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ABSTRACT

A system of computer programs is described by means of which
an investigator may observe and adjust modeis of large
protein molecules by direct interaction. The system
inciudes provision for generating such a model (e.g.,
calculation of the coordinates of each atom) from a list of
the constituant amino acids and a table of values of the
variable bond angles, for modifying the model according to
user instructions and subject to the chemical and mechanical
constraints which are known to exist, and for the display of
the 2 dimensional projection of an arbitrary (user selected)
aspect of the stick-figure representation of the model.
This latter function is performed by a small, dedicated
processor connected by a voice grade telephone line to the
main (time shared) computer on which the parameters of the
model are stored. Emphasis throughout centers on the
implementation rather than use of the system, and the
details presented fall generally into two areas of technical
interest: (1) the simulation by computer of the constraints
which exist on the geometry of a molecule, and (2) the
real-time rotation and display of a 3-dimensional stick
figure.
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IV. Background and Description of Problem

The goal of this project has been the establishment of
an interactive computer system, comprising a main processor
and a remote satellite, on which the physical configuration
of protein molecules may be modelled. The value of the
result as a research tool rests on the hypothesis that an
abstract representation, deformable by changing parameters
in a machine's memory store, is a more versatile and
tractable alternative to the physical "tinkertoy' models
commonly used for this purpose. Certainly the potential
uses of the computer model extend beyond those of the
mechanical one: the availability of the parameters of the
model for peripheral calculations by the machine suggests a
wide range of potential functions not attainable by the
older methods. The obvious reservations regarding the
usefulness of the system, then, question rather the ability
of the machine to perform adequately in a digital fashion
those functions which are handled naturally in the physical
model --- those which result, indeed, from the fact that we
are ultimately modelling a physical situation. Such
functions include the preservation of the 3-dimensional
character of the model and the prevention of two disjoint,
solid portions of the model from occupying the same space.

Before specific discussion of the features of the
system, a description of the model which we are building is
in order. From a topological standpoint, we may treat a
molecule as a stick model consisting of a number of nodes
interconnected by branches in such a way that each node is
ultimately connected to each other node, and that the
branches generally form a divergent "tree" structure rather
than forming closed loops (trivial exceptions to this latter
constraint are discussed in a later section). Furthermore,
there is a degree of rotational freedom associated with each
branch: the respective portions of the model connected by
the branch may rotate with respect to one another about an
axis parallel to that branch. An anglie-measuring convention
allows us to assign values to the degree of rotation
associated with each branch, which we term bond angles for
the chemical feature we are modelling. Since, for a
particular molecule, the topology as well as the lengths of
the branches are fixed, the specification of the complete
set of bond angles completely determines the particular
configuration of the model. It is this set of bond angles
which, at the lowest functional level of the system,
constitutes the set of independent variables.

The topological model, however, is further constrained
by chemical considerations. A protein, it happens, is built
from a linear string of an arbitrary number of amino acids,
of which there are twenty-odd topologically distinct
varieties. They attach to one another in such a way as to
form a regular, periodic main chain (or backbone) with the
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remainder of each amino acid hanging from the backbone in a
side chain (residue). The diagram of figure 1 represents
schematically a typical section of a large protein
comprising 5 amino acids. Since the branches of the
backbone are not parallel to each other, it may fold over on
itself, and in fact the gross structure of the molecule is
restricted relatively little by the backbone constraints.
The bond angles of the residues may be varied more or less
independently so that the residues, which comprise most of
the atoms in the molecule, are relatively free to move
around in the vicinity of their attachment to the backbone.

We are left with a large number of degrees of freedom,
and, in fact, in handling a mechanical model of a large
protein, one is impressed by its obvious plasticity. Since
such a model incorporates the constraints which we have
described, as welil as the physical constraint that several
solid bodies may not occupy the same space (which,
incidently, is largely applicable to molecules and is
simulated by the computer system,) our contention that
different instances of a protein all have the same
configuration postulates further constraints on the physical
system we are modelling. It is these remaining constraints
which the system is intended to clarify: their appreciation
is currently largely intuitive and qualitative, and it is
hoped that as each constraint becomes well defined and
understood it may be added to those automatically imposed by
the system.

4,1 Functions o6f System

The design criteria of the computer modelling system
consist of a number of top-level functions (i.e.,, functions
apparent at the user level) which are considered essential
to a useful model. The following are all required:

1) Display of a 3-dimensional figure - perhaps the
most critical advantage of the mechanical models’
(and the one most difficult to achieve on the
computer system) involves the ease with which the
user can appreciate the physical configuration in
3-space which he is modelling. The process of
looking at a physical model while manipulating and
rotating it 1s unquestionably the most natural way
to develop insight into its 3-dimensional character.
In an attempt to simulate this interactive coupling
between the user and his model, we have chosen to
utilize a cathode ray tube display of a
2-dimensional projection of the 3-dimensional
structure representing our model. To complete the
user's understanding of the solid character of the
model and to achieve something of the interactive
nature of a close-hand examination of a physical
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model, we allow the user to manipulate a control
which has 3 mechanical degrees of freedom and which
controls the rotational position of the projected
figure. Thus, by a few relatively uncomplicated
hand movements, a user may view the model in any
aspect he wishes.

2) Configuration of molecule from amino acid sequence
- the system must be able to deduce the connectivity
of the model from the sequence of amino acids from
which the protein is composed.

3) Coordinates of atoms from angles - given the
connectivity of the model and the values of the
variable bond angles, the computer system should be
able to calculate the coordinates in 3-space of each
of the constituent atoms. MNote that the coordinates
and the connectivity completely specify the picture
observed by the user.

4) Collisions between atoms - the system must be able
to detect and prevent manipulations of the model
which cause several atoms to occupy the same
physical space. In practice, this involives
identifying each type of atom, and insuring that no
pair of atoms is nearer than the sum of their
respective van der Waals radii.

5) Manipulate specified inter-atomic distances - it
seems clear that the specification of bond angles is
an awkward method of manipulating the physical
configuration of the model. Often a user is
interested in ultimately changing the distance
hetween some pair of atoms; to this end, we have
stipulated the requirement that the system be able
to calculate the changes in bond angles necessary to
affect some particular change in the distance
between a specified pair of atoms. One of the
motivations of such a provision has been the
recovery from the violations of (4) above; that is,
the automatic correction of colliding pairs of
atoms.

4,2 Division of Functions between Processors

The computing requirements of our problem are such that
we need, on one hand, significant arithmetic power while on
the other hand we require a dedicated machine for display
purposes; the most viable solution appears to involve the
interconnection of a large, time-shared computer with a
small satellite computer to maintain the display. This use
of multiple processors requires us to distinguish between
functions to be performed on the main processor and those to
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be performed on the satellite. The following considerations
pertain to this distinction:

1) The cost of the main processor operation is
proportional to the main processor time used, while
the satellite cost is fixed with respect to the
amount of work it performs. Thus, the economics of
the situation seem optimized when the satellite is
kept busy nearly all of the time,

2) Communication between the main processor and the
satellite is necessarily more restricted than
communication within either processor. Thus the
functions should be divided in such a way as to
minimize this bottleneck.

3) The satellite must maintain the display; thus, it
seems reasonable to impose on the satellite other
tasks relating to the display function.

4) The computing power and storage facilities of the
main processor suggest that we store our
problem-oriented data (parameters of the model,
etc.) on the large machine where it will be
available for the major computations.

5) Advanced system software on the main processor
favor the development of experimental programs here
rather than on the small machine; thus, we prefer to
keep the program at the satellite general enough in
its applicability that it is not continually being
modified.

Generally, we would like to differentiate between
functions which are to be performed in real time and with
continual, direct user interaction and those which may be
performed in batches at intervals of a few seconds. Since
we might ideally like to perform all of the functions in
real time, this distinction is largely a compromise with our
l1imited capacity for computation at the satellite.

Our present compromise restricts the satellite to
performing functions related to the display of a generalized
3-dimensional stick figure. This configuration is the
result of the above considerations, as well as the desire to
extend the range of usefulness of the satellite subsystem
beyond the scope of our particular problem.
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V. Structure of System

The chain of control of the system, from its primary
input (user commands typed at the console) to its primary
output (the graphical display) encounters several levels of
programming at each machine, and undergoes a number of
involutions along the way. The linear, simple connectedness
implied by the word "chain" is misleading: the control
structure of the overall package is a multidimensional
plexus of interconnected and highly recursive programming.
A one-dimensional outline presents an obviously inadequate
representation of such structure; although it can be
structured to some extent to depict hierarchal
relationships, it is constrained to neglect many of the
interesting features of the architecture of the system.

We shall, however, use such an outline to introduce the
reader to the skeletal structure of the system, advising him
of the more subtle interconnections in later sections of the
paper. We have structured the descriptions in an attempt to
limn the gross hierarchy of control; however, there is much
"horizontal" communication (i.e., between programs at the
same level in the hierarchy) which cannot be represented.

We note in the descriptions several such cases.

OQutline of Control Structure

I. Main programs on main processor:

The programming of the main processor, because of
limitations on the size of core memory, have been
partitioned into several major segments. The
partitions, or LINKs, reside on secondary storage
while they are not in core memory; one link at a time
is then loaded into memory (in addition to the
permanently resident data structure, and a small
bootstrap loader) and executed. The partitions have
been arranged to minimize the amount of such loading,
which is relatively time consuming: we may thus
justify each link's autonomy on the basis of a
comparison between the fraction of a second (on the
order of one half) spent in the loading of the link to
a significantiy longer time spent in that link's
execution,

1) LINK 1: interaction with user via teletype. The
first link justifies its status by its
synchronization with the relatively slow
operations of teletype communication. In one
respect, the main program in this link (each 1link
has its own) may be considered to occupy the
highest echelon in the control hierarchy, since it
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is ultimately responsible calling each of the
major subsystems into action; however, beyond the
present discussion we shall find it expedient to
ignore the physical boundaries of the partitions
and consider each of the other main programs as
extensions of that in the first link. The first
1ink, then, contains the machinery for decoding
the input language, and calling (chaining to) each
of the other links as required by the requests of
the user. The first 1ink also contains some
simple routines which allow the user to access the
permanently resident data structure directly -
i.e., to print out and enter new values in the
common data storage area, as well as to write such
data in permanent files on secondary storage.

2) LINK 2: calculation and modification of data

structure. The second link contains the programs
which perform the time consuming calculations
necessary for the manipulation of individual
interatomic distances in the model. Since each
user request typically involves a number of
iterations thru a cycle involving setting up the
equations to be solved, solving them, checking
that the resulting structure is valid, and setting
up equations to be solved on the next iteration,
it behooves us to insure that each program
essential to this iteration is in link 2 to avoid
building a chaining operation into the loop.

Since each call to the programs of link 2 requires
typically several seconds of computation time, the
time spent in its loading again presents a small
overhead to the system. Link 2, then, contains
programs to:

a: Calculate, from a list of changes to be made
in specific interatomic distances, changes to
be made in bond angles to effect these
distances.

b: Modify the bond angle representation in
accordance with (a).

c: Calculate, from the new bond angle
representation, new coordinates for each of
the atoms in the molecule.

d: Determine, from the new coordinates, those
pairs of atoms which are near enough one
another to be in violation; a list of such
pairs (and the distances they must be moved
to remove the violation) is added to the list
used as input to (a).
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3) LINK 4: interface with the satellite display. It
is link 4 which encodes the data structure of the
main processor into a description of the
3-dimensional figure which the user ultimately
observes on the remote display. The basic time
lTimitation involved in this operation is the low
data rate of the (telephone) line connecting the
display processor with the main processor; this
data rate is such that even a small picture takes
several seconds to be transmitted, and a complex
one may take a minute. The following functions
are involved in the communication of the picture
data between the common storage area of the main
processor and the display hardware of the
satellite:

a: A major main-processor program reconstructs
the topology of the molecule in terms of
connected lines in the frame of reference in
which atomic coordinates are stored in the
main processor, This program utilizes
inherent knowledge of the topology of each
amino acid type, and results, basically, in a
list of "move" and "draw'" commands in
addition to some character information such
as labels,

b: This description is further encoded, to
minimize the actual number of bits being sent
over the low data rate line; in the process,
the vectors supplied in the last step are
translated to a new frame of reference and
converted to integers.

¢c: This data is blocked and sent over the
telephone line to the remote processor.

d: At the remote processor, the data is
unblocked and stored in a preliminary buffer,
this buffer allows the two processors to
operate asynchronously.

e: The data is eventually removed from the
preliminary buffer, and the "move'" and "draw"
information of step (a) is reconstructed.
Since the precision of the data sentover the
line is much lower than the precision
required in the data either at step (a) or
here, some conventions are followed by the
programs which encode and decode data for
transmissions regarding accumulation and
correction of truncation errors.
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f: The "move" and "draw" representation is then
rotated and translated according to internal
parameters, and the result stored in a
display list. The internal parameters, in
particular, the rotation matrix which
determines the position from which the user
is to view the 3-dimensional figure, is
continually being updated according to the
user's instructions.

1: The "globe'", an input device with three
rotational degrees of freedom, is
examined. As there are saven discrete
states of the globe for each degree of
freedom (designated as 0, +,-1, +,-2,
+,=3) we allow three distinct rates of
rotation about each axis in either
direction, as well as no rotation.

2: For the rotations about each axis, an
incremental matrix is constructed and
used to update the rotation matrix.
This rotation by incremental matrices
allows us to accumulate a substantial
rotation while ducking the question of
which of the rotations applies first,
since incremental rotations are
commutative.

g: :The display hardware, meanwhile, cycles
asynchronously thru the display list (the
output of step (f), above) to produce the
picture,



PAGE 14

Vil. Problem~=oriented Programs and Data

These paragraphs will deal with that portion of the total
computer system which is most closely related to the
particular problem of protein modelling. Since, as we have
explained, the programs operating on the main processor
largely constitute the problem-dependent portion of the
system, this section becomes an overview of the main
processor software. We begin with a description of the data
formats (the format of the internal description of the
model) and follow with a summary of the major programs for
their manipulation.

7.1 Main-processor Data

The following data all resides in an area of common
storage in the memory of the main processor. The symbolic
names of the areas of data are included primarily for
correlation of this discussion with the program listings:

ATOM(Q) is a one~dimensional array contzining one
element for each atom in the molecule and
including information regarding each atom's type,
associated amino acid, etc. The contents of the
ATOM array are constant for a particular protein;
thus the initialization program (MAKPRO) alone is
allowed to modify it. Refer to the discussion of
MAKPRO for a detailed description of the corntents
of ATOM.

X,Y,Z(Q) are each one-dimensional arrays containing, as
floating point numbers, the coordinates of each
atom in 3-space. The indexing of these arrays is,
again, on an element-per-atom basis as in ATOM,
above,

XP,YP,ZP(QP) are one-dimensional arrays containing the
coordinates of each residue atom in a frame of
reference local to that residue. The residue
coordinates are, then, stored redundantly: first
in the XP,YP,ZP arrays in local frames and
secondly in X,Y,Z in a global frame of reference.
This redundancyhas the practical advantage of
requiring the residue coordinates to be generated
only once; after this initialization the new
residue coordinates are obtained, as bond angles
are rotated, by applying each rotation to the
previous coordinate values of the affected atoms.
Thus, initially MAKPRO fills XP,YP,XP from tables
of the zero-angle values of the coordinates of the
atoms for each type of residue; these are then
subsequently modified (by the subroutine JIGL) as
each residue angle is varied. The coordinate



AACA)

PAGE 15

calculating program (COORD) translates the local
coordinates in XP,YP,ZP to the global ones of
X,Y,Z.

is an array with an element for each amino acid,
and contains integers specifying the type of each
acid. The integer codes vary from 1 to 21 for the
21 permissable residues.

QCALPH(A) is an array containing, for each amino acid,

ANG(N)

the sequence number (as used by the ATCM array) of
the corresponding carbon alpha atom. The carbon
alpha is the atom in the periodic main chain to
which each residue is attached, and it is relative
to the coordinates of this atom that the residue
coordinates (in XP,YP,ZP) are stored. QCALPH,
again, is set up by the routine MAKPRO and remains
constant subsequently.

is an array in which the values of the variable
backbone bond angles are stored. As there are two
variable bond angles in the main chain for each
residue (namely, the bonds on either side of the
carbon alpha are variable) there will generally be
twice as many entries in ANG as in AA.

ANGP(M) is a similar array containing the values of the

variahle residue angles. The relation between ANG
and ANGP differs from that between X,Y,Z and
XP,YP,ZP in that there is no redundancy in the
angle storage; a bond angle may be either in the
backbone or in a residue, but not both. The
angles are thus separated into two arrays simply
to make each more accessable.

MGPTR(A) is an array containing, for each amino acid,

the index of the first entry in ANGP corresponding
to an angle in that residue. Note that a similar
array could have been provided to index XP,YP,ZP
except that a simple manipulation of the QCALPH
array provides the same function: since X,Y,Z
contains the residue atoms plus a constant number
(7) of backbone atoms for each amino acid, we
observe that the first XP,YP,ZP entry for residue
A is indexed by QCALPH(A)-7xA+7,

WHICH,WORK,DANG(1) are arrays containing one element for

each angle currently being varied. |In general,
the user will have specified explicitly (by
teletype or light-pen) or implicitly (by
violations of van der Waals radii) that specific
interatomic distances must be modified. One of
the main processor programs (SOLVE) determines
which of the variable angles must be rotated to
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affect these modifications, and stores their
indices in the array WHICH and the amount of
change required to affect the desired deformation
of the molecule in the array DANG. A subsequent
inability to correct any of the angle values as
specified in the DANG array (e.g., because of a
restricting van der Waals violation) is reported
back to the SOLVE program on the next iteration
through the WORK array, which allows otherwise
variable angles to be temporarily considered
fixed.

LQ1,LQ2,LDIST(J) are the arrays in which requests for
changes in specific interatomic distances are
requested. LQl and LQ2 contain the indices of the
two atoms in each pair, and LDIST contains the
change in the interatomic distance required.

7,2 Main=-processor Programs

Reference to the flow diagram of figure 1, which
depicts the relationships between main processor subprograms
and data, will enhance the following discussions of the
major functions:

MAKPRO() is the program which calculates, from a list of
the amino acid sequence in a protein, the internal
data structure modelling the instance of that
protein in which each bond angle is at its zero
position. This program refers to a (constant)
table of the coordinates, specified in a local
frame of reference, of each of the allowable amino
acid varieties. Examining the type of each amino
acid in turn, MAKPRO places the coordinate values
from the table for that acid into the XP,YP,ZP
arrays and sets the corresponding QCALPH entry to
address the element of the X,Y,Z arrays in which
the coordinates of the carbon alpha atom of that
amino acid will ultimately be stored. Since each
amino acid contributes uniformly a nitrogen atom
(with an attached hydrogen,) a carbon-alpha (to
which the residue is attached) and another carbon
(with an attached oxygen) to the backbone of the
molecule, the coordinates of these atoms are not
stored in either the constant reference tahle or
in the XP,YP, and ZP arrays; in addition, two of
the residue atoms (one a hydrogen, the other
usually a carbon beta) which are connected to the
carbon alpha and thus fixed with respect to it are
consequently treated as backbone atoms. A
subsequent call to the subprogram CJO0ORD (below)
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completes the coordinate calculations.

COORD() is the program which calculates the positions of
the backbone atoms from the backbone bond angles
and rotates and translates the residue coordinates
from the local frames of XP,YP,ZP to the global
frame of X,Y,Z. This involves adjusting the frame
of reference 3 times for each residue (for the 3
backbone bond angies) and placing the coordinates
of the residue atoms, rotated and translated from
XP,YP,ZP, into the X,Y,Z arrays ct the appropriate
point.

JIGL(ACID.MO,ANGL.MO,DELTA) is the program which is used
to vary residue bond angles. The program COORD,
which interprets the backbone angles, copies the
residue coordinates from XP,YP,ZP without
reference to the variable angles which may effect
them; consequently, when a residue angle is
changed the appropriate XP,YP,ZP values must be
updated also. The call to JIGL specifies the
residue containing the angle to be changed, which
angle in the residue will be changed, and the
amount by which the bond is to be rotated.
Implicit in the program JIGL is information
regarding the connectivity of the various types of
residues to determine the atoms effected by a
given rotation. Each call to JIGL results in
modifications of both the ANGP array (to reflect
the new value of the angle) and the XP,YP,ZP
arrays (to reflect the new coordinates, in the
local frame, of the residue atoms). A call to
COORD then incorporates the modified residue angle
into the X,Y,Z arrays.

WIRE() is the program which communicates to the
satellite display an appropriate description of
the 3~dimensional figure tc be shown. Accessing
the list (AA) of the amino acid sequence and (XYZ)
the global coordinates of atoms, the program
relies on implicit knowledge of the connectivity
of the various residue types to adduce the
connectivity of the entire molecule., A set of
parameters in the common data area determines the
regions of the molecule to be displayed, the
amount of detail desired, etc., from which WIRE
codes a description of the 3-dimensional stick
figure which is relayed to the satellite.

LI1STQQ() examines the global atomic coordinates (X,Y,Z)
and determines which pairs of atoms collide.
Since the number of potential collisions increases
as the square of the number of atoms in the
molecule, it becomes impractical to calculate the
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distances (or even the squared distances) between
each pair of atoms in a respectable sized protein.
Rather, the global XYZ space is divided into
subspaces (cubes, for obvious practical reasons)
and the atoms are grouped according to their
containment by each cube. It is then necessary to
calculate distances between each atom and only
those atoms in the same and adjacent cubes; no
atom can collide with another atom in a remote
cube., This process relies heavily on list
processing techniques to perform the regrouping.

SOLVE() calculates the changes in bond angles necessary
to effect a set of specified changes in
interatomic distances. Parameters in common
storage dictate whether backbone or residue angles
are to be varied, and which of three possible
schemes is to be used in performing the
calculations. Solve refers to Q1,02, and D for
the list of changes to be made, and ultimately
changes either ANG or ANGP (although ANGP is
changed through a call to JIGL).
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figure 2: Flow diagram of main processor programs and data
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7,2,1 MAKPRO

The primary function of MAKPRO is the creation, from
the amino acid sequence of a protein, a data structure
corresponding to some degenerate configuration (e.g., having
zero bond angles) of that protein; it performs, in some
sense, the initialization of the system for work on a
particular molecule. The fact that we are generally
interested in only a few different molecules coupled with
the evident space requirements of this program suggest that
MAKPRO might be external to the system, run as a separate
job once for each protein, and the resulting data structures
be read from secondary storage as part of the initialization
procedure of the system proper. Such thinking has been
influential in the architecture of the package, and in fact
the functions of MAKPRO are divided between two programs,
one of which is external to the user system. The external
portion is designated PROTOS, and contains the lengthy data
tables (the descriptions of the zero-angle coordinates of
the atoms in each type of amino acid); the output from this
program is written into a file in secondary storage. The
resident portion, designated MOLE, reads the file containing
PROTOS output and completes the data structure
representation of the degenerate (zero angle) model.

The input to PROTOS is the linear sequence of amino
acids which make up the protein; specifically, PROTOS reads
the contents of the AA array. The output includes the
residue coordinates in local frames (the contents of XP, YP,
and ZP) corresponding to residue bond angles of zero, as
well as the AA array which was supplied as input and the
QCALPH pointers which are a byproduct of the XP,YP,ZP
generation., PROTOS makes use of a table containing the
local X,Y, and Z coordinates of each om in each residue; the
atoms in each residue are ordered by convention and
numbhered, as are the types of amino acids. An additional
array, LIST, contains pointers to the first entry in the
table for each sucessive residue type, and an array NRES
specifies the number of atoms in each type. The coordinates
of the Nth atom of a type M residue are then stored
beginning at the entry indexed by LIST(M)+3*N, An
alternative to the present scheme of table addressing might
utilize a multiply subscripted array; our choice probably
reflects historical rather than technical considerations.
The operation of PROTOS is outlined below:

1) The zeroeth, first, and second elements of the XP,YP,
and ZP arrays are set to the coordinates of:

a) The hydrogen atom attaching to the carbon alpha.

b) The carbon beta atom, which is the first residue
atom in all but one type of amino acid.
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3)

L)

5)

6)
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c) A hydrogen atom which replaces the carbon beta in
the remaining amino acid type (glycine).

These three XP,YP, and ZP slots serve the special
purpose of specifying those atoms which are
necessarily fixed with respect to the backbone (as a
consequence of their separation from it by a single
hond). They are treated as special cases to avoid
storing redundantly the sets of identical local
coordinates; see the discussion of COORD for notes on
their application.

The following program variables are initialized:

An integer AA.HNUMBER, specifying the current amino
acid, is set to 1 for the first acid.

I integer P.POINTER, designating the next XP,YP,
and ZP elements to he filled, is set to 3
(remember that the zeroeth thru second elements
were filled above).

The first element of QCALPH is set to 3, as the
first carbon alpha atom is always the third atom
in the molecule.

The type of the current amino acid (that specified by
AA.NUMBER) is obtained from the AA array, and an error
exit is taken iIf the type is not between 1 and 21.

The number of atoms in the current residue is obtained
from the element of NRES indexed by the amino acid
type; the QCALPH entry for the next amino acid (that
indexed by AA.NUMBER+1) is then set to the sum of this
number and QCALPH(AA.NUMBER)+7, i.e., the next carbon
alpha atom is indexed by the index of the last carbon
alpha atom plus 7 (the number of backbone atoms per
amino acid) plus the number of residue atoms in the
current acid.

The table index of the coordinates corresponding to
this residue type is found by LIST(AA.NUMBER); N (the
number of residue atoms) coordinate triplets are
copied into the M successive locations of XP, YP, and
7P specified by P.POINTER, which is incremented after
each entry.

I1f the residue specified by AA,NUMBER is not the last,
control returns to step (3) above. Otherwise, an
integer BIGESQ (specifying the index number of the
last atom in the molecule) is set to
QCALPH(AA . NUMBER+1)-3,
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7) A 'PROTOS' file is written onto secondary storage,
consisting of:

a) The contents of the XP, YP, and ZP arrays;
b) The contents of the QCALPH array;
c) The integer BIGESQ; and

d) The AA array.

Thus, with the AA array as input, PROTOS has filled the
QCALPH and XP,YP,ZP arrays.

Before proceding with our discussion of the remaining
MAKPRO functions, a discussion of the details of the ATOM
array is in order. ATOM is a packed array with one elemen
corresponding to each atom in the molecule being modelled,
each element having the following components:

QAA(ATOM(Q)) specifies the sequence number of the amino
acid containing the atom Q.

TYPE(ATOM(Q)) is an integer betwéen 1 and 9 encoding th
type of the atom Q, e.g., hydrogen, carbon, oxygen.

ANGLO(ATOM(Q)) is the highest-indexed angle which effec
the position of atom Q with respect to the
low-numbered end of the molecule; ANGLO indexes the
WHICH array, rather than the ANG array directly.
Thus, varying ANG(WHICH(ANGLO(ATOM(Q)))) will change
the relative positions of atoms Q and 1, whereas
varying ANG(WHICH(ANGLO(ATOM(Q))+1) won't.

JGLNUM(ATOM(Q)), applicable only to residue atoms,
specifies the highest reilative sequence number
corresponding to a bond angle in the residue
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containing Q which effects the position of Q. JGLNUM

serves a function in each residue parallel to that
served by ANGLO in the backbone. The local angle
numbering system assigns the index 1 to the carbon
alpha to carbon beta bond, with angle numbers
increasing along the side chain; the numbers of the
variable angles in a residue, however, are not
necessarily consecutive. In order to take advantage
of certain chemical similarities between residue
types, the numbering system for rotatable bonds skip
sequential integers in some cases. The routine
RELJGN(TYPE, 1) translates such a number | of the Nth
variable bond angle of residue type TYPE, returning
the integer N,

S
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QBACK(ATOM(Q)) designates the highest numbered atom which

MOLE,

will be tested against atom Q for van der Waals
violations. QBACK(ATOM(Q)) contains the difference
between Q and this highest numbered atom; the atoms
between Q and (Q-QBACK(ATOM(Q))) are either
constrained not to violate Q by the mechanics of the
model, or such violations will be detected by other
means (e.g., angle violations).

the remaining portion of the MAKPRO system, sets up

the arrays ANGPTR, ATOM, WHICH, ANGP, and ANG., Its
operation is outlined below:

1)
2)

3)

4)

5)

The 'PROTOS' file is read into common storage.

Each element of the ANG and ANGP arrays is set to
zero,

The following variables are initialized:

W.POINTER, which will point to the next element of
the WHICH array, is set to 1.

ANG.1l, which will point to the ANG array at the
first variable backbone angle in each amino acid
(the bond between the nitrogen and carbon alpha)
is set to 0.

ANG.0, which will point to the second variable angle
(carbon alpha to carbon bond) of the amino acid
preceding the current one, is set to 0.

AA.NUMBER, specifying the current amino acid, is set
to 1.

QB, which will be used to calculate the Q.BACK
entries for the atoms in each amino acid, is set
to 0 to point to the "zeroeth" atom.

WHICH(W.POINTER) is set to 2*AA.NUMBER, and W.POINTER
is incremented by 1. This designates the second angle
in the current amino acid, corresponding to the bond -
connecting the carbon alpha with the next carbon, as a
variable angle. Note that the first variable angle
ANG(1) of the first amino acid is never entered in the
WHICH array; rotations about this bond do not alter
interatomic distances and hence don't interest us.

The variable ANG2 is set to W.POINTER to record the
WHICH index corresponding to this second variable
angle.

The routine ATTRIB is called to determine the number
of variable angles in the current residue; the sum of
this number and ANGPTR(AA.NUMBER) are placed in
ANGPTR(AA.NUMBER+1) to allow space in the ANGP array
for the variable residue angles.
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6) For each of the atoms between QCALPH(AA.NUMBER)-2 and
QCALPH(AA.NUMBER+1)-3 the QBACK, JGLNUM, ANGLO, QAA,
and TYPE components of the packed ATOM array are
filled as follows:

a) The QAA component of each of these ATOM elements
is set to AA.NUMBER, specifying the current amino
acid.

b) The types of the six backbone atoms are set
explicitly: QCALPH(AA.NUMBER)-2 thru
QCALPH(AA.NUMBER)+1 index the nitrogen, hydrogen,
carbon alpha, and hydrogen, respectively, while
QCALPH(AA.NUMBER+1)-4 and QCALPH(AA.NUMBER+1)-3
index the other carbon and the oxygen.

c) The types of the residue atoms are found thru
calls to ATTRIB, and the TYPE components of the
atoms from QCALPH(AA.NUMBER)+2 thru
QCALPH(AA.NUMBER+1)-5 are set accordingly.

d) The QBACK component of each atom in the amino
acid (both backbone and residue) is set to
designate the atom pointed to by QB; specifically,
each QBACK(ATOM(Q)) is set to Q-QB.

e) For the first three backbone atoms, from
QCALPH(AA.NUMBER)-2 to QCALPH(AA.NUMBER), the
ANGLO component of the corresponding ATOM entry is
set to ANG.O; this specifies that the coordinates
of these atoms are effected by the second variable
angle of the preceding amino acid, i.e., the
carbon alpha to carbon bond, but not by the angle
of the nitrogen to carbon alpha bond in the
current acid.

f) The ANGLO component for the oxygen atom, indexed
by QCALPH(AA.NUMBER+1)-3, is set to ANG.2; this .
designates that the second variable bond angle
(between carbon and oxygen) of the current amino
acid is the last to effect the position of the
oxygen.,

g) The ANGLO components of the ATOM entries for the
remaining atoms in the residue, indexed by
QCALPH(AA.NUMBER)+1 thru QCALPH(AA.NUMBER+1)-4,
are set to ANG.1l. This designates that their
coordinates are effected by changes in the
nitrogen to carbon alpha bond angle but not by the
angle between the carbon alpha and carbon,

h) The JGLNUM component of each of the residue atoms
is determined by a call to ATTRIB; the JGLNUM
components of the remaining atoms is left zero.
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7) The pointer QB, which will specify the QBACK
components for the next amino acid, is set to
QCALPH(AA,.NUMBER)=-3; this specifies that pair checking
will not occur between the atoms in the next amino
acid (AA.NUMBER+1) and any atoms in the current amino
acid (which start at QCALPH(AA,NUMBER)=-2).

8) The type of the next amino acid is read from
AA(AA.NUMBER+1), and if its nitrogen to carbon alpha
bond is rotatable (one amino acid type has a fixed
bond angle here) then:

a) WHICH(W.POINTER) is set to the index of this
angle (AA.NUMBER#*2+1) and W.POINTER is
incremented; then

b) ANG.1 is set to W.POINTER to designate this first
variable angle of the next amino acid.

I1f, rather, the next amino acid has a fixed angle at
this point, then:

a) That angle, ANG(2*AA.NUMBER+1), is set to its
fixed value; and

E) ANG.1 is set to the current value of ANG.0, which
points to the second variable angle of the last
amino acid; this reflects the fact that any atom
whose position is effected by ANG.1 is also
effected by ANG.O.

9) ANG.O is set to the current vaiue of ANG.Z, so that on
the next iteration it will designate the second
variable bond in the present amino acid.

10) If AA.NUMBER designates the last amino acid (indicated

by the zerceth element of the AA array, which contains

the number of acids in the molecule) then the zeroeth
element of the WHICH array is set to W.POINTER-1 tc
indicate the number of variable angles, and control
returns to the calling program. Otherwise, AA.NUMBER
is incremented, and control goes to step (4) above.

Note that the overail MAKPRO function, comprising PROTOS and
MOLE, takes as its input the AA array, and produces as
output the XP,YP, and ZP arrays, WHICH, QCALPH, ANGPTR, and
AIOM; the degenerate values (zero, with the exceptional case
noted above) it places in the ANG and ANGP arrays specify
completely an instance of the protein molecule. The actual
global-frame atomic coordinates, which are, at this level,
dependant variables, may now be obtained by a call to the
subprogram COORD,
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7.2.2 COORD

The main algorithm of COORD proceeds secuentially down
the backbone, adding atoms while translating them from a
local frame to the global one. This procedure utilizes a
rotation matrix ROT and a translational XYZ triplet to
mechanize the switching from local to global coordinate
frames, and these parameters are updated periodically to
compensate for the successive local systems. For the
purpose of adding backbone atoms, the matrix ROT is
maintained so that the bonds lie perpendicular to the
Z-axis; at each time when a bond between backbone atoms
violates this condition, ROT is adjusted. An internal
subroutine, SIDE(X,Y) is used to position atoms within the
current XY plane. A second internal subroutine, PUTRES(),
copies residue atoms from XP,YP,ZP into X,Y,Z after rotating
them by ROT and translating them to the frame of the current
carbon alpha. The general algorithm is outlined below:

1) By way of initialization, the following variables are
set:

The matrix ROT is set to unity.

An integer BASE.ATOM, specifying the sequence number
of the atom whose coordinates specify the
translational reference, is set to 0. Since the
coordinates of the first atom in the molecule are
stored in X(1), Y(1), and Z(1), the zeroeth
elements of these arrays will specify an initial
translation of the entire molecule.

XYZP.NUMBER, an integer denoting the next element of
XP,YP,ZP to be placed into the X,Y,Z arrays, is
set to point to the first XP,YP,ZP entry; this
involves setting XYZP.NUMBER to 3 rather than 1,
to allow for the special entries in XP, YP, and ZP
mentioned below.

The integer ACID.NUMBER is set to 1, denoting the
first amino acid in the sequence.

The integer ATOM.NUMBER, which will be used to
indicate the next X,Y,Z elements to be filled, is
set to 1.

The -integer ANGLE.NUMBER, which will point to the
next backbone angle (ANG element) to be used, is
set to 1,

2) The coordinates of the nitrogen, hydrogen, and carbon
alpha are added to X,Y,Z by calls to SIDE. No
manipulation of the matrix ROT is necessary since the
carbon and oxygen of the previous amino acid lie in
the same plane as these three atoms. The bond between
the nitrogen and the carbon alpha is variable, but
account of this rotation need not be taken until after
the carbon alpha is treated, since rotation about a
bond obviously does not change the relative positien
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"of the atoms connected by that bond.
3) The matrix ROT is updated by two increments:
a) A rotation R1 (in the XY plane) which aligns the

nitrogen-carbon alpha bond with the X-axis. The
matrix representation of this rotation component

is:

C0S R1 -SiN R1 0
SIN R1 COS R1 0
0 0 1

b) A rotation in the YZ plane corresponding to the
rotation specified about the variable N-CA bond.
This matrix has the form:

1 0 0
0 CoSs @1 -SIN P21
0 SIN P1 Cos 91

The total increment is thus specified by the product
of these matrices, or:

CGS R1 -SIN R1 COS 91 SIN #1 SIN R1
SIN R1 COS R1 COS #1 ~-SIN P1 SIN R1
0 SIN p1 Cos p1

where @1 is the angle value in the ANG element pointed
to by ANGLE.NUMBER. The previous matrix ROT is
replaced by the product of ROT and this increment.

The pointer ANGLE.NUMBER is incremented by 1.

L) The residue is attached in two steps:

a) The two residue atoms which are fixed with
respect to the carbon alpha (by virtue of their
separation from it by a single bond) are handled
as special cases. Since they are not in the XY
plane currently specified by ROT, it is not
convenient to treat them as backbone atoms (i.e.,
to attach them by calls to SIDE). Since their
position (in the local frame whose origin is at
the carbon alpha) is constant from one residue to
the next, it does not make sense to store their
coordinates once for each acid. On the other
hand, the routine PUTRES, which addresses the XP,
YP, and ZP arrays directly, contains the mechanism
necessary to attach these atoms, since it locates
atoms in 3 dimensions in the local frame specified
by the carbon alpha coordinates and the matrix
ROT. The solution arrived at involves the
reservation of the first three XP, YP, and ZP
elements to store, during the MAKPRO operation,
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the local coordinates of the three such atoms;
then, at the proper point in the COORD algorithm,
they may be attached by temporarily setting
XYZP.NUMBER to 1, 2, or 3 and calling PUTRES. The
first such atom, stored in XP,YP,ZP(0), is a lone
hydrogen which always attaches to the carbon
alpha. The second, which is really the first atom
in the side chain (the rest of the residue
attaches to it) is usually another carbon
(designated the carbon beta); in the case of one
amino acid type, it is a hydrogen. The carbon
beta coordinates are stored in XP,YP,ZP(1l), while
the coordinates of the alternative hydrogen are in
XP,YP,ZP{2). Now, the COORD algorithm does the
following:

1: The current value of XYZP.NUMBER is saved in
a temporary location. XYZP.NUMBER is set to
0, and PUTRES is called; this attaches the
hydrogen.

2: The type of the current amino acid
AA(ACID.NUMBER) is examined; if it is
glycine, XYZP.NUMBER is set to 2 (to attach
the second hydrogen); otherwise, it is set to
1 to attach the carbon beta. PUTRES is
called to attach this second special atom.

3: The previous (saved) value of XYZP.NUMBER is
restored.

b) The remainder of the residue is added by repeated

calls to PUTRES, each cail attaching one residue
atom and incrementing XYZP.NUMBER as well as
ATOM.NUMBER., PUTRES bears the responsibility of
translating the coordinates of each atom by the
coordinates of the atom specified by the pointer
BASE.ATOM, in addition to the rotation by the
matrix ROT from the local frame of XP,YP,ZP to the
global one of X,Y,Z. The number of atoms in each
residue, and hence the number of calls to PUTRES
necessary to attach it, is available in a
21-element array NRES.

The matrix ROT is again updated by two increments:

a) A rotation R2 in the XY plane, which aligns the

Carbon alpha-carbon bond with the X-axis. This
matrix has the same form as the above matrix
specifying the rotation Rl in the XY plane.

b)A rotation @2 in the YZ plane, corresponding to

the rotation about the variable CA-C bond.
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The product of these matrices becomes:

COS R2 -SIN R2 COS @2 SIN P2 SIN R2
SIN R2 COS R2 COS @2 ~=SIN P2\ 0S R2
0 SIN P2 Cos P2

where P2 is the value in the ANG element pointed to by
ANGLE.NUMBER, and the product of this matrix and ROT
replaces ROT. ANGLE.NUMBER is incremented by 1.

The carbon and its attached oxygen atoms are added to
X,Y,Z by calls to SIDE. ACID.NUMBER is incremented;
if any amino acids remain to be attached, control
returns to step 2) above, otherwise control is
returned to the calling program.

The procedure SIDE(XC,YC), which is used to attach backbone

atoms

in the XY plane of the current carbon alpha, operates

as follows:

1)

2)

The vector (X, Y, 0) is multiplied by ROT and the
product is added to the coordinates of the atom
pointed to by BASE.ATOM; i.e., the specified 3-element
vector (whose Z-component is zero) is mapped into the
frame of the current carbon alpha.

This result is added to the X,Y,Z arrays in the
element pointed to by ATOM.NUMBER. ATOM.NUMBER is
incremented, .and control returns.

The function PUTRES(), which copies atoms from XP,YP, and ZP
to X,Y,Z executes a similar algorithm:

1)

2)

The XP,YP,ZP triplet pointed to by XYZP.NUMBER is
multiplied by ROT and the product is added to the
X,Y,Z elements indicated by BASE.ATOM.

This result is placed in X,Y,Z in the position
specified by ATOM,NUMBER. ATOM.NUMBER and XYZP.NUMBER
are incremented, and control returns.
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7.2.3 JIGL

The subprogram JIGL is used to make changes in atomic
coordinates corresponding to specified changes in residue
bond angles. These changes are made to the coordinate
representations in both the local frame of XP, YP, and ZP
and the global X, Y, Z frame; most of the calculations of
JIGL involve rotating and translating vectors between the
global frame of X, Y, and Z (which we shall refer to as the
XYZ frame), the frame of XP, YP, and ZP (designated the XYZP
frame) and a frame local to the bond being adjusted (the
'local' frame). The following mathmatical identities are
widely used by JIGL and merit a quick review:

1) Given a frame of reference Fl and three mutually
perpendicular unit vectors VX, VY, VZ in F1
designating the axes of a new frame F2, a rotation
matrix R12 may be constructed as follows:

VX(1) VX(2) VX(3)
VY (1) VY (2) VY (3)
VZ(1) VZ(2) VZ(3)

which has the property that the product of R12 and an
arbitrary vector V1 in F1l yields the corresponding
vector V2 in F2.

2) Similarly, the matrix R21:

VX(1) VY(1) VZ(1)
VX(2) VY(2) VZ(2)
VX(3) VY (3) VZ(3)

has the property that the product of R21 and V2 (in
F2) yields V1 (in Fl). Thus, we note that the inverse
of a rotation matrix may be obtained by transposing
that matrix along its main diagonal,

The ultimate objective of the JIGL algorithm is simple:
the coordinates of the residue atoms are translated and
rotated to the local frame from the XYZ frame, the rotation
is performed about the indicated bond, and the result is
mapped back into both the XYZ and the XYZP frames. The
program, which is largely devoted to initializing the
matrices necessary for these mappings to and from the local
frame, is outlined below:

1) By referring to two tables internal to JIGL, the two
atoms adjacent to the bond being adjusted are singled
out. The integer variables QA and QB are set to the
sequence numbers of these atoms (i.e., their indices
in the X, Y, Z arrays); in addition, QC is set to
designate the next higher numbered residue atom
(QB+1),
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2) The indices of the same three atoms in the XP, YP, and

3)

4)

5)

6)

ZP arrays are determined; they are designated QAP,
QBP, and QCP.

The vector TRAl is set to the coordinates (in XYZ) of
atom QB; similarly, TRA2 is set to the coordinates (in
XYZP) of QBP. The significance of these coordinates
is that the atom designated as QB (in the XYZ frame)
and QBP (in the XYZP frame) will be located at the
origin of the local frame; thus the vectors TRAl and
TRA2 specify the relative transliations between the XYZ
and XYZP frames and the local frames.

The vectors VX, VY, and VZ are set to designate, in
the XYZ frame, the axes of the local frame. They are
arranged so that the bond being adjusted lies parallel
to the local X axis (or parallel to VX in XYZ) and
that the next bond (that connecting QB with QC) lies
in the XY plane (or perpendicular to VZ). This is
done as follows:

a) VX is set to the vector connecting QB with QA,
normalized so that its magnitude is 1:

VX=(QB-QA)/1QB-QA|

b) VZ is set to the cross product between VX and the
vector connecting atoms QB and QC; VZ is then
normalized. Thus VZ is perpendicular to the plane
containing the QA-QB bond and the QB-QC bond:

VZ=(VX x (QB-QC))/IVX x (QB-QC)|

c) VY is set to the cross product between VZ and VX;
thus the axes are mutually perpendicular:

VY=VZ x VX

The rotation matrix Rl is set (by the elements of VX,
VY, and VZ) tn rotate from the XYZ frame to the local
frame:

In a manner identical to that outlined above, the
vectors VX, VY, and VZ are now set to specify the axes
of the local frame relative to the XYZP frame. The
procedure of step (4) above is followed, using the
atoms QAP, QBP, and QCP to relate the axes to XYZP;
the matrix R3, however, is adjusted from these vectors
to rotate to the XYZP frame from the local frame.
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7) The matrix R4 is set up to represent the requested
rotation, in the local frame, about the designated
bond. Since that bond is parallel to the local X
axis, the rotation is in the YZ plane; the matrix

becomes:
1 0 0
0 COoS(p) -SIN(P)
0 SIN(D) cos(p)

where P is the rotation to be applied about the
designated bond.

8) The matrix R6 is set to the transposed matrix R1,
Thus R6 now rotates from the local frame to the XYZ
frame:

R6=R1"’

9) The matrix R5 is set to the product of R1 and RA4.
Thus R5 now incorporates two rotations: that between
XYZ and the local frame, and that between the old
local frame and the new one resulting from the
rotation of the old about the designated bond:

R5=R1*Rk

10) Now the actual coordinates are modified. For each
atom in the residue the following steps ensue:

a) The X, Y, Z elements corresponding to the atom
are translated by the negative of the coordinates
in TRA1l; the coordinates of the atom QB, for
example, become zero (since this atom is at the
origin of the local frame).

b) The resulting XYZ coordinates are rotated by R5.
The resulting values are, then, the local frame
coordinates of the atom after having undergone
rotation about the designated bond.

c) The XYZP frame representation of the coordinates
is obtained by rotating by R3 and translating by
TRA2; the resulting values are placed into the
appropriate XP, YP, and ZP entries.

d) Finally, the new X, Y, and Z values are obtained
by rotating the local frame coordinates by R6 and
translating by TRAl.

XYZP(1)=((XYZ(1)-TRAL1)*R5)*R3+TRA2
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XYZ(1)=((XYZ(1)-TRAL)*R5)*R6+TRAL
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Vi SO

The subroutine SOLVE which is calied in to perform
calculations necessary for the manipulation of inter-atomic
distances actually represents the entry point to a system of
subprograms which selects one of several possible algorithms
pursuant to these manipulations and calls the appropriate
lower-level functions for its execution. Since the
completely analytic solution of the system of equations
relating bond angle values to even a small number of
interatomic distances is impractically complex and time
consuming, the SOLVE system necessarily resorts to heuristic
measures, The simplest and most obvious of these involves a
"linear approximation" in which it is assumed that changes
in the bond angles resulting from any calculation step will
be small; this allows us to approximate trigonometric
relations by linear ones and to solve the equations by the
traditional methods of linear algebra. The limitation on
angle changes imposes the requirement that we effect gross
structural changes by a series of more modest increments,
but in fact the resulting quasi-continuous deformation of
the model probably lends itself to our model building
requirements particularly well; our treatment of disallowed
configurations of the model, for example, suggests gradual
hill climbing techniques rather than the intractable
alternative of analytic solution.

SOLVE chooses, on the basis of a user-supplied
parameter, one of three algorithms for calculating the bond
angle changes necessary to implement a given set of
interatomic distance changes:

1) The method of ''steepest descent" in which the
increment applied to each bond angle is the sum of the
partial derivatives of distance between each atom pair
with respect to that angle, weighted by the change
required in the distance between that pair. This
method assumes, in addition to the linear
approximation mentioned above, that calculations
regarding each atom pair may be performed
independently, It thus avoids the time consuming
operations of matrix inversion and multiplication
entailed in the other two methods, and in a large
number of situations it seems to perform adequately.

2) The solution of the system of 1inear equations
relating differential changes in bond angles to
differential changes in interatomic distances. The
coefficients in these equations each represent the
partial derivative of an atomic pair distance with
respect to an angle.

3) The solution of equations similar to the above, except
relating each component of the interatomic distances
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to each angle. Since this method results in three
times as many equations (matrix rows) as above, it
bases the angle changes on more information about the
structure, and is useful for resolving deadlocks in
which the previous methods may find themselves.
However, it results in a large system of equations
which present substantial time and storage demands to
the system.

In addition, the user may specify whether he wants the
changes effected by modifying backbone or residue angles; no
means is available for varying both simultaneously.

Each of the above algorithms makes use of partial
derivatives of interatomic distances with respect to angle
changes, and these derivatives are computed by subroutines
whose arguments include the atom pair in question and an
angle number, and return the differential change in relative
position of the two atoms as a result of a differential
change in the bond angle. For cases 1 and 2 above, the
result is a scaler distance, whereas in the third case a
vector is returned. The derivatives involving changes in
backbone angles are computed by the routines DERIV and
DERIV3 (depending on whether method 2 or 3, above, is being
used) which function as follows:

1) The unit vector V1, parallel to the axis of rotation,
is computed by scaling the vector connecting the two
backbone atoms on either side of the bond in question.

2) The vector V2 between one of the atom pair and an atom
connected by the rotating bond is computed. We may
consider that the remaining atom in the pair is fixed
to the lab frame, and thus the change in the position
of the atom chosen here is the change in the relative
positions of the two atoms.

3) The amount by which the above atom moves as a result
of a differential angle change is then computed by
taking the cross product of V1 and V2. I[In the case of
DERIV3, the resulting 3-element vector is returned;
DERIV returns the dot product of this vector with a
unit vector parallel to the line connecting the two
atoms in the pair, representing the differential
change in distance.

The routines RDRV and RDRV3 perform the same function for
rotation about residue bonds, calling the routine JGLABL to
insure that the angle in question does in fact effect the
distance between the atom pair. JGLABL incorporates
structural information about the various residue types, and
specifies whether a given angle in a particular type of
residue will effect the position of a specific atom relative
to the backbone. Thus, if one of the pair of atoms is fixed
relative ¢to the backbone while the other is not, then the
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distance between the pair is a function of the angle in
question.

Since the user may specify that either residue angles
or backbone angles are to be varied, nearly all of the
routines in the SOLVE subsystem are duplicated for each of
these cases. There are several basic differences between
the residue angle calculations and the backbone angle
calculations:

1) In order for a residue angle to effect the distance
between a pair of atoms, at least one of these atoms
must belong to the residue containing that angle.
Thus, each pair in LQl and LQ2 is effected by the
angles of at most 2 residues.

2) There are a large number of potentially variable
residue angles, and hence we are reluctant to provide
a second pair of DANG and WHICH arrays with which to
manipulate the residue angles. Also, since at any
given time we are varying either residue angles or
backbone angles, we don't ever need the DANG array
while we are solving for residue angle changes.

As a consequence of (1), there are, in general, relatively
few residue angles relevent to a set of LQl, LQ2, LDIST
specifications. We take advantage of this situation by
dividing up the DANG array, during residue angle SOLVE
operations, into 3 parts: one which specifies the angle
changes required (the usual function of DANG) and the other
two to indicate the angle being varied. The names used two
refer to these latter 2 sub-arrays are CODE and KEY; the
name DANG is used to refer to the first.

This organization requires the KEY and CODE arrays to
be initialized, before any residue SOLVE operation, to
indicate the relevent variable residue angles; subsequent
programs may then use them in a manner similar to the way
the WHICH array is used for backbone closes. This
initialization operation is performed by the subroutine
SETKEY, which operations as follows:

1) The zeroeth element of the KEY array is set to 0.
This element is used to indicate the number of entries
in the KEY, CODE system; each time a new angle is
entered, KEY will be indexed. It is noteworthy that
each angle is represented at most once: at each point
where a new KEY, CODE entry is to be made, the entire
array is first searched to insure that an identical
entry has not already been made.

2) An integer variable LQ.NUMBER, which will be used to
specify the LQl, LQ2 entries currently being
considered (and hence the pair of atoms for which we
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are finding relevent angles) is set to 1.

3) Since, as we have noted, the residue angles effecting
the distance between atoms Q1 and Q2 belong to one of
the two amino acids containing these atoms, we perform
the following steps once for each (LQ=LQl, LQ2):

a) The number of the atom LQ relative to the carbon
alpha of its containing residue is calculated by
RQ=LQ-QCALPH(LQ).

b) The JGLNUM component of the ATOM entry
corresponding to atom LQ is extracted. This
number indicates the highest numbered residue
angle shich effects the position of LQ with
respect to the backbone, and hence the highest
numbered angle effecting the distance between this
pailr of atoms. Then, for each integer | between 1
and this JGLNUM component:

1: The subroutine JGLABL is cailed to determine
whether angle | effects the position of LQ;

2: |f JGLABL returns boolean true, then the
number of the amino acid containing LQ is put
into CODE and the number RQ is put into KEY.

4) If LQ.NUMBER points to the last LQl, LQ2 entries,
control is returned to the calling program.
Otherwise, LQ.NUMBER is incremented and control passes
to step (3) above.

The method of steepest descent involves a minimum of
arithmetic manipulation, and will be treated first. The
routine SOLVE serves simply to call, in succession, two
relevant subprograms; the first derives the angle changes
required by manipulation of the LQl, £Q2, and LDIST arrays,
while the second actually changes the angles. |f backbone
angles are to be varied, these two subprograms are STEPES
and SETANG, respectively; if residue angles are beign varied
then their counterpart JGLSTP and JGLSET are called.

The routine STEPES refers to the LQl, LQ2, and LDIST
arrays and fills the DANG array. STEPES functions as
follows:

1) The DANG array is set to ZzZero.
2) For each | between 1 and LQ1(0) (used to indicate the

number of LQl, LQ2, and LDIST entries) the following
occurs:
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a) For each J between 1 and WHICH(0) (the number of
entries in the WHICH and DANG arrays), DANG(I) is
set to DANG(I)+LDIST(I)*DERIV(WHICH(J),!).

Thus, each DANG(1l) is set to the sum of the
derivative of the distances between each atom pair
and the distance by which that pair is to be
moved,

3) The magnitude of the DANG array is determined by a
call to NMAG; each element is scaled by a factor of
STEP/MAG where MAG is the vector's magnitude and STEP
is a user supplied step size.

The residue-angle varying counterpart, JGLSTP, performs in
an identical manner except for the following differences:

1) The routine SETKEY is called before LQl and LQ2 are
examined; this sets up KEY and CODE.

2) RDRV is called to calculate the partial derivatives.

The operation is completed by a call to the second
function (JGLSET or SETANG) which makes the actual changes
in the angles. JGLSET simply calls the routine JIGL
(described elsewhere) once to change each angle in the KEY,
CODE, and DANG arrays. Thke routine SETANG, used to vary
backbone angles, performs an auxilliary function, and is
described in a later: paragraph.

In each of the other two SOLVE algorithms, a pair of
subroutines is called by SOLVE to perform functions
approximately analogous to those of STEPES and SETANG. The
first such function bears the responsibility for compiling
the matrix of partial derivatives (of interatomic distances
with respect to variable angles) and the vector representing
the necessary changes in interatomic distances. The output
of this program, then, is a set of simultaneous equations
which relate differential changes in interatomic distances
to corresponding differential changes in bond angles. The
remainder of the task, which is carried out in the routine
SOLVE itself, is the solution of these equations (in which
the angle increments are the independent variables) for the
angle changes in terms of the distance changes. This
process involves, basically, the inversion of the matrix of
partial derivatives; the product of this inverted matrix and
the vector of distance changes (set up by the first
subprogram) results in the necessary angle changes (the
contents of the DANG array). The second function may then
be called to make the actual angle changes; this second
function is the same as that used in the method of steepest
descent, and mentioned above: SETANG for backbone angles,
JGLSET for residue angles.
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The first function mentioned above (that which sets up
the matrix and array of independent variables) is, in the
case of backbone angle manipulations, either of the routines
SETONE or SETTHR depending upon whether the l-dimensional or
the 3~-dimensional calculations are being made; for residue
angles the corresponding programs are JGLONE and JGLTHR.

The operation of the routine SETONE, which initializes
the matrix of partial derivatives of distance with respect
to backbone angles, is outlined below:

1) For each LQl1l, LQ2, and LDIST entry (remember that the
number of such entries is signified by the zeroeth LQ1
entry) the following steps are performed:

a) QA and QB are set to the LQl and LQ2 entries
being examined on the current iteration. ANGTO is
set to the maximum of ANGTO and ANGLO(ATOM(QB)),
or the highest numbered anglie which will effect
the position of the atom QB with respect to
lower-numbered atoms,

b) For the atom QB, necessarily the lower numbered
atom of the pair (the constraint is imposed upen
programs which make LQl, LQ2 entries that the low
sequence number be entered in LQl) we need the
reverse of the ANGLO parameter; that is, we must
know the lowest numbered backbone angle which
effects the position of QA relative to the higher
numbered atoms. We calculate this index as
follows:

1: If QA is the carbon alpha (i.e., if
QA=QCALPH(QAA(ATOM(QA)))) then the index is
ANGLO(CATOM(QA))+3,

2: If QA is the nitrogen or the other backbone
carbon, then the index is ANGLO(ATOM(QA))+2.

3: Otherwise, the index is ANGLO(ATOM(QA)))+1.

The variable ANGFRO is set to the minimum between
ANGFRO and this index.

This iteration has, then, established the range of
backbone angles which relate to the set of LQl, LQ2,
and LDIST entries. ANGTO-ANGFRO is the number
ofvariables in the equations and hence the number of
columns in the matrix to be constructed; the number of
rows is the number of LQl entries, or LQ1(0).

2) The actual matrix of partial derivatives, A, is
constructed. The element in the Ith row, Jth column,
is set to DERIV(WHICH(1),J) or the partial derivative
of the distance between the Jth LQ1l, LQ2 atom pair
with respect to the WHICH(I)th element of the ANG
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array.

3) The vector B, containing the values of the independent
variables, is set up so that B(1)=LDIST(I).

4) Control returns to the calling program.

The program SETTHR, which creates a matrix with three times
as many rows (and, of course, a vector with three times as
many values of independent variablies) operates in an
identical manner except that:

1) The three matrix elements A(3*1+1,J), A(3*{+2,J) and
A(3*|+3,J) are set to the three elements of the vector
returned by DERIV3; and

2) The three vector elements B(3*l+1), B(3*1+2), and
B(3*1+3) are set to LDIST(l) times the X, Y, and Z
components of the unit vector pointing from atom
LQl(I) to atom LQ2(1). Thus

B(3*1+1)=LDIST(1)*(X(LQLI(1))-X(LQ2(1)))/DIST(LQLI(1),LQ2(1)),

etc.

The subroutine SETKEY, described in the preceding
discussion of the steepest descent approach, is used to
perform much of the corresponding bookkeeping in the case of
varying residue angles. SETKEY initializes the KEY array, a
WHICH type list of variable angles; the KEY array, unlike
WHICH, contains however only the indices of those residue
angels relating to the pairs in the current LQl, LQ2 arrays.
Thus, the first iterations of the SETONE and SETTHR programs
are not necessary in their residue angle counterparts: the
function of these iterations (namely, to find the range of
relevent angles) is performed by SETKEY. The number of
columns in the matrix becomes, then, the contents of the
zeroeth eleent of the KEY array.

The remainder of the residue-angle matrix
initialization routines is identical to their backbone-angle
equivalents, with the obvious exceptions that RDRV and RDRV3
are called rather than DERIV and DERIV3, and that the arrays
KEY and CODE are referred to rather than WHiCH. These two
subroutines are designated JGLONE and JGLTHR in their
respective l=-component and 3-component instances,

The completion of the SOLVE operation involves finding
solutions to the system of linear equations represented by
the matrix A and the vector B; in particular, a vector X
must be found such that AX=B. This solution vector, X,
becomes the set of angle changes required to implement the
set of changes in interatomic distances specified by the
vector B. In general, if the matrix A is square
(corresponding to an equal number of equations and unknowns)
and invertable, straightforward methods of linear algebra
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may be used to find the matrix C (the inverse of A) such
that CAX=X=CB. More commonly, however, the matrix A is
nonsquare, and its inverse is undefined. The two categories
of this situation, representing more equations than unknowns
in the first instance and more unknowns than equations in
the second, are treated in the following manner:

1) If the matrix A has n columns and m rows, where m>n,
then the equation AX=B has no consistent solution
(assuming the rows of A are linearly independent).

If, however, we relax our condition that the solution
be exact, we can look for a reasonable least=-squares
approximation between AX and B. In particular, we
seek an X (dimension n) such that the vector AX-B
(dimension m) dotted into itself is at a minimum. But
(AX=-B) (AX-B) is at a minimum when its first
derivative is zero, or when 2A'(AX-B)=0 where A' is
the transpose of A (A(1,J)=A'(J, 1) hence A' is
dimensioned n by m). Thus A'AX=A'B, giving us a new
matrix equation for the (approximate) matrix X; but,
we note that A'A is a square, symmetric matrix having
a well defined inverse. Hence A'AX=A'B may be solved
for X, yielding X=CA'B where C is the inverse of the n
by n matrix A'A. Two subprograms in our arithmetic
library aid in this process: SYMAK, which calculates
the symmetric matrix A'A from the matrix A, and SYMINV
which finds the inverse of A'A.

2) 1f, on the other hand, the matrix A has more columns
than rows, then there is an infinity of solutions to
the equation AX=B. This situation appears less
serious than the last, since we may here insist on an
exact solution and still retain several degrees of
freedom. Rather than selecting a solution at random,
however, we find that it costs us little to find the
solution which, in some sense, has the slightest
effect on the structure of our model. To this end, we
minimize the sum of the squares of the angle changes
required by the soultion to our equation. Using the
method of undetermined multipliers (due to Lagrange)
we finda vector L (of dimension m, the number of rows
of A) such that the quantity X X/2-L (AX-Y) is
minimized. The derivative of this function with
respect to the vector X is zero when X-LA'=0, where A'
is again the transpose of the matrix A. Hence X=A'L
and AA'L=B, from which we deduce that since AA' is a
square, invertable, symmetric matrix of dimension m
then L=CB where B is the inverse of AA'. But
X=A'L=A'CB, whence our least-squares solution of the
equation AX=B. SYMAK is again called upon to find the
symmetric matrix AA', and SYMINV is used to invert
it. onsequently, very little additional machinery
must be introduced to handle this case.
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We are now in a position to outline the details of the
SOLVE program:

1) The parameter specifying which of the three
permissable algorithms is to be used (named COMPO) is

examined:

a) If the method of steepest descent is to be used,
the appropriate subprograms (described earlier)
are cailed. Specifically, STEPES and SETANG are
called for backbone angles, or JGLSTP and JGLSET
are called for residue angles.

b) If the l1-dimensional case of the matrix inversion
method is to be used, SETONE or JGLONE is called
(for backbone and residue angles, respectively).

c) If the 3-dimensional matrix method is to be used,
SETTHR or JGLTHR is called.

In the steepest descent case, control returns to the
caller (as the operation is completed). In the other
cases, the matrix A of partial derivatives of
interatomic distances with respect to bond angles has
at this point been set; furthermore, the vector B of
required distance changes has been set. The implied
equation AX=B where X is the vector of angle changes
(i.e., DANG) remains to be solved.

2) The dimensions h and n of the matrix A are compared:

a) If m=n, the routine MTXINV is called to find the
inverse of A; DANG is set (by the routine MATMUL)
to the product of this inverse and the vector B:

DANG=A B

b) If m<n, the routine SYMAK is called to calculate
AA'. SYMINV finds the matrix C which is the m by
m inverse of AA', and MATMUL is called to find the
product of C and B. Finally, the routine TRNPX
(which finds the product of a vector and the
transpose of a matrix) is called to set DANG to

A'CB:
DANG=A'((AA') B)

c) If m>n, the routine SYMAK is used to find A'A,
and SYMINV finds the n by n inverse of A'A, called
C. Then TRNPX is used to find A'B, and finally
MATMUL sets DANG to CA'B:
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DANG=(A'A) (A'B)

3) Control returns to the calling program.
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7,2,5 SETANG

From the standpoint of the calling program, the
routines J1GL and SETANG perform the same function, namely,
the variation of values assigned to variable bond angles in
the molecule. The analog between SETANG for varying
backbone angles and JIGL for avrying residue angles is,
however, misleading; the motivation for each program bases
itself on independent and unique technical requirements.

The organization of the package is such that the
routine JIGL must be called to vary residue angles; if the
user attempts to modify, for example, such an angle by
simply changing an entry in the ANGP array, the rest of the
system will remain unaware of the change. In particular,
the atomic coordinates of atoms which should be moved by
this alteration will be uneffected. The routine JIGL, on
the other hand, contains the machinery required to modify
the coordinates of effected atoms, and consequently will
give the user the results he expects,

The programs which involve changes in backbone angles,
however, are organized in a fashion basically differing from
those relating to residue angles.Since the subprogram COORD
calculates coordinates of atoms based on the current values
of backbone angles (as represented in the elements of the
ANG array) an explicit change in an ANG element will
ultimately result in a corresponding alteration of the
coordinates of the proper subset of atoms. Consequently, we
would expect the SOLVE package, for example, to give us the
proper results by chinging the ANG array directly.

There was, however, a separate motivation for isolating
the rest of the system from direct access to the ANG array.
It happens that large numbers of illegal interations between
adjacent atoms can be avoided by placing constraints on the
values that backbone angles are allowed to assume. The
violations which we seek to avoid, of course, could be
treated by the more laborious methods of LISTQQ; but our
checking the angle values for violations allows us to
substantially decrease the 1oad on LISTQQ by stipulating
that the atoms Q1 and Q2 need not be tested for interaction
if they are sufficiently near one another in the topology of
the molecule (see the discussion of QBACK in the section on
MAKPRO).

The violations which we seek to prevent by these
methods may be detected by examining each pair of angles
(consisting of the two bond angles adjacent to the carbon
alpha) for a disallowed combination. This test is
implemented by the subroutine ANGVL, which makes use of a 72
by 72 matrix whose elements each comprise 1 binary bit; the
allowed values of the angle pair is coded into these 1l-bit
elements. ANGVL, which has an argument specifying the type
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of amino acid (since the configurations allowed vary with
the acid type) and 2 arguments for the values of the
indicated angles, performs a very fast table lookup and
returns a boolean value specifying whether the values
indicated are in violation.

Another routine subordinate to SETANG is CHANG, which
is used to determine thefraction of a requested change in a
pair of ANG values is consistent with an allowed angle
configuration. CHANG, whose arguments comprise the pair of
angles to be changed, the amount by which each is to be
changed, and the type of the related amino acid, first
determines whether the changes resuit in an allowed
configuration. |If they do, the function returns the value 1
{the fraction of the requested change allowed); otherwise,
an exponential search is performed to find the maximum such
fraction which still causes no angle violations; the
following outlines this procedure, where DANG1l and DANG2 are
the increments that the calling program would like to apply
to the angles ANGl and ANG2:

1) A test is performed to insure that the original ANG1
and ANG2 values are valid; an error return is taken if
they are not. Obviously, an exponential search for
the transition between allowed and disallowed states
makes little sense if there is no such transition.

2) DANG1l and DANG2 are halved, and the resulting
increments are applied to the angles (i.e.,
MG1=ANG1+DANG1, etc).

3) If the new ANGl ANG2 pair represents a disallowed
configuration, the signs of DANG1l and DANG2 are
changed (i.e., DANG1=-DANG1l, etc).

3) Control returns to step (2) until the iteration has
been executed a fixed number of times; note that this
fixed number is exponentially related to the maximum
difference between the resulting DAMG1l, DANG2 pair and
the actual transition value between allowed and
disallowed regions in the ANG1, ANG2 space. A ratio
between the original DANGl and the amount by which
ANGl was actually changed is resturned as the value of
CHANG. The original elements of the ANG array are not
changed by CHANG: ANGl and ANG2 are copies of these
values.

We may envision the domain of the CHANG arguments as an ANG1
ANG2 plane, with general regions corresponding to valid
configurations as well as other regions which are not
allowed. The current ANGl, ANG2 values may be represented
as a point (presumably in a valid region) on the plane, and
the desired new values correspond to a second point; CHANG
determines a point on the line connecting these extremes
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which corresponds to a valid configuration. The restriction
that CHANG only considers ANG1l, ANG2 value pairs which are
on this line results from one heuristic argument; our
apparent lgnorance of the possibility that the line
intersect two disjoint valid regions reveals another. The
first stems largely from the economics of performing a
search in two dimensions, rather than one; the second is a
compromise with our temptation to attack a classic problem
of artificial intelligence. The fact that CHANG first
attemts to make 100% of the requested change and the widely
varying size of the steps which it takes permits it to skip
over disallowed regions in some instances, so that there is
at least some hope that it may "escape'" from one allowed
region into another disjoint one. This capability leads us
to prefer the present CHANG algorithm to a continuous hill
climbing approach, since in fact our actual map of allowed
ANG1, ANG2 regions does contain several completely disjoint
valid areas. The size of the step in ANGl and ANG2 is,
however, related in complex ways to the size of the
resulting steps in the X,Y, and Z coordinates of atoms,
hence it is unclear in any given SOLVE operation whether
such an escape is feasible. A future iteration of the
present package might consider these complications in more
detail.

There are two major functions which SETANG performs.
The first involves finding the maximum requested angle
change (the element of the DANG array whose absolute value
is the greatest) and comparing it with a fixed maximum,
This is to check the assumption of SOLVE that angle changes
resulting from any given step are small; this assumption is
made, as mentioned in the discussion of SOLVE, to linearize
the calculations. |If the maximum requested DANG is, in
fact, greater than our parameter allows, then a message is
printed and all of the angle changes are scaled down by a
constant factor such that the maximum DANG becomes the
parametric maximum. The argument for scaling down the DANG
elements relates again to our linear assumption, and the
message is printed so that the user will know to decrease
the step (in X, Y, Z) requested from the SOLVE system.

The second function of SETANG is to recover from
requested angle changes which place any pair of backbone
angles in violation of the angular constraints mentioned
earlier in this section. The current SETANG algorithm moves
each angle through as much of the requested change as is
possible without causing angle violations. A previous
algorithm, discarded in favor of the present one, found the
angle which was the most restricting and then scaled all
DANG elements by a constant factor calculated to render this
one corrigible. The net result was that all DANGs were
continually being scaled to nearly zero, and progress was
consequently very slow, The empirical success of the
present scheme suggests that the value of each angle change
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is to a significant extent independent of each other: that
if A and B are useful as a combination then each will
probably be useful alone.

The present algorithm performs the further step of
noting, in the WORK array, those angles whose variation was
restricted; this causes them to be considered fixed by the
SOLVE routines in their next iteration. This heuristic
measure has several obvious nuances, some of which have been
explored: the number of iterations for which restricting
angles are held fixed may be varied or made a function of
the degree of restriction, an algorithm may be executed
which attempts to "jump" over the restricting disallowed
region, etc.
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2.6 S

The problem of preventing pairs of atoms in the model
from approaching each other within some critical radius is
probably the most time consuming function of the computer
system and consequently the one for which heuristic
approaches have the most potential. The brute force
checking of each atom against each other results in a total
of N squared comparisons for N atoms, clearly an impractical
procedure. The first obvious step of checking only in one
direction (since the distance between Ql and Q2 is the same
as that between Q2 and Q1) gains us only a factor of 2.

The scheme we have adopted to speed up this pair
checking procedure involves dividing the global X,Y,Z
coordinate space up into cubes of a fixed size, and listing
the subset of atoms contained in each cube. Then the
coordinates of each atom Q need only be tested against other
atoms the cube containing it, as well as those in
immediately adjacent cubes. The fact that each atom is
tested against those in a fixed number (specifically, 27) of
cubes changes the basic N squared dependence of the
computation time. The exact functional dependence depends
upon the way in which the atoms distribute themselves among
the cubes; the two extremes are:

1) The density of atoms might remain constant; i.e., the
total space occupied by the molecule might be
proportional to.the number of atoms, the average
number of atoms per cube remaining constant, In this
case, since there is a fixed average number of
comparisons per atom (27 times the average number of
atoms per cube) then the total computation time should
be very nearly propoirtional to N. Thus, in this
lTimit, the LISTQQ function is real time computable.

2) The total volume occupied by the molecule might remain
constant, the atomic density increasing as N. In this
case, the number of comparisons would still increase
as the square of N, the cubing scheme effecting only a
constant factor.

In fact, we can choose our cube size such that the L1STQQ
operation is nearly approximated by the first limit; the
size is adjusted so that very few atoms are likely to be in
one cube, and the number of empty cubes is hkigh. The
opposing consideration of the overhead involved in creating
and accessing a cube with very few atoms in it curbs our
temptation to make the cubes infinitesimal; there is an
empirically derived optimum cube size (about 5 angstroms),

The variable number of cubes and the undetermined
number of atoms in each cube makes a static allocation of
cube storage impractical. The techniques of list
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processing, however, allow us to substitute a fixed storage
overhead of about 50% (taken by pointers) for the several
orders of magnitude of inefficiency anticipated due to space
allocated empty cubes, etc. Space for a particular cube is
not required until an atom is placed into that cube, and the
total space alloted need only accomodate the actual number
of atoms. Since each cube is not indexed by a fixed
address, a search must be performed to locate any specific
cube; however, the list structure is arranged such that each
coordinate of the cube may be located as a separate
operation by searching along a separate linear list. The
time spent searching, then, increases as the cube root of
the total number of atoms, and in actual operation it
appears negligible in comparison to the time spent testing
atom pairs.

The actual list structure is handled by a package of
subprograms, written in assembly language, called CUBE. The
structure, a typical segment of which is diagrammed in
figure 3, is composed of two types of list cells:

1) A cell occupying two 36-bit words, and with three
components:

IJK.VALUE, occupying the decrement portion of the
first word, used to specify the |, J, or K
coordinates corresponding to each level of list.

NEXT, occupying the address portion of the first
word, contains a pointer to the next cell on the
same level of list structure; this component
contains zero in the last cell at any level.

SUBLIST, occupying the second word of the
cell,specifies a list substructure attached to the
current cell. As we shall see, the SUBLIST
component of a cell actually functions as the
first cell in the next lower level of list
structure, and contains NEXT and I1JK.VALUE
pointers required by that function.

2) A cell occupying one 36-bit word, with two components:

Q.NUMBER, specifying the index of the atom
corresponding to this cube; and

NEXT, pointing to the next cell on this level of
list structure.

Since this type of cell is only used on the lowest
structural level, there is no provision for sublist
pointers.
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The overall structure has four levels. The first level has
one 2-word cell for each | value represented; they are
ordered in their linear sequence in ascending values of 1I.
The value of | corresponding to each cell on this level
occupies the |JK.VALUE component of that cell. The NEXT
component points to the next cell on the same level, i.e.,
the cell containing the next higher represented | value.
Associated with each cell, and hence with each | value, is a
list substructure; a pointer to this sublist is contained,
for reasons which will become apparent in the ensuing
discussion, in the SUBLIST component of the next sequential
cell, The second level of the structure, or the top level
of the substructure pointed to by the SUBLIST components of
the first level, has an identical format with each cell
corresponding to one of the represented ¢ values at the 1|
value whose sublist it occupies. Thus, there is one such
cell somewhere in the overall structure for each represented
(1,J) pair. The SUBLIST components of this J level point,
in turn, to a third or K level of lists whose format is
identical to that of the first two levels. There exists,
then, one 2-word cell at this third level for each
represented (1,J,K) triplet, and hence for each non-empty
cube, The SUBLIST components of each K level cell point to
the list of atoms associated with the (I, J,K) triplet
corresponding to the previocus cell; thus, the SUBLIST
components in each of the top 3 levels are deferred to the
next cell in an identical manner. The fourth level,
comprising the actual lists of atoms in each cube, is
unstructured and hence requires only a l-word cell. The
Q.NUMBER of each such cell contains the index of an atom
occupying the cube associated with its host list, and the
NEXT component points to the next cell in this list.

Since, as we have noted, the SUBLIST component (and
hence the second word information) associated with each cell
in the top three list levels is contained in the next
sequential cell in the list, the first cell in each of these
levels need not comprise 2 36-bit words. As a consequence,
the SUBLIST component, which has been allocated an entire
36-bit word, may contain the first cell in the sublist
itself rather than the pointer to the first cell preferred
by conventional list processors. The reason that this
technique is practical for our purposes but not for more
general-purpose list processing involves the complexity
inherent in any storage collection system which allows
varying cell size. Since our application does not require
erasure of list substructure and recovery of the space used
by it, we can allow ourselves the luxury of making odd-sized
cells out of free storage in a cavalier fashion.

For searching list structure, CUBE makes use of an
internal subroutine FIND(VALUE). This program is entered
with a global variable INDEX pointing to the start of a
ltevel (1,J, or K) of list structure; it takes either a
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success exit, with INDEX pointing to the start of the next
lower level corresponding to the specified VALUE, or a
failure exit if VALUE is not represented in the structure.
it functions as follows:

1) The word pointed to by INDEX is examined: since this
is the first word of a 2-word cell, it contains
components NEXT and 1JK.VALUE; and NEXT.

2) VJK.VALUE is campared with VALUE:

a) if IJK.VALUE is greater than VALUE, the failure
exit is taken - since the 1,J, and K values are
arranged in ascending order, we have passed the
appropriatepliace for a cell corresponding to
VALUE,

b) If VALUE is equal to IJK.VALUE, NEXT+1l (a pointer
to the second word of the next cell) replaces
INDEX and control returns. This is the success
exit: |INDEX now points to the first word in the
next list level,

c) Otherwise, 1JK.VALUE is less than VALUE, and the
search must be continued. |If the NEXT component
is zero, we have reached the end of the level, and
the failure exit is taken. Otherwise, the NEXT
component replaces index, and control returns to
1) above.

An entry point to the \ UBE package, INTEST(!,J,K,ARRAY) uses
the routine FIND to return, in the array ARRAY, a list of
atoms in the cube specified by 1,d, and K:

1) the global variable INDEX (which is, in our
implementation, an active register) is made to point
to the first word in the overall list structure, i.e.,
to the first word of the | level.

2) FIND is called with the argument |. If the failure
exit of FIND is taken, the cube does not exist, and a
value of zero is returned to the calling program. |If
the success exit is taken:

3) FIND is called with the argument J, causing the J
level of the structure to be searched. Again, the
failure exit causes INTEST to return zero.

4) FIND is again called with the argument K. A failure
exit causes the return of zero; the success exit
leaves INDEX pointing to the first cell in the fourth
level.
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5) An integer ARRAY.INDEX is initialized to zero, and the
list of atoms is scanned:

6) ARRAY(ARRAY,INDEX) is set to the Q.NUMBER component of
the cell pointed to by INDEX; ARRAY.INDEX is
incremented.

7) If the NEXT component of the cell pointed to by INDEX
is zero, the current value of ARRAY.INDEX, specifying
the number of atoms in the cube (and the number of
entries in ARRAY) is returned to the caller.
Otherwise:

8) The NEXT component of the word pointed to by INDEX
replaces INDEX, and control returns to step (6) above.

A similar function, BIGTST(!,J,K,ARRAY) returns a list of
atoms in the larger cube consisting of a 3 by 3 by 3 volume
of smaller cubes and centered on the cube at 1, , and K.
BIGTST functions in a manner identical to INTEST, repeating
the search 27 times.

There are two entries which relate to the building of
the list structure: NUCUBE, which resets certain variables
which effectively '"erase" any previously existing structure,
and MOCUBE(QTO) which adds all atoms not previously included
into the list structure thru atom QTO. The fact that we can
specify that the list structure is to include only those
atoms below a particular index allows us to add atoms
incrementally to the lists, checking each atom only against
those others which are lower in Q number. This avoids the
redundancy of checking first Ql versus Q2 and then Q2 versus
Ql, and reduces the total number of comparisons by a factor
of 2, MOCUBE uses an internal subroutine, PLACEU(VALUE),
which performs a function analogous to that of FIND except
that instead of taking a failure exit if an appropriate cell
is not found, one is inserted:

1) The word pointed to by INDEX is examined, as in FIND.
If VALUE is the same as 1JK.VALUE, INDEX is adjusted
in an identical manner, and control is returned; if
VALUE is greater than 1JK.POINTER, then:

a) If the NEXT component of the cell pointed to by
INDEX is non-zero, it replaces INDEX and control
returns to (1),

b) Otherwise, a new cell must be spliced onto the
end of this level. Control goes to (2a) below:

2) If, however, VALUE is less than |JK.,VALUE, the
following steps are performed to splice a new cell
into this level:



PAGE 53

a) A pointer to the contiguous block of free storage
is incremented by 2, and the two words to which it
previously pointed are thus allotted to the new
cell,

b) The entire first word of the cell pointed to by
INDEX replaces the first word of the new cell,.

c) The second word of the new cell is set to zero,
specifying that the sublist is as yet empty.

d) The NEXT pointer of the cell pointed to by INDEX
is set to point to the new cell.

e) The 1JK.VALUE component of the cell pointed to by
INDEX is adjusted to the value VALUE. Thus, the
new cell has replaced the one pointed to by INDEX;
this cell, in turn, now corresponds to our new
level of lists.,

f) INDEX is made to point to the second word of the
new cell, which will become (on the next call to
PLACEU) the first cell in a new level of list.
Control returns to the calling program.

A parameter internal to the CUBE package, QFROM, keeps track
of the last atom to be included in the list structure.

Thus, in a call to MOCUBE, atoms between QFROM+1 thru QTO
are added to the structure, each by 3 successive calls to
PLACEU:

1) The index QFROM is incremented. The !,J, and K

2)

3)

L)

coordinates of the cube containing the atom indexed by
QFROM are determined by a call to the routine GRID,
which converts between the floating point X(Q), Y(Q),
and Z(Q) values to the integers |, J, and K. GRID,
which is also an external entry point, scales each
coordinate by dividing by the cube size and truncates
the results into integers. Large constants are added
to these to insure that they are non-negative, and the
results become the |, J, and K values corresponding to
this atom.

INDEX is set to point to the first word of the first
level of list structure.

Three successive calls, PLA (EU(I), PLACEU(J), and
PLACEU(K) adjust INDEX to point to the first word of
the proper fourth-level list. Then:

A new l-word cell containing the current atom Q is
spliced into the beginning of this list of atoms:
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a) If the Q.NUMBER component of the word pointed to
by INDEX is zero, then this level must be empty.
The Q.NUMBER component of this word is set to Q,
and control goes to step 5).

b) Otherwise, a new l-word cell is made by
incrementing the pointer to free storage., The
contents of the word pointed to by INDEX replace
the contents of this cell.

c) The Q.NUMBER component of the cell pointed to by
INDEX is set to Q; its NEXT component is made to
point to the new cell, Our new Q now occupies the
first cell on this level; thus, the Q numbers
along a given fourth level list will be in

descending order.

5) If QFROM is equal to QTO, all of the indicated atoms
have been included; control returns to the calling
program., Otherwise, control goes to step (1) for the
next atom,

In addition to the CUBE package, LISTQQ calls another
function (supplied as a LISTQQ argument) to handle the
violating pairs once they have been discovered. The only
such function presently available treats such pairs by
making appropriate entries into the LQ1l, LQ2, and LDIST
arrays, thereby requesting that these atoms be moved a
respectable distance appart. This function is designated
PAIRVL, and its arguments are SEPSQ, the squared distance
separating the atoms, and Q1 and Q2, the indices of the
interacting atoms. PAIRVL first makes a test to determine
precisely whether SEPSQ is less than the prescribed minimum
squared distance for the particular types of atoms involved;
a table of such minima (with an entry for each unique
combination of two atoms) speeds up this test. |If they are,
in fact, in violation, a request is made to SOLVE (via the
LQl, LQ2, and LDIST entry) to have them move so that they
will be the minimum distance from each other,

LI1STQQ uses the QBACK entries in the ATOM array (see
the discussion of MAKPRO) to determine in which stage of
construction of the total list structure each atom should be
tested for violations. Certainly, one could successively
test each atom, and then add it to the list structure; this
would insure that no atom was tested for violations with
itself or with higher numbered atoms. Each Q1l, Q2 pair
would thus be tested only once, a desirable situation;
however, to cut down on the time spent checking pairs, we
try to take advantage of other physical constraints on the
model which prevent atoms which are very close to each other
in the connective plexus from approaching each other. We
thus assert that each atom Q will not interact with other
atoms in a surrounding topological region of the molecule,
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e don't bother testing such pairs. Although we have
sion for specifying such a reglon for each atom in the
ule (there is one ATOM element, hence one QBACK

nent, for each atom) our current use of this provision
fies identical QBACK regions for each atom in a given
ue. Our current initialization of these components
nts pair checking in adjacent residues (again, see
ssion of MAKPRO, esp. the section describing MOLE).

The operation of LISTQQ is summarized below:

NUCUBE is called to initialize the CUBE package. An
integer AA,POINTER, which will point to the amino acid
currently being added, is set to 3 (since the first
two amino acids, like any two adjacent amino acids,
are not tested against each other by the argument
given above).

A variable Q.NUMBER, specifying the atom currently
being tested, is set to indicate the first atom in
amino acid AA,POINTER, namely, QCALPH(AA.POINTER)=-2.

A call to MOCUBE(QBACK(ATOM(Q.NUMBER))) adds to the
list structure all atoms contained in amino acids
before AA.POINTER-1.

A call to GRID finds the |, J, and K coordinates of
the cube containing Q.NUMBER. BIGTST is called to
make a list of atoms in the 27 cubes surrounding atom
Q.NUMBER.

Each of the atoms QLIST returned by BIGTST is checked
against atom Q.NUMBER for possible violation:

a) The square of the distance separating atom QLIST
and atom Q.NUMBER is calculated (via subroutine
D1SQ(Q1,Q2)) by summing the squares of the
differences between each of the coordinate values

b) A preliminary rough check is made by comparing
this distance against a parameter MAXDSQ. If the
squared distance exceeds MAXDSQ, no further tests
are made between this pair. Otherwise, PAIRVL is
called to make precise tests and correct any
violation,

6) {f Q.NUMBER does not point to the last atom in amino

acid AA.POINTER (i.e., if it is less than
QCALPH(AA.POINTER+1)-3) then it is incremented and
control returns to step (4) above.

7) If AA.POINTER points to the last amino acid in the

molecule (as specified by the zeroeth element of the
AA array) then control returns to the calling program.,
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Otherwise, AA.POINTER is incremented and control goes
back to step 2) above.

Thus, the input to the overall LISTQQ function is the X, Y,
and Z atomic coordinates, and its output is a list of
changes to be made in interatomic distances.
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1.2,7 WIRE

WIRE is the name of the entry to a system of programs
responsible for transmitting picture data to the satellite.
The top level of WIRE deduces, from user supplied
parameters, the nature of the required display, and
constructs the "stick figure'" representation of a relevent
portion of the molecule. |In this process, calls are made to
a lower level system of subprograms (e.g., VVEC, IVEC) which
are responsible for reformatting the data and interfacing to
the telephone line. The top WIRE level, then, contains
information relating to the structural properties of the
various amino acids. The user-specified parameters which
influence the operation of WIRE include the following:

1) The parameters BEG and END allow the user to specify
the region of the molecule to be viewed; they are set
to the first and last amino acid sequence numbers,
respectively, to be included in the display.

2) The parameter SCALE is a floating point quantity
relating the distance between atoms in the
3-dimensional display space to their actual
interatomic distance; hence, increasing SCALE
proportionately increases the size of the displayed
figure.

3) The parameter START specifies the sequence number of
the atom on whieh the displayed figure is to be
centered. The coordinates of the atom thus specified
map into the fixed point at the center of the display
space.

4) the boolean parameters LTR and NUM determine the type
of labels to appear on each residue. NUM specifies
whether the sequence number is to appear; LTR
specifies whether the 3-letter abbreviation of the
amino acid name is to appear.

5) The BACK array, containing an integer element for each
amino acid, specifies the amount of detail in which
the segment of backbone associated with each amino
acid is to be drawn; its values range from 0 to 3, 0
specifying the least detail.

6) The RES array, containing an integer for each amino
acid, specifies the amount of detail to be included in
the display of each residue. Its elements range from
0 to 2.

7) The boolean parameter BLOWUP may be set to request a
cpecial, detailed display of a particular region of
the molecule. The mechanism triggered by this request
makes use of the cubing programs of LISTQQ to



PAGE 59

partition the space occupied by the molecule into
cubes. BLOWUP requires the specification of the

following additional parameters, each of which is
ignored when the BLOWUP display is nor requested:

a) QCTR is an integer specifying the sequence number
of an atom whose cube is to be at the center of
the display space.

b) NBOXES is an integer specifying the number of
cubes in each direction for which the display is
to extend beyond that containing QCTR. Thus, the
display space will include all atoms in the large
cube, each of whose sides extends over 2*NBOXES+1
small cubes.

c) SIDAA is an integer specifying the length of the
amino acid chain which is to be included in the
display beyond those amino acids within the large
cube (above). This parameter allows the user to
include in his BLOWUP display a topological region
of the molecule, independent of its actual
position, ’

In its normal mode of operation (i.e., not BLOWUP) the

top level of WIRE consists primarily of a loop in which the
display corresponding to each successive amino acid is
constructed. This major loop is outlined below:

1)

2)

The iteration variable, I, is set to the first amino
acid to be displayed (that specified by BEG). A call
to the subroutine NEWPIX signifies, to the display
subprograms (and hence to the satellite) that a new
picture is being built.

The 1th BACK element is examined, triggering one of
several degrees of backbone detaijl:

a) BACK(1)=0: The backbone segment of this amino
acid is not drawn., An invisible line is, however,
drawn to the carbon alpha (by the routine IVEC) in
order to update the beam position for labels and
residue displays.

b) BACK(I)=1: A single visible line is drawn between
the carbon alpha of the I-1th amino acid and the
carbon alpha of the |Ith residue. This rough
schematic representation is useful to convey the
gross shape of large sections of the molecule
without cluttering the display with unnecessary
detail.

c) BACK(1)=2: visible lines are drawn between the
I-1th carbon alpha and the subsequent carbon,
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between the carbon and the nitrogen, and finally
between the nitrogen and the {th carbon alpha.
This display preserves the connectedness of the
backbone, ignoring only the superfluous hydrogens
and oxygen.

d) BACK(l)=3: as in (c) above, but the hydrogens
attaching to the carbon alpha and the nitrogen as
well as the oxygen attaching to the carbon are
drawn. [Fach of these atoms reguire a visible line
in addition to an invisible line to preserve the
connectivity of the backbone.

3) Each of the backbone displays is arranged so as to
leave the beam position at the coordinates of the Ith
carbon alpha. At this point, an internal subroutine
RESD is called to attach the Ith residue in accordance
with the value of the 1th element of the RES array:

a) If RES(l) is zero, no lines are drawn to
represent the residue; control returns from the
subroutine RESD,

b) If RES(l) is 1, an internal table is consulted
which selects, on the basis of the type of the lth
residue, the single atom at the end of the side
chain furthest from the backbone. A visible line
is drawn to this point. This type of residue
display affords a rough idea of the space occupied
by a residue without complicating the display to a
great extent.

c) If RES(l) is 2, all of the residue atoms are to
be included in the display. 1In this case, RESD
makes use of an internal table of instructions
necessary to draw each type of residue. For each
residue, the section of the table (named CON)
which applies to that amino acid type is obtained
from an array of pointers (PTR); successive
elements of that section of CON are then
interpreted as primitive move and draw commands.
Throughout this interpretive loop, a variablie J is
updated to keep track of the residue atom last
added to the picture; . is set at the start of the
loop to the sequence number of the lth carbon
alpha. The legal . ON elements and their effect on
the picture are summarized below:

0 causes J to be set to the lth carbon alpha
and an invisible line to be drawn to this
carbon alpha.

1 causes a visible line to be drawn to the
J+lst atom, and J to be set to J+l.
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between the
Jth and

to be drawn
between the
to J+2,

2 causes visible lines
Jth and J+1 atom and
J+2nd atom; J is set

between the
Jth and
and J+3rd

3 causes visible lines to be drawn
Jth and J+1lst atoms, between the
J+2nd atoms, and between the Jth
atoms; J is set to J+3,

between the
Jtlst and
and J+3rd

4 causes visible lines to be drawn
Jth and J+1lst atoms, between the
J+2nd atoms, and between the Jth
atoms; J is set to J+3.

8 causes an exit from the routine RESD, and

control to be returned to the calling
program.
-n, where n is an integer, causes a line to be

drawn between the Jth atom and the J-nth
atom, visible or invisible depending on the
next element of the CON array. The latter
A ON element is skipped; i.e., it is not
interpreted as a move or draw command. J
set to J-n.

is

99 causes a line to be drawn between the Jth
atom and the nth atom in the residue
(relative to the carbon alpha), where n
the next element in the CON array. The
visibility of this line is specified by the
CON element following that containing n;
these two CON elements are skipped by the
interpretive loop., J is set to the sequence
number of the nth atom in the residue.

is

100 causes the chain of commands being
interpreted to be interrupted, and commands
to be interpreted starting with the nth CON
element, where n is the contents of the next
successive CON element. Thus, \ ON(1)=100 is
analogous to a transfer instruction.

+n, where n is an integer other than those
specified above, causes a visible line to be
drawn between the Jth atom and the nth atom
in the residue (relative to the carbon
alpha). J is set to the sequence number of
this atonm.

If NUM is

set, a label

is added to the display (by the routine

SHGL) specifying the 3-digit sequence number of the

current amino acid. If LTR

is set,

the 3-character
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abbreviation (obtained by a call to ATTRIB) of the
amino acid name is added to the 1abel,.

5) If | specifies the last amino acid to be included in
the display (i.e., if I=END) then the subroutine PLOT
is called (to specify that the picture building is
completed) and control returns to the calling program.
Otherwise, | is incremented, and control returns to 2)
above.

The lines drawn in the above algorithm are implemented
thru the internal subroutine LIN, which draws a line
(visible or invisible) from the current beam position to the
position of a atom whose sequence number is specified as an
argument. LIN, in turn, calls upon the display programs
VVEC and IVEC, described in a later paragreph in this
section, to draw the actual vectors. LIN is responsible for
translating the picture by the coordinates of the atom
specified by START (or, in the case of a BLOWUP display, by
QCTR) and for scaling the vectors by SCALE.

In the case of a BLOWUP display, the machirery
described above is used in the same manner; however, its use
is prefaced by a call to the internal subprogram QPAND which
presets the BACK and RES arrays so as to suppress the
display of those amino acids not within the blowup region.
In particular, (QPAND does the following:

1) The BACK and RES arrays are zeroed. The cubing
subroutines of the LI1STQQ package (see 7.2.6) are
called upon to find the 1,J, and K coordinates of the
cube containing the atom QCTR.

2) For each i,j,k such that 1-NBOXESKi<!+NBOXES,
J-NBOXESSj<J+NBOXES, and K-NBOXESCkSK+MBOXES the
followin steps are performed:

aJ The list of atoms in the cube (i,j,k) is obtained
thru a call to INTEST.

b) For each atom on this list, a non-zero value
(specified by the user set parameters /LLBAK and
ALLRES) is placed in the RES and BACK elements
corresponding to the amino acid containing the
atom,

3) Finally, a loop determines the first and last amino
acid (by sequence number) having non-zero BACK
elements; then the BACK elements of all acids from the
first-SIDAA thru the last+SIDAA are set to the
non-zero value. Similarly, the RES elements of the
same residues are made non-zero.
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The second level of display programs, those called by
WIRE, include the subroutines NEWPIX, VVEC, IVEC, PLOT, and
SHGL. These programs provide the interface to the satellite
display, translating data between the floating point
internal representation of the main processor and the
truncated integer representation which is used in the
transmission of the data over the telephone lines. One
major function of these programs is to decrease the volume
of data to be transmitted to the satellite, thus minimizing
the time spent in picture transmission. To this end, the
components of vectors are sent over the line to oniy 6 bits
of accuracy. To avoid the accumulation of errors along an
additive chain of vectors thus truncated, the dispiay
subprograms simulate the process by which they are
ultimately added at the satellite. The programs are thus
aware, at any point during the transmission of a picture, of
the beam position both in terms of the floating point
components which the calling programs have supplied and in
terms of the truncated integers which have been sent to the
satellite. Consequently, when the routines VVEC (to draw a
visible vector) and IVEC (for an invisible one) are called,
their floating point arguments (the vector components) are
added to the floating point program variables FX, FY, and
FZ. These variables now contain the coordinates of what the
calling prcgram 'assumes' the beam position to be, based on
an accumulation of vector components. These values are
then compared with the integers IX, 1Y, and 1Z which
represent the beam position according to the information
which has been sent to the satellite, and the calculation of
the vector sent to the satellite is based on the difference
between these sets of coordinates. In particular, the
vector (FX-IX,FY=-I1Y,FZ-1Z) with components rounded to the
nearest integer is sent to the satellite. ‘After each vector
is sent, its components are added to IX, 1Y, and 1Z to
simulate the change in beam position resulting at the
satellite.

The display hardware of the satellite, however,
constrains us to limit the magnitude of each component of
the 2-dimensional vectors which we ask it to draw; longer
lines consequently must be built up from short vectors.
Since the 2-dimensional lines which appear on the CRT face
are projections of arbitrary rotations of the 3-dimensional
figure, we must limit the magnitude of the 3-dimensional
vectors so that their longest projection is within the
maximum allowable magnitude for 2-dimensional vector
components. This amounts to a limitation on the magnitude
of the vectors sent over the line by the VVEC-IVEC system;
and in order to take full advantage of the 5 magnitude bits
transmitted for each vector component, it makes sense to
scale the transmitted vectors so that the maximum magni tude
is that of the vector with 2 zero components and one
containing a sign bit followed by 5 ones.
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Before the vector (FX-IX,FY-1Y,FZ-1Z) is sent to the
satellite, then, its magnitude is compared with the maximum.
If it is too long, it is scaled so that it retains the same
direction but is less than the maximum magnitude, the result
being sent to the satellite; IX, IY, and |Z are then updated
by this scaled vector. The difference vector (FX-1X, etc)
is again calculated, and the process repeats until the
difference vector is within the allowed magnitude,

The other functions of the display subprogram are
straightforward, generally involving the sending to the
satellite of control characters; these characters and the
format of transmitted data is discussed in more detail in
section 9.2.5. NEWP!X zeros the program variables (FX, 11X,
etc) and sends a control character; PLOT sends a control
character, insures that the main processors output buffer is
emptied (i.e., that all characters belonging to the picture
have been sent) and causes the special trap character
(discussed in 9.2.4) to be sent thru the message channel
(section VIIl). The entry SHGL, called to add labels to the
display, sends a control character followed by the
characters in the label (converted to the character set used
by the display hardware). ' :

In addition to the normal mode of operation, in which
the data transmitted to the satellite consists of a mixture
of control characters and vector components, facilities are
provided by the display subprograms for the transmission of
the vector components alone. During such operation, the
satellite assumes that the control information is identical
to that transmitted for the previous picture; hence, this
mode of transmission is useful only for the transmission of
a revised instance of a previous configuration. Only the
values of the component vectors may change from each picture
to the next. Such transmission is initiated by a call to
REPIX instead of the NEWPIX call; subsequent calls to VVEC
and IVEC then result in the transmission of just the
component values, and subsequent calls to SHGL are ignored.
This technicque results in considerable reduction of the
transmission time, depending upon the nature of the picture;
displays with many labels frequently are transmitted in less
than half the normal time. WIRE calls REPIX (rather than
NEWP1X) automatically each time it is called with values of
the display parameters identical to those at the time of the
last call,
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Vitl. Interconnection of Processors

The actual medium by which the main processor and
satellite communicate is a voice-grade telephone line,
multiplexed so as to simulate full duplex operation. The
nominal rate of information flow, in either direction, is
1200 bits per second, although as we shall see, a
substantial fraction of this total data flow is used for
control information. Transmission in each direction is
character synchronous; consequently messages must be padded
with null characters so that the line is never idle in
either direction.

At the most basic level, then, there are two
independent information paths between the machines, one in
either direction., Data thus transmitted is organized into
messages, each containing a maximum of about 60 characters
of real data in addition to several characters of control
information; each charactasr, in turn, consists of 10 bits of
which 6 are data. The actual transmission of a message from
one machine to the other involves several preliminary
exchanges to establish the fact that the sender has a
message and that the reciever wants it, as well as a final
exchange to determine whether the message was recieved error
free. These auxilliary exchanges utilize an elaborate
lexicon of control characters and conventions for their use,
as well as unwieldy programs in either machine for their
implementation., In the light of modern information theory,
this scheme has no very impressive defense; indeed, it
doesn't hold up very well under the scrutiny of a modicum of
common sense., Yet it does perform, however inefficiently,
the function required by out programs: it provides for
bilateral communications between our processors on an
interactive basis. This last qualification (that the
communications are interactive) allows us freedom in the
organization of the programs running on each processor; it
allows that the functions of each are asynchronous, and that
the process won't be irretrivably bogzled by one machines
arrival at the point in its algorithm where it is ready to
send data before the other arrives at the corresponding
point where it is ready to accept data. In the current
scheme if one processor is ready to send before the other is
ready to recieve, the first processor goes into a waiting
state, and no data appears on the line until the second is
ready. Such an arrangement is critical to an organization
of the software (on either machine) which relegates the
servicing of input and output devices and the buffering of
their data to an independent supervisor.

The archetecture of the main processor's supervisory
program is such that messages arriving at the satellite are
distinguishable as to their source; the format of messages,
intended normally for printing on the remote terminal’
printer, is slightly different from that of data explicitly
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transmitted by the user programs. Thus the information path
from the main machine to the satellite is multiplexed,
allowing in theory two logically independent channels of
communication: one for messages directly to the user (e.g.,
via teleprinter) and another for binary data to be decoded
by the satellite programming. In fact the logical
independence of these channels is subject to several
restrictions; the most striking among these is that the
filling of the satellite buffers corresponding to one
channel effectively blocks transmission via the other.
Since a finite (indeed, small) amount of the satellite
memory is allocated to the preliminary buffering of input
data and messages, it is possible for the satellite to be
removing data, for example, from one buffer while the other
is filling; when the latter buffer becomes full, the
satellite cannot accept from the main processor any further
messages (of either variety) until the satellite programs
empty the full buffer. The main processor program, then,
cannot mix indescriminately messages and data unless the
satellite programs are prepared to reorganize the mix.
Since it is impractical to impose any new restrictions on,
for example, the library functions of the main processor,
the burden falls largely on the satellite programming.
Thus, the satellite programmer must avoid the temptation to
enter, at the start of the transmission of a picture, a loop
which does nothing but read data and build the picture and
which is left only when the picture is completed: since
messages may be mixed with the picture data, the message
buffer might overflow before the completior of the picture,
leaving both channels blocked and the satellite hopelessly
hung up.
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IX. Satellite Programs and Data

The satellite programs are divided, in vague analogy to
the similar division of the main processor programs, between
those operating in a '"supervisory' capacity and those those
running as ''user'" programs. This distincticn was not
emphasized in the case of main processor programs, since
supervisory programs on large (especially time-shared)
processors are taken for granted as a part of the operating
environment of the user programs, since no features of the
main supervisor uniquely or subtly effected the basic
operation of our system, and since the main processor
supervisor is the subject of excellent documentation by its
archetects. A firm dichotomy between supervisory and user
functions is less conventional, however, on small machines,
and its operation is substantially and deeply imbedded in
the function of our small machine as a satellite.

Y,1 Supervisory Functions

The principal justification of a supervisor at the
remote satellite is that it provides a uniform means for
controlling 1/0 devices from program to program. Since the
major i/0 devices are tied together through the interrupt
facility, the programs for handling each device are not
entirely independent; hence the |/0 programming constitutes
an intricate and complex package which is not easily
separable into independently functioning modules. It is
convenient to have the entire 1/0 package operating as an
integrated program, with standardized calls to perform the
various input and output functions; this relieves the
satellite programmer of the burden of worrying about details
of 1/0 management each time he writes a new program, and
tends to standardize the use of each device. Furthermore,
such a system isolates the user program from hardware
changes: when the configuration of the /0 hardware is
modified, a corresponding change need be made in only the
programs comprising the supervisor.

The handling of the various devices by the supervisor
varies somewhat depending on the particular characteristics
of each device. One class of devices communicates with the
user program by data transfers directly to and from the user
core region, while another transfers data thru an
intermediate buffer in the supervisor. The distinction
between these classes of devices is largely a function of
their speed: those in the first class are characterized by
high data rates (e.g., magnetic tape, display) while the
latter class comprises lower speed devices (e.g., teletype,
dataphone connection to main processor)

The philosophy underlying the buffering of low speed
devices involves the substitution of data transfers between
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supervisory buffers and the user program (at electronic
speeds) for transfers between the user program and physical
devices (at mechanical speeds). Consequently, the user
program is not "hung up" waiting for a device to complete
ocperation., A user program performing an output function,
for example, will communicate to the supervisor the data to
be transferred; the supervisor will put this data in a
buffer associated with the indicated output device. When
the device is free to accept further data, it causes an
interrupt to the supervisor, and the actual transfer is made
from the buffer to the device; meanwhile, the user program
has continued with its algorithm, ignorant of the timing of
the actual transfer to the output device. Thus, to the user
program the output device is apparently very fast (since
this program wha held up for only the few instructions
necessary for the supervisor to stack the data into the
appropriate buffer). 1In the case where the buffer
associated with an output device is full, however, when the
user program requests further output, the supervisor has no
recourse but to hang up the user program until there is
space in the buffer for the new piece of data. Thus the
amount of time which the user program spends waiting for 1/0
operations is a function of both the buffer size and the
rate at which the user program generates (or requests) data
to be transmitted. In addition, this idle time depends upon
the actual distribution of |/0 demands of the user system
over time., It is obvious that if the average data rate of
the user program exceeds that of the device, the program
will eventually hang ‘up (assuming it continues long enough).
On the other hand, if the user program has a data rate lower
than that of the device, a sufficently large buffer will
reduce the idle time of the program to nearly zero.

9.,1.1 Device Timing Considerations

There are several potential pitfalls involved in
programing a machine with a single interrupt level to
service many 1/0 devices concurrently. Such a machine is
characterized by an interrupt structure comprising two
levels of programming: one which operates with the interrupt
mechanism enabled, the other running with it disabled. In
the usual configuration, the user program operates normally
with the interrupt enabled; a signal from any of the several
operating devices at any time causes the user program to be
interrupted and the appropriate device-handling routine to
assume control. This routine services the device (sends
data to an output device or gets data from an input device)
while the interrupt is disabled, preventing another
interrupt from occurring while control is in the service
routine. Upon completion, the service routine restores
control to the interrupted user program and reinstates the
former (enabled) interrupt status.
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We immediately note that, since the interrupt mechanism
is disabled while control is in a service routine, no other
devices may be serviced until any currently operating
service routine is completed. |If an interrupt signal is
recieved from a device while another device is being
serviced, the actual interrupt is deferred until control is
restored to the user program and the interrupt mechanism is
enabled. If the device whose service is thus deferred is
sufficiently timing sensitive as to be intolerant of the
resulting delay, an error condition will result.To further
complicate this situation, we must consider the possibility
that more than one additional interrupt might occur while
control is in a particular service routine; in this case,
some device will have to wait for its service while the
other devices are being serviced. We have the freedom to
choose, in such a situation, which of the interrupting
devices will be serviced first, but it is necessary to
ensure that no device will be intolerably hung up by the
maximum number of stacked interrupt services which it must
endure. To this end, we specify for each device values for
the following parameters:

1) The maximum latency of the device, or the greatest
delay it will tolerate in the service of an interrupt

request.

2) The service time for the device, which is the maximum
time the interrupt mechanism will be disabled as a
result of an interrupt request from this device.

3) The load factor of the device, a parameter
pertaining only to those devices connected to the data
break facility of the computer. This. connection
allows the device to access the computer's core memory
directly on a '"cycle stealing'" basis: the currently
operating program is periodically delayed for a single
cycle while the data transfer is made. This
arrangement effectively slows down the progress of the
program, and the load factor is defined as the
fraction of real time thus lost to the main processor
program.

In designing the interrupt structure of the supervisor,
it is necessary to assign to each 1/0 device a relative
priority to resolve situations in which more than one device
is requesting interrupt service.Normally, the more timing
sensitive (least latency) devices are assigned to the high
priority end of the queue, while slow and insensitive
devices recieve lower priorities. In case of simultaneous
interrupt requests, then, the device whose priority is
highest will be serviced first. Now, we may generalize our
timing constraints as follows:
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1) The totel load on 1/0 system must not exceed unity.
The total load is defined as
(1-F1-F2-...-Fn)(S1R1+S2R2+.,..+SnRn) where each Fi is
the load factor of device i, Si is its service time,
and Ri is the maximum rate at which device i can
request interrupt services.

2) The maximum latency time of each device k must exceed
the larger of:

a: The sum of Si for each device i<k (i.e., for each
device having greater priority than device k) plus
the maximum service time of any device j>k;

b: The maximum service time Sj of any device j<k
plus the sum of the service times Si over those
devices i<k of higher priority than device i.
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9,2 Picture Handling Functions

The programs responsible for the generation, from the
data transmitted over the telephone line, of the ultimate
3-dimensional figure generally divide themselves into three
major classes. An input program is used to decode the
binary picture description from its input format 2nd
produce, for example, a series of 3 element vectors whose
components are in a representation tractable by the
satellite. Secondly, a display list compiler program takes
this move-and-draw data as its input, producing in core
memory a description of a 2-dimensional projection of the
figure in the format acceptable to the display hardware. A
third program supervises the cycling of the display logic
thru the display list, insuring that the display is
refreshed at a tolerable rate. Finally, a fourth program
periodically examines the status of the globe (an input
device by which the operator specifies a requested rate and
direction of rotation) and modifies the particular
projection of the figure representated by the display list
so as to simulate the rotation of the 3~-dimensional
structure being viewed,

9,2,1 Data Structures

The format of the parametric 6-bit move-and-draw
representation of the picture which is transmitted over the
telephone line is described in the section of this paper on
the subprogram WIRE. This data, organized at the lowest
level in 6-bit characters, is read into a preliminary buffer
of about 60 characters (within the supervisor); this 60
character buffer length corresponds to the maximum length of
am age, into which the characters are organized for their
transmission over the line. Message organization is ignored
by the picture programs, which consider the data transmitted
to be a pure character stream; nevertheless, this level of
organization is required for the error checking and
communications conventions to which we are constrained. The
characters which constitute a complete message, immediately
upon the verification of the correct reception of that
message, are moved from the preliminary buffer to a
substantially larger secondary buffer (also in the
supervisor). This process involves no interpretation or
decoding of the data, each character being moved without
examination,

As the input data is subsequently interpreted, several
internal data structures are created, collectively providing
a useful local representation of the figure. The display
list, which is interpreted directly by the display hardware,
provides the only storage of 'fixed' attributes of the
picture, e.g. character strings (labeling portions of the
figure). The display list itself provides sequential
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instructions for the actual movement of the electron beam on
the CRT face; typical display list commands request the
movement of the beam by a certain increment (containing
horizontal and vertical components), the drawing of a
character, etc. In a single display list command, a vector
may be drawn which extends one eigth of tte distance across
the screen, or 1 1/4 inches, and each component of this
vector is represented in the command word by a sign bit and
7 magnitude bits. Hence, we deduce that there are 1024
addressable points along each axis. The limitation imposed
by the hardware that vector magnitudes be 7-bit quantities
stems from a desire to allow one vector to be represented in
the display list by a single 18-bit word; this, in turn,
impliies either a restriction on the length of a single
vector or a limitation in the precision with which its end
points are located on the CRT. In fact, there are
provisions in the hardware for increasing the maximum length
of single vectors at the expense of an effective reduction
in the number of addressable points along each axis (i.e., a
reduction in resolution); since, by their nature, are
displays are composed of vectors of limited length, we make
no use of this option. Hence on those relatively rare
occasions when a long vector is required in our figure, on
is constructed by stringing short ones (see the notes on
VVEC and IVEC in the WIRE description).

Since the display list contains only enough information
to characterize a 2-dimensional projection of our figure, we
obviously require more information regarding the
3-dimensional character of the vectors to be stored
elsewhere. As the format in which the 2 components are
stored in the display list is awkward in terms of retrieval
by the program, the 3 vector components are, in fact, stored
redundantly as full word, 18-bit signed ones complement
numbers in additional tables, obviating the need for the
recovery of vector information from the display list. In
addition to the 3 arrays which are used to hold the
components of each vector, a fourth array is used to
establish a correspondance between the vector components and
the storage of their 2-dimensional projection in the display
list. Since, in general, consecutive words in the display
list do not represent consecutive vectors (there are other
words containing control information, characters, etc) a
pointer is required for each vector to the word in the
display list in which it is stored.

We may notice, at this point, that the storage space
required for a figure containing n vectors (both visible and
invisible) is more than 5n 18-bit words, ignoring the
buffering of the parametric information and the display list
storage of control data, etc. We have obviously allowed a
degree of redundancy and a consequent loss of storage
efficiency by choosing this representation; this choice
results from consideration of the timing requirements of
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real time rotation of the displayed figure.

9,2,2 Input Phas

The size of the supervisor's data buffers is a
compromise between our desire to store the
parametricrepresentation of an entire picture in a
preliminary buffer and the storage requirements of the final
internal picture representation, lIdeally, we would like to
be able to store the representation of a new picture in a
large buffer while disptaying (and rotating) an earlier
version until we are sure that all of the new picture data
has been recieved; in this way, the use of the display
functions of the satellite are not interrupted for a
significant interval. However, the storage of
representations of two pictures simultaneously, which this
organization would entail, imposes intolerable restrictions
on the length of either. The compromise which we have
arrived at involves the use of an input data buffer large
enough to store simple figures in their entirety, but
substantially smaller than the space allocated to the final
representation of the figure; furthermore, the satellite
system is arranged to make optimum use of the buffer space
by maintaining the previous picture's representation until
the input buffer is full.

The input buffer is thus handled by an expedient if
inelegant scheme which requires that the lowest level of
display programming on the main processor be aware of the
actual size of the input buffer in the satellite. The
main-processor subprogram PLOT, called at the completion of
a picture, signifies that an entire picture has been sent to
the satellite by means of a message (in a special format,
distinguishable from teletype messages) over the information
path (see section VII1l) normally reserved for communication
between the user and the main processor programs. At the
satellite, this message triggers the mechanism by which the
input buffer is emptied and the new picture is built (i.e.,
the display list and vector component arrays are
constructed). The old picture is lost at the beginning of
this picture building process (since the space occupied by
it must now be used for the new picture) and the new one
appears at its completion; however, if the representation of
the entire new picture is in the input buffer at the time
that the picture building process is begun, the interval for
which the display is inactive (i.e., wh'le the new picture
is being built) is smaii.

If, on the other hand, the representation of the entire
new picture will not fit in the input buffer, we might
envision the satellite becoming hopelessly hung: the
overflow of the data buffer implies that communication over
both paths is blocked (se section VIII) and no messages,
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including the one which triggers the emptying of the data
buffer, can be recieved. We avoid such an impasse in the
current scheme by requiring the main processor programs to
anticipate the overflow of the input buffer (since it can
keep track of the number of characters which it has sent)
and, if necessary, send the message triggering the building
of the new picture and the concurrent emptying of the input
buffer before the catastrophe occurs. The requirement that
the main processor system be aware of the size of a
satellite buffer is unfortunate, and indeed there is no
logical reason why the satellite might not avoid the
overflow of its buffers independently; the choice of the
former system was primarily due to the expedience of making
use of an existing mechanism rather than the construction of
a new one.

Once the picture building operation has started, the
input program is repeatedly called upon to extract input
characters from the input buffer, and to decode those
characters corresponding to vector components into full
word, ones complement fixed point values; in particular, the
6-bit sign-magnitude representation is loaded into the high
orderbits of an 18 bit word (the others being zero) and if
the high order bit is set, the low order 17 bits are
complemented. This allows subsequent computations (e.g.,
the matrix rotation) to be carried out to the full 18-bit
precision allowed by the arithmetic circuits of the machine.

g Picture Buildi P

The analogy tetween the translation of a move-and-draw
picture representation to display list code and the
translation of a higher level programing language to machine
instructions is revealing. In each case, the transiator
must map a single source language operation into several
object language operations, anticipating and correcting for
changes in the state of the object machine (e.g., the
contents of active registers) with each object instruction.
In each case the translation process may be properly termed
compilation.

The display hardware has a number of state variables,
specifying the intensity of the display, the format of
subsequent display list words, etc. In general, the display
list contains a mixture of control words (changing the
values of state variables) and data words (specifying that
the beam position be changed). Examples of the former are
instructions that the following display list words are to be
interpreted as vectors, or that subsequent lines are to be
drawn at a particular intensity; words of characters or
vector components typify the latter class of display list
commands.
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The actual compilation of the display list requires
that program variables be maintained which reflect the state
of the display at each successive display list command, so
the the appropriate control words may be inserted as the
various display functions are encountered. While the
specific (machine dependent) bookkeeping implicit in this
process will not be discussed in detail, the reader shouid
be aware that the addition of data words to the dispiay list
frequently referred to in the following discussion involves,
in general, the prior additinon of control words. The
following paragraphs, then, largely ignore this corollary
function of the compiler, following rather the transfer of
data to the display list as each request is processed in the
input stream.

The format of the input picture representation is such
that actual data characters (e.g., components of vectors)
are preceded by control characters identifying them. It is
designed so that no 'look ahead' is required - that is, the
processing of each character is not dependent upon
characters which are to be encountered subsequently in the
input stream. Consequently, the display compiler functions
by reading successive control characters and dispatching to
the appropriate algorithm depending upon their values:

1) This character signifies the start of a new picture.
It is the result of a main processor call to the
subprogram NEWPIX, and results in the initialization
of the program variables of the display compiler, The
arrays containing the X,Y,Z components of the vectors
and the pointer to the corresponding display list
words are emptied; the display list is emptied and
refilled with the commands generating a single
invisible setpoint at the center of the CRT. This
will be the only setpoint in the display list, and
specifies the point about which the projection is to
rotate.

2) There are two characters which specify that a vector
is to be added to the display, one of which stipulates
that the vector is to be invisible. Each causes the
retrieval (via the input program) of the 3 next
characters from the input stream, and their conversion
to the full word vector components; these components
are placed directly into the next successive elements
of the appropriate arrays. The components are next
converted into the 7-bit sign-magnitude form required
by the display list format, and an appropriate data
word is added to the display list. The address of
this display word is placed in the pointer array so
that it becomes associated with the component values
placed in the vector component arrays, and the index
to these arrays is incremented. The algorithms for
visible and invisible vectors differ only in that a
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bit in the data word corresponding to the visible
vector in the display list is set to inform the
display that a line is to be drawn.

There is a character specifying that a label is to be
constructed. The convention is that the very next
character in the input stream specifies the number of
characters in the label, and this character count is
read immediately from the input buffer. Since
characters change the beam position, the display
compiler takes special pains to correct for the offset
produced by a label by adding an invisible, fixed,
2-dimensional vector to the display list which
corrects for the beam displacement. Thus, a label can
be added between any two vectors without affecting
their relative positions; furthermore, although the
label will rotate as a rigid structure flexibly
attached to the rotating figure, the characters
themselves will not rotate. Thus, the compiler reads
a number of characters (in BCD) from the input data
stream equal to the character count, converting them
to the character set used by the display hardware and
packing them into successive data words, 3 to a word.
Finally, the commands necessary to generate an
invisible vector back to the beam position at the
start of the label are added to the display list.
Since the latter vector is not to rotate, no entries
are made in the component and pointer arrays.

A final character, sent by the main processor routine
PLOT, signifies the end of the picture. This triggers
the display program (section 9.2.5) which causes the
picture to appear. .

A character sent by the main processor subroutine
REPIX performs a function analogous to that of the
chanacter sent by NEWPIX, above. The REPIX call,
however, establishes a special! mode of picture
building in which the structural character of the
figure is the same as that of the previously sent
picture; that is, the number and order of vectors,
labels, etc are the same. The only features of the
picture which are allowed to change are the actual
values of the vector components. In this mode,
successive triplets of 6~-bit characters in the input
stream are taken to be sets of vector components until
each of the 3-dimensional vectors in the picture have
been revised. The machinery of step (2), above, is
used in this process: the component arrays are
updated, an element at a time, and the display list
word pointed to by the pointer array element
corresponding to each set of component values is
revised to reflect the new values. The bit specifying
the visibility of each vector, as well as the other
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display list control information, remains unchanged.
This mode of operation is useful whenever the main
processor system requires that the existing picture be
deformed rapidly.

9,2,; Rotation Phases

The effective rotation of the displayed figure being
observed constitutes a critical link in the man-computer
system, providing the sole means by which the user may
appreciate, in a qualitative sense, the 3-dimensional
character of his model. It is consequently essential that
the visual effect produced by the rotation mechanism
simulate, in a natural way, actual rotation of a figure in
3-space. Smooth motion in a real time display requires the
frequent (say, 20 times per second) revision of the display
list. Since each revision of the display list involves the
rotation of the 3-dimensional representation and the
projection onto the 2-dimensional CRT, this process makes
heavy computational demands on the satellite. It was, in
fact, unclear at the start of the project that the
computational power of the satellite computer was adequate
to perform satisfactorily the rotation function; our current
assertion that it is remains provisional. Earlier
experiments with the rotation algorithm significantly
sacrificed the quality of the display for rotational speed
(i.e., for increased frequency of display list revision,)
but ultimately a compromise was reached which results in a
high quality display with only a moderate reduction in the
smoothness of the rotation. Since the earlier algorithm may
be of some technical interest to users of machines with
limited computational facilities, its salient features are
briefly discussed in addition to the description of the
program finally arrived at.

remen Rotation

A principal virtue of the rotation algorithm first used
is that it does not make use of multiply or divide
instructions, allowing it to be implemented on a machine
without the corresponding hardware. To appreciate the
2-dimensional instance of the algorithm, we observe that the
points whose X and Y coordinates in the cartesian plane are:

X=C0S ¢
Y=SIN P

lie on the unit circle centered at the origin. Incrementing
the angle P by the differential df, the point (X,Y) traces
the unit circle; the corresponding X and Y increments are:
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dX
dY

-SIN @ dp
Cos p dp

-Y d@
X dp

We are led, quite naturally, to expect that the motion of
our point along the unit circle to be approximated by the
difference equations:

X-kY
Y+kX

xl
Yl

for sufficiently small k., Furthermore, we expect that the
motion of the point might be reversed by a change in sign of
k (analogous to a change in sign of df,) or equivalently by
a reversal of the roles of X and Y in the equations.
Finally, we note that the constant k may be a negative power
of 2, so that the multiplications kY and kX might be
replaced by arithmetic shifts, thus minimizing the amount of
computation necessary to update X and Y. In fact, the locus
traced by X and Y for shifts of 6 or 7 places (in an 18 bit
computer word) reproduces a circle quite acceptably within
visual tolerances.

As the radius of the circle approximated by the locus
of X and Y is determined solely by the initial X and Y
values, the application of the above difference equations to
the rotation of strings of vectors is immediately suggested.
If our 2-dimensional figure is composed of a number of
vectors (some of which may be considered invisible) strung
end to end in such a way that the coordinates of the origin
of each vector is the vector sum of those vectors preceding
it in the string, then we presumably may rotate the entire
system about the origin of the initial vector by applying
the above difference equations simultaneously to the X and Y
components of each component vector. In practice, we ensure
that the rotation is centered about a fixed point on the CRT
screen by the placement of an invisible setpoint at this
position at the start of the display list. It is convenient
that the hardware configuration of our display facility
allows for the specification of relative vectors, although
little additional effort would presumably be required to
calculate the absolute coordinates, say, of vector end
points from the lists of their relative components.

Several further observations regarding the bahavior of
these equations in a digital field led to further refinement
of the algorithm. First, we note that the matrix R used to
increment each vector is:

1 -k
k 1
and the corresponding matrix R' used to rotate incrementally

in the opposite direction (obtained by reversing X and Y in
the equations) is:
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1 k
-k 1

Now, taking a step first in the positive direction and then
another in the negative direction corresponds to updating
each vector by the matrix RR', or:

lek*=2 0
0 1+k**2

so that the process is not, in fact, absolutely reversible.
Since we expect that in practice a user will want to rotate
his figure repeatedly in either direction as he is studying
it, the fact that it grows in size might prove annoying.
However, if we modify our equations slightly:

X'=X-kY
Y'=Y+kX!

we find that R and R' are, respectively

1 -k ,

k 1-k**2 and
l-k*=%2 k

-k 1

so that their product becomes
1 ' 0
0 1

and the incremental rotation is reversible., This minor
change in the algorithm actually simplifies the program,
eliminating the necessity for a temporary storage and
retrieval, hence providing a most satisfactory solution to
the reversibility problem.

Somewhat more startling is the observation that the
above system of equations, when applied iteratively through
a full 360 degree rotation and when implemented using ones
complement arithmetic, yields exactly the initial X and Y
component values. The number of complete 360 degree
rotations necessary for this exact closure varies with the
actual numbers involved, but the fact that it will
eventually return to its initial values guarantees us that
the scale is niether vanising nor becoming infinite. That
the closure is dependent on the use of ones complement
arithmetic reflects the symmetry of the bit patterns
encountered during a complete cycle; in particular, since
there is a one to one correspondance between the positive
values which each component assumes during a rotation and
its negative values, the truncation errors accumulated
during each half cycle may cancel each other. In ones
complement arithretic, the number -n is represented as the
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complement of the representation of n, so that the symmetry
is preserved and the errors do, in fact, cancel. In twos
complement arithmetic, for example, such symmetry does not
exist between +n and =-n in their respecive binary
representations, and consequently error can accumulate over
a cycle.

Qur adaptation of the algorithm to the 3-dimensional
case involves the application of the 2-dimensional rotation
to each pair of coordinates. Thus, for rotation about the Z
axis, we apply the above equations to the X and Y components
of each vector. Of course the closure of the 2-dimensional
case does not imply that we may apply rotational increments
about the three coordinates arbitrarily and expect to
accumulate no error; but since continuous rotation about a
fixed axis through an integral number of cycles causes no
error, we may expect to introduce errors only when the axis
of rotation is changed. As this occurs only when the
operator physically manipulates the input device (globe) we
might be optimistic regarding the rate at which the vector
representation of our figure deteriorates, and in fact a
picture thus rotated typically retains a tolerable semblance
of its origional configuration through 20 or 30 minutes of
active manipulation.

The display resulting from this rotation scheme was
objectionable, then, not primarily because of the long term
deterioration of the figure; rather, it was the errors
between one rotationalincrement and the next which motivated
us to abandon this algorithm. Since the display consisted
typically of several hundred (a maximum of about 700)
vectors strung end to end, the coordinates toward the end of
the string were very prone to an accumulation of roundoff
(and other) errors along the chain. This situation is
compounded by the tendency of the roundoff errors of each
vector along the chain to be of the same sign, and
consequently not canceling each other to the extent which
one would expect if they were occurring randomiy. The net
result was a somewhat objectionable jumping around of the
vectors toward the end of the chain as the figure rotated.
In fact, however, this problem occurred (to a lesser extent)
in the algorithm currently being used, and it is not clear
that the steps taken to cure the problem in the later
program cannot be applied to the incremental rotation
algorithm with comparable success. The other drawback of
this algorithm, however, is that it involves the actual
modification of the parametric representation of the
picture; i.e., the components of the constituent vectors are
actually modified in the process of the rotation.
Consequently, recovery from the situation in which the
picture has deteriorated due to accumulated errors involves
the storage of an extra copy of the original 3-dimensional
vector components, an impractical approach in a machine of
very limited memory size.
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Matrix Rotation

The obvious solution to the latter problem is to modify
a rotation matrix rather thatn the vectors themselves, thus
preserving the canonical description of each vector in its
unrotated form. This technique obviously involves a
matrix-vector multiplication for each component vector at
each time that the display is updated, but in fact the
computational load thus imposed on our particular satillite
processor is about comparable to that due to the earlier
incremental algorithm,

The use of an intermediate rotation matrix allows us to
preserve our original vector representation, but in itself
merely defers the actual rotation process. We are still
faced with the problem of updating the rotation matrix,
which we may attack in a variety of ways. Certainly, we may
use the incremental approach discussed above to vary the
matrix elements corresponding to rotation about each axis,
by applying the difference equations to pairs of matrix
columns; however, since the principal advantage of the
incremental method is its execution speed, the argument for
its use here seems less compelling. The matrix must be
updated only once for each display list revision, so that we
may justify spending more time changing the matrix than we
were able to devote to updating each vector,

We might be tempted to save the rotational attitude of
the figure in terms of 3 rotational angles, and calculate
the new rotation matrix at each incremental step by
incrementing the appropriate angles (depending upon the
rotation requested by the user) and using their new values
in a trigonometric formula for the new matrix; this,
presumably, would avoid the problem of accumulated error in
the matrix. The rejection of any such scheme is due to the
following considerations:

1) It seems crucial to the effective coupling between the
display system and the user that the rotation be
specified in the laboratory frame, that is, the frame
of reference attached rigidly to the user. It is
necessary that the manipulation of the globe, in the
lab frame, be easily and naturally related to the
rotation of the figure: when the user twists the globe
to the right, he should see the figure rotating to the
right.

2) Although differential rotations are additive, finite
rotations are in general not. Thus, the order in
which two rotational increments are applied effects
the resultant position.

Thus, if we attempt to save the position of the figure in
terms of 3 rotational angles, we must establish some
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convention regarding the order of their application. Since
the angles are finite, the cumulative rotation is different
depending upon the order in which the rotational increments
are performed, and in fact the axes of the latter rotations
will be a function of the former rotations, so that the 3
angles will not in general represent independent rotations
about axes fixed in the lab frame. We thus conclude that we
cannot keep track of the rotations independently. It is
necessary, at each rotational increment, to apply the
increment to the.composite position which the figure
currently assumes, i.e., to the current composite rotation
matrix.

Since, then, no very compelling alternatives have
presented themselves, the scheme in present use updates the
rotation matrix at each increment by a matrix-matrix
multiplication. At each update operation, a matrix (3 by
3) representing the required incremental rotation is
calculated, and the old matrix is replaced by its product
with the incremental matrix. A loop is then entered in
which the X and Y components of the product of each vector
with the matrix are inserted in the corresponding positions
in the display list.

9,2,5 Display

At the completion of the compilation of the display
list, a program is called which causes the display hardware
to cycle thru the display list at regular intervals. The
operator may select one of several modes of display
refreshment by the manipulation of console controls:

1) The normal mode of operation causes the display to be
refreshed 20 times per second, if possible. This
timing function is performed by a program within the
supervisor, which sets a clock each time the display
is restarted; the display is not restarted again until
the clock registers 1/20 second. In the event that
the allotted 1/20 second expires and the display has
not completed the interpretation of the display list,
then a flag is set and the display is restarted
immediately when it is finished. In this mode, the
display is not synchronized with the rotation phase;
consequently, each pass thru the display list will
generally encounter a portion of one rotational frame
as well as a portion of the next

2) A mode of operation is provided in which the operation
of the hardware is synchronized with the rotational
phase, guaranteeing that no display frame includes
portions of two rotational frames. This mode
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substantially reduces the rate of display refreshment.

3) A mode of operation is provided in which both the
rotation and the display hardware are synchronized
with a movie camera. This mode insures that each film
frame include exactly one rotational and display
frame.

The timing of the display is complicated by the fact that
the time spent in one cycle thru the display list by the
hardware is very nearly that spent in the computation of a
new rotational frame. To make matters worse, each of these
times is subject to wide variation, effected by the nature
of the specific data, as well as the particular 1/0 load of
the machine during their execution. Consequently, the
synchronization of the two requires that one phase (e.g.,
the rotation) be substantially completed before the other
(e.g., the display) is started; the expense in terms of rate
of display refreshment is therefore high. On the other
hand, for most applications the distortion introduced by the
asynchronous operation of the display and rotation is not
objectionable. At slow rates of rotation, the consequent
jumpiness of the ends of the figure is barely discernable.

The synchronization of the display with the rotation is
accomplished by restarting the display only at the point in
the rotation loop when exectly half of the vectors have been
updated. In the synchronized mode, the rotation program is
interrupted at this point, and a test is made to determine
whether the display is running; if it is, then the rotation
algorithm pauses until the display stops. When the display
is stopped, it is restarted (at the beginning of the display
list) and the rotation algorithm continues. When the
rotation phase completes the computation of one rotational
frame, it immediately goes on to compute another, assuming
that it will not cross paths with the display before it
reaches the halfway point. The success of this scheme is
based on the assumption that neither phase will go twice as
fast as the other, which seems safe.

S,3 Auxilliary Functions

Apart from the picture building functions of the
satellite programs, their primary function is to simulate
the operation of a conventional (teletype) terminal. This
is largely a matter of translating messages between the BCD
character set used by the large machine to the /SCl|
character set of the teletype, and in the process moving
characters from the dataphone buffer to the teletype buffer
and vice versa. However, provision is made for the user to
type commands directly to the locail (satellite) program; in
particular, lines typed at the teletype beginning with the
character # are interpreted as input to the local system and
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cause control to be dispatched to a local command
interpreter. This program recognizes the following command
lines:

#SAVE n - where n is an integer between 1 and 34, causes
the current 3-dimensional picture to be saved on
microtape.

#SHOW n - causes a picture to be retrieved from microtape
and displayed.

#EXIT - causes a local monitor system to be read from
microtape and entered. This command is typed when the
user is done with that satellite subsystem which is
used for 3-dimensional displays, and wishes to engage
another. :

The SAVE and SHOW functions take an integer argument,
specifying a microtape address where the picture is to be
stored or read from. The microtape is divided into 34 equal
fixed-length blocks, each of a size large enough to contain
the data representing one picture, and which are numbered
from 1 to 34. The data stored in each block includes the
display list, the component and pointer arrays, and an
integer specifying the number of 3-dimensional vectors in
the picture; hence it contains all data relevent to the
rotation and display of the figure. The current rotation
matrix is not thus stored and retrieved, so that the SHOW
command will not, in general, result in a projection of the
figure which is exactly the same as that current at the time
of the SAVE. This feature has some useful applications in
cases where two different pictures are to be viewed in the
same orientation.
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X. Conclusion

In abstract terms, the ultimate goal of this project is
to couple a man and a machine together in order tc solve a
problem whose solution is evidently not tractable by either
alone. Clearly, there is a class of problems which may be
solved more easily by present-day machines than by people;
simitarly, there is another class of problems which are
obviously much better suited to humans than to any machines
we can presently build. Our apparent hypothesis is that we
may solve problems beyond these two classes by coupling the
two methods. |In particular, we attempt to take advantage of
the chemical insight of an investigator by allowing him to
interact freely with a model, while requiring the machine to
attend to as many technical details as possible, thereby
allowing the man greater freedom in his chemical pursuit.
In the framework of our particular problem, we of course
cannot expect the specific capabilities of the component
problem solvers (i.e., the man and machine) to complement
one another perfectly. In terms of molecular model
building, for examplie, it is probably true that neither the
man nor the machine is very well adapted to recognising and
correcting collisions between space-filling parts of the
model; as a result, this function provides a serious
bottleneck, limiting somewhat the usefulness of the system.
The acceptance of this and other such limitations is the
price we pay in order to apply the power and flexibility of
the machine to those aspects of the problem which it handles
best.

Major differences between the implementation of the
current system and that of earlier versions include the
overall reorganization of the main processor programs at the
top level, as well as some changes in program details. The
segmentation of the system, motivated by limited core memory
in the large machine, simultaneously relieves a sericus
restriction and forces us to think carefully about the
relation between the various subsystems. |In addition, the
program segmentation probably provides a good background for
the eventual operation of the package on the next generation
of time sharing systems, which promise easier and more
efficient solutions to segmentation problems.

Most of the technical aspects of the satellite display
depart from previous implementations, The use of a remote
processor, with limited computing power of its own, and the
restricted data rate capacity of the interconnecting
telephone line stimulate us to organize the system so as to
minimize communications between processors. The use of a
software scheme to perform the 3-dimensional rotation of
vectors in the display list imposes further organizational
restrictions at the satellite,

It seems unlikely that the whole range of technical
detail presented in this paper will ever be of significant
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interest to anyone, except as a reference document for the
maintenance of the system which it describes. Such an
interest would suggest the duplication of the current
system, a project which is certainly not the most practical
except in circumstances identical to those leading to this
system’s development, and even then would be hard to justify
in the light of technical advances being made in both
hardware and software. Rather, each of the technical
discussions would seem most valuable when abstracted to its
individually much wider area of applicability.
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Appendix 2: Arithmetic Library

The following conventions will be used in the
ensuing brief descriptions of mathmatical routines
called by the package:

A,B,C will represent two dimensional floating point
matrices. |If not otherwise specified, the dimensions
of each matrix are taken to be 3 by 3. The 3 by 3
matrix M is represented in MAD by:

M(1) M(2) M(3)
MQOL) M(5) M(6)
M(7) M(8) M(9)

The zeroeth element of the vector representing a
matrix is ignhored,

Vi,Vv2,V3 will represent vectors of floating point
numbers. |f not otherwise specified, the dimension of
each vector will be 3. Again., the zeroeth element of
vectors are ignored.

N will be an integer specifying the dimensions of
vectors or matrices supplied as arguments.

X,Y will be floating point variables.

The following functions are all coded in FAP and are
contained in PKG FAP as well as PKG or LIBE BSS:

MOVE.(V1,V2,N) - moves the first thru Nth elements of
V2 to Vl. The zeroeth elements are ignored.
X=NMAG.(V1,N) setx X to the magnitude of V1.
X=VMAG.(V1) same as X=NMAG.(V1,3)

NVADD.(V1,Vv2,V3,N) vector addition: sum of V2 and V3
replaces V1.

VVADD.(V1,V2,V3) same as NVADD,(V1l,V2,V3,3)
NVSuB.(v1i,v2,V3,N) vector subtraction: V1=V2-V3
VvsuB.(v1,v2,V3) same as NVSUB.(v1,v2,V3,3)

MATMUL.(A,B,C) matrix multiplication: A=B*C. Each
matrix is assumed to be 3x3.

Y=NVDOT.(X,V1,V2,N) dot product of V1 and V2 is stored
in X and Y.
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Y=VVDOT.(X,V1,V2) same as Y=NVDOT.(X,V1,V2,3).
X=MDET.(A) sets X to determinant of 3x3 matrix A.
MVMLT.(V1,A,V2) matrix vector multiplication: V1=A*V2
UPDAT.(A,B) update a rotation matrix: A=A%B
MMMLT . (A,B, C) matrix matrix multiplication: A=B=C

NSCA.(V1,X,V2,N) scales a matrix or vector; scaler
multiplication: V1=X*V2,

VSCA.(V1,X,V2) same as NSCA.(V1,6X,Vv2,3)

NNRM.(V1,V2,N) normalize vector:
NSCA.(V1,NMAG.(V2,N),V2,N).

VNRM,(V1,V2) same as NNRM,.(V1,V2,3)
VVCRS.(V1,V2,V3) cross product: V1=V2%V2

TRNPX.(V1,A,V2,NROW,NCOL) where NROW is the dimension
of V2 and the number of rows in the matrix A,
and NCOL is the dimension of V1 as well as the
number of columns of A: multiplies the vector V2
by a transposed version of the matrix A and puts
the result in V1. A and V2 are not changed.

1 =MTXINV.(A,N,EPS,DIRT) where N is the dimension of the
square matrix A, DIRT is an array for temporary
storage (dimensioned at least 3*N+1) and EPS is
a small floating point number, -specified by the
calling program, to be used in the singularity
test, inverts the matrix A and stores 0 in the
integer | if the operation is successful,
otherwise 1.

=SYMINV.(A,N,EPS) inverts the symmetric matrix A. 1, N,
and EPS are as in MTXINV, above; the original
configuration of A need not contain relevent
values below the main diagonal.

SYMAK.(SYMA,A, NROW,NCOL) calculates, from the
nonsquare matrix A, the square symmetric matrix
AA' (for NCOL > NROW) or A'A (for NROW > NCOL)
where A' is the transpose of A; the symmetric
matrix is stored in SYMA, excepting those below
the main diagonal,

The following functions take, as arguments, MAD lists of
arbitrary length. Such argument lists may contain dot
notation (e.g., A...B,A(5)... (33),B...7) as well as single
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variables and constants. The argument lists of this type
are specified as "LIST":

ZERQO,. (LIST) sets arguments to zero.

SPRAY, (X,LIST) sets arguments to X (which, of course,
may be either fixed or floating but must be same
as arguments in LIST).

X=MIN.(LIST) sets X to minimum of LiST. X and LIST
may be fixed or floating, but not mixed.

X=MAX.,(LIST) sets X to maximum value in LIST, X,LIST
are fixed or floating, but not mixed. .

X=MINABS, (LIST) sets X to minimum of absolute value of
LIST. X and LIST fixed or floating but not
mixed,

X=MAXABS.(LIST) sets X to maximum of absolute values of
LIST. X and LIST fixed or floating, but not
mixed.

The following functions relate specifically to molecular
modelling, and most of them contain the problem-dependent
program common declarations; the BSS decks are largely in
NPKG BSS:

X=D1ST.(Q1,Q2) where Q1 and Q2 are the indices
(integers) of atoms (i.e., they point to entries
in the X, Y, and Z arrays,) sets X to the
distance between the atoms,

X=D1SQ.(Q1,Q2) sets X to the squared distance between Ql
and Q2; this is much faster than DIST since it
need not find the square root.

V1,Q1) translates the X, Y, and Z entries
corresponding to atom Q1 by the vector V1:
X(Q1)=X(Ql)+V1(l), etc.

VECROT.(A,Ql) rotates the X, Y, and Z entries
corresponding to Q1 by the rotation matrix A.

VECTOR.(V1,Q1,Q2) sets the vector V1 to the difference
between the coordinates of Ql and those of Q2:
V1(1)=X(Q1l)=-X(Q2), etc.

X=NRMANG.(Y) sets X to the normalized representation
(between plus and minus pi) of the angle Y.
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QBACK, JGLNUM, ANGLO, QAA, and TYPE(Ql) each unpack
the corresponding component of the Q1 element of
the ATOM array and return it as their value (an
integer).

1=ATTRIB.(PROPERTY, /. LID,RELATIVE.Q) is the primary
source of chemical in the system. ATTRIB
contains a number of internal tables, returning a
value corresponding to a particular property
(coded into PROPERTY) of a specific type of amino
acid (coded into A.ACID) if the optional third
argument is missing, or of a specific atom
(RELATIVE.Q) of the amino acid type in cases
which require the third argument. The property
codes and the resulting values are summerized
below:

ATTRIB.(0,*,1) returns the BCD name of the atom
type whose code is |. The second argument
is ignored.

ATTRIB.(1,A.ACID) returns the B O name of the
amino acid whose type code is A.ACID,

ATTRIB.(2,A.ACID) returns an integer specifying to
what extent the amino acid type A.ACID is
hydrophobic.

ATTRIB.(S}A. £i1D) returns zero, +1, or -1
reflecting the charge on the amino acid
whose type code is A.ACID.

ATTRIB.(8,A.ACID) returns the number of atoms in
the residue of amino acid type A,ACID.

ATTRIB.(9,A. €1D) returns the number of variable
residue angles in amino acid type A.ACID.

ATTRIB.(10,A.ACID,Ql) returns the code for the
type of the Qlth atom in the residue of an
amino acid type A. £ID.

ATTRIB.(11,. « €1D,Ql) returns the van der Waals
radius of the atom Q1 in amino acid A, ACID.

ATTRIB.(13,A.ACID,Ql) returns the number of the
last residue angle which effects the
position of Ql relative to the backbone in
the amino acid A.ACID.

| =ANGVL.(X,Y,TYPE) returns zero (boolean false) if the
angles X and Y are not a valid angle
configuration for an amino acid of type TYPE.
ANGVL uses an internal table (72 by 72 entries,
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each of 1 hit) which specifies the regions of
violation,

| =ANGCHK.(Q1) returns zero (boolean false) if the atom Q1
is a member of an angle pair assuming illegal
values,

| =JGLABL.(TYPE,RELATIVE.ANGLE,RELATIVE.Q) returns boolean
false if changing residue angle RELATIVE.ANGLE
moves atom RELATIVE.Q with respect to the
backbone.

RECOV.() is the uniform recovery procedure from fatal
errors within the package. The default RECOV.
which resides in NPKG BSS simply prints a message
and returns to the error entry of the first link.



