
signal process,

DBSM ¼ PSMðΩ⃗Þ
PSMðΩ⃗Þ þ PBSMðΩ⃗Þ

; ð5Þ

where P is the probability for the signal VBF production
process (either SM or BSM), calculated using the matrix
element MELA package and is normalized so that the
matrix elements give the same cross sections for either
fai ¼ 0 or 1 in the relevant phase space of each process.
Such a normalization leads to an optimal population
of events in the range between 0 and 1. The discriminants
are denoted as D0−, D0hþ, DΛ1, or DZγ

Λ1, depending on
the targeted anomalous coupling a3, a2, Λ1, or ΛZγ

1 ,
respectively.
The second type of discriminant targets the contribution

from interference between the SM and BSM processes,

Dint ¼
Pint

SM−BSMðΩ⃗Þ
PSMðΩ⃗Þ þ PBSMðΩ⃗Þ

; ð6Þ

where Pint
SM−BSM is the probability distribution for interfer-

ence of SM and BSM signals in VBF production. This
discriminant is used only for the CP-odd amplitude
analysis with fa3 and is denoted DCP in the rest of the
paper. In the cases of fΛ1 and fZγΛ1, the interference
discriminants do not carry additional information because
of their high correlation with the DΛ1 and DZγ

Λ1 discrimi-
nants. The fa2 interference discriminant is not used in this
analysis either, as it only becomes important for measure-
ments of smaller couplings than presently tested and
because of the limited number of events available for
background parametrization.

Kinematic distributions of associated particles in gluon
fusion are also sensitive to the quantum numbers of the H
boson and to anomalous Hgg couplings. A set of observ-
ables, Ω⃗, identical to those from the VBF process also
describes this process. In this analysis, the focus is on the
VBF-enhanced phase space in which the selection effi-
ciency for the gluon fusion process is relatively small.
Furthermore, the observables defined in Eqs. (5) and (6)
for the VBF process are found to provide smaller separation
between CP-even and CP-odd H boson couplings for
gluon fusion production than MELA discriminants that
would be dedicated to the gluon fusion process.
Nonetheless, both parameters sensitive to CP violation,
fa3 and fggHa3 , are included in a simultaneous fit using the
observables optimized for the VBF process to avoid any
possible bias in the measurement of fa3.
While the correlations between the two jets, theH boson,

and the beam line provide primary information about CP
violation and anomalous couplings in electroweak produc-
tion (VBF and VH), even events with reduced kinematic
information can facilitate this analysis. For example, in
cases where both jets lie outside of the detector acceptance,
the pT distribution of the H boson is different for SM and
BSM production. This leads to different event populations
across the three categories and to a different pT distribution
of the H boson in the boosted category. For example, the
fraction of signal events is much smaller in the 0-jet
category, and the pT distribution is significantly harder
in the boosted category for pseudoscalar H boson produc-
tion than it is for the SM case. These effects are illustrated
in Figs. 3–5. The same effects are, however, negligible in
gluon fusion production, where both scalar and pseudo-
scalar Hgg couplings are generated by higher-dimension
operators, which correspond to the agg2 and agg3 terms
in Eq. (2).

FIG. 2. Illustrations of H boson production in qq0 → ggðqq0Þ → Hðqq0Þ → ττðqq0Þ or VBF qq0 → V�V�ðqq0Þ → Hðqq0Þ → ττðqq0Þ
(left) and in associated production qq̄0 → V� → VH → qq̄0ττ (right). TheH → ττ decay is shown without further illustrating the τ decay
chain. Angles and invariant masses fully characterize the orientation of the production and two-body decay chain and are defined in
suitable rest frames of the V and H bosons, except in the VBF case, where only the H boson rest frame is used [26,28].
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Other observables, such as ΔΦJJ [43], defined as the
azimuthal difference between the two associated jets, have
been suggested for the study of CP effects. While they do
provide sensitivity to CP measurements, they are not as
sensitive as the discriminant variables for VBF production
used in this analysis. Nonetheless, as an alternative to the
optimal VBF analysis with the MELA discriminants, we also
performed a cross-check analysis where the ΔΦJJ observ-
able is used instead. It was verified that the expected
precision on fa3 is indeed lower than in the optimal VBF
analysis. On the other hand, the sensitivity of the ΔΦJJ

observable to the fggHa3 parameter is better than that of the
VBF discriminants, and it is close to but not as good as
the optimal MELA observables targeting the gluon fusion
topology in association with two jets. Both results are
discussed in Sec. VII.

VI. ANALYSIS IMPLEMENTATION

Five anomalous HVV coupling parameters defined in
Sec. IV are studied: fa3, fa2, fΛ1, f

Zγ
Λ1, and fggHa3 describing

anomalous couplings in VBF, VH, and gluon fusion
production. The CP-sensitive parameters fa3 and fggHa3
are studied jointly, while all other parameters are examined
independently. Anomalous H boson couplings in other
production mechanisms and in the H → ττ decay do not
affect these measurements, as the distributions studied here
are insensitive to such effects.
The data, represented by a set of observables x⃗, are used

to set constraints on anomalous coupling parameters. In the
case of the CP study, the coupling parameters are fa3
and ϕa3. We also consider the scalar anomalous couplings
described by fa2 and ϕa2, fΛ1 and ϕΛ1, and fZγΛ1 and ϕZγ

Λ1.

Since only real couplings are considered, we fit for the
products fa3 cosðϕa3Þ with cosðϕa3Þ ¼ �1, fa2 cosðϕa2Þ
with cosðϕa2Þ ¼ �1, fΛ1 cosðϕΛ1Þ with cosðϕΛ1Þ ¼ �1,
and fZγΛ1 cosðϕZγ

Λ1Þ with cosðϕZγ
Λ1Þ ¼ �1.

A. Observable distributions

Each event is described by its category k and the
corresponding observables x⃗. In the 0-jet and boosted
categories, which are dominated by the gluon fusion
production mechanism, the observables are identical to
those used in Ref. [24], namely x⃗ ¼ fmvis;Mg in the eτh
and μτh 0-jet categories, x⃗ ¼ fmvis; p

μ
Tg in the eμ0-jet

category, x⃗ ¼ fmττg in the 0-jet τhτh category, and x⃗ ¼
fmττ; pH

T g in the boosted categories, where M is the τh
decay mode, pμ

T is the transverse momentum of the muon,
and pH

T is the transverse momentum of the H boson. There
are no dedicated observables sensitive to anomalous
couplings in these categories, as it is not possible to
construct them in the absence of a correlated jet pair.
Nonetheless, distributions of events in the above observ-
ables and categories still differ between signal models with
variation of anomalous couplings.
In Figs. 3 and 4, the distributions of mvis and mττ are

displayed for selected events in the 0-jet category, and the
transverse momentum distribution of theH boson is shown
for the boosted category. Anomalous couplings would
result in higher transverse momentum of the H boson
and, unlike SM production, would cause the events to
preferentially populate the boosted category instead of the
one with no jets in the final state. The observable mττ is
used in the τhτh decay channel and mvis in other channels
in the 0-jet category. Two observables are used in the
likelihood fit in the boosted category, mττ and pH

T .
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FIG. 3. The distributions of mvis and mττ in the 0-jet category of the eτh þ μτh (left) and τhτh (right) decay channels. The BSM
hypothesis corresponds to fa3 cosðϕa3Þ ¼ 1.
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The contributions from BSM and SM yields in the boosted
category are different in the τhτh and lτh channels because
of different trigger conditions and classification require-
ments. In Fig. 3, the contribution from the eμ channel is
omitted because of its low sensitivity and different binning
in the fit. The normalization of the predicted background
distributions corresponds to the result of the likelihood fit
described in Sec. VI B. In all production modes in Figs. 3
and 4, the H → ττ process is normalized to its best-fit
signal strength and couplings and is shown as an open
overlaid histogram. The background components labeled in
the figures as “others” include events from diboson and
single top quark production, as well asH boson decays toW
boson pairs. The uncertainty band accounts for all sources
of uncertainty. The SM prediction for the VBF H → ττ
signal, multiplied by a factor 5000 (300) in Fig. 3 (4), is
shown as a red open overlaid histogram. The black open
overlaid histogram represents a BSM hypothesis for the
VBF H → ττ signal, normalized to 5000 (300) times the
predicted SM cross section in Fig. 3 (4).
In Figs. 5–9, the discriminant distributions in the VBF

category are displayed. In the VBF category, either three
or four observables are used in the likelihood fit: x⃗ ¼
fmJJ;mττ;D0−;DCPg are used to determine the fa3 param-
eter, x⃗ ¼ fmJJ;mττ;D0hþg are used to determine the fa2
parameter, x⃗ ¼ fmJJ;mττ;DΛ1g are used to determine the
fΛ1 parameter, and x⃗¼fmJJ;mττ;D

Zγ
Λ1g are used to deter-

mine the fZγΛ1 parameter, as defined in Eqs. (5) and (6). In
order to keep the background and signal templates suffi-
ciently populated, a smaller number of bins is chosen
for mJJ and mττ compared to Ref. [24]. It was found that
four bins in D0−, D0hþ, DΛ1, and DZγ

Λ1 are sufficient for
close-to-optimal performance. At the same time, we adopt

two bins in DCP with DCP < 0 and DCP > 0. This choice
does not lead to the need for additional bins in the
templates, because all distributions except the CP-violating
interference component are symmetric in DCP, and this
symmetry is enforced in the templates. A forward-
backward asymmetry in DCP would be a clear indication
of CP-sensitive effects and is present only in the signal
interference template.

B. Likelihood parametrization

We perform an unbinned extended maximum likelihood
fit [64] to the events split into several categories according
to the three production topologies and four tau-lepton
pair final states using the RooFit toolkit [65,66]. The
probability density functions for signal Pj;k

sigðx⃗Þ and back-

ground Pj;k
bkgðx⃗Þ are binned templates and are defined for

each production mechanism j in each category k. Each
event is characterized by the discrete category k and up to
four observables x⃗, depending on the category. For the
VBF, VH, or gluon fusion production mechanisms, the
signal probability density function is defined as

Pj;k
sigðx⃗Þ ¼ ð1 − faiÞT j;k

a1 ðx⃗Þ þ faiT
j;k
ai ðx⃗Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
faið1 − faiÞ

p
T j;k

a1;aiðx⃗Þ cosðϕaiÞ; ð7Þ

where T j;k
ai is the template probability of a pure anomalous

coupling ai term and T j;k
a1;ai describes the interference

between the anomalous coupling and SM term a1, or
SM term aggH2 in the case of gluon fusion. Here, fai stands
for either fa3, fa2, fΛ1, f

Zγ
Λ1, or f

ggH
a3 . Each term in Eq. (7) is

extracted from a dedicated simulation.
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FIG. 4. The distributions of transverse momentum of the H boson in the boosted category of the eτh þ μτh þ eμ (left) and τhτh (right)
decay channels. The BSM hypothesis corresponds to fa3 cosðϕa3Þ ¼ 1.
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FIG. 5. The distribution of D0−, DCP, D0hþ, DΛ1, and DZγ
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FIG. 6. Observed and expected distributions in the VBF category in bins of mττ, mJJ, and D0− in the fa3 analysis for the eμþ
eτh þ μτh (upper) and τhτh (middle and lower) decay channels.
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FIG. 7. Observed and expected distributions in the VBF category in bins of mττ, mJJ , and D0hþ in the fa2 analysis for the eμþ
eτh þ μτh (upper) and τhτh (middle and lower) decay channels.
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FIG. 8. Observed and expected distributions in the VBF category in bins of mττ, mJJ , and DΛ1 in the fΛ1 analysis for the eμþ
eτh þ μμ (upper) and τhτh (middle and lower) decay channels.
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FIG. 9. Observed and expected distributions in the VBF category in bins of mττ, mJJ , and DZγ
Λ1 in the fZγΛ1 analysis for the eμþ

eτh þ τhτh (upper) and τhτh (middle and lower) decay channels.
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The signal strength parameters μV and μf are introduced
as two parameters of interest. They scale the yields in the
VBFþ VH and gluon fusion production processes, respec-
tively. They are defined such that for fai ¼ 0 they are equal
to the ratio of the measured to the expected cross sections
for the full process, including the H → ττ decay. The
likelihood is maximized with respect to the anomalous
coupling fai cosðϕaiÞ and yield (μV , μf ) parameters and
with respect to the nuisance parameters, which include the
constrained parameters describing the systematic uncer-
tainties. The fa3 cosðϕa3Þ and fggHa3 cosðϕggH

a3 Þ parameters
are tested simultaneously, while all other fai cosðϕaiÞ
parameters are tested independently. All parameters except
the anomalous coupling parameter of interest fai cosðϕaiÞ
are profiled. The confidence level (C.L.) intervals are
determined from profile likelihood scans of the respective
parameters. The allowed 68 and 95% C.L. intervals are
defined using the profile likelihood function, −2Δ lnL ¼
1.00 and 3.84, respectively, for which exact coverage is
expected in the asymptotic limit [67]. Approximate cover-
age has been tested with generated samples.

C. Systematic uncertainties

A log-normal probability density function is assumed
for the nuisance parameters that affect the event yields of
the various background and signal contributions, whereas
systematic uncertainties that affect the distributions are
represented by nuisance parameters of which the variation
results in a continuous perturbation of the spectrum [68]
and which are assumed to have a Gaussian probability
density function. The systematic uncertainties are identical
to those detailed in Ref. [24]. They are summarized in the
following.
The rate uncertainties in the identification, isolation, and

trigger efficiencies of electrons and muons amount to 2%.
For τh, the uncertainty in the identification is 5% per τh
candidate, and the uncertainty related to the trigger
amounts to an additional 5% per τh candidate [39]. In
the 0-jet category, where one of the dimensions of the
two-dimensional fit is the reconstructed τh decay mode, the
relative reconstruction efficiency in a given τh recon-
structed decay mode has an uncertainty of 3% [24]. For
muons and electrons misreconstructed as τh candidates, the
τh identification leads to rate uncertainties of 25% and 12%,
respectively [39]. This leads to the corresponding uncer-
tainty in the rates of the Z → μμ and Z → ee backgrounds
misidentified as the μτh and eτh final states, respectively.
The requirement that there are no b-tagged jets in eμ decay
channel events results in a rate uncertainty as large as 5%
in the tt̄ background [69].
The uncertainties in the energy scales of electrons and τh

leptons amount to 1.0%–2.5% and 1.2% [24,39], while the
effect of the uncertainty in the muon energy scale is
negligible. This uncertainty increases to 3.0% and 1.5%,
respectively, for electrons and muons misidentified as τh

candidates [24]. For events where quark- or gluon-initiated
jets are misidentified as τh candidates, a linear uncertainty
that increases by 20% per 100 GeV in transverse momen-
tum of the τh and amounts to 20% for a τh with pT of
100 GeV is taken into account [24]. This uncertainty affects
simulated events with jets misidentified as τh candidates,
from various processes like the Drell-Yan, tt̄, diboson, and
W þ jets productions. Uncertainties in the jet and pmiss

T
energy scales are determined event by event [70], and
propagated to the observables used in the analysis.
The uncertainty in the integrated luminosity is 2.5% [71].

Per bin uncertainties in the template probability paramet-
rization related to the finite number of simulated events, or
to the limited number of events in data control regions, are
also taken into account [68].
The rate and acceptance uncertainties for the signal

processes related to the theoretical calculations are due to
uncertainties in the PDFs, variations of the renormalization
and factorization scales, and uncertainties in the modeling
of parton showers. The magnitude of the rate uncertainty
depends on the production process and on the event
category. In particular, the inclusive uncertainty related
to the PDFs amounts to 2.1% for the VBF production
mode [72], while the corresponding uncertainty for the
variation of the renormalization and factorization scales is
0.4% [72]. The acceptance uncertainties related to the
particular selection criteria used in this analysis are less
than 1% for all production modes. The theoretical uncer-
tainty in the branching fraction of the H boson to τ leptons
is 2.1% [72].
An overall rate uncertainty of 3%–10% affects the

Z → ττ background, depending on the category, as esti-
mated from a control region enriched in Z → μμ events.
In the VBF category, this process is also affected by a
shape uncertainty that depends on mJJ and ΔΦJJ and can
reach a magnitude of 20%. In addition to the uncertainties
related to the W þ jets control regions in the eτh and μτh
final states, the W þ jets background is affected by a rate
uncertainty ranging between 5% and 10% to account for
the extrapolation of the constraints from the high-mT to
the low-mT regions. In the eμ and τhτh final states, the rate
uncertainties in the W þ jets background yields are 20%
and 4%, respectively.
The uncertainty in the QCD multijet background yield in

the eμ decay channel ranges from 10% to 20%, depending
on the category. In the eτh and μτh decay channels,
uncertainties derived from the control regions are consid-
ered for the QCD multijet background, together with an
additional 20% uncertainty that accounts for the extrapo-
lation from the relaxed-isolation control region to the
isolated signal region. In the τhτh decay channel, the
uncertainty in the QCD multijet background yield is a
combination of the uncertainties obtained from fitting
the dedicated control regions with τh candidates passing
relaxed isolation criteria, of the extrapolation to the signal
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region ranging from 3% to 15%, and of residual differences
between prediction and data in signal-free regions with
various loose isolation criteria.
The uncertainty from the fit in the tt̄ control region

results in an uncertainty of about 5% on the tt̄ cross section
in the signal region. The combined systematic uncertainty
in the background yield arising from diboson and single top
quark production processes is taken to be 5% [73,74].
The additional D0−, D0hþ, DΛ1, and DZγ

Λ1 observables
do not change the procedure for estimating the syste-
matic uncertainty, as any mismodeling due to detector
effects is estimated with the same procedure as for any
other distribution. None of the systematic uncertainties
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FIG. 10. Observed (solid) and expected (dashed) likelihood scans of fa3 cosðϕa3Þ (top left), fa2 cosðϕa2Þ (top right), fΛ1 cosðϕΛ1Þ
(bottom left), and fZγΛ1 cosðϕZγ

Λ1Þ (bottom right).

TABLE II. Allowed 68% C.L. (central values with uncertain-
ties) and 95% C.L. (in square brackets) intervals on anomalous
coupling parameters using the H → ττ decay. The observed
95% C.L. constraints on fa3 cosðϕa3Þ and fa2 cosðϕa2Þ allow the
full range ½−1; 1�.

Observed=ð10−3Þ Expected=ð10−3Þ
Parameter 68% C.L. 95% C.L. 68% C.L. 95% C.L.

fa3 cosðϕa3Þ 0.00þ0.93
−0.43 � � � 0.00� 0.28 ½−3.6; 3.6�

fa2 cosðϕa2Þ 0.0þ1.2
−0.4 � � � 0.0þ2.0

−1.8 ½−10.0; 8.0�
fΛ1 cosðϕΛ1Þ 0.00þ0.39

−0.10 ½−0.4; 1.8� 0.00þ0.75
−0.16 ½−0.8; 3.6�

fZγΛ1 cosðϕZγ
Λ1Þ 0.0þ1.2

−1.3 ½−7.4; 5.6� 0.0þ3.0
−4.5 ½−19; 12�
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introduces asymmetry in the DCP distributions which
remain symmetric, except for the antisymmetric signal
interference contribution.

VII. RESULTS

The four sets of fai and ϕai parameters describing
anomalous HVV couplings, as defined in Eqs. (2) and (3),
are tested against the data according to the probability
density defined in Eq. (7). The results of the likelihood
scans are shown in Fig. 10 and listed in Table II. In each fit,

the values of the other anomalous coupling parameters are
set to zero. In the case of the CP fit, the fa3 parameter is
measured simultaneously with fggHa3 , as defined in Eq. (4).
All other parameters, including the signal strength param-
eters μV and μf , are profiled. The results are presented
for the product of fai and cosðϕaiÞ, the latter being the
sign of the real ai=a1 ratio of couplings. In this approach,
the fai parameter is constrained to be in the physical range
fai ≥ 0. Therefore, in the SM, it is likely for the best-fit
value to be at the physical boundary fai ¼ 0 for both signs
of the ai=a1 ratio.
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FIG. 11. Combination of results using the H → ττ decay (presented in this paper) and the H → 4l decay [17]. The observed (solid)
and expected (dashed) likelihood scans of fa3 cosðϕa3Þ (top left), fa2 cosðϕa2Þ (top right), fΛ1 cosðϕΛ1Þ (bottom left), and fZγΛ1 cosðϕZγ

Λ1Þ
(bottom right) are shown. For better visibility of all features, the x and y axes are presented with variable scales. On the linear-scale x
axis, a zoom is applied in the range −0.03 to 0.03. The y axis is shown in linear (logarithmic) scale for values of −2Δ lnL below
(above) 11.
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The constraints on fai cosðϕaiÞ appear relatively tight
compared to similar constraints utilizing the H boson
decay information, e.g., in Ref. [17]. This is because
the cross section in VBF and VH production increases
quickly with fai. The definition of fai in Eq. (3) uses the
cross section ratios defined in the H → 2e2μ decay as the
common convention across various measurements.
Because the cross section increases with respect to fai
at different rates for production and decay, relatively
small values of fai correspond to a substantial anomalous
contribution to the production cross section. This leads
to the plateau in the −2 lnðL=LmaxÞ distributions for
larger values of fai cosðϕaiÞ in Fig. 10. If we had used
the cross section ratios for VBF production in the fai
definition in Eq. (3), the appearance of the plateau and the
narrow exclusion range would change. For example, the
68% C.L. upper constraint on fa3 cosðϕa3Þ < 0.00093 is
dominated by the VBF production information. If we
were to use the VBF cross section ratio σVBF1 =σVBF3 ¼
0.089 in the fVBFa3 definition in Eq. (3), this would
correspond to the upper constraint fVBFa3 cosðϕa3Þ < 0.064
at 68% C.L.
The observed maximum value of −2 lnðL=LmaxÞ is

somewhat different from expectation and between the
four analyses, mostly due to statistical fluctuations in the
distribution of events across the dedicated discriminants
and other observables, leading to different significances
of the observed signal driven by VBF and VH production.
In particular, the best-fit values for ðμV; μfÞ in the four
analyses, under the assumption that fai ¼ 0, are ð0.55�
0.48; 1.03þ0.45

−0.40Þ at fa3¼0, ð0.72þ0.48
−0.46 ;0.89

þ0.43
−0.37Þ at fa2 ¼ 0,

ð0.92þ0.44
−0.45 ; 0.82

þ0.46
−0.38Þ at fΛ1 ¼ 0, and ð0.94þ0.48

−0.46 ; 0.79�
0.40Þ at fZγΛ1 ¼ 0. This results in a somewhat lower yield
of VBF and VH events observed in the first two cases,
leading to lower confidence levels in constraints on
fa3 cosðϕa3Þ and fa2 cosðϕa2Þ.
In the fa3 analysis, a simultaneous measurement of fa3

and fggHa3 is performed. These are the parameters sensitive to
CP in the VBF and gluon fusion processes, respectively.
Both the observed and expected exclusions from the null
hypothesis for any BSM gluon fusion scenario with either
MELA or the ΔΦJJ observable are below one standard
deviation.

VIII. COMBINATION OF RESULTS
WITH OTHER CHANNELS

The precision of the coupling measurements can be
improved by combining the results in the H → ττ channel,
presented here, with those of other H boson decay
channels. A combination is possible only with those
channels where anomalous couplings in the VH, VBF,
and gluon fusion processes are taken into account in the
fit in a consistent way. If it is not done, the kinematics
of the associated jets and of the H boson would not be

modeled correctly for BSM values of the fai or fggHa3
parameters.
In the example of the CP fit, in the stand-alone fit

with the H → ττ channel, the parameters of interest are
fa3 cosðϕa3Þ, fggHa3 cosðϕggH

a3 Þ, μHττ
V , and μHττ

f . When report-
ing one parameter, all other parameters are profiled. In a
combined fit of theH → ττ andH → VV channels, such as
in Ref. [17], in principle there are four signal strength
parameters in the two channels (μHττ

V , μHττ
f , μHVV

V , μHVV
f ).

However, this can be reduced to three parameters because
the ratio between the VBFþ VH and gluon fusion cross
sections is expected to be the same in each of the two
channels, that is μHττ

V =μHττ
f ¼ μHVV

V =μHVV
f . Therefore, the

three signal strength parameters are chosen as μV , μf , and
ητ, where the last one is the relative strength of theH boson
coupling to the τ leptons. We should note that, as discussed
earlier, the HWW couplings are analyzed together with the
HZZ couplings assuming aZZi ¼ aWW

i . The results can be
reinterpreted for a different assumption of the aZZi =aWW

i
ratio [17]. In the combined likelihood fit, all common
systematic uncertainties are correlated between the chan-
nels, both theoretical uncertainties, such as those due to the
PDFs, and experimental uncertainties, such as jet energy
calibration.
The results using the H → ττ decay are combined with

those presented in Ref. [17] using the on-shell H → 4l
decay. The latter employs results from Run 1 (from 2011
and 2012) and Run 2 (from 2015, 2016, and 2017) with
data corresponding to integrated luminosities of 5.1, 19.7,
and 80.2 fb−1 at center-of-mass energies 7, 8, and 13 TeV,
respectively. In this analysis, information about HVV
anomalous couplings both in VBFþ VH production and
in H → VV → 4l decay is used. In all cases, the signal
strength parameters are profiled, and the parameters
common to the two analyses are correlated. The combined
68% C.L. and 95% C.L. intervals are presented in Table III,
and the likelihood scans are shown in Fig. 11. While the
constraints at large values of fai are predominantly driven
by the decay information in the H → VV analysis, the
constraints in the narrow range of fai near 0 are dominated
by the production information where the H → ττ channel

TABLE III. Allowed 68% C.L. (central values with uncertain-
ties) and 95% C.L. (in square brackets) intervals on anomalous
coupling parameters using a combination of the H → ττ and
H → 4l [17] decay channels.

Observed=ð10−3Þ Expected=ð10−3Þ
Parameter 68% C.L. 95% C.L. 68% C.L. 95% C.L.

fa3 cosðϕa3Þ 0.00� 0.27 ½−92; 14� 0.00� 0.23 ½−1.2; 1.2�
fa2 cosðϕa2Þ 0.08þ1.04

−0.21 ½−1.1; 3.4� 0.0þ1.3
−1.1 ½−4.0; 4.2�

fΛ1 cosðϕΛ1Þ 0.00þ0.53
−0.09 ½−0.4; 1.8� 0.00þ0.48

−0.12 ½−0.5; 1.7�
fZγΛ1 cosðϕZγ

Λ1Þ 0.0þ1.1
−1.3 ½−6.5; 5.7� 0.0þ2.6

−3.6 ½−11; 8.0�
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dominates over the H → 4l. This results in the most
stringent limits on anomalous HVV couplings. Reverting
the transformation in Eq. (3) [17], the fai cosðϕaiÞ results
can be interpreted for the coupling parameters used in
Eq. (2), as shown in Table IV.

IX. CONCLUSIONS

A study is presented of anomalous HVV interactions
of the H boson with vector bosons V, including CP
violation, using its associated production with two
hadronic jets in vector boson fusion, in the VH process,
and in gluon fusion, and subsequently decaying to a pair
of τ leptons. Constraints on the CP-violating parameter
fa3 cosðϕa3Þ and on the CP-conserving parameters
fa2 cosðϕa2Þ, fΛ1 cosðϕΛ1Þ, and fZγΛ1 cosðϕZγ

Λ1Þ, defined in
Eqs. (2) and (3), are set using matrix element techniques.
The observed and expected limits on the parameters are
summarized in Table II. The 68% confidence level con-
straints are generally tighter than those from previous
measurements using either production or decay informa-
tion. Further constraints are obtained in the combination
of the H → ττ and H → 4l decay [17] channels and are
summarized in Table III. This combination places the most
stringent constraints on anomalous H boson couplings:
fa3 cosðϕa3Þ ¼ ð0.00� 0.27Þ × 10−3, fa2 cosðϕa2Þ ¼
ð0.08þ1.04

−0.21Þ × 10−3, fΛ1cosðϕΛ1Þ¼ð0.00þ0.53
−0.09Þ×10−3, and

fZγΛ1 cosðϕZγ
Λ1Þ ¼ ð0.0þ1.1

−1.3Þ × 10−3. A simultaneous meas-
urement of fa3 cosðϕa3Þ and fggHa3 cosðϕggH

a3 Þ parameters
is performed, where the latter parameter, defined in
Eqs. (2) and (4), is sensitive to CP-violation effects in
the gluon fusion process. The current dataset does not
allow for precise constraints on CP properties in the gluon
fusion process. The results are consistent with expectations
for the standard model H boson.
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33Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
34Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,

CNRS/IN2P3, Villeurbanne, France
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66bUniversità di Catania, Catania, Italy

67aINFN Sezione di Firenze, Firenze, Italy
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